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1 Introduction 

1.1 Intracellular protein trafficking  

The eukaryotic cell is structurally and functionally divided in a number of membrane 

bound sub-compartments or organelles. In the crowded cellular environment, this enables 

physical separation of various biochemical reactions accomplished by different sets of 

proteins present in different organelles. With the exception of those few proteins encoded 

by the mitochondrial and chloroplast genomes, most of the cellular proteins are 

synthesized by the cytosolic ribosomes and have to be transported to the specific 

organelles, the final place of their biochemical functions (Neupert and Herrmann, 2007; 

Soll and Schleiff, 2004). The correct sorting of all proteins to the right compartment is 

therefore crucial for the proper functioning of the cell and as a whole for the continuation 

of life. The fundamental concept of intracellular protein trafficking is that proteins have 

targeting signals which are recognized by receptors, usually present on the surface of the 

organelles. Each organelle has developed its own translocases (or translocons) which are 

complex molecular machines specialised for recognition and translocation of preproteins 

(Blobel, 1980; Schnell and Hebert, 2003). Extensive studies in the protein translocation 

field have started to elucidate the dynamic and versatile nature of different translocases in 

the cell. 

 

1.2 Overview on protein translocation into mitochondria 

All mitochondrial proteins, with the exception of those few encoded by the mitochondrial 

genome, must be transported into the organelle and correctly sorted into one of its various 

sub-compartments, the outer and inner mitochondrial membranes, intermembrane space 

and mitochondrial matrix. For recognition, translocation and subsequent sorting, 

mitochondria have developed a complex network of translocases. 

Mitochondrial precursors are mainly transported  into the organelle in a post-translational 

manner, though certain evidence in support of co-translational translocation also exists 

(Fujiki and Verner, 1991, 1993). The precursors have to be largely unfolded to be 
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accommodated by the channels of mitochondrial translocases and after their synthesis 

they are kept in  a translocation competent forms by the help of cytosolic chaperones: 

Hsp70, Hsp90 and other factors, e.g. mitochondrial import stimulation factor (MSF) 

(Deshaies et al., 1988; Hachiya et al., 1994; Murakami et al., 1988; Young et al., 2003). 

The mitochondrial precursors are targeted to the organelle by virtue of their targeting 

signals. The typical mitochondrial targeting signal is a cleavable N-terminal sequence 

called a presequence or a matrix targeting sequence (MTS). In the absence of any other 

targeting information, MTSs direct preproteins to the mitochondrial matrix. Presequences 

are usually ca. 10-80 amino acid residues long with no apparent primary sequence 

conservation. What is conserved is the ability to form amphipathic helices with  a 

positively charged and  a  hydrophobic surface (Mokranjac and Neupert, 2008; Neupert 

and Herrmann, 2007). N-terminal targeting signals are usually cleaved off by the 

mitochondrial processing peptidase (MPP) as soon as precursors enter the mitochondrial 

matrix. N-terminal positioning of the presequence leads to N to C terminal translocation 

of preproteins but artificial implantation of the MTS at the C terminus leads to 

translocation in the reverse direction. So far, only one example is known, that of the DNA 

helicase Hmi1, where the MTS is naturally present at the C terminus of the protein (Lee 

et al., 1999). 

All mitochondrial preproteins enter the organelle through the translocase of outer 

mitochondrial membrane (TOM). From the TOM complex, β-barrel precursors are 

transferred to another complex in the outer membrane called TOB complex (topogenesis 

of mitochondrial outer membrane β-barrel proteins) or SAM complex (sorting and 

assembly machinery). The TOB complex mediates the insertion of the β-barrel precursors 

into the outer membrane (Kozjak et al., 2003; Paschen et al., 2003; Wiedemann et al., 

2003). For import of preproteins across or into the inner membrane, the TOM complex 

cooperates with the TIM23 and TIM22 complexes in the inner membrane. The TIM22 

complex mediates the insertion of proteins with  four or six transmembrane segments into 

the inner membrane. The TIM23 complex mediates translocation of preproteins with 

presequences into the mitochondrial matrix or inserts single transmembrane proteins into 

the inner membrane (Mokranjac and Neupert, 2008; Neupert and Herrmann, 2007). The 

OXA1 complex mediates export of proteins from the matrix into the inner membrane and 
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also inserts proteins synthesized by the mitochondrial ribosome into the inner 

mitochondrial membrane.  In the IMS of mitochondria, Mia40 and Erv1 constitute a 

disulfide relay system which drives the import of a specific class of cysteine containing 

proteins by an oxidative folding mechanism (Figure 1.1)(Hell, 2008; Herrmann et al., 

2008). 

 

    
 

 

 

 

 

Figure 1.1. Translocation machineries in mitochondria. The TOM complex acts as the common 
entry gate for all kinds of mitochondrial preproteins. The β-barrel proteins are assembled  in the outer 
membrane through the concerted action of the TOM complex, small Tim proteins and the TOB 
complex. After crossing the outer membrane (OM), presequence containing preproteins are either 
translocated into the matrix or inserted in the inner membrane (IM) by the TIM23 complex, whereas 
polytopic  membrane proteins lacking presequences are inserted in the inner membrane via the 
TIM22 complex. After crossing the TOM complex small cysteine containing proteins of  
intermembrane space (IMS) are trapped by the MIA-ERV disulfide relay system. 
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1.3 Translocases of the outer mitochondrial membrane 

1.3.1  Translocase of the outer membrane (TOM Complex)  

The TOM complex is the major translocase of the outer mitochondrial membrane and is 

the common entry gate for all preproteins destined for various mitochondrial sub-

compartments. The general import pore (GIP) or the TOM ‘core complex’ is formed by 

the pore forming subunit Tom40, receptor protein Tom22 and three small Tom proteins 

Tom5, Tom6 and Tom7. Two receptor proteins Tom70 and Tom20 are loosely associated 

with the TOM core complex to form the ‘holo complex’ (Becker et al., 2008b; Neupert 

and Herrmann, 2007; Rapaport, 2002).  

The TOM complex contains two broadly defined binding sites for preproteins. The so 

called cis site is on the cytosolic surface and the trans site is on the IMS side of the TOM 

complex. Presumably, an increase in the binding affinity to the passenger protein from 

the cis to the trans binding site drives the vectorial translocation across the outer 

membrane (Komiya et al., 1998). The TOM complex, purified with the mild detergent 

digitonin is about 490-600 kDa in size (Ahting et al., 2001; Kunkele et al., 1998a; Model 

et al., 2002). Negative staining of the purified TOM complex showed a structure with two 

or three pores. The complex purified under harsher conditions is a complex with two 

pores (Ahting et al., 1999). 

 The receptors Tom20 and Tom70 are anchored to the outer mitochondrial membrane 

with their N-terminal transmembrane domains while exposing their C-terminal domains 

in the cytosol by which they recognize the preproteins. Tom20 mainly recognize 

preproteins with N-terminal cleavable presequences while Tom70 recognizes proteins 

with internal targeting signals (Chan et al., 2006; Lithgow et al., 1995; Wu and Sha, 

2006). However, the substrate recognition properties overlap partially for these two 

receptors. They can partly substitute each other but deletion of both receptors lead to cell 

death (Ramage et al., 1993). 

Tom22 spans the outer membrane once and exposes its negatively charged N-terminal 

domain to the cytosol and C-terminal domain to the IMS. Tom22 connects Tom20 to the 

central translocation pore and may have a role in binding and unfolding of precursor 

proteins together with Tom20. Tom22 is also critical for  the integrity of the TOM 
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complex (Mayer et al., 1995; van Wilpe et al., 1999). Tom40, the major pore forming 

unit, is a membrane-embedded protein that presumably forms a β-barrel structure. 

Purified Tom40 forms pores in artificial membranes even in the absence of other subunits 

of the TOM complex (Becker et al., 2005; Hill et al., 1998; Kunkele et al., 1998b).  It is 

not clear whether the pore is formed by single or multiple Tom40 molecules. The small 

TOM proteins, Tom5, Tom6 and Tom7, consist of ca. 50-70 amino acid residues and all 

are tail-anchored with only a few residues exposed on the IMS. The exact function of 

small Tom proteins is still not clear though there is indication that they have a role in the 

dynamics of the TOM complex. Individually they are dispensable for cell viability but 

simultaneous deletion of all three leads to cell death (Dekker et al., 1998; Dietmeier et al., 

1997; Sherman et al., 2005). 

1.3.2 The TOB Complex   

Mitochondrial outer membrane  contains a number of β-barrel proteins (Rapaport, 2003). 

The translocation and assembly mechanisms of these proteins were enigmatic untill   the 

TOB (SAM) complex was discovered (Paschen et al., 2003; Wiedemann et al., 2003). 

Like other mitochondrial precursor proteins, β-barrel precursors cross the outer 

membrane through the TOM complex. They are then handed over to small Tim proteins 

in the IMS which guide them to the TOB complex. So far three components of the TOB 

complex are known:  two essential components, an integral membrane protein Tob55 

(Sam50) (Kozjak et al., 2003; Paschen et al., 2003)  and peripheral membrane protein 

Tob38 (Tom38/Sam35) (Ishikawa et al., 2004; Milenkovic et al., 2004; Waizenegger et 

al., 2004)  and one non-essential protein Mas37 (Wiedemann et al., 2003). The central 

component Tob55 is a β-barrel protein that has homologues in the entire eukaryotic 

kingdom and also in Gram-negative bacteria (Omp85/YaeT) (Gentle et al., 2004; 

Voulhoux et al., 2003). Tob55 spans the outer membrane with its C-terminal domain 

which is predicted to contain 14-16 transmembrane β-sheets. In addition, it has a 

hydrophilic N-terminal domain which is exposed to the IMS forming a characteristic 

polypeptide translocation associated (POTRA) domain (Sanchez-Pulido et al., 2003). The 

POTRA domain was proposed to have a receptor-like function in the biogenesis of β-

barrel proteins (Habib et al., 2007). Very recently, a receptor function in the TOB 
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complex has also been ascribed to Tob38. The recognition of  the signal in precursors of 

β–barrel proteins by Tob38 led to changes in gating properties of the TOB channel which 

was proposed to facilitate membrane insertion of β-barrel precursors into the outer 

membrane (Kutik et al., 2008). Tob38 is an essential peripheral outer membrane protein 

largely exposed to the cytosol (Waizenegger et al., 2004). If the proposed receptor 

function is correct, then Tob38  should have domains exposed to IMS as well, an issue 

that is unclear so far. Like Tob38, Mas37 is a peripheral outer membrane protein exposed 

to the cytosol. In contrast, its deletion is not deleterious for cell growth in yeast although 

it results in defective import of β-barrel precursors (Habib et al., 2005; Waizenegger et 

al., 2004).  

Recently a protein named Mim1 or Tom13 was identified and was shown to selectively 

affect the assembly of Tom40, but not of other β-barrel proteins. Mim1 is the component 

of neither the TOM nor the TOB complex, but it forms a separate high molecular weight 

complex of 180 kDa and acts in the later stages of the assembly of the TOM complex 

(Ishikawa et al., 2004; Popov-Celeketic et al., 2008b; Waizenegger et al., 2005). 

Recently, Mim1 was also shown to promote the membrane insertion and assembly of 

signal anchored receptors of the TOM complex (Becker et al., 2008a).  

1.4 Protein translocation machinery in the intermembrane 

space (IMS) of mitochondria 

1.4.1 The Mia40-Erv1 disulfide relay system 

The intermembrane space (IMS) of mitochondria harbours a number of proteins 

containing conserved cysteine residues. They are involved in several functions like 

chaperoning the hydrophobic mitochondrial preproteins in the aqueous environment of 

IMS to  reach the correct destination and biogenesis of respiratory chain complexes (Hell, 

2008; Herrmann et al., 2008).  These proteins possess a conserved twin Cx3C or Cx9C 

motif involved in the formation of intramolecular disulfide bonds or metal binding. 

Recently the import pathway for these proteins into the IMS was identified. The essential 

components of this pathway are Mia40 (Tim40) and Erv1. Mia40 is conserved among 

eukaryotes from yeast to human. It contains a highly conserved C-terminal domain ca. 60 
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amino acid residues with  six cysteines that are involved in the formation of three  

intramolecular disulfide bonds (Chacinska et al., 2004; Hofmann et al., 2005; Terziyska 

et al., 2005). Erv1 is a sulfhydryl oxidase with a CxxC motif in its N-terminus and a 

FAD-binding region and another CxxC motif in the C-terminus (Coppock and Thorpe, 

2006; Hofhaus et al., 2003). 

The precursors of the cysteine-rich IMS proteins cross the outer membrane in a reduced 

and extended form through the TOM complex and are recognized by the redox-activated 

receptor Mia40. Mixed disulfide bonds are formed between Mia40 and cysteine-rich 

proteins and subsequently substrates are released in oxidized and folded form leaving 

Mia40 in a reduced and inactive form (Grumbt et al., 2007; Muller et al., 2008). These 

oxidized and folded precursors cannot move back to the cytosol through the TOM 

complex and thereby get trapped in the IMS. In order to regenerate the oxidized, substrate 

acceptor state of Mia40, Erv1 oxidizes Mia40 in a disulfide transfer reaction. Finally, 

Erv1 transfers the electrons to molecular oxygen through cytochrome c, and complex IV 

of respiratory chain and gets re-oxidized to start a new cycle of substrate import (Hell, 

2008; Herrmann et al., 2008). Thus Mia40 and Erv1 constitute a disulfide relay system  

that drives the import of cysteine-containing proteins into the IMS of mitochondria by an 

oxidative folding mechanism. 

 

1.5 Translocases of inner mitochondrial membrane 

1.5.1 The TIM22 Complex  

Precursors of proteins belonging to the solute carrier family and  components of the TIM 

translocases with multiple transmembrane segments (Tim17, Tim23 and Tim22), are 

sorted into inner mitochondrial membrane by the TIM22 complex. The TIM22 complex 

is ca. 300kDa in size and consists of three membrane proteins, Tim22, Tim54 and Tim18 

and three small Tim proteins Tim9, Tim10 and Tim12 (Mokranjac and Neupert, 2008; 

Neupert and Herrmann, 2007). The precursors cross the TOM complex in a specific 

hairpin loop conformation and are handed over to the soluble small Tim complex. This 

complex acts as a chaperone to escort the hydrophobic segments through the aqueous 
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environment of the IMS to the TIM22 complex. There are two homologous small TIM 

complexes in the IMS, the essential Tim9-Tim10 complex and the nonessential Tim8-

Tim13 complex. Small TIM complexes are hexameric and contain three copies of each 

subunit. The small Tim proteins contain ‘twin Cx3C motif’ in which cysteine residues are 

forming intramolecular disulfide bonds. Structural analysis revealed that the Tim9–

Tim10 and Tim8-Tim13 complexes have a six-blade α-helical propeller structure that 

resembles a flattened jellyfish with 12 flexible tentacles. These were proposed to shield 

hydrophobic regions of carrier proteins on their way from the trans side of the TOM 

complex to the TIM22 complex (Lu et al., 2004; Vergnolle et al., 2005; Webb et al., 

2006). The core component of the TIM22 complex is Tim22 which by itself can mediate 

the insertion of carrier proteins in the absence of Tim54 and Tim18 though only with 

very low  efficiency (Kovermann et al., 2002). The exact mechanism of membrane 

insertion by the TIM22 translocase is still not clear. It has been shown that precursors are 

tethered to the translocase in a membrane potential independent manner. After initial 

tethering, actual membrane insertion occurs in two steps with the help of energy from 

membrane potential (Rehling et al., 2003). Tim54 is important for the functionality of the 

translocase but not essential for cell viability. Tim54 might help in tethering of the 

Tim9.Tim10.Tim12 to the IMS side of the TIM22 complex because the association of the 

small Tims was destabilized in TIM54 deletion strain (Kovermann et al., 2002). In 

addition to its role in protein translocation via TIM22 translocase, the function of Tim54 

in the assembly of Yme1p into proteolytically active complex was  described (Hwang et 

al., 2007). Tim18 has been found only in fungal mitochondria so far. The exact  roles of 

Tim54 and Tim18 are still under investigation.  

1.5.2 The OXA1 Complex 

The OXA1 complex is involved in the membrane potential dependent insertion of inner 

membrane proteins from the matrix side. OXA1 substrates are of two origins. One class 

of substrates are nuclear encoded and are first translocated to the matrix with the aid of 

TOM and TIM23 translocase and subsequently  into the inner membrane with the help of 

OXA1 complex. The second class of substrates is encoded by mtDNA and is inserted into 

the inner membrane in a co-translational manner (Hell et al., 1997; Hell et al., 1998; Hell 
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et al., 2001). The matrix exposed C-terminal domain of Oxa1 is involved in ribosome 

recruitment to the inner mitochondrial membrane (Jia et al., 2003; Szyrach et al., 2003). 

This function is shared by Mba1, a peripheral membrane protein that binds to a large 

ribosomal subunit (Ott et al., 2006). Although Mba1 and Oxa1 together are involved in 

ribosome recruitment, they do not seem to belong to the same complex (Preuss et al., 

2001). 

1.5.3 The TIM23 complex 

The TIM23 complex is the major translocase of inner mitochondrial membrane. All 

matrix targeted preproteins are translocated to mitochondrial matrix and some inner 

membrane proteins are inserted into the membrane by the TIM23 complex. Translocation 

across the TIM23 complex is an energy driven process. The energy sources are 

membrane potential across the inner mitochondrial membrane (∆ψ) and ATP in the 

mitochondrial matrix. For simplicity reasons, the translocase is conventionally divided 

into membrane embedded translocation channel and channel associated import motor. 

The membrane embedded part is formed by channel forming subunits Tim23 and Tim17 

along with receptor protein Tim50. Import motor is constituted of mtHsp70 along with its 

co-chaperones: J-protein Tim14 (Pam18), J-like protein Tim16 (Pam16), the membrane-

anchor for Hsp70 Tim44 and the nucleotide exchange factor Mge1 (Figure 1.2). All these 

components of the TIM23 complex are essential for cell viability. Recently, two 

additional components were identified, Tim21 and Pam17. They are both dispensable for 

cell growth (Chacinska et al., 2005; Mokranjac et al., 2005; van der Laan et al., 2005). 

Mmp37 (Tam41) was recently found to affect transport via the translocase but its direct 

association with the translocase is still unclear (Gallas et al., 2006; Tamura et al., 2006). 
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Figure 1.2. The TIM23 complex. Preproteins with positively charged N-terminal presequence (magenta) 
synthesized in cytosol are imported into mitochondria through the concerted action of the TOM complex in the 
outer membrane (OM) and the TIM23 complex in the inner membrane (IM) in a membrane-potential (∆ψ ) and 
ATP-dependent manner. The membrane embedded part (shown in light orange) of the TIM23 complex 
contains receptor Tim50, the  translocon channel formed by Tim23 and Tim17 and Tim21. The import motor 
(shown in light green) formed by Tim44, mtHsp70, J-protein Tim14, J-like protein Tim16 and nucleotide 
exchange factor Mge1 is responsible for translocation of all matrix targeted preproteins (mtp) through ATP-
driven cycles. The TIM23 complex also mediates the lateral insertion of preproteins containing additional 
hydrophobic stop-transfer signal (magenta). Some of these preproteins require the presence of ATP in the 
matrix for their import (motor dependent preproteins – mdp) and some are inserted with no apparent activity of 
the import motor (motor independent preproteins – mip). 
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1.5.3.1 The membrane embedded part of the TIM23 complex 

Tim50 serves as the receptor to accept precursor proteins from the TOM complex. 

Precursors stalled at the level of TOM complex can be cross-linked to Tim50 (Mokranjac 

et al., 2003a; Yamamoto et al., 2002). Tim50 is anchored to the inner membrane by a 

single transmembrane domain and exposes a large hydrophilic domain in the IMS of 

mitochondria. The latter domain was recently implicated in maintenance of permeability 

barrier of inner membrane (Meinecke et al., 2006). 

Tim23 is the central component of the translocase. It is embedded in the inner membrane 

with four transmembrane helices at its C-terminal domain, which form the translocation 

channel. Recombinant Tim23 forms a hydrophilic, cation selective channel which gets 

activated by membrane potential and presequences (Truscott et al., 2001). Using 

environment specific fluorescent probes, the trans-membrane helix 2 of Tim23 was found 

to face an amphipathic environment. Its hydrophilic side also contacts the preprotein in 

transit, in a fully functional, membrane-embedded TIM23 channel (Alder et al., 2008). 

The N-terminal, IMS exposed domain of Tim23 can be divided in two segments. The first 

half of the N-terminal domain is dispensable whereas the second half of the N-terminal is 

necessary for the function of Tim23 (Bauer et al., 1996). The first ca.20 amino acids of 

yeast Tim23 are inserted into the outer membrane independent of the TOM complex 

(Donzeau et al., 2000).The second half of the N-terminal domain interacts with Tim50 

and serves as a presequence receptor of the TIM23 complex (Yamamoto et al., 2002). 

This segment of Tim23 can dimerise in a membrane potential dependent manner (Bauer 

et al., 1996).  

Tim17 has been identified over 15 years ago; however, its function in the translocase is 

still enigmatic. Like Tim23, Tim17 is anchored to the inner membrane by four 

transmembrane helices, which are homologous to those of Tim23. They are however not 

interchangeable pointing towards their different functions (Emtage and Jensen, 1993; 

Ryan et al., 1998; Ryan et al., 1994). Patch clamping of reconstituted inner membranes 

have shown that Tim17 is important in making ‘twin pores’ of the TIM23 complex and 

depletion of it leads to the collapse of twin pores into single ones (Martinez-Caballero et 

al., 2007). Interestingly, the N-terminal segment of the protein harbours several negative 
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charges which are critical for protein import and gating of the translocation channel 

(Martinez-Caballero et al., 2007; Meier et al., 2005). 

Recently, Tim21 was identified as a component of the TIM23 complex dispensable for 

the cell growth (Chacinska et al., 2005; Mokranjac et al., 2005). Tim21 is anchored to the 

inner membrane by single transmembrane domain and exposes a C-terminal domain to 

the IMS. The recombinant IMS domain of Tim21 has been found to interact with Tom22 

of the TOM complex in vitro. This interaction of TOM complex and IMS domain of 

Tim21 might play a role in TOM-TIM23 tethering during preprotein translocation. Tim21 

was also suggested to promote the dissociation of the motor part of the TIM23 complex 

from the membrane embedded part. This second role of Tim21 led to the hypothesis of 

‘Two states’ of the TIM23 complex. The first state would be sorting competent and 

would consist of the membrane embedded part containing Tim21 but free of the import 

motor. The second modular state of the TIM23 complex is capable of targeting proteins 

to the matrix which is free of Tim21 but has the motor part bound to the rest of the 

translocase (Chacinska et al., 2005). The ‘Two translocase’ theory was one of the 

inceptive hypothesis explaining differential sorting of precursors by the TIM23 complex. 

1.5.3.2 Import motor part of the TIM23 complex 

The import motor of TIM23 complex is comprised of mitochondrial Hsp70 (mtHsp70) 

and its co-chaperones.  

The central component of the import motor is mtHsp70 (Ssc1 in S. cerevisiae). In ATP-

dependent cycles of binding to and release from the incoming precursor protein, mtHsp70 

leads to vectorial movement of precursors into the matrix assisted by a number of co-

chaperones.  

For a long time Tim44 was assigned as the J co-chaperone for mtHsp70 though it lacked 

the typical HPD motif in the active site of J proteins (Merlin et al., 1999). Recently works 

from different groups have identified Tim14 (Pam18), the J protein of mtHsp70 in the 

import motor of TIM23 complex (D'Silva et al., 2003; Mokranjac et al., 2003b; Truscott 

et al., 2003). Tim14 has been found to accelerate the ATP hydrolysis activity of mtHsp70 

in vitro (D'Silva et al., 2003; Truscott et al., 2003) typical of J co-chaperones. Tim16, a J-

like protein was recently identified. It forms a stable sub-complex with Tim14 (Frazier et 
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al., 2004; Kozany et al., 2004). Though the function of Tim16 is elusive still today, there 

are some indications that Tim16 can suppress the unwanted acceleration of ATP 

hydrolysis by Tim14 thereby preventing unnecessary energy consumption (Li et al., 

2004; Mokranjac et al., 2006). The crystal structure of Tim14-Tim16 subcomplex could 

uncover the logics of the repressing behavior of Tim16 on Tim14. When bound to Tim16, 

Tim14 is in a conformation apparently not suitable for accelerating the ATP hydrolysis 

by mtHsp70 (Mokranjac et al., 2006). 

Tim44 is a peripheral membrane protein which interacts with Tim23-Tim17 core on one 

side and with mtHsp70 and Tim14-Tim16 subcomplex on the other side. Tim44 recruits 

the chaperone and the co-chaperones to the translocation channel. Tim44 has two 

domains. The apparently highly folded C-terminal domain has been shown to bind to 

cardiolipin containing vesicles indicating its role in membrane binding (Weiss et al., 

1999). Recently, the crystal structure of Tim44 C-terminal domain has been solved 

providing hints but no real evidences for lipid binding nature of this domain (Josyula et 

al., 2006). The property of Tim44 to recruit mtHsp70 is a key element of the import 

motor of the TIM23 complex. This recruitment of the chaperone near the translocation 

channel where the matrix targeted precursors emerge is critical in effective translocation 

into mitochondrial matrix. In mitochondria, Tim44 and Ssc1 form nucleotide dependent 

complexes (Rassow et al., 1994; Schneider et al., 1994; von Ahsen et al., 1995; Voos et 

al., 1996) which can be faithfully recapitulated in vitro from purified proteins (D'Silva et 

al., 2004; Liu et al., 2003; Slutsky-Leiderman et al., 2007 ).  

Very recently, Pam17, another non-essential component of the TIM23 complex was 

discovered as a component of the import motor. Pam17 was specifically found to be co-

isolated with the matrix translocating form of the TIM23 complex. Pam17 was shown to 

affect the correct organization of Tim14-Tim16 subcomplex of the motor part of the 

TIM23 complex suggesting its role in matrix translocation of preproteins by the TIM23 

complex (van der Laan et al., 2005). 
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1.6 Mitochondrial Hsp70: A chaperone with two functions  

There are three species of Hsp70s in the matrix of S. cerevisiae namely Ssc1, Ssq1 and 

Ecm10 as soluble proteins (Voos and Rottgers, 2002). All three Hsp70s have significant 

sequence homology to the bacterial Hsp70, DnaK. The most abundant and most vital 

among these three is Ssc1. SSC1 is an essential gene and the protein plays vital roles in 

the biogenesis of mitochondria (Craig et al., 1987). In addition to protein import into the 

mitochondrial matrix, the chaperone plays crucial role in folding of newly imported 

proteins in the mitochondrial matrix. Being a member of the highly conserved Hsp70 

group of chaperones, mtHsp70 possesses an N-terminal nucleotide binding domain 

(NBD) and a C-terminal peptide binding domain (PBD). The NBD influences the 

properties of the PBD by an as yet unclear mechanism of interdomain communication. 

The nucleotide bound to the NBD induces certain conformational changes of Hsp70s 

which in turn dictates the substrate binding affinity of the PBD. In the ATP-bound state, 

the PBD is in an open conformation with high on and off rates of substrate binding. On 

the other hand in the ADP-bound state, the PBD is in closed conformation and has a high 

binding affinity for substrates (Genevaux et al., 2007; Hartl and Hayer-Hartl, 2002). 

Specific partner proteins, also known as cochaperones, regulate the functions of Hsp70s. 

Based on extensive research on bacterial DnaK, two major types of cochaperones for 

Hsp70s have been identified. The efficient chaperone function goes on with the 

participation of co-chaperones of DnaJ family which stimulates the process of ATP 

hydrolysis by the Hsp70s and assist in efficient substrate binding. Cochaperones of the 

GrpE family catalyze the exchange of nucleotides on Hsp70 and are therefore also called 

nucleotide exchange factors (NEF). A schematic picture of a functional chaperone cycle 

of Hsp70s is presented in Figure 1.3. 
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1.6.1 Mitochondrial Hsp70 in preprotein translocation 

Protein import into mitochondrial matrix is mediated by motor protein mtHsp70 (Ssc1 in 

S .cerevisiae), the key component of import motor which is situated in the trans-side of 

the inner mitochondrial membrane. 

Both the protein folding and preprotein translocation activities of Hsp70s rely on its two 

basic properties: affinity to unfolded proteins and ATPase activity. Precursor proteins in 

transit represent ideal substrates for mtHsp70 and the interaction of mtHsp70 with the 

precursors is absolutely necessary for the translocation. Two energy sources have been 

found for the translocation of mitochondrial matrix targeted proteins, one of them is 

membrane potential across inner membrane (∆ψ) which mainly drives the positively 

charged presequence into the matrix (Geissler et al., 2000; Martin et al., 1991). For the 

translocation of the rest of the precursor ATP hydrolysis by mtHsp70 is required (Cyr et 

al., 1993; Wachter et al., 1994). Mutants of Ssc1 that are defective in ATP hydrolysis 

Figure.1.3: Model of the Hsp70 chaperone cycle. Hsp70 in the ATP-bound state interacts with the 
substrate via its PBD in an open conformation with low affinity. Subsequently, ATP hydrolysis 
stimulated by a J-domain protein and the substrate closes the PBD leading to high affinity binding of 
the substrate. Binding of the NEF catalyses the release of ADP and subsequent binding of ATP opens 
the PBD releasing the substrate. 
 



16 

 

show similar translocation defects as depletion of matrix ATP (Gambill et al., 1993; 

Stuart et al., 1994). 

Ssc1 is recruited to the translocation channel of the TIM23 complex via peripheral 

membrane protein Tim44. It thereby helps the chaperone to be placed in the vicinity of 

the incoming preprotein (Blom et al., 1993; Maarse et al., 1992). Genetic interactions in 

yeast and physical interaction of these two proteins  suggest that reversible interaction of 

membrane associated Tim44 and a fraction of soluble mtHsp70 forms the basis of 

precursor translocation into the matrix (Kronidou et al., 1994; Rassow et al., 1994; 

Schneider et al., 1994). This interaction is very specific but sensitive to the presence of 

nucleotides. It was shown that a stable complex is formed in presence of ADP whereas 

the complex becomes unstable in presence of ATP (Rassow et al., 1994; Schneider et al., 

1994; von Ahsen et al., 1995; Voos et al., 1996). This nucleotide dependent sensitivity of 

Tim44-mtHsp70 interaction resembles the properties of substrate-mtHsp70 interaction 

raising the possibility that mtHsp70 binds Tim44 just like a substrate. However, this 

possibility has been excluded by several experiments. The temperature sensitive mutant 

of mtHsp70 from yeast Ssc1 (Ssc1-2) has been shown to interact significantly in 

increased amount with the newly imported proteins whereas interactions with Tim44 is 

destabilized under similar conditions (Rassow et al., 1994; Schneider et al., 1994; Voos et 

al., 1996). These results clearly demonstrated the distinct properties of Tim44 and 

substrates in binding mtHsp70. The major function of Tim44 in import motor is ascribed 

to its role in complex formation with mtHsp70. It is still not clear whether Tim44 serves 

only as a membrane anchor to Hsp70 to place the chaperone in the vicinity of the 

precursor or it serves as a fulcrum for the generation of an active force by the mtHsp70. 

As in the case of other motor proteins, two models: power-stroke and Brownian ratchet, 

exist explaining how import motor drives unidirectional protein translocation (Neupert 

and Brunner, 2002). According to Brownian ratchet model the preproteins are in 

spontaneous sliding movements in the import channel (Ungermann et al., 1994). Binding 

of mtHsp70 traps the translocated segments in the matrix as it prevents the retrograde 

movement (Neupert and Brunner, 2002; Schneider et al., 1994). Subsequently, mtHsp70  

bound to the preprotein  diffuses further into the matrix and a new molecule of mtHsp70  

binds to Tim44 waiting for the next segment to catch. Thus, step-wise inward movement 
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of preprotein is achieved towards the matrix without any active force exerted on the 

preprotein. Different evidences for Brownian ratchet mechanism of the import motor 

have been presented in the past years. There are several evidences in favor of oscillations 

of unfolded precursors which could be vectorially moved by trapping on the matrix side 

by mtHsp70 (Liu et al., 2003; Okamoto et al., 2002). In addition, the capacity of a 

domain to be imported did not depend on the global unfolding but was correlated with the 

extent of local unfolding following the MTS. Also forces required to unfold domains, as 

measured by atomic force microscopy, was not related to their capacity to be imported 

(Ainavarapu et al., 2005; Junker et al., 2005; Sato et al., 2005). Introduction of 

polyglycine or polyglutamine stretches in the preproteins, which disfavor Hsp70 binding, 

did not affect the import of these proteins once it is initiated by the ∆ψ (Okamoto et al., 

2002). All these results are in agreement with the ratchet mechanism of import motor. 

According to the alternative ‘power stroke’ or the ‘active pulling’ model, Hsp70 acts as a 

lever arm, which mechanically pulls on the incoming polypeptide chain by a 

conformational change resulting from ATP hydrolysis (Glick, 1995; Matouschek et al., 

2000). Tim44 recruits the mtHsp70 near the translocation channel. A mutant form of 

Ssc1 (Ssc1-2) which was shown to be defective in interaction with Tim44, was inefficient 

in translocating tightly folded proteins but unfolded proteins were translocated at low ∆ψ 

(Voisine et al., 1999; Voos et al., 1996). Furthermore, loosely folded proteins are 

translocated more efficiently by Ssc1-2 than the wild type protein (Geissler et al., 2001). 

All these data pointed towards the idea that different mechanisms may exist for mtHsp70 

for different preproteins. Translocation of tightly folded domains may require a large 

force, while trapping could be sufficient for loosely folded precursors. It remains to be 

established whether interaction of mtHsp70 with Tim44 or Tim14 can indeed serve as the 

fulcrum to provide a large force needed for active pulling or the interaction just increases 

the local concentration of Hsp70 near the translocation channel to increase the probability 

of binding to incoming polypeptide chain. 
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1.6.2 Protein folding by mtHsp70 and its cochaperones in the 

mitochondrial matrix 

In addition to its essential function in translocation of preproteins into mitochondria, 

mtHsp70 is also involved in folding of proteins in the mitochondrial matrix. Direct 

evidence in support of a role of mtHsp70 in protein folding was provided by the 

identification of mitochondrial homologue of bacterial DnaJ protein, Mdj1 in yeast 

(Rowley et al., 1994). Deletion of MDJ1 is not lethal for yeast but leads to respiratory 

defects. There was no evidence of association of Mdj1 with the arrested preproteins 

speaking aginst its role in protein translocation. However, newly imported proteins tend 

to misfold and aggregate in a MDJ1 mutant strain indicating its role in protein folding 

(Prip-Buus et al., 1996). Apart from protein folding, Mdj1 is also involved in the 

inheritance of mitochondrial DNA (Duchniewicz et al., 1999). It was shown that the 

activity of the mitochondrial DNA polymerase is influenced by Mdj1 (Duchniewicz et 

al., 1999). 

The chaperone function of mtHsp70 is also regulated by Mge1, a homologue of bacterial 

GrpE protein. Mge1 forms a very stable but ATP sensitive complex with mtHsp70 

(Bolliger et al., 1994; Nakai et al., 1994). The interaction leads to release of ADP and Pi 

in exchange of ATP from the mtHsp70. Interrestingly, compared to other cochaperone 

Mdj1, Mge1 plays more crucial role, since MGE1 is essential for cell viability. Prominent 

roles of Mge1 in protein translocation has been shown. On the other hand defects in 

Mge1 function lead to an insufficient interaction of mtHsp70 with the substrates making 

it a crucial component in the folding machinery as well. 

The chaperone activity of the mitochondrial Hsp70 system have been demonstrated by in 

vitro refolding assays. A reconstituted system comprising of Ssc1, Mdj1 and Mge1 was 

able to prevent the aggregation of heat-denatured luciferase and could increase the 

efficiency of refolding of luciferase significantly (Kubo et al., 1999; Westermann and 

Neupert, 1997). 
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1.7 Aims of the present study 

The objective of the present work was to gain new insights into the structure and function 

of the TIM23 complex, in particular the import motor.  A major aim was to reconstitute 

the mtHsp70 cycle using recombinant and purified components of the import motor in 

vitro. In addition, detailed characterization of the role of Pam17, a recently discovered 

component of the complex postulated as subunit of the import motor, was to be 

addressed.  
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2 Materials and Methods 

2.1 Molecular biology methods 

2.1.1 Isolation of DNA 

2.1.1.1 Isolation of yeast genomic DNA 

Genomic DNA from yeast strains was isolated using the ‘Wizard Genomic DNA 

purification kit (Promega)’. Yeast strains were inoculated in 5 ml YPD medium and 

incubated overnight (ON) at 30ºC while shaking at 130 revolutions per min (rpm). Cells 

were harvested from 1ml of ON cultures by centrifugation [13,000-16,000 x g, 2 min, at 

room temperature (RT)], resuspended in 293µl of 50 mM EDTA, pH 8.0. To the 

resuspended cells 7.5µl of zymolyase solution (10mg/ml) was added, mixed gently and 

incubated for 30-60 min at 30° C. After incubation with zymolyase, cells were 

centrifuged at 13,000-16,000× g, 2 min, RT and the supernatant was discarded. To the 

cell pellet, 300µl of nuclei lysis solution followed by 100µl of protein precipitation 

solution were added and incubated on ice for 5 min. Cells were centrifuged at 13,000-

16,000× g, 3 min, RT. The supernatant was transferred to fresh Eppendorf  tubes 

containing RT 300µl isopropanol and mixed by inversion of the tube and was centrifuged 

at 13,000-16,000× g, 2 min, RT. After the centrifugation, the supernatant was decanted 

and the DNA pellet was washed with 300µl of RT 70% ethanol and was centrifuged at 

13,000-16,000× g, 2 min at RT. To the DNA pellet, 50µl of DNA rehydration solution 

containing RNAse was added and incubated at 37° C for 15 min. Finally the DNA was 

rehydrated at 65° C for 1h and stored at -20° C for further use. 

2.1.1.2 Isolation of plasmid DNA from Escherichia coli 

Plasmid DNA from E. coli was isolated using a “PureYieldPlasmid Midiprep System 

(Promega)”. Single bacterial colonies carrying plasmids of interest were inoculated in 50 

ml LB-Amp medium and incubated overnight at 37ºC while shaking at 140 rpm. The next 

day cells were harvested by centrifugation (10,000 x g, 10 min, RT) and resuspended in 6 
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ml of ‘Cell Resuspension Solution’. Cells were lysed by addition of 6 ml of ‘Cell Lysis 

Solution’. Tubes were inverted 5 times and left for 3 min at RT. After neutralization with 

10 ml of ‘Neutralization Solution’, tubes were again inverted 5 times and incubated for 3 

min at RT to ensure thorough clearing. Samples were centrifuged (10,000 x g, 10 min, 

RT), and the supernatants immediately applied onto clarifying columns fixed on top of 

anion-exchange columns placed onto a vacuum manifold. After the entire volume of the 

sample passed under vacuum through the column stacks, the clarifying columns were 

removed and the anion-exchange column was washed first with 5 ml of ‘Endotoxin 

Removal Wash Solution’ and then with 20 ml of the ‘Column Wash Solution’. The 

column was left to dry for 30 sec under vacuum and DNA was then eluted from the 

column with 600 µl of sterile deionized water (ddH20). Plasmid DNA isolated this way 

was stored at –20ºC. 

2.1.2 Amplification of DNA sequences by Polymerase Chain 

Reaction (PCR) 

DNA sequences were amplified by PCR as described previously (Sambrook. J., 1989). 

The DNA templates for PCR were: (i) isolated DNAs from yeast or bacteria (when the 

PCR product was used for subsequent cloning), (ii) commercial cassettes for deletion of 

specific open reading frames (ORFs) (when the PCR product was used for homologous 

recombination in yeast cells) and (iii) whole cell extracts from yeast or bacteria (to check 

the successfulness of cloning). Thermostable DNA polymerases used were Taq (isolated 

from Thermus aquaticus) and Pfu (isolated from Pyrococcus furiosus). As Taq DNA 

polymerase has no proofreading ability, Pfu DNA polymerase was added in the PCR mix 

when the PCR product was used for cloning of some genes. 

PCR mix (total volume of 50 µl) contained: 1 U DNA polymerase (Taq DNA polymerase 

and/or Pfu DNA polymerase), 5 µl 10 x PCR-buffer (1% Triton X-100, 500 mM KCl, 15 

mM MgCl2, 100 mM Tris·HCl, pH 8.8), 2 µl dNTPs (10 mM each), 1.25 µl primers (20 

pmol/µl each) and 20 ng plasmid DNA or 200 ng genomic DNA as templates. When the 

successfulness of cloning was checked by PCR, single E.coli colonies were resuspended 

in 15 µl sterile H2O or single S. cerevisiae colonies were resuspended in 15 µl sterile H2O 

containing 100 µg/ml zymolyase, and 1 µl of cell suspensions was used as a template for 
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test PCR. The following PCR program, with small variations depending on the DNA 

sequence, was used: 

 

1) 95°C, 3 min Nuclease inactivation and complete DNA denaturation; 

2) 30-35 cycles DNA amplification: 

 95°C, 30 s DNA denaturation 

 52°C, 45 s Annealing of primers 

 72°C, 1 min per 1 kb Extension of primers (DNA synthesis) 

3) 72°C, 10 min Completion of the final extension reaction 

To avoid occurrence of possible non-specific PCR products in few cases, several values 

of annealing temperature were tested (52 ± 5ºC) in temperature gradient PCR machine 

(Mastercycler gradient – Eppendorf). The PCR products were subsequently analyzed by 

agarose gel electrophoresis. 

2.1.3 DNA analysis and purification 

2.1.3.1 Agarose gel electrophoresis of DNA 

DNA fragments were separated by horizontal agarose gel electrophoresis according to 

their molecular weights. Agarose was dissolved in TAE buffer (40 mM Tris-acetate, pH 

7.5, 20 mM Na-acetate, 1 mM EDTA) at the boiling temperature in the microwave oven. 

When it cooled down to 65ºC, ethidium-bromide was added (0.5 µg/ml) and, while still 

hot, agarose was poured in a cuboid mould to cool down to RT and solidify. DNA in 

solution (either isolated DNA or PCR product) was mixed in 4:1 ratio with 5 x loading 

dye (30% (v/v) glycerol, 0.25% (w/v) bromphenol-blue, 0.25% (w/v) xylencyanol) and 

loaded on a 0.8-3% (w/v) agarose gel, depending on the size of DNA fragments to be 

separated. Gels were run in TAE buffer at U = 80-140 V depending on the size of the gel. 

Separated DNA fragments were visualized under UV light (366 nm). Commercially 

available molecular weight markers were used in each run. 



23 

 

2.1.3.2 Isolation of DNA from agarose gels 

DNA bands were excised from the gel with a sterile scalpel under UV light. DNA was 

extracted from the gel using the “Wizard SV Gel and PCR Clean-Up System” (Promega). 

10µl of membrane binding solution was added per 10mg of gel slice with DNA and was 

incubated for~ 10min at 60°C till the gel piece completely dissolve. The dissolved 

mixture was loaded to SV mini column inserted into collection tube and was centrifuged 

at 16,000x g for 1 min and the flow-through was discarded. After passing the whole gel-

mix through the SV mini column, column was washed two times, each with 700µl of 

membrane wash buffer (containing ethanol). After washing, the column was dried by 

centrifuging the column for 2 min at 16,000x g. DNA was eluted with 30 µl sterile 

ddH2O and 1 µl of the eluted DNA was loaded on an analytical agarose gel to check the 

efficiency of purification. Extracted DNA was routinely stored at –20ºC. 

2.1.3.3 Measurement of DNA concentration  

To determine DNA concentration the absorption of DNA solutions was measured at 260 

nm. One optical unit (OD = 1.0) corresponds to a concentration of 50 µg/ml of double 

stranded DNA, 33 µg/ml single stranded DNA, 40 µg/ml RNA or 20 µg/ml 

oligonucleotides. 

2.1.4 Enzymatic manipulation of DNA 

2.1.4.1 Digestion of DNA with restriction endonucleases 

DNA was digested with 2-5 U of specific restriction endonucleases per 1 µg of DNA. For 

analytical purposes, up to 100 ng of DNA was digested in a 10 µl reaction volume. For 

preparative purposes up to 3 µg of DNA was digested in a 60 µl reaction volume. DNA 

was usually digested for 3 h at 37ºC in the buffer specific for the restriction enzyme, 

according to the manufacturer’s recommendations. Digested DNA fragments were 

analyzed by agarose gel electrophoresis and used for ligation reactions. 

2.1.4.2 Ligation of DNA fragments 

One DNA fragment (after digestion with restriction endonucleases) and a cloning vector 

or another DNA fragment (digested with the same or compatible enzymes) were ligated 
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together in a buffer containing DNA ligase from bacteriophage T4. Linearized vector 

(100-200 ng) and 5-10 fold molar excess of DNA fragment were incubated in a 10 µl 

reaction with 1 µl of 10 x ligation buffer (50 mM Tris·HCl, 10 mM MgCl2, 1 mM DTT, 1 

mM ATP, 5% (w/v) PEG-8000, pH 7.6) and 0.5 µl (1 U) T4 DNA ligase (NEB). Ligation 

reaction was performed at 14ºC for 16 h and 0.5-1 µl of the ligation mixture was 

transformed into electrocompetent E. coli cells. 

2.1.5 Transformation of electrocompetent E. coli cells  

2.1.5.1 Overview of E. coli strains used 

Strain Genotype Reference 

MH1 MC1061 derivative; araD139, lacX74, galU, 

galK, hsr, hsm+, strA 

(Casadaban and Cohen, 

1980) 

XL1-Blue supE44, hsdR17, recA1, endA1, gyrA96, thi-1, 

relA1, lac-, F’[proAB+, lacIq
 lacZ∆M15, 

Tn10(tetr)] 

commercially available 

from Stratagene 

Bl21(DE3) F– ompT gal dcm lon hsdSB(rB
- mB

-) λ(DE3 

[lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) 

Commercially available 

from Novagen 

2.1.5.2 Preparation of electrocompetent cells 

The electro-competent E. coli cells (MH1 or XL1-Blue or BL21-DE3) were prepared as 

described in (Dower et al., 1988). 50 ml of LB medium was inoculated with a single 

colony of the corresponding bacterial strain and grown overnight at 37ºC while shaking at 

140 rpm. Next morning 1 l of LB medium, preheated to 37°C, was inoculated with 2 ml 

of the overnight culture and the cells were grown until they reached OD578 ≈ 0.5. The 

culture was then incubated on ice for 30 min and the cells were subsequently harvested 

by centrifugation for 5 min at 4,400 x g and at 4ºC and washed sequentially with 400 ml, 

200 ml and 50 ml of sterile 10% (v/v) glycerol. The competent cells were finally 

resuspended in 1 ml of LB medium with 10% (v/v) glycerol and stored at –80ºC in 40 µl 

aliquots. 
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2.1.5.3 Transformation of E. coli cells by electroporation 

The ligation mixture or isolated plasmid DNA (0.5-1 µl) was added on ice to 40 µl of 

electrocompetent cells and this transformation mixture was then transferred to ice-cold 

0.2 cm electroporation cuvette. High electric voltage pulse was delivered to the cells in 

the cuvette through the electroporation Gene Pulser apparatus (BioRad) (settings: U = 2.5 

kV, R = 400 Ω, C = 25µF; time constant obtained (τ) was 7.2-8.8 ms); cell suspension 

treated in this way was diluted with 1 ml of LB-medium and incubated for 45 min at 37ºC 

while shaking at 140 rpm to allow cell recovery. Cells were briefly centrifuged, most of 

the medium was poured off, cell pellet resuspended in the ca. 150 µl remaining medium 

and plated on LB-Amp plates (LB with 2% (w/v) agar supplemented with 100 µg/ml 

ampicillin). Plates were incubated overnight at 37°C and the successfulness of 

transformation was usually checked by test PCR. 

2.1.6 Overview of yeast strains used 

Yeast strain Reference 

Wild type strain 

YPH499 (Sikorski and Hieter, 1989) 

Strains generated by homologous recombination 

TIM21::HIS3 (Mokranjac et al., 2005) 

PAM17::HIS3 This thesis 

Tim21::HIS3/Pam17::kanMX4 This thesis 

GAL-Tim17 (Popov-Celeketic et al., 2008a) 

GAL-Tim23 (Popov-Celeketic et al., 2008a) 

GAL-Tim50 (Mokranjac et al., 2003a) 

GAL-Tim44 (Popov-Celeketic et al., 2008a) 

GAL-Tim14 (Mokranjac et al., 2003b) 

GAL-Tim16 (Kozany et al., 2004) 

Strains generated by transformations with yeast vectors 

PAM17::HIS3 + pRS314[His6Pam17] This thesis 

YPH499 + pVT-102U[Tim21] This thesis 
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YPH499 + pVT-W[Pam17] This thesis 

YPH499 + pVT-102U[Tim21] + pVT-

W[Pam17] 

This thesis 

2.1.7  Cloning strategies for generation of yeast strains by 

homologous recombination  

2.1.7.1 Deletions of PAM17 gene and double deletion of PAM17/TIM21 

PAM17 gene was deleted by homologous recombination of the PCR product obtained, in 

the haploid yeast strain YPH499. PCR products contained an auxotrofic-marker-cassette 

HIS3 and short sequences homologous to the flanking regions of PAM17 locus. Primers 

Pam17deltafor and Pam17deltarev were used for amplification of PAM17 deletion 

cassette using pFA6HIS3MX6 (Wach et al., 1997) as the template. The obtained PCR 

product was transformed in yeast and integrated into the corresponding chromosome via 

the regions homologous to PAM17. To isolate positive clones, yeast transformants were 

grown on selective medium lacking histidine and homologous recombination was 

checked by PCR and fast mito prep. For generation of the strain where both PAM17 and 

TIM21 were deleted, PCR product was amplified from pFA6KANMX4 (Wach et al., 

1997) using Pam17deltafor and Pam17deltarev primers and transformed in TIM21::HIS3 

strain (Mokranjac et al., 2005). To isolate positive clones, yeast transformants were 

grown on selective medium lacking histidine and containing kanamycin. Homologous 

recombination was checked by PCR and fast mito prep. 

Pam17deltafor 5’– AAG AAG TGT TAA AAA CAT TCA GAA AAC ATT GTC 

CGC CTC TTC AAA CGT ACG CTG CAG GTC GAC – 3’ 

Pam17deltarev 5’– GTA TAT ATA CAG AGT CTG AGA AGA AGG AAA AGA 

TCA CAC GTT CAA ATC GAT GAA TTC GAG CTC – 3’ 

 

2.1.7.2 Disruption of TIM44 in the haploid strain YPH499 

First YPH499 strain was transformed with pVT-102U [Tim44] plasmid and selected on 

SD-URA medium to make the strain YPH + pVT-102U[Tim44]. pVT-102U [Tim44] was 
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made by amplifying the sequence of TIM44 from yeast genomic DNA using the primers 

BamTim44 and Tim44Xho and cloning it into pVT-102U [Tim44] vector in between 

BamHI and XhoI restriction sites. 

BamTim44 5’–CCC GGA TCC ATG CAC AGA TCC ACT TTT ATC – 3’ 

Tim44Xho 5’– GGG CTC GAG TCA GGT GAA TTG TCT AGA ACC – 3’ 

 

TIM44 gene was disrupted by homologous recombination of the PCR product obtained, 

in the haploid yeast strain YPH499 + pVT-102U [Tim44]. PCR products contained an 

auxotrofic-marker-cassette HIS3 and short sequences homologous to the flanking regions 

of TIM44 locus. Primers Tim44deltafor and Tim44deltarev were used for deletion of 

TIM44 gene using pFA6HIS3MX6 (Wach et al., 1997) as the template and these PCR 

products were transformed in yeast and stably integrated into the corresponding 

chromosome via the regions homologous to the TIM44 gene. To isolate positive clones, 

yeast transformants were grown on selective medium lacking histidine and uracil and 

homologous recombination was checked by PCR. 

Tim44deltafor 5’–TTA TTC CTG AAT TTT TCA CTA CCG CAG CAA TTG 

CTA TTT CAG TTC CGT ACG CTG CAG GTC GAC – 3’ 

Tim44deltarev 5’– TAG GAA GGA AAA GGA AAA GAA AAC AAA AGA GTA 

CAT CGA AAC CAA ATC GAT–3’ 

 

2.1.8 Overview of different plasmids used  

Plasmids Reference 

Wild type strain 

pRS314[His6Pam17] This thesis 

pVT-102U[Tim21] This thesis 

pVT-W[Pam17] This thesis 

pETDuet-1[His6Tim44(44-431)] This thesis 

pETDuet-1[His6Tim44(44-233)] This thesis 

pETDuet-1[His6Tim44(234-431)] This thesis 
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pETDuet-1-Hep1[Ssc1(24-654)] (Sichting et al., 2005) 

pETDuet-1-Hep1[Ssc1(24-415)] This thesis 

pETDuet-1 [Ssc1(410-654)] This thesis 

pETDuet-1[Mdj1(56-511)] This thesis 

pRS314[promoter-Tim44(1-431)-3’UTR] This thesis 

pRS314[promoter-Tim44(1-233)-3’UTR] This thesis 

pRS314[promoter-Tim44(210-431)-3’UTR] This thesis 

  

  

2.1.9 Cloning strategies for plasmids used for the transformation of 

yeast 

2.1.9.1 pRS314[His6Pam17]  

Promoter region 400 bp upstream of PAM17 gene containing sequence coding for its 

mitochondrial targeting signal followed by hexahistidine tag at its 3’ end was amplified 

from yeast genomic DNA using primers BamPam17p and Pam17preHis6Pst. Coding 

sequence of PAM17 gene lacking the sequence coding for mitochondrial targeting signal 

was amplified from yeast genomic DNA using primers PstPam17m and Pam17fXho. 

These two PCR products were cloned in pRS314 vector that was transformed in 

PAM17::HIS3 yeast strain. Yeast transformants were subsequently grown on selective 

medium lacking tryptophan and checked by fast mito prep. 

BamPam17p 5’– CCC GGA TCC ATG TTT ACC AGT GCC ATT AGA TTG – 3’ 

Pam17preHis6Pst 5’– TTT CTG CAG GTG ATG GTG ATG GTG ATG ATA TGA TCT 

TAA GGG TAA GGT TG – 3’ 

PstPam17m 5’– AAA CTG CAG TCT CAG CCC GCA TCC CTT CAA G – 3’ 

Pam17fXho 5’– GGG CTC GAG CAA ATG CGC ATA AAG GAA ATG C – 3’ 

2.1.9.2  pVT-102U[Tim21] 

Coding sequence of TIM21 gene was subcloned from pGEM4 [Tim21] (Mokranjac et al., 

2005) to pVT-102U vector using BamHI and HindIII restriction sites. The obtained 
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plasmid was transformed in YPH499 yeast strain. Yeast transformants were subsequently 

grown on selective medium lacking uracil and the levels of overexpression of Tim21 in 

the transformants were checked by fast mito prep. 

2.1.9.3  pVT-W[Pam17] 

Coding sequence of PAM17 gene was amplified from yeast genomic DNA using primers 

BamPam17 and Pam17Hind. The construct was cloned in pVT-W vector using BamHI 

and HindIII restriction sites. The obtained plasmid was transformed in YPH499 yeast 

strains with and without pVT-102U[Tim21] plasmid. Yeast transformants were 

subsequently grown on selective medium lacking tryptophan or tryptophan and uracil and 

the levels of overexpression of Pam17 in the transformants were checked by fast mito 

prep. 

BamPam17 5’– CCC GGA TCC ATG TTT ACC AGT GCC ATT AGA TTG – 3’ 

Pam17Hind 5’– CCC AAG CTT TCA CAA AAA TTC TTT GGC TTT C – 3’ 

 

2.1.10 Cloning strategies for plasmids used for recombinant 

proteins expressions 

2.1.10.1 Cloning of mature Tim44 in bacterial expression vector 

The nucleotide sequence coding for mature Tim44 (aa.44-431) was cloned into the 1st 

MCS of pETDuet-1 vector (Novagen) in between BamHI and EcoRI restriction sites. A 

TEV cleavage site was introduced between the His6 tag and the sequence of Tim44 to get 

rid of the tag subsequently by treating with TEV protease. Yeast genomic DNA was used 

as the template DNA and the primers used for the PCR amplification are 

BamTEVTim44_43 5´-CCC GGA TCC GTC AGA GAA TCT TTA TCA GGG ACA 

AGG TGG AAA CCC TCG ATC-3´    

Tim44Eco   5´-CCC GAA TTC TCA GGT GAA TTG TCT AGA ACC-3´ 
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2.1.10.2 Cloning of N-terminal domain of Tim44 (Tim44-NTD) in bacterial expression 

vector  

The nucleotide sequence coding for N-terminal domain of Tim44 (aa.44-233) was cloned 

into the 1st MCS of pETDuet-1 vector (Novagen) in between BamHI and EcoRI 

restriction sites. A TEV cleavage site was introduced between the His6 tag and the 

sequence of Tim44-NTD, to get rid of the tag subsequently by treating with TEV 

protease. Yeast genomic DNA was used as the template DNA and the primers used for 

the PCR amplification are 

BamTEVTim44_43 (sequence mentioned with cloning of mature Tim44 

Tim44_233stopEco     5´-TTT GAA TTC TCA ACG GCC AAC CAC GGT TTT CTC-3´ 

 

2.1.10.3 Cloning of C-terminal domain of Tim44 (Tim44-CTD) in bacterial expression 

vector 

The nucleotide sequence coding for N-terminal domain of Tim44 (aa.234-431) was 

cloned into the 1st MCS of pETDuet-1 vector (Novagen) in between BamHI and EcoRI 

restriction sites. A TEV cleavage site was introduced between the His6 tag and the 

sequence of Tim44-CTD to get rid of the tag subsequently by treating with TEV protease. 

Yeast genomic DNA was used as the template DNA and the primers used for the PCR 

amplification are 

BamTEVTim44_234 5´-CCC GGA TCC GTC AGA GAA TCT TTA TTT TCA GGG 

ATC TAT ACA ATC TTT AAA GAA CAA ATT G-3´    

Tim44Eco (sequence mentioned with cloning of mature Tim44) 

 

2.1.10.4 Cloning of Nucleotide binding domain of Ssc1(Ssc1-NBD) in bacterial 

expression vector 

The nucleotide sequence coding for nucleotide binding domain of Ssc1 (Ssc1-NBD, 

aa.24-415) was cloned into the 2nd MCS of pETDuet-1 vector (Novagen) in between 

NdeI and XhoI restriction sites with and without HEP1 in the 1st MCS of the same vector. 
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Yeast genomic DNA was used as the template DNA and the primers used for the PCR 

amplification are 

NdeISsc1_24 5´- GGA ATT GCA TAT GCA GTC AAC CAA GGT TCA AAG -3´ 

Ssc1_415stopXho 5´-GGG CTC GAG TTA TAA TAA TAA GAC GTC AGT AAC 

CTC -3´ 

 

2.1.10.5 Cloning of Peptide binding domain of Ssc1(Ssc1-PBD) in bacterial expression 

vector 

The nucleotide sequence coding for peptide binding domain of Ssc1 (Ssc1-PBD, aa.410-

654) was cloned into the 1st MCS of pETDuet-1 vector (Novagen) in between BamHI 

and PstI restriction sites. A TEV cleavage site was introduced between the His6 tag and 

the sequence of Ssc1-PBD to get rid of the tag subsequently by treating with TEV 

protease. Yeast genomic DNA was used as the template DNA and the primers used for 

the PCR amplification are 

BamTEVSsc1_410 5´-CCC GGA TCC GTC AGA GAA TCT TTA TTT TCA GGG 

AAC TGA CGT CTT ATT ATT AGA TG-3´    

Ssc1Pst 5´-GGG CTG CAG TTA CTG CTT AGT TTC ACC AG-3´ 

 

2.1.10.6 Cloning of mature Mdj1 in bacterial expression vector 

The nucleotide sequence coding for mature Mdj1 (aa.56-511) was cloned into the 

pETDuet-1 vector (Novagen) in between XbaI and HindIII restriction sites. 

 

2.1.10.7 Point mutations of Tim44, Ssc1 and Mdj1 

Two methods were used to generate point mutants. In the first one, 5´-phosphorylated 

primers harbouring desired mutation were used to amplify the whole plasmid, purified 

PCR product was ligated and subsequently transformed into suitable competent cells. In 

the second method point mutations were generated by the Stratagene’s ‘QuikChange 

mutagenesis kit’ according to the manufacturer’s protocol. The primers used for 

mutagenesis are listed below. 
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2.1.10.8 List of Primers used for site directed mutagenesis 

 

Tim44K90Cf 5´-Pho-ACA AAT GTC CTA GGG AAG CAT ATT TGA AAG 

CTC-3´ 

Tim44K90Cr 5´- Pho-AGG CTT CAG ACT CGC CTA ACT TTC CCG AAG C-3´

Tim44D187Cf 5´- Pho-GAG ATG CCT GGC CTC TGC GAA AAG ACA CAG G-

3´ 

Tim44D187Cr 5´- Pho-TCA CGC TTA AGT CTC CTT TGC TCT TTC GTG-3´ 

Tim44V252Cf 5´- Pho-AAA ATA ACC AAC AAA GTG GGC GGT TTC TTT 

GC-3´ 

Tim44V252Cr 5´- Pho-CCT CAT CAC ACA AAT TAA GGG GTT TTC ACT 

TTC-3´ 

Tim44R272Cf 5´- Pho-TCC TGT GTA TAC AGT CAA TTT AAG CTA ATG 

GAC-3´ 

Ssc1K72Cf 5´- Pho-AGA ACG ATT GGT TGG TAT TCC AGC CAA GCG-3´ 

Ssc1K72Cr 5´- Pho-CCC TCA CAA GTG AAA GCT ACT ACA GAA GG-3´ 

Ssc1K161Cf 5´- Pho-GGT TGT CCA GTT AAG AAT GCT GTT GTC ACT G-3 

Ssc1K161Cr 5´- Pho-CAA GTA CGC CTC AGC TGT TTC CTT CAT CTT G-3´ 

Ssc1S212Cf 5´- Pho-AAA TGC GAC TCT AAA GTT GTT GCC GTT TTC-3´ 

Ssc1S212CrK 5´- Pho-TTC CAA ACC GTA AGC TAA GGC AGC GGC GG-3´ 

Ssc1S265Cf 5´- Pho-GAA ACT GGT ATT GAT TTG GAA AAT GAC CGT 

ATG-3´ 

Ssc1S265Cr 5´- Pho- GGT TTT AAA ACG ACA AAC AAT CTC TCT CAA C- 

3´ 

Ssc1D341Cf 5´- Pho-GTC TGC CCA GTC AAG AAG GCT TTG AAA GAC-3´ 

Ssc1D341Cr 5´- Pho-AGT TCT CTT AAC TAG TGG GGC TGT CAA AGT C-3´ 

Ssc1I448C FO 5´- Pho-AAA TCT CAA TGT TTC TCC ACT GCC GCT GCT 

GGT-3´ 
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Ssc1I448C RE 5´- Pho-CTT TGT TGG AAT AGT AGT GTT TCT TGG ATT-3´ 

Ssc1T481C FO 5´- Pho-GGT AAC TTC TGT TTA GCC GGT ATC CCA CCT 

GCT-3´ 

Ssc1T481C RE 5´- Pho-AAT CAA TTT GTT GTC TCT AAC CAA TTC TCT-3´ 

Ssc1590Cf 5´- GCC CAA AAG GTT AGG TGT CAA ATC ACT TCC TTG-3´ 

Ssc1590Cr 5´- CAA GGA AGT GAT TTG ACA CCT AAC CTT TTG GGC-3´ 

DnaKC15Af 5´- GTA CTA CCA ACT CTG CCG TAG CGA TTA TGG ATG-3´ 

DnaKC15Ar 5´- CAT CCA TAA TCG CTA CGG CAG AGT TGG TAG TAC-3´ 

DnaKE318Cf 5´- GTA AAC CGT TCC ATT TGC CCG CTG AAA GTT GCA-3´ 

DnaKE318Cr 5´- TGC AAC TTT CAG CGG GCA AAT GGA ACG GTT TAC-3´ 

DnaKV425Cf 5´- ACC AAG CAC AGC CAG TGC TTC TCT ACC GCT GAA-3´ 

DnaKV425Cr 5´- TTC AGC GGT AGA GAA GCA CTG GCT GTG CTT GGT-3´ 

DnaKN458Cf 5´- TCT CTG GGT CAG TTC TGC CTA GAT GGT ATC AAC-3´ 

DnaKN458Cr 5´- GTT GAT ACC ATC TAG GCA GAA CTG ACC CAG AGA-3´ 

DnaKT563Cf 5´- CCG GCT GAC GAC AAA TGC GCT ATC GAG TCT GCG-3´ 

DnaKT563Cr 5´- CGC AGA CTC GAT AGC GCA TTT GTC GTC AGC CGG-3´ 

Mdj1H89Qf 5´- CTG GCA AAG AAG TAC CAA CCG GAT ATC AAC AAG-

3´ 

Mdj1H89Qr 5´- CTT GTT GAT ATC CGG TTG GTA CTT CTT TGC CAG-3´ 

 

2.1.11 Cloning strategies for plasmids used for the 

transformation of yeast for checking the in vivo functionality 

2.1.11.1 Cloning of full length Tim44 and domains of Tim44 in pRS314 

The nucleotide sequence coding for Tim44 including the promoter and 3´UTR was 

cloned into the pRS314 vector in between BamHI and XhoI restriction sites. The primers 

used for the PCR amplification are 

BamTim44p 5´- CCC GGA TCC GAA CAC CAC GAC TAA TAA AAC-3´ 

Tim44fXho 5´- CCC CTC GAG GGT ACG AAG CCT TTG CAC CTG-3´ 
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The full length Tim44 (with the promoter and 3´UTR) served as the template for 

amplifying the N-terminal domain (with the promoter and untill aa.233) using the primers 

BamTim44p as the forward one and Tim44_233stopEco as the reverse one. 

The 3´UTR was amplified separately using the primers 

 

EcoTim44f 5´- CCC GAA TTC TTG GTT TCG ATG TAC TCT TTT G-3´ 

Tim44fXho (sequence as mentioned before) 

 

The C-terminal domain was amplified using the primers and  

 

EcoTim44_210 5´- AAA GAA TTC AAT ATC GAG TCT AAA GAA TCG-3´   

Tim44fXho (sequence as mentioned before) 

 

was cloned in frame with the promoter which was amplified separately by using the 

primers 

 

BamTim44p (sequence as mentioned before) 

Tim44preEco 5´- TAA GAA TTC CGC ACG GGT CGT AGA GGT GG-3´ 

 

 

2.1.11.2 Making of point mutants of Tim44 in yeast vector 

 

The full length Tim44 (including the promoter and the 3´ UTR) was subcloned into 

pBleuescript(+) vector for mutagenesis as pRS314 vector was not suitable for 

mutagenesis, using the same primers as used for bacterial expression vector. The obtained 

mutants were subcloned back into pRS314 for checking the in vivo functionality of the 

mutant proteins. 

2.1.11.3 Making of point mutants of Ssc1 in yeast vector 
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The mature Ssc1 containing the point mutation was amplified from the respective 

mutants in pETDuet-1 vector using the primers and cloned in frame with the Ssc1-

promoter-presequence in pRS314. 

 

BamSsc1m 5´-CCC GGA TCC CAG TCA ACC AAG GTT CAA GG-3´ 

Ssc1_Xho 5´- ATA TCT CGA GCT GCT TAG TTT CAC CAG ATT C -3´ 

 

2.1.12 Checking the in vivo functionality of mutant Tim44 

Yeast strains expressing only the mutant versions of Tim44 were made by transforming 

the yeast strain TIM44::HIS3+ pVT-102U [Tim44] (URA3 containing plasmid) with the 

plasmids carrying mutant TIM44 and chasing out the URA3 containing plasmid carrying 

the wild type copy, by growth on 5-Fluoroorotic acid (5-FOA) containing media. 

2.1.13 Checking the in vivo functionality of mutant Ssc1 

Yeast strains expressing only the mutant versions of Ssc1 were made by transforming the 

yeast strain Ssc1::LEU+ pVT-102U [Ssc1-his] (URA3 containing plasmid) (Bolliger et 

al., 1994)with the plasmids carrying mutant Ssc1 and chasing out the URA3 containing 

plasmid carrying the wild type copy, by growth on 5-Fluoroorotic acid (5-FOA) 

containing media. 

 

2.2 Methods in cell biology 

 

2.2.1 E. coli – media and growth 

2.2.1.1 Media for E. coli 

LB-medium: 0.5% (w/v) yeast extract, 1% (w/v) bacto-tryptone, 1% (w/v) NaCl. 

LB-Amp medium: LB-medium supplemented with 100 µg/ml of ampicillin. 
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Above mentioned composition of the media were used for preparing liquid cultures. For 

preparation of solid media (LB or LB-Amp plates) 2% (w/v) bacto-agar was added to the 

liquid media solutions and autoclaved (120ºC, 20 min). The ampicillin was added after 

the media had been cooled down to 50ºC. 

2.2.1.2 Cultivation of E. coli 

Liquid medium (usually 50 ml of LB-Amp) was inoculated with the single colony from 

the plate and grown overnight at 37°C while shaking at 140 rpm. If necessary, cells were 

grown for up to 24h at lower temperatures (30 or 24°C). 

2.2.2 S. cerevisiae – media and growth 

2.2.2.1 Media for S.cerevisiae 

Non-selective media: 

YP-medium: 10 g yeast extract, 20 g bacto-peptone, H2O to 930 ml, pH 5.0 (adjusted with 

HCl). 

YPD-medium: YP-medium supplemented with 2% glucose. 

YPG-medium: YP-medium supplemented with 3% (v/v) glycerol. 

YPGal-medium: YP-medium supplemented with 2% galactose. 

Lactate medium: 3 g yeast extract, 1 g KH2PO4, 1 g NH4Cl, 0.5 g CaCl2 x 2H2O, 0.5 g 

NaCl, 1.1 g MgSO4 x 6H2O, 0.3 ml 1% FeCl3, 22 ml 90% lactic acid, H2O to 1 l, pH 5.5 

(adjusted with KOH) and supplemented with 0.1% glucose or 0.5% galactose. 

Selective media: 

SD medium: 1.7 g yeast nitrogen base, 5 g (NH4)2SO4, 20 g glucose, H2O to 1 l. 

SLac medium: 1.7 g yeast nitrogen base, 5 g (NH4)2SO4, 22 ml 90% lactic acid, H2O to 1 

l, pH 5.5 (adjusted with KOH). 

For selective media, stock solutions: histidine (10 mg/ml, 500 x stock), leucine (10 

mg/ml, 333 x stock), lysine (10 mg/ml, 333 x stock), uracil (2 mg/ml, 100 x stock) and 

adenine (2 mg/ml, 100 x stock) were separately autoclaved for 20 min at 120°C, whereas 

tryptophan (10 mg/ml, 500 x stock) was filter sterilized.  

The above described media were used for preparing liquid cultures. For preparation of 

plates with solid media, 2% w/v bacto-agar was added. Bacto-agar, glucose, and media 
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were autoclaved separately. The amino acid solutions were added to the selective media 

just before pouring the plates. 

2.2.2.2 Cultivation of S.cerevisiae 

Liquid cultures were inoculated with yeast strains from the glycerol stocks or from the 

agar plates and were grown in the appropriate liquid medium at 30°C while shaking at 

140 rpm. Prior to the isolation of mitochondria cells were passaged for approximately 60 

h in the way that OD578 never exceeded 1. Temperature-sensitive mutants were grown at 

24°C for the same period of time. For the generation of mitochondria depleted of one its 

essential proteins a yeast strain having the corresponding gene under GAL promoter was 

grown for 48-60 h on galactose-containing media after which cells were collected, 

washed with water, resuspended in glucose-containing media and grown in the latter 

media for 8-18 h depending on the strain. For the generation of mitochondria with 

increased levels of one its proteins encoded on the gene under ADH promoter, the 

corresponding yeast strain was grown on selective lactate medium supplemented with 

0.1% glucose. 

2.2.2.3 Transformation of S .cerivisiae by the lithium acetate method  

The corresponding yeast strain was grown overnight in YPD-medium and diluted the 

next morning to 50 ml medium with an OD600 of 0.1-0.2. Cells were grown further, till 

they reached an OD600 of 0.5-0.6. Then, cells were transferred to a sterile centrifuge 

tube, and harvested by centrifugation (1,000×g, 3 min, RT). After washing with 25 ml of 

sterile water, cells were recollected, resuspended in 1 ml 100 mM lithium acetate and 

transferred to an Eppendorf tube. Cells were centrifuged again (7,500×g, 15 sec, RT) and 

were resuspended in 400 µl 100 mM lithium acetate. For each transformation 50 µl of the 

cell suspension was centrifuged (7,500×g, 5 min, RT) and the supernatant was  removed. 

Next, cells were overlaid in the following order with: 240 µl PEG 3350 (50% v/v), 36 µl 

1 M lithium acetate, 5 µl single stranded salmon sperm DNA (10 mg/ml; previously 

incubated for 5 min at 95ºC), 70 µl H2O containing 0.1-10 µg of DNA to be transformed. 

The mixture was vortexed for 1 min and incubated for 30 min at 30ºC, with moderate 

shaking, followed by another 20-25 min at 42ºC. The cells were harvested by 
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centrifugation (7,000×g, 15 sec, RT), washed with sterile water, resuspended in a small 

volume of sterile water (150 µl), and spread on plates with the appropriate selective 

media. The plates were incubated for 2-4 days at 30ºC to recover transformants. 

 

2.2.3 Isolation of mitochondria from S. cerevisiae 

Mitochondria were isolated from S. cerevisiae following the previously described method 

(Daum et al., 1982a; Daum et al., 1982b).Yeast cells were cultivated to OD600 of 1-1.5 

and collected by centrifugation (4,400×g, 5 min, RT). The pellets were washed with H2O 

and resuspended to a final concentration of 0.5 g/ml in DTT buffer (100 mM Tris-SO4, 

10 mM dithiotreitol (DTT), pH 9.4). The cell suspension was incubated for 10 min at 

30°C with gentle shaking, followed by another centrifugation step and resuspended in 

100 ml of 1.2 M sorbitol buffer (1.2 M sorbitol, 20mM potassium phosphate-KOH, pH 

7.4). The cell wall was digested by 2.5 mg Zymolyase per gram wet cells dissolved in 

Sorbitol buffer. Cells were incubated for 30-45 min at 30°C, under moderate shaking 

conditions. To test the cell wall digestion (obtaining of spheroplasts), 50 µl cell 

suspension was diluted with 2 ml H2O or into a solution of 1.2 M sorbitol. Formation of 

spheroplasts was complete when the OD of the H2O dilution was 10-20% of the OD of 

the sorbitol dilution. The solution of spheroplasts in pure H2O becomes clear because 

spheroplasts burst under these conditions. All the subsequent steps were performed at 

4°C. The spheroplasts were isolated by centrifugation (3,000×g, 5 min, 4°C), 

resuspended (0.15 g/ml) in homogenization buffer (0.6 M sorbitol, 10 mM Tris-HCl, 1 

mM EDTA, 0.2% (w/v) BSA,  1 mM PMSF, pH 7.4) and homogenized 10 times in a 

Dounce-Homogeniser. The cell remnants and unopened cells were sedimented by double 

centrifugation (2,000×g, 5 min, 4°C). The supernatant was spun (17,400×g, 12 min, 4°C) 

and the sedimented mitochondria were resuspended in SH buffer (0.6M sorbitol, 20mM 

HEPES, pH 7.4) and separated again from cell’s remnants (2,000×g, 5 min, 4ºC). The 

mitochondria were sedimented again as above (17,400×g, 12 min, 4°C). Finally, 

mitochondria were resuspended in a small volume of SH buffer to a concentration of 10 

mg/ml protein, aliquoted, frozen in liquid nitrogen, and stored at – 80ºC till use.  
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2.2.4 Isolation of crude mitochondria from S. cerevisiae 

Cells corresponding to 10-20 OD units were harvested by centrifugation (800 x g, 5 

min, RT) and washed with water. The cells were resuspended in 300 µl SHK buffer 

(0.6M sorbitol, 20mM HEPES, pH 7.4, 80mM KCl) containing 1mM PMSF and to the 

resuspended cells 0.3 g glass beads (diameter 0.3 mm) were added. The samples were 

vortexed four times 30 sec each, with 30 sec breaks in between (during this break the 

samples were incubated on ice) and centrifuged (1,000 x g, 3 min, 4ºC). After the 

centrifugation, the supernatant was transferred to a new tube and was centrifuged 

(10,000×g, 10 min, 4ºC), resulting in crude mitochondrial pellets. 

2.3 Immunology methods 

2.3.1  Generation of antibodies 

2.3.1.1  Generation of polyclonal antisera against Pam17 protein 

Polyclonal antisera were generated in rabbits. Recombinant protein was expressed in 

bacteria, purified using a specific tag and used as antigens. After the purification on the 

column remaining contaminants were separated from the proteins of interest by SDS-

PAGE. Upon Western blotting, the bands corresponding to the protein of interest were 

excised from nitrocellulose membranes. Up to 200 µg of proteins (10 bands) were 

dissolved in 300 µl DMSO by vortexing for 3 min. TiterMax adjuvant (300 µl) was 

added and the emulsion injected subcutaneously into rabbits. The antigen was injected 

twice within ten days before the first bleeding was taken. All subsequent injections took 

place every four weeks. Freunds incomplete adjuvant was used instead of TiterMax 

adjuvant for all the injections except the first one. The rabbits were bled 10-12 days after 

each injection cycle. Approximately 30-40 ml of blood was taken from the ear vein and 

left to coagulate at RT for 2 h. Coagulated blood was centrifuged twice (5 min at 3000 x 

g and 15 min at 20000 x g, RT), and the supernatant was incubated at 56ºC for 20 min to 

inactivate complement system. The antisera prepared this way were then aliquoted and 

frozen at -20ºC. 
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2.3.1.2  Affinity purification of antibodies against different components of the TIM23 

complex 

Affinity purification was performed in order to reduce the cross-reactivity of the antisera. 

Antibodies against Tim23, Tim44, Tim50, Tim16, Tim14, Tim17, Tim21 and Pam17 

were purified on the affinity columns made by coupling the proteins that served as 

antigens to the CNBr-activated Sepharose 4B (Amersham) via their -NH2 groups. To 

remove all other amino group containing substances from protein in the solution prior to 

coupling, the buffer was exchanged with a bicarbonate one on the PD-10 column 

(Amersham). The column was equilibrated with 30 ml 0.1 M NaHCO3, 0.5 M NaCl, pH 

8.3 and 2.5 ml of solution containing 4-8 mg protein was loaded on the column by the 

gravity flow. First 2.5 ml of the eluate was discarded and the protein was collected from 

the column in the following 3.5 ml. During equilibration of the PD-10 column, CNBr-

Sepharose was prepared in a way that 0.4 g of the beads was placed in 5 ml 1 mM HCl to 

swell. After 45 min the beads gave rise to ca. 1.5 ml gel. Gel was washed on a sintered 

glass filter with 200 ml 1 mM HCl and transferred into a column (max. volume 10 ml). 

Remaining HCl solution was allowed to pass through and the column was closed at the 

bottom. Upon addition of 3.5 ml of protein solution column was closed at the top and 

gently mixed by slowly revolving around vertical axis for 1 h at RT. The column was put 

in the vertical position; buffer was allowed to pass through and it was quickly analyzed 

for protein content with Ponceau S staining to check the efficiency of coupling. 

Remaining active groups were blocked by loading 6 ml 0.1 M ethanolamine, pH 8.0; 2 ml 

were allowed to pass through before the column was closed and gently mixed by slow 

revolving for additional 2 h at RT. Subsequently, the column was put in the vertical 

position; ethanolamine was allowed to pass through and all nonspecifically bound 

proteins were removed by 3 washing cycles of alternating pH. Each cycle consisted of 6 

ml 0.1 M Na-acetate, 0.5 M NaCl, pH 4.5 followed by 6 ml 0.1 M Tris·HCl, 0.5 M NaCl, 

pH 8.0. Column was finally washed with 10 ml 10 mM Tris·HCl, pH 7.5, and it was 

ready for affinity purification of antibodies. If the antibodies were not purified the same 

day, 3 ml 0.05% NaN3 water solution was added and the column was stored at 4°C. 

Before purification, the column was left at RT for 45 min and then equilibrated with 10 

ml of 10 mM Tris·HCl, pH 7.5. Antiserum (6 ml) was diluted with 24 ml 10 mM 
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Tris·HCl, pH 7.5 and loaded on the corresponding affinity column under gravity flow. 

The column was washed with 10 ml 10 mM Tris·HCl, pH 7.5 followed by 10 ml 10 mM 

Tris·HCl, 0.5 M NaCl, pH 7.5. For the elution, column was subjected to alternating pH 

through application of 10 ml of each of the following buffers in given order: 10 mM Na-

citrate, pH 4.0, 100 mM glycine·HCl, pH 2.5 and 100 mM Na2HPO4, pH 11.5. Fractions 

of 1 ml were collected and neutralized immediately with 200 µl 1 M Tris·HCl, pH 8.8 in 

the case of the first two buffers, and with 100 µl glycine, pH 2.2 in the case of the 

phosphate one. Several fractions eluted with each of the elution buffers were checked for 

specificity by immunodecoration on nitrocellulose membrane carrying yeast 

mitochondrial proteins. The majority of the specific antibodies were eluted with the 

glycine buffer in fractions 2-6. These fractions were usually pooled and 150 µl aliquots 

were stored at –20°C. 

2.3.2 Immunodecoration 

Proteins blotted onto nitrocellulose or PVDF membranes were visualized by 

immunodecoration with specific antibodies. After Western blot, membranes were 

incubated for 30 min in 5% (w/v) milk powder in TBS (150 mM NaCl, 10 mM Tris·HCl, 

pH 7.5) to block all nonspecific binding sites. The membranes were then incubated with 

specific primary antibody (1:100 to 1:20000 dilutions in 5% milk in TBS) for 1-2.5 h at 

RT, or overnight at 4ºC. The membranes were then washed for 5 min in TBS, 10 min in 

TBS containing 0.05% Triton X-100 and again 5 min in TBS and subsequently incubated 

with goat Anti-rabbit antibodies coupled to horseradish peroxidase (diluted 1:10.000 in 

5% milk in TBS) for 1-2 h at RT. The membrane was then washed as already described, 

treated with the chemiluminescent substrate of peroxidase (ECL reagents 1 and 2) and the 

signals were detected on X-ray films (Fuji New RX). 

ECL reagent 1: 3 ml Tris·HCl, pH 8.5 (1M stock), 300 µl luminol (440 mg/10 ml 

DMSO), 133 µl p-coumaric acid (150 mg/10 ml DMSO), H2O to 30ml. 

ECL reagent 2: 3 ml Tris·HCl, pH 8.5 (1M stock), 18 µl H2O2 (30%), H2O to 30ml. 

Solutions are stable for 7-10 days if kept in light-protected bottles at 4°C. 

Chemiluminescent substrate of peroxidase was made by mixing equal volumes of ECL 

reagents 1 and 2. 
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2.4 Protein biochemistry methods 

2.4.1 Purification of different recombinant proteins 

2.4.1.1 Purification of His6Tim44 and other His-tagged proteins  

The recombinant plasmid carrying the yeast Tim44 was transformed by electroporation 

into E.coli (BL21 DE3) cells and expressed in  1 l LB medium with 0.5mM isopropyl-β-

D-thiogalactopyranoside at 37° C for 3 h. The cells were harvested, suspended in 50ml of 

buffer A (50mM Na-phosphate buffer pH 7.8 with 300mM NaCl) containing 10mM 

imidazole, 1mg/ml lysozyme, 1mM/ml PMSF and protease inhibitor cocktail tablet 

(Roche) and incubated at 4°C for 45 min followed by cell disruption by sonication. The 

lysed cells were centrifuged at 20,000 × g and the clear supernatant was loaded into 1.5 

ml of Ni-NTA column (QIAGEN) pre-equilibrated with buffer A containing 10mM 

imidazole. The column was washed with 10 column volume of buffer A containing 

10mM imidazole and finally eluted with buffer A containing 300mM imidazole. The 

proteins were further purified by size-exclusion chromatography using Superdex 200 gel 

filtration column (GE healthcare) in buffer A. 

Essentially the same procedure was used to purify other His-tagged proteins like N- and 

C-terminal domains of Tim44. Purification of Ssc1-PBD differed in the way that buffer B 

(50mM Tris-HCl pH 7.5 with 250mM KCl, 5mM MgCl2 and 5% glycerol) was used for 

the purification steps. 

 

2.4.1.2 Purification of recombinant Ssc1  

The plasmid containing both Hep1 and Ssc1 genes (Sichting et al., 2005) was 

transformed by electroporation into E.coli (BL21 DE3) cells and expressed in 1lit LB 

medium with 0.5mM IPTG at 37° C for 3 h. The cells were harvested, suspended in 50ml 

of buffer B (50mM Tris-HCl pH 7.5 with 250mM KCl, 5mM MgCl2 and 5% glycerol) 

containing 10mM imidazole, 1mg/ml lysozyme, 1mM/ml PMSF and incubated at 4°C for 

45 min followed by cell disruption by sonication. The lysed cells were centrifuged at 

20,000 × g and the clear supernatant containing both recombinant His6Hep1 and Ssc1 
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was loaded into 1.5 ml of Ni-NTA column (QIAGEN) pre-equilibrated with buffer B to 

remove His6Hep1. The flow-though from the first Ni-NTA column containing Ssc1 was 

loaded into a 2nd column containg pre-bound His6Mge1. The second column was washed 

with 10 column volume of buffer B and finally eluted with buffer B containing 2mM 

ATP.  

Essentially the same procedure was used to purify the Ssc1-NBD. 

2.4.2 Protein analysis 

2.4.2.1 SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) 

The proteins were separated according to their molecular weights under denaturing 

conditions using one-dimensional vertical SDS-polyacrylamide gel electrophoresis (SDS-

PAGE). The concentrations of acrylamide and bis-acrylamide in the separating gel were 

chosen according to the molecular sizes of proteins of interest. The volume of the protein 

solution loaded per lane was between 5 and 50 µl, and the amount of loaded protein was 

between 25 and 150 µg. The samples were resuspended in 5-50 µl sample buffer and 

incubated at 95ºC for 5 min before loading. 

The electrophoresis was performed at 35 mA for 100 min for large gels of dimensions of 

approximately 14 cm x 9 cm x 0.1 cm and at 25 mA for 50 min for 1 h for small gels 

(Mini-PROTEAN II, Bio-Rad) of dimensions of approximately 10 cm x 5.5 cm x 0.075 

cm. Protein molecular weight markers of 116, 66, 45, 35, 25, 18 and 14 kDa (Peqlab) 

were usually used. 

Buffers for SDS-PAGE: 

Running gel: 8-16% (w/v) acrylamide, 0.16-0.33% (w/v) bis-acrylamide, 375 mM 

Tris·HCl (pH 8.8), 0.1% (w/v) SDS, 0.05% (w/v) APS, 0.05% (v/v) TEMED. 

Stacking gel: 5% (w/v) acrylamide, 0.1% (w/v) bis-acrylamide, 60 mM Tris·HCl (pH 

6.8), 0.1% (w/v) SDS, 0.05% (w/v) APS, 0.05% (v/v) TEMED. 

Electrophoresis buffer: 50 mM Tris base, 384 mM glycine, 0.1% (w/v) SDS, pH 8.3 

without adjustment. 

1 x sample (Laemmli) buffer: 60 mM Tris·HCl, pH 6.8, 2% (w/v) SDS, 10% glycerol, 5% 

(v/v) β-mercaptoethanol, 0.05% (w/v) bromphenol-blue. 
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Separated proteins were either stained with Coomassie-Brilliant-blue (CBB) or 

transferred onto a nitrocellulose membrane. 

2.4.2.2 CBB staining of SDS-PAGE gels 

After SDS-PAGE separating gel was incubated in aqueous solution containing 30% (v/v) 

methanol, 10% (v/v) acetic acid, and 0.1 (w/v) CBB G-250 at RT for 30 min. The gel was 

then destained with aqueous solution containing 30% (v/v) methanol and 10% (v/v) 

acetic acid until the protein bands were clearly visible, which required several washing 

steps with fresh destaining solutions. The gel was dried overnight between two gel-drying 

films (Promega). 

2.4.2.3 Transfer of proteins onto nitrocellulose/PVDF membrane (Western-Blot) 

Proteins separated by SDS-PAGE were transferred onto nitrocellulose membranes using 

a modified semi-dry method. The nitrocellulose membrane was incubated for three 

minutes in water and subsequently in blotting buffer (20 mM Tris base, 150 mM glycin, 

20% (v/v) methanol, 0.08% SDS) prior to the transfer procedure. A respective membrane 

was placed onto three pieces of Whatman 3MM filter paper that were previously soaked 

in the blotting buffer, lying on the graphite anode electrode. The gel was placed on the 

membrane and then covered with another three soaked filter papers. The cathode graphite 

electrode was placed on top creating the “blotting sandwich”. The electrotransfer was 

performed at 2 mA/cm2 for 1 h for big and for 45 min for small gels (for big gels of 

dimensions of approximately 14 cm x 9 cm x 0.1 cm it translates to 250 mA for 1 h and 

for small gels of dimensions of approximately 10 cm x 5.5 cm x 0.075 cm it translates to 

110 mA for 45min). Only in the case of the cross-linking experiments that were analyzed 

on big gels the time of transfer was increased to 75 min. 

To verify transfer efficiency, and to visualize and label the marker proteins’ bands, the 

nitrocellulose membranes were reversibly stained with Ponceau S solution [0.2% (w/v) 

Ponceau S in 3% (w/v) TCA]. The membranes were then immunodecorated, or the 

radioactive material visualized by autoradiography. 
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2.4.2.4 Determination of protein concentration 

Protein concentration was determined according to Bradford assay. Protein solutions (1-

10 µl) were diluted with 1 ml of 1:5 dilution of commercially available “Bio-Rad Protein-

assay” reagent and incubated for 10 min at RT. The absorbance was measured at 595 nm 

using a 1 cm path length micro-cuvette. Protein concentration was determined from a 

calibration curve obtained using the known amounts of the commercially available 

bovine IgG proteins (BioRad) as a standard. 

2.4.3 Protein experiments in organello 

2.4.3.1 Co-immuno precipitation experiments 

Desired amount of Protein A Sepharose CL-4B (PAS) (GE healthcare) beads were 

washed first with water, followed by 3 x 5 min washing with TBS. Appropriate amounts 

of purified antibodies (enough antibodies to immunodeplete the corresponding antigen 

from the extract) were added and incubated for 2 h at 4ºC, by slowly rotating the 

Eppendorf tubes overhead. The beads were then washed from the unbound antibodies and 

were ready for incubation with proteins from the mitochondrial extract. While the PAS 

beads were incubating with the desired antibodies, isolated mitochondria were 

centrifuged (17400 x g, 10 min, 4°C) and the mitochondrial pellet was resusupended at 2 

mg/ml in 20 mM TrisHCl, 80 mM KCl, pH 7.5, containing 1% (w/v) digitonin and 1 mM 

PMSF for 20 min at 4°C. After a clarifying spin (90700 x g, 20 min, 2ºC), mitochondrial 

extract was added to antibodies prebound to PAS and incubated for 2 h at 4°C. Beads 

were washed twice with 20 mM TrisHCl, 80 mM KCl, pH 7.5, containing 0.05% (w/v) 

digitonin and 1 mM PMSF. Specifically bound proteins were eluted with either reducing 

or nonreducing Laemmli buffer (5 min at 95°C). Samples were analyzed by SDS-PAGE 

and immunodecoration. 

 

2.4.3.2 Ni-NTA Pull down experiments with tagged proteins expressed in mitochondria 

Isolated mitochondria were centrifuged (17400 x g, 10 min, 4°C) and the mitochondrial 

pellet was solubilized at 2 mg/ml in 20 mM Tris·HCl, 80 mM KCl, pH 7.5 containing 1% 
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(w/v) digitonin and 1 mM PMSF for 20 min at 4°C. After a clarifying spin (90700 x g, 20 

min, 2ºC), mitochondrial extract was added to Ni-NTA beads (Qiagen). The beads (20-60 

µl) were previously washed with 3 x 1 ml TBS (150 mM NaCl, 10 mM Tris·HCl, pH 7.5) 

and  equilibrated with 200 µl solubilization buffer containing 0.05% . Mitochondrial 

extract was incubated with the beads for 1 h at 4°C. The beads were then washed three 

times with 200 µl solubilization buffer containing 0.05% digitonin, and the bound 

proteins were eluted with sample buffer containing 300 mM imidazole. Upon incubation 

at 95°C for 5 min, samples were analyzed by SDS-PAGE and immunodecoration. 

2.4.3.3 Crosslinking of mitochondrial proteins 

For the crosslinking analysis of interactions between mitochondrial proteins, isolated 

mitochondria were resuspended in the SI buffer (without BSA) and energized by addition 

of 2 mM NADH, 1 mM ATP, 10 mM creatine phosphate and 100 µg/ml creatine kinase. 

After incubation for 3 min at 25°C, the crosslinker was added from a 100-fold stock in 

DMSO. In this work two membrane permeable and lysine-specific chemical crosslinkers 

were used: DSG (disuccinimidylglutarate) and DSS (disuccinimidylsuberate). After 30 

min incubation on ice, excess crosslinker was quenched for 10 min on ice with 100 mM 

glycine, pH 8.8. Mitochondria were reisolated and analyzed by SDS-PAGE and 

immunodecoration.  

When crosslinking adducts were purified via His tag from one of the crosslinked proteins 

on the NiNTA-agarose beads, 250 µg of reisolated mitochondria were solubilized in 

buffer containing 1% SDS (v/v), 50 mM Na2HPO4, 100 mM NaCl, 10% glycerol, 10 mM 

imidazole, 1 mM PMSF, pH 8.0 for 15 min with vigorous shaking at 25°C. Samples were 

diluted 20 fold in the same buffer containing 0.2% Triton X-100 instead of SDS and, 

after a clarifying spin, added to 50 µl NiNTA-agarose beads. After 1 h of incubation at 

4°C while slowly rolling, beads were washed and bound proteins eluted with 2 x sample 

buffer containing 300 mM imidazole during incubation for 5 min at 95°C. 
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2.4.4 Protein experiments in vitro 

2.4.4.1 Ni-NTA pull-down experiments   

His6Tim44 ( wild type or labeled cysteine mutants) were mixed with Ssc1 in a molar ratio 

of 1:4 in buffer C (20mM Tris-HCl pH7.5, 300mM NaCl, 100mm KCl, 5mM MgCl2) 

containing 10mM imidazole, in a final reaction volume of 200µl at 25°C for 5min in 

absence or presence of 2mM nucleotides. After incubation the reaction mixture were 

incubated with 50µl of Ni-NTA beads pre-equilibrated with buffer C for 45min at 4°C. 

The beads were washed with 10 column volume of buffer C in batch and bound proteins 

were eluted from the beads with buffer C containing 300mM imidazole. The eluted 

proteins were used for SDS-PAGE followed by staining with CBB. 

2.4.4.2 Cross-linking experiments 

Tim44 was mixed with Ssc1 in a molar ratio of 1:4 in buffer D (20 mM HEPES/KOH 

pH7.4, 80mM KCl, 5mM MgCl2, 1mM PMSF) in a final reaction volume of 200µl at 

25°C for 5min, in absence or presence of 2mM nucleotides. After incubation for 5 min at 

25°C, the crosslinker (DSS) was added from a 100-fold stock in DMSO. After 30 min 

incubation on ice, excess crosslinker was quenched for 10 min on ice with 100 mM 

glycine, pH 8.8. The cross-linked proteins were precipitated with TCA and washed with 

ice cold acetone and subsequently analyzed by SDS-PAGE and CBB staining. 

2.5 Methods for Fluorescence spectroscopy 

2.5.1 Labelling of Cystine mutants of Tim44 and Ssc1 with 

sulfhydryl-specific fluorophores  

The single cysteine mutants of Tim44 and Ssc1( usually 50-75µM of protein) were 

labeled by incubating with 2 fold molar excess of Alexa-594 maleimide (INVITROGEN)  

for Tim44 and Atto-647N maleimide (ATTO-TEC) for Ssc1, in buffer A and buffer B 

respectively for 2 h at 4°C. Unreacted dyes were removed by size exclusion 

chromatography through a NAP5 column (GE healthcare) equilibrated with buffer C. 

Double cysteine mutants of Ssc1 were incubated with 0.8 molar ratio of donor and 1.2 
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molar ratio of acceptor dye to double label the protein stoichiometrically with donor 

(Atto-532 maleimide) and acceptor (Atto-6 47N maleimide) fluorophores. Unreacted 

dyes were removed by size exclusion chromatography through a NAP5 column. 

2.5.2 Steady-state and Kinetic Ensemble FRET Measurements  

Steady-state ensemble FRET measurements were performed on a Fluorolog 3 

fluorometer (Spex) with Fluorescein, Alexa 594 or Atto532 as donor and Atto647N as 

fluorescent acceptor at 25oC. Stopped-flow experiments were done using an Applied 

Photo Physics SX.18MV with a 1:1 mixing ratio at 25°C. Kinetic traces shown are 

averages of 10-12 independent measurements. 

2.5.3 Steady-state Ensemble FRET Efficiencies of Tim44:Ssc1, and 

P5:Ssc1 complexes  

For calculating steady-state ensemble FRET efficiencies, the fluorescence of the donor 

(Alexa 594) was measured for donor labeled Tim44  and incubated with equal 

concentration of either unlabeled or acceptor labeled Ssc1 at 25°C on a Fluorolog 3 

Spectrofluorometer (Spex). The donor fluorophore was excited at 590 nm and emission 

was monitored at 615 nm with slit widths of 2 nm and 5 nm, respectively. FRET 

efficiency was obtained using the following equation: 

fE = 1- (IDA/ID) 

where fE is the FRET efficiency, IDA and ID are the fluorescence of the donor in presence 

of acceptor labeled and unlabeled Ssc1, respectively.  

To obtain FRET efficiency between donor labeled P5 (P5-fl) and acceptor labeled Ssc1, 

the fluorescence of the donor (fluorescein) was followed upon incubation of P5-fl with 

acceptor labeled Ssc1. The donor fluorophore was excited at 480nm and the emission was 

monitored at 515nm with slit widths of 1nm and 5nm, respectively. The FRET efficieny 

was calculated according to the equation above. 

2.5.4 Semi-quantitative intramolecular FRET measurement  

To monitor intramolecular conformational changes using FRET, donor (Atto-532) and 

acceptor (Atto-647N) fluorescence of double labeled Ssc1 was monitored upon excitation 
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of the donor fluorophore at 532nm with a slit width of 2nm. Proximity ratio of the 

fluorphores was obtained using the following equation: 

PR = IPA/IPD 

Where PR is the proximity ratio, IPA is the intensity of the acceptor peak and IPD is the 

intensity of the donor peak. 

2.5.5 Single Molecule FRET Experiments  

Single molecule spectroscopy (fluorescence correlation spectroscopy (FCS) as well as 

single-pair FRET (spFRET) measurements) was performed on a confocal system based 

on an inverted microscope (Zeiss Axiovert 200) using pulsed interleaved excitation 

(PIE)(Muller et al., 2005). The concentration of double-labeled protein in the sample was 

diluted to ~60 pM to ensure that the probability of having more than one particle in the 

probe volume at the same time is negligible (<1 %). For each experiment, at least 500 

particles were measured.  

2.5.6 Determination of the Equilibrium Dissociation Constant of 

Tim44:Ssc1 Complexes 

 50nM of Tim44 (187C)-Alexa594 was mixed with different concentrations of 

Ssc1(448C)-647N or Ssc1-PBDp(448C)-Atto647N to obtain the decrease in Alexa-594 

fluorescence due to energy transfer. Excitation was centered at 590 nm (1 nm slit width) 

and emission was monitored at 615nm (2nm slit width). Since the Alexa594-labeled 

Tim44 undergoes a change in fluorescence upon binding to labeled Ssc1, the bound 

proportion of the protein could be estimated by the change in fluorescence intensity. 

Equilibrium dissociation constants were obtained by quantifying the bound fraction of 

Tim44 (187C)-Alexa594 from the fluorescence amplitude change as a function of Ssc1 

concentration, and fitting the resultant graph to the equation: 

 
 

where B is the concentration of Tim44(187C)-Alexa594 bound to Ssc1, c and x are the 

total concentrations of Ssc1 (or Ssc1-PDBp) and Tim44(187C)-Alexa594 respectively, 
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and KD is the equilibrium dissociation constant of the Tim44:Ssc1 (or Tim44:Ssc1-

PBDp) complex. 

2.6 Far-UV CD spectroscopy  

CD spectra were obtained on a Jasco-715 C spectropolarimeter (Jasco, Éaton, MD) 

flushed with nitrogen gas. The spectra were recorded using a 0.1cm pathlength cuvette 

with a scan rate of 10nm/min and a time constant of 8s. All data are an average over a 

minimum of 6 scans and are presented in terms of Mean Residue Ellipticity (MRE) as a 

function of wavelength.  Far-UV CD spectra were taken in the range of 260nm to 200nm. 

The CD spectra of full length Tim44 (both labeled and non-labelled proteins) was taken 

in 50mM phosphate buffer containing 300mM NaCl, pH 7.8 and Hsp70 spectra were 

taken in 25mM HEPES/KOH, 100mM KCl, 5mM MgCl2 and 5% glycerol, pH 7.4. 

2.7 Screening of cellulose-bound peptides (Peptide scans)  

Cellulose-bound peptide libraries from the sequences of firefly luciferase, ScMDH, 

ScHsp60 and ScHsp10 were synthesized (JPT Peptide Technologies GmbH, Berlin). 

Before screening the dry membranes were incubated with methanol for 5 min followed 

by 3×10 min washing steps in TBS (10mM Tris, 0.9% NaCl, pH 8.0). The membranes 

were blocked with 3% BSA in TBS pH8.0 at room temperature for 2h followed by a 

short washing step with TBS-T(0.05%, v/v). Purified Tim44 or Ssc1/ADP was then 

allowed to react with the peptide library in a concentration of 5µg/ml in blocking buffer 

for 2h at room temperature with gentle shaking. Unbound proteins were removed with 

washing with TBS-T and peptide bound Tim44 or Ssc1 were electro-transferred on to 

polyvinylene difluoride membrane (PVDF, Carl Roth GmbH) using a semi-dry blotting 

apparatus. The PVDF membrane was sandwitched between blotting papers soaked in 

Anode buffer I (30mM TRIS, 20% methanol), Anode buffer II (300mM TRIS, 20% 

methanol) and Cathode buffer (25mM TRIS, 40mM 6-aminohexanoic acid, 20% 

methanol). Electro-transfer was performed at a constant power of 1mA/cm2 cellulose 

membrane for 30 min for three times. Transferred proteins were detected by immune-

decoration with respective antibodies and chemiluminiscence (ECL, Sigma). 
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2.8 Methods for enzymatic activity of purified proteins 

2.8.1 Coupled assay for ATPase activity of Ssc1 

A coupled ATP-regenerating enzyme system was employed following a method 

described by (Norby, 1988). In a total volume of 200µl, 2µM of Ssc1 was incubated 

together with 2 mM ATP, 0.12 mM NADH, 3 mM phosphoenolpyruvate, 10 µg lactate 

dehydrogenase and 30 µg pyruvate kinase (Sigma) in 20 mM HEPES/KOH, pH 7.0, 

80mM KCl, 5mM MgCl2 at 25°C and ∆Abs360/∆t was monitored by a spectrophotometer 

(JASCO). 
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3 Results 

3.1 Characterization of Pam17 and Tim21, the two non-

essential subunits of the TIM23 complex 

The TIM23 translocase is one of the major translocases of mitochondria situated in the 

inner mitochondrial membrane. It is responsible for translocation of precursors across and 

their insertion into the inner mitochondrial membrane. Traditionally TIM23 translocase is 

divided into a membrane embedded translocation part and the import motor. The 

membrane embedded part contains three essential subunits, Tim17, Tim23 and Tim50. 

mtHsp70, Tim44, Tim14, Tim16, and Mge1 form the import motor of the TIM23 

translocase. In addition, the translocase contains two recently identified nonessential 

subunits, Pam17 and Tim21. The major aim of this part of the work was to analyze the 

roles of the two newly identified components Pam17 and Tim21. 

 
 

3.1.1 Both Tim21 and Pam17 bind to the Tim17-Tim23 core of the 

TIM23 complex 

Pam17 was identified as a component of the TIM23 translocase by co-purification with 

tagged Tim23 but its association to the parts of the translocase was not studied in detail 

(van der Laan et al., 2005). For that purpose, coimmunoprecipitation experiments with 

mitochondria isolated from wild type yeast cells (WT) were performed to analyze the 

association of Pam17 with the TIM23 translocase. At the same time, the association of 

the other nonessential component of the complex, Tim21, was analyzed. Mitochondria 

were solubilized in digitonin-containing buffer and incubated with affinity purified 

antibodies against Tim23, Tim17 and Tim16 or preimmune immunoglobulins bound to 

Protein A-Sepharose. These antibodies were previously shown to precipitate all known 

components of the TIM23 complex, however, with different efficiencies due to the 

reported instability of the complex upon solubilization. Upon digitonin solubilization the 
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vast majority of Tim21 could be coprecipitated using antibodies against Tim17 and 

Tim23 (Figure 3.1). Small but significant amounts could also be precipitated with 

antibodies to Tim16. In contrast, the majority of Pam17 remained in the supernatant, 

irrespective of the antibody used for precipitation, and only small amounts were detected 

in pellets after precipitation with Tim17 and Tim23 antibodies. There was no detectable 

Pam17 in the pellet after precipitation with Tim16 antibodies. All other components of 

the TIM23 translocase yielded precipitation patterns as described previously (Kozany et 

al., 2004; Mokranjac et al., 2003b). 

 

                    
 

To study the requirements of the association of Pam17 and Tim21 with the translocase, 

mitochondria depleted of one of the essential TIM23 components were used. In 

mitochondria depleted of either Tim17 (Figure 3.2A) or Tim23 (Figure 3.2B), association 

of Tim21 with the remaining one was lost. Essentially the same observation was made for 

Pam17. In contrast, depletion of any of the other essential components of the complex 

had no effect on the association of these two proteins with Tim17-Tim23 core (Figure 

3.2C-F). These results suggest that stable association of Tim21 and Pam17 with the 

TIM23 translocase requires the assembled Tim17-Tim23 core of the complex and is not 

dependent on any other known essential component of the complex. 

  

 

 

Figure 3.1: Pam17 and Tim21 associates with the Tim17-
Tim23 core of the TIM23 complex. Mitochondria isolated 
from wild-type cells were solubilized with digitonin and 
incubated with affinity-purified antibodies against Tim16, 
Tim17, Tim23 or antibodies from preimmuneserum (PI) as a 
control. The proteins eluted from the ProteinA-Sepharose 
columns were analyzed by SDS-PAGE, Western blotting 
followed by immunodecoratio with the indicated antibodies. 
Total fractions and supernatant represent 20% of the material 
used for immunoprecipitation. 
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This association behavior of Pam17 with the Tim17-Tim23 core was also examined from 

the side of Pam17. Mitochondria containing N-terminally His6-tagged Pam17 were 

solubilized and incubated with Ni-NTA beads. Tim50, Tim23 and Tim17 were 

specifically retained on the beads together with His6Pam17 (Figure 3.3). None of the 

subunits of the import motor in particular Tim44, Tim16 and Tim14 were found in the 

Figure 3.2: Pam17 and Tim21 interact with the intact Tim17-Tim23 core of the TIM23 
complex. Mitochondria isolated from cells depleted of the TIM23 components: Tim17 (A), Tim23 
(B), Tim50 (C), Tim44 (D), Tim14 (E) and Tim16 (F) were solubilized with digitonin and 
incubated with the affinity purified antibodies against Tim16, Tim17, Tim23 or antibodies from 
preimmune serum (PI) as a control. The eluted proteins from the ProteinA-Sepharose columns 
were analyzed by SDS-PAGE, Western blotting followed by immunodecoration with the indicated 
antibodies. Total fractions represent 20% of the material used for immunoprecipitation. 
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bound fraction. Interestingly, no co-isolation of Pam17 with Tim21 was observed, though 

both were found to bind to the Tim17-Tim23 core of the complex.  

       

In summary, both Tim21 and Pam17 bind to the Tim17-Tim23 core of the TIM23 

complex. However, they cannot be coisolated with each other. Furthermore, no evidence 

for a direct association of Pam17 with the TIM23 subunits traditionally assigned as the 

import motor components was obtained. 

 

          
 

3.1.2 The major cross-linked adduct of Tim23 is to Pam17 

Upon cross-linking with DSG in wild type mitochondria, decoration with antibodies to 

Tim23 reveal two cross-linked adducts. The ca. 55 kDa adduct was previously identified 

as a Tim23 dimer (Bauer et al., 1996). The identity of the major crosslinking partner 

remained unknown. Considering the size of the adduct, we reasoned that the cross-linking 

partner of Tim23 could be Pam17. By chemical crosslinking in mitochondria isolated 

from wild type yeast cells and from cells containing N-terminally His-tagged Pam17 

followed by Ni-NTA agarose pull down, the major cross-linked product of Tim23 was 

indeed found to be an adduct to Pam17 (Figure 3.4). This result obtained with intact 

mitochondria confirmed the close association of Pam17 to the membrane-embedded 

sector of the TIM23 translocase in lieu of the results obtained with solubilized 

Figure 3.3: Only members of the 
membrane-integrated part of the  
TIM23 complex are co-isolated with 
His6Pam17.  Mitochondria isolated 
from wild-type cells and cells 
expressing His6Pam17 were solubilised 
with digitonin and incubated with  Ni-
NTA agarose beads. The bound 
proteins were analyzed by SDS-PAGE 
followed by Western blot and 
immunodecoration with the indicated 
antibodies. Total fractions (T) and 
supernatant (S) represent 20% of the 
material used for binding to Ni-NTA. 
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mitochondria. On the other hand, this result was surprising in view of a recent report 

describing Pam17 as a component of the import motor (van der Laan et al., 2005).  

                                   
                               

3.1.3 Deletion of Pam17 affects the conformation of both motor 

and membrane part of the TIM23 complex 

To investigate  the functions Pam17 and Tim21 in the TIM23 translocase, yeast strains 

were constructed in which these proteins were deleted alone, or in combination. Deletion 

of either protein alone or in combination did not alter the levels of the essential 

components of the TIM23 complex (Figure 3.5). 

 

                                                                                           
 

In addition, the composition of the TIM23 complex was not changed as judged by co-

immunoprecipitation experiments using digitonin solubilized mitochondria. This suggests 

Figure 3.4: The major cross-linked 
adduct of Tim23 is to Pam17. 
Mitochondria isolated from wild-type 
cells and cells expressing His6Pam17 
were treated with 200µM DSG, 
solubilised with SDS-containing buffer 
and then incubated with  Ni-NTA 
beads. The samples were analysed by 
SDS-PAGE followed by Western 
blotting and immunodecoration with 
anti-Tim23 antibodies. The cross-
linked products are indicated. T: total 
material; B: material bound to Ni-
NTA. 

Figure 3.5: The endogenous levels of 
different mitochondrial proteins in 
strains lacking Pam17, Tim21 or 
both. 10µg and 50µg of isolated 
mitochondria from wild-type cells and 
cells lacking Pam17, Tim21 or both 
were analyzed by SDS-PAGE, 
Western blotting followed by immuno-
decoration with indicated antibodies. 
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that neither of the two proteins has an essential role in assembly of the TIM23 complex 

(Figure 3.6). 

                
 

 

 

However, when the conformation of the translocase was probed by chemical cross-

linking in intact mitochondria isolated from ∆pam17, ∆tim21 and ∆pam17/∆tim21 cells 

several differences from the wild-type pattern were observed. In mitochondria lacking 

Pam17, alone or in combination with Tim21, the crosslinking profile of Tim44 was 

changed (Figure 3.7).                  

                           
 

 

 

Figure 3.6: Deletion of Pam17 or Tim21 or both does not affect the assembly of the TIM23 
translocase. Mitochondria were solubilized with digitonin and subjected to immunoprecipitation 
with antibodies against Tim16, Tim17 or with preimmune serum (PI) as a control. Total (20%) and 
precipitated material were analyzed by SDS-PAGE and immunodecoration with indicated 
antibodies. 

Figure 3.7: Molecular environment of Tim44 is drastically changed in mitochondria lacking 
Pam17, Tim21 or both proteins. Mitochondria isolated from the wild-type cells and cells lacking 
Pam17, Tim21 or both were subjected to cross-linking by disuccinimidyl suberate (DSS). After cross-
linking the samples were analyzed by SDS-PAGE, Western blotting followed by immunodecoration 
with antibodies against Tim44. 
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Adducts to mtHsp70 were not visible and the intensity of the adduct presumably 

representing the Tim44 dimer was strongly increased in comparison to wild type. 

However, the Tim44-mtHsp70 subcomplex was still present when analyzed by 

coimmunoprecipitation (Figure 3.8). 

    
 

 

 

 
 The environment of Tim16 also changed significantly upon deletion of Pam17 and 

Tim21(Figure 3.9). There was a major shift from the Tim16-Tim14 adduct to the Tim16-

Tim16 adduct in mitochondria lacking Pam17. This changed cross-linked pattern again 

indicated a conformational change within the Tim14-Tim16 sub-complex since no 

detectable difference was observed in the co-immunoprecipitation patterns of either 

Tim14 or Tim16 (Figure 3.6).       

 

 

 
 

Figure 3.8: Deletion of Pam17 or Tim21 or both does not affect the formation of Tim44-
mtHsp70 subcomplex. Mitochondria were solubilized with Tx-100 and subjected to 
immunoprecipitation with antibodies against Tim44 or with preimmune serum (PI) as a control. 
Total (20%), supernatant (sup) (20%) and precipitated material (Pel) were analyzed by SDS-PAGE 
and immunodecoration with indicated antibodies. 

Figure 3.9: The molecular 
environment of Tim16 is significantly 
changed in mitochondria lacking 
Pam17, Tim21 or both proteins 
together. Mitochondria isolated from 
wild-type cells and cells lacking Pam17, 
Tim21 or both were subjected to cross-
linking by disuccinimidyl glutarate 
(DSG). After cross-linking the samples 
were analysed by SDS-PAGE,Western-
blotting followed by immunodecoration 
with antibodies against Tim16. 
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When the environment of Tim23 was analyzed, in mitochondria lacking Pam17, the 

crosslinking adduct between Tim23 and Pam17 was, as expected, absent. In addition, an 

increased efficiency of Tim23-Tim23 adduct formation was observed (Figure 3.10). In 

∆pam17/∆tim21 the Tim23 dimer was even more abundant than in ∆pam17 

mitochondria. Thus, deletion of Pam17 not only influenced the import motor but also 

resulted in a conformational change of the membrane embedded part. On the other hand, 

deletion of Tim21 alone had no influence on the crosslinking pattern of any of the 

analyzed TIM23 components. 

                            
 

 

 

 

In summary, deletion of Pam17, either alone or in combination with Tim21, results in a 

structural reorganization of the TIM23 translocase that affects both the membrane 

embedded part and the motor part of the complex.  

 

3.1.4 Binding of Tim21 and of Pam17 to the TIM23 complex is 

mutually exclusive 

The effect of over-expression of Pam17, Tim21 or both at the same time on the TIM23 

complex was analyzed. Interestingly, the extent of over-expression of the two proteins 

differed strongly in spite of the fact that they were expressed from the same promoter. 

The level of Pam17 was increased 3 to 4 fold as compared to the wild type level, whereas 

Figure 3.10: Molecular environment of Tim23 is drastically changed in mitochondria lacking 
Pam17, Tim21 or both proteins together. Mitochondria isolated from the wild-type cells and cells 
deleted of PAM17, TIM21 or both were subjected to cross-linking by disuccinimidyl glutarate (DSG). 
After cross-linking the samples were analysed by SDS-PAGE, Western blotting followed by 
immunodecoration with antibodies against Tim23. 
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the level of Tim21 was at least 10 fold higher than wild type level. The endogenous 

levels of various components of the TIM23 translocase and also of other mitochondrial 

proteins were unaltered under these conditions (Figure 3.11). 

  
 

Overexpression of Pam17 and Tim21 did not significantly influence the crosslinking 

patterns of different components of the import motor (Figure 3.12).  

 

 
 

 

 

 
 

Figure 3.11: The endogenous levels of different 
mitochondrial proteins in strains over-expressing 
Pam17, Tim21 or both. 10µg and 50µg of isolated 
mitochondria from wild-type cells and cells over-
expressing Pam17, Tim21 or both were analyzed by 
SDS-PAGE, Western blotting followed by immuno-
decoration with indicated antibodies. 

Figure 3.12: Over-expression of 
Pam17 or Tim21 or both do not 
significantly change the molecular 
environment of the import motor. A, 
Tim44; B, Tim16; C, Tim14. 
Mitochondria isolated from the 
indicated strains were subjected to 
chemical cross-linking with DSG or 
DSS. The samples were analysed by 
SDS-PAGE and Western blotting, 
followed by immunodecoration with 
indicated antibodies. The cross-linked 
products are indicated. 
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Upregulation of Pam17 did not result in a change of  the crosslinking pattern of Tim23, 

not even in an increased efficiency of Tim23-Pam17 crosslinking (Figure 3.13). In 

contrast, overexpression of Tim21 led to a decreased efficiency of Tim23 crosslinking to 

Pam17 and also to a significantly increased dimerization of Tim23. Intriguingly, 

overexpressed Pam17 could counteract the effect of overexpression of Tim21. Dimers of 

Tim23 were virtually not visible anymore and the intensity of Tim23-Pam17 crosslink 

was returned to almost wild type level. This result suggests that Pam17 and Tim21 do not 

bind to the Tim17-Tim23 core of the complex at the same time. 

                                
 

 

 

 

Next, coimmunoprecipitation experiments using digitonin solubilized mitochondria 

containing overexpressed Pam17, Tim21 or both (Figure 3.14) were performed. The 

assembly of the essential subunits of the complex was not affected under these 

conditions. Overexpression of Pam17 did not lead to a higher efficiency of its co-

precipitation with the rest of the TIM23 translocase but it significantly reduced the 

amounts of Tim21, which could be precipitated with Tim17 antibodies. On the other 

hand, upregulation of Tim21 led to the virtual removal of Pam17 from the TIM23 

complex under these conditions. Increased levels of Tim21 in mitochondria also resulted 

in a more efficient copurification of this protein with both Tim16 and Tim17 antibodies. 

In mitochondria containing increased levels of both Pam17 and Tim21, overexpressed 

Figure 3.13: Conformational changes caused by over-expression of Tim21 are 
counteracted by overexpressing Pam17. Mitochondria isolated from the indicated strains 
were subjected to chemical cross-linking by DSG. The samples were analysed by SDS-PAGE 
and Western blotting, followed by immunodecoration with anti-Tim23 antibodies. The cross-
linked products are indicated. 
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Pam17 could remove some of the overexpressed Tim21 from the complex in the way that 

coprecipitation of Pam17 with the TIM23 complex was again visible.  

                       
 

 

 

 

In summary, Tim21 and Pam17 appear to either to have overlapping binding sites on the 

Tim17-Tim23 core of the complex or that binding of one of them induces a conformation 

not compatible with binding of the other one. This suggests interdependent regulatory 

roles for these two proteins in the import process (Popov-Celeketic et al., 2008a).  

3.2 Reconstitution of the Tim44:Ssc1 interaction cycle of the 

mitochondrial import motor using the purified 

components 

Complete translocation of preproteins into the mitochondrial matrix requires the import 

motor of the TIM23 translocase and consumes energy in the form of ATP. The ATP-

consuming component of import motor is mtHsp70, also known as Ssc1 in yeast. Since 

the interaction of the translocating polypeptide chain with Ssc1 is thought to drive the 

translocation process, interaction between Ssc1 and its anchor point to the translocase, 

Tim44, forms a key element in the translocation of a matrix targeted pre-protein. The 

major aim of this part of the work was to uncover the dynamics of the Tim44-Ssc1 

Figure 3.14: Presence of Tim21 and Pam17 in the TIM23 complex is mutually exclusive. 
Mitochondria were solubilized with digitonin and subjected to immunoprecipitation with 
antibodies against Tim16, Tim17 or with preimmune serum (PI) as a control. Total (20%) and 
precipitated material were analyzed by SDS-PAGE and immunodecoration with indicated 
antibodies. 
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interaction. To explore the working mechanism of import motor, it was necessary to 

understand the kinetics of the processes along with the thermodynamics that drive these 

interactions. To understand the process of cycling of Ssc1 on Tim44 and relate it to the 

events of translocation, we need to uncover the kinetics of formation and dissociation of 

Tim44:Ssc1 complex. Towards this end, Fluorescence Resonance Energy Transfer 

(FRET) was used as a major tool to understand the real time kinetics of the cycling of 

Tim44:Ssc1 complex. 

3.2.1 Recombinant Ssc1 and Tim44 are functional and can 

associate to form Tim44:Ssc1 complex in vitro 

It has been previously reported that Tim44 and Ssc1 interact in vitro when purified from 

yeast (D'Silva et al., 2004; Liu et al., 2003). More recently, in vitro interaction of Tim44, 

purified from E.coli, and Ssc1, purified from yeast, has also been shown (Slutsky-

Leiderman et al., 2007).  As we intended to engineer cysteine mutants of both of these 

proteins for subsequent labeling with sulfhydryl-specific fluorophores for FRET studies, 

we expressed and purified both the components recombinantly from E.coli to facilitate 

the production of the various mutant proteins (Figure 3.15).                   

 
 

 

 

 

 

Figure 3.15: Purification of recombinantly expressed His6Tim44 and Ssc1 from E.coli.  
Left panel:  Coomassie-Brilliant-Blue (CBB) stained gel illustrating the different steps of purification 
of His6Tim44 over a Ni-NTA column. Sup: Supernantant fraction after cell lysis, Pel: Pellet fraction 
after cell lysis, FT: Flow-througAh from the Ni-NTA column after binding the Sup. Right Panel: 
Coomassie-Brilliant-Blue (CBB) stained gel illustrating the different steps of purification of Ssc1. Sup: 
Supernantant fraction after cell lysis, FT: Flow-through from the Ni-NTA column after binding the Sup. 
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It is noteworthy that Ssc1 could be expressed in soluble fraction only upon its co-

expression along with Hep1 in the same bacterial cells (Sichting et al., 2005). Tim44 with 

a N-terminal His6tag was expressed and purified from E.coli as described in Materials 

and Methods section. After expression, Ssc1 was purified by a novel approach using 

His6-Mge1 column (discussed in detail in Materials and Methods). 

Ssc1 purified from E.coli retained its full functionality in terms of its ATPase activity, 

stimulation of its ATPase activity in presence of Mdj1 (Figure 3.16), the J-domain co-

chaperone of Ssc1 in the mitochondrial matrix, and its ability to bind substrate peptides 

(shown in a later section).       

                             

                    
 

Both the proteins showed distinct secondary structures in CD-spectra (Figure 3.17). 

 

   
   

Interaction between the purified proteins was checked by the ability of His6-Tim44 to 

co-purify Ssc1 over a Ni-NTA column, when pre-incubated together (Figure 3.18). 

Tim44:Ssc1 complex was stable under Ssc1-ADP state and without addition of any 

Figure 3.16: ATP hydrolysis activity 
of recombinantly expressed and 
purified Ssc1. ATP hydrolysis activity 
of Ssc1 was checked by coupled 
enzymatic detection of ADP produced 
as described in Materials and Methods. 
The rate of ATP hydrolysis reported is 
mole of ATPhydrolysed/mole of 
Ssc1/s. 

Figure 3.17: Recombinantly 
expressed and  purified Tim44 and 
Ssc1 are folded. Comparison of far-
UV CD spectra of purified Tim44 and 
Ssc1. The CD spectra were recorded 
on a Jasco-715 spectropolarimeter with 
a 2mm pathlength cuvette using 2μM 
protein in each case in appropriate 
buffer as mentioned in Materials and 
Methods.



65 

 

nucleotide to the reaction whereas addition of ATP made the complex unstable leading 

to absence of co-purification of Ssc1 with His6Tim44 in agreement with the previously 

published data (Rassow et al., 1994; Schneider et al., 1994; Slutsky-Leiderman et al., 

2007; von Ahsen et al., 1995; Voos et al., 1996). 

Since the steady state interactions of Tim44 and Ssc1 under various conditions had been 

studied in some detail (D'Silva et al., 2004; Liu et al., 2003; Schneider et al., 1994; 

Slutsky-Leiderman et al., 2007; von Ahsen et al., 1995), we sought to uncover the 

dynamic properties of this complex in terms of the kinetic parameters involved in its 

formation and dissociation.   

 

            
.                         

3.2.2 Development of a FRET based assay system to monitor 

Tim44-Ssc1 interaction cycle in real time 

3.2.2.1  Generation of cysteine mutants of Tim44 and Ssc1 for maleimide specific 
fluorophore labeling 

 After the initial biochemical experiments had established that purified components can 

form a complex in vitro, the next step was to establish a system to monitor the interaction 

cycle in real-time in order to elucidate the exact order of events. 

To study the Tim44-Ssc1 interaction cycle in real time, a Fluorescence resonance energy 

transfer (FRET) based assay system was developed. To monitor the interactions using 

FRET, exogenous Cysteine reactive fluorophores were incorporated at specific positions 

on Tim44 and Ssc1.  As there is no structural information about the N-terminal domain of 

Tim44, the residues suitable for cysteine substitution and fluorophore labeling were 

Figure 3.18: Recombinantly expressed 
and purified Tim44 and Ssc1 can 
interact in vitro. 1µM His6-Tim44 was 
preincubated with 4µM of Ssc1 in absence 
of any addednucleotide or in presence of 
2mM ATP or ADP at 25°C for 5 min to 
form the complex. The reactions were then 
incubated with Ni-NTA column and was 
eluted with buffer containing 300mm of 
imidazole followed by SDS-PAGE and 
CBB staining.10% of the materials used for 
the reaction were used as load. 
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chosen by bio-informatic analysis. For choosing the residues which would be substituted 

to cysteines in case of Tim44, the sequences of Tim44s across different species were 

aligned. The residues that were not conserved in Tim44 across a representative set of 

species and contained Asp substitution in any of the species were chosen for mutagenesis 

to cysteines (Figure 3.19) (Bajaj et al., 2005). 

 

         
 The Asp based cutoff, used in case of the absence of additional structural information, 

ensured that only surface residues are chosen so as to minimize the plausible deleterious 

effects of the exogenous fluorophores on the protein structure and function. The 

endogenous cysteine residue of Tim44 (C369) was not mutated, as the crystal structure of 

C-terminal of yeast Tim44 showed it to be buried in the hydrophobic core of the protein 

(Josyula et al., 2006) and was therefore inaccessible to fluorophores under native 

conditions (data not shown).  

For labeling Ssc1, the surface exposed positions on the Ssc1 were chosen based on the 

homology modeled structure of Ssc1 on the crystal structures of Hsp110, an Hsp70 

homologue (Liu and Hendrickson, 2007)(Figure 3.20).  

Figure 3.19: Positions of Cysteine 
mutations on Tim44. Schematic 
representation of N-terminal domain of 
yeast Tim44 along with the ribbon 
diagram of crystal structure of C-
terminal indicating the positions of 
engineered cysteines is illustrated. 
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All cysteine substitutions of Tim44 and of Ssc1 were checked for functionality in yeast 

and all of them used for the study were found to be functional (Figure 3.21). The same 

mutants were then cloned in bacterial expression vector and expressed and purified as 

described above for wild type proteins. 

 

          
 

 

 

 

 

 

 

 

Figure 3.21: All the single cysteine substitution mutants of Tim44 and Ssc1 are functional in 
vivo. Left panel: A haploid deletion strain of TIM44 harbouring the wild type copy of Tim44 on the 
URA plasmid was transformed with plasmids containing single cysteine mutants of Tim44. In vivo 
functionality of the mutant proteins was checked by plasmid shuffling on 5-fluorooratic acid plates. 
Plasmids carrying the wild type Tim44 or an empty plasmid were used as the positive and negative 
controls respectively. Right panel: A haploid deletion strain of Ssc1 harbouring the wild type copy 
of Ssc1 on the URA plasmid was transformed with plasmids containing single cysteine mutants of 
Ssc1. In vivo functionality of the mutant proteins was checked by plasmid shuffling on 5-fluorooratic 
acid plates. Plasmids carrying the wild type Ssc1 or an empty plasmid were used as the positive and 
negative controls respectively. 
 

Figure 3.20: Positions of 
Cysteine substitutions on Ssc1. 
Homology model of Ssc1 based on 
the crystal structure of Hsp110 
showing the residues mutated to 
cysteines for maleimide specific 
labeling. Engineered cysteines 
present in the NBD are represented 
in red and those present in PBD 
are shown in blue. 



68 

 

3.2.3 Interaction of Tim44 and Ssc1 can be monitored in real time 

by Fluorescence Resonance Energy Transfer  

 After the introduction of cysteines in different positions of both Tim44 and Ssc1, the 

next step was to label the proteins with fluorophores. Various maleimide specific 

fluorophores were tried for the labeling purpose and one donor-acceptor pair namely, 

Alexa-594-maleimide as the donor and Atto-647N-maleimide as the acceptor was found 

to be most sensitive for observing FRET between Tim44 and Ssc1. To perform FRET 

based binding assays, Tim44 was labeled with Alexa-594 as the donor fluorophore and 

Ssc1was labeled with Atto-647N as the acceptor fluorophore. The labeling procedure (as 

described in the Materials and Methods section) did not affect the structural integrity of 

the proteins as observed by CD spectra of a representative labeled Tim44 and Ssc1 

compared to the wild type proteins (Figure 3.25, left panel). Labeled Tim44s and Ssc1s l 

formed complexes as shown by previously described Ni-NTA based pulldown 

experiment (Figure 3.22, Panel B).  

  

 
 
 

 

 

Figure 3.22: Panel A: Labelling with fluorophores does not 
affect the structures of purified Tim44 and Ssc1. Comparison 
of far-UV CD spectra of labeled and unlabeled Tim44 (top panel) 
and Ssc1 (bottom panel). The CD spectra were recorded on a 
Jasco-715 spectropolarimeter with a 2mm pathlength cuvette 
using 2μM protein in each case in the appropriate buffer as 
mentioned in materials and methods.  Panel B: Ni-NTA 
pulldown with the fluorophore-labeled protein. 450nM of 
Alexa-594 labeled His6Tim44(272C) was mixed with 1.8µM of 
Atto 647N labeled different Ssc1 mutants (72C, 161C, 448C and 
481C) to form Tim44:Ssc1 in presence of 2mM ADP. The 
complex eluted from Ni-NTA column was subjected to SDS-
PAGE followed by staining with coomassie brilliant blue (CBB). 
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Real time interaction between Tim44 and Ssc1 could be monitored by FRET by 

monitoring the quenching of donor fluorescence on Tim44 in presence of acceptor 

labeled Ssc1. Control experiments showed that unlabelled Ssc1 did not affect the 

fluorescence of donor labeled Tim44 (Figure 3.23).  

 

               
 

 

 

3.2.4 Mapping of interaction sites in Tim44:Ssc1 complex 

To understand the domain-wise interaction of Tim44 and Ssc1 in the context of full-

length proteins, the proximities of the various domains of Tim44 and Ssc1 were obtained 

by quantifying the fluorescence quenching of donor labeled Tim44 in the presence of 

acceptor labeled Ssc1 in the ADP-bound state. FRET efficiencies (fE) were obtained for 

various donor-acceptor pairs to compare different distances between domains of the two 

proteins. FRET efficiencies (fE) were obtained for Tim44:Ssc1 pairs where the donor 

probes were placed in the N-terminal domain (NTD) (90C and 187C), and in C-terminal 

domain (252C and 272C) of Tim44. The acceptor fluorophores were positioned at 

different domains of Ssc1; subdomains of the nucleotide binding domain (NBD), base of 

the peptide binding domain (PBD-base) and the lid domain of PBD (PBD-lid). 

Comparison of fEs of different donor-acceptor pairs indicated that both domains of 

Tim44 molecule were closer to Ssc1-PBD-lid and Ssc1-PBD-base than Ssc1-NBD. FRET 

data obtained for the proximity of domains Tim44 with the different domains of Ssc1 also 

Figure 3.23: Tim44-Ssc1 interaction can be monitored by FRET. Intermolecular FRET between 
Tim44 (187C) and Ssc1 (481C). Quenching of donor fluorescence of 150nM Tim44 (187C-Alexa 
594) was observed in presence of 300nM of acceptor-labeled Ssc1 (481C-647N). Unlabelled Ssc1 
was used as a control.
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suggested that there are regions of nucleotide binding domain of Ssc1 (subdomain Ia, 

position 161) that formed close contacts with Tim44 (Figure 3.24). 

 

     

          
 

 

 

 

 

To negate the possibility of the contribution of uncomplexed Tim44 in the reaction, due 

to differences in binding affinity of the different mutants, fE was determined always at 

saturating concentrations of Ssc1, where the fE did not increase upon further addition of 

Ssc1.  

 

3.2.5 Interaction of isolated domains of Ssc1 and Tim44 

To determine the minimal domains required for Tim44-Ssc1 interaction and recapitulate 

the data obtained with full length proteins, individual domains of both Tim44 and Ssc1 

were expressed and purified and interactions were examined. 

Fig. 3.24: Mapping of interaction sites of Tim44:Ssc1 complex. FRET efficiency (fE) of 
different positions of Ssc1 (both NBD and PBD) with either domains of Tim44 was determined by 
the amount of donor fluorescence quenching of 150nm of Tim44 (Alexa 594-maleimide) 
complexed with 4µM of acceptor labeled Ssc1(Atto-647N maleimide). Four different bars represent 
the complex of particular donor labeled-Tim44 with the corresponding acceptor labeled Ssc1 
(labeled position of Ssc1 is mentioned in X-axis.) 
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3.2.5.1  The solubility of Ssc1-NBD in E.coli strictly depends on its co-expression along 
with Hep1 and addition of the linker sequence 

 Previous results from our laboratory suggested that the recombinant PBD of Ssc1 was 

soluble irrespective of the presence or absence of Hep1 whereas NBD was always found 

in the inclusion bodies (Sichting et al., 2005). Recent report showed that the hydrophobic 

linker sequence (VLLLD) stabilizes NBD of DnaK (Swain et al., 2007). The same was 

tested for NBD of Ssc1. Addition of the linker sequence to the NBD of Ssc1 did not 

improve the solubility of recombinant protein. Interrestingly, this construct became 

soluble upon coexpression with Hep1, similar to the full length protein (Figure 3.25). 

Apparently, NBD along with the linker sequence is the minimal domain of Ssc1 which 

can be kept in functional conformation by Hep1. 

 

                  
 

 

 

 

 

3.2.5.2  Isolated Ssc1-PBD can form a complex with Tim44 while the NBD does not 
interact 

Binding of the separate domains of Ssc1 to Tim44 was assessed using pull-down with 

His6-Tim44 showed that the C-terminal PBD interacted with Tim44 in a nucleotide 

independent manner, as expected, whereas the N-terminal NBD was unable to form a 

complex with Tim44 under any of the experimental conditions analyzed (Figure 3.26, 

Panel A).     

Figure 3.25: The solubility of Ssc1-NBD in E.coli strictly depends on addition of the linker 
sequence and its co-expression with Hep1. Ssc1-NBD with and without linker sequence was 
expressed alone or along with Hep1 from a Duet vector in E.coli. T: Total cell extract, S: Soluble 
fraction, P: Pellet fraction from the bacterial cell. The cell extracts and both the soluble and pellet 
fractions were subjected to SDS-PAGE followed by staining with Coomassie Brilliant blue 
(CBB). 
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The steady state observations obtained from the pull-down experiments were further 

supported by FRET based binding experiments to rule out any transient interactions with 

the NBD. Cysteine-reactive fluorophores were placed in the isolated domains in the same 

positions as in the full length protein which showed considerable FRET efficiency with 

Tim44 e.g. at the position 448 of PBD and position 161 on NBD.  The donor 

fluorescence on Tim44 was only quenched with acceptor labeled Ssc1-PBD (481C) but 

not with acceptor labeled Ssc1-NBD (161C) reconfirming the results of the pull-down 

experiments (Figure 3.30, Panel B). Thus, both pull-down and FRET based binding 

assays showed that the peptide binding domain alone is able to interact with Tim44 

reinstating the sufficiency of Ssc1-PBD for Tim44:Ssc1 interaction.   

The KD of Tim44:Ssc1 interaction was found to be 1.1± 0.3 µM (Figure 3.27). Similarly, 

the KD of Tim44:Ssc1-PBDp was determined to be 1.4± 0.2 µM. Thus, the regions of 

Figure 3.26: Interaction of isolated domains of Ssc1 with Tim44. Panel A: Ni-NTA pull-down of Ssc1 
and Ssc1-NBD and Ssc1-PBD with His-tagged Tim44 in different nucleotide conditions. 2µM of His 
tagged Tim44 was mixed with 4µM of Ssc1 and 4µM of each its isolated domains in presence of different 
nucleotides to form the complexes and subsequently bound and eluted from the Ni-NTA column. The 
eluted proteins were subjected to SDS-PAGE followed by staining with CBB. Panel B: Interaction of 
Ssc1 domains with Tim44 by FRET. Interactions of isolated domains of Ssc1 were monitored in real time 
by quenching of donor fluorescence of donor labeled Tim44 (187C-Alexa594) in presence of acceptor 
labeled Ssc1 domains, either Ssc1-NBD (161C-647N) or Ssc1-PBD (481C-647N). 
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Ssc1-NBD, that are proximal to Tim44, do not contribute significantly towards the 

stabilization of Tim44:Ssc1 complex.  

                 

 

 

 

3.2.5.3  The N-terminal domain (NTD) of Tim44 is the major interacting domain with 
Ssc1 

After dissecting the roles of domains of Ssc1 in Ssc1:Tim44 complex formation, it was 

interesting to delineate the roles of domains of Tim44. For that purpose, both domains of 

the protein, Tim44-NTD (aa 44-233) and Tim44-CTD (234-end), were expressed in 

E.coli (Tim44-NTDp and Tim44-CTDp respectively) and purified and their interaction 

with Ssc1 was monitored (Figure 3.28).  

 
 

 

Figure 3.27: Determination of equilibrium dissociation constant (KD) of Tim44:Ssc1 and 
Tim44:Ssc1-PBD. The experimentally determined concentrations of bound Tim44 were calculated 
in both cases based on FRET efficiency data obtained at different concentrations of Ssc1 and Ssc1-
PBD. The data were fitted as described in Materials and Methods.
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Both the domains were with N-terminal His6tags and the interaction with Ssc1 was first 

checked by Ni-NTA pull-down assays as was performed for full-length protein. Tim44-

NTDp was sufficient to faithfully recapitulate the interaction of full length Tim44 with 

Ssc1. On the other hand, Tim44-CTDp exhibited only weak interaction with Ssc1 (Figure 

3.29).  

                          
 

 

 

 

The same observation was made with FRET based binding assays by using donor-

labelled Tim44 domains at position 187 in case of NTDp and 272 in case of CTDp. The 

equilibrium dissociation constant of Tim44-NTDp/Ssc1 was measured to be 2+0.4 µM, 

which is very similar to KD of Tim44:Ssc1 (1.1+0.3 µM).  (Figure 3.30, left panel), this 

further supports the finding that Tim44-CTD plays only a minor role in the stabilization 

of the Tim44:Ssc1 interaction. Also, Tim44-NTDp was able to bind to Ssc1-PBDp with 

affinity similar to the binding of Tim44 to Ssc1-PBDp (Figure 3.30, right panel). Thus, 

Tim44-NTD and Ssc1-PBD form the minimal interaction region in Tim44:Ssc1 complex. 

 

Figure 3.28: Purification of recombinantly expressed His6Tim44-NTD and His6Tim44-CTD 
from E.coli.  Left panel:  Coomassie-Brilliant-Blue (CBB) stained gel illustrating the different 
steps of purification of His6Tim44-NTD over a Ni-NTA column. Sup: Supernantant fraction after 
cell lysis, Pel: Pellet fraction after cell lysis, FT: Flow-through from the Ni-NTA column after 
binding the Sup. Right Panel: Coomassie-Brilliant-Blue (CBB) stained gel illustrating the 
different steps of purification of His6Tim44-CTD over a Ni-NTA column. Sup: Supernantant 
fraction after cell lysis, Pel: Pellet fraction after cell lysis, FT: Flow-through from the Ni-NTA 
column after binding the Sup. 

Figure 3.29: Ni-NTA pull-down of Ssc1 with Tim44 and isolated domains of Tim44. 2µM 
of His6-tagged Tim44, Tim44-NTD and Tim44-CTD were mixed with 4µM of Ssc1 under 
different nucleotide conditions and subsequently incubated with the Ni-NTA beads. The bound 
proteins were subjected to SDS-PAGE followed by staining with CBB. 
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3.2.5.4 Isolated domains of Tim44 cannot replace the full-length protein in vivo even 
when expressed together in trans 

 After establishing that the NTD of Tim44 is sufficient for interaction with Ssc1, it was 

interesting to check whether this part of Tim44 alone can replace the full-length protein 

in yeast cells. For that purpose nucleotide sequence coding for NTD and CTD were 

cloned into yeast vectors and transformed into the yeast cells lacking the wild type Tim44 

but carrying the TIM44 gene on the URA plasmid. The in vivo functionality of isolated 

domains was checked by plasmid shuffling on medium containing 5-FOA that selects 

against cells carrying URA plasmid. Neither of the isolated domains supported cell 

growth. Also, even when they were expressed together in trans they could not 

supplement for the function of the full length protein (Figure 3.31). This result indicated 

that both the domains of Tim44 act as cis acting elements in vivo. 

 

   

Figure 3.30: Determination of equilibrium dissociation constant (KD) of Tim44-NTD/Ssc1 and 
Tim44-NTD/Ssc1-PBD. The experimentally determined concentrations of bound Tim44-NTD was 
calculated based on FRET efficiency data obtained at different concentrations of Ssc1 and Ssc1-
PBD. The data were fitted as described in materials and methods. 

Figure 3.31: full length Tim44 is required for 
its in vivo function. A haploid deletion strain of 
TIM44 harbouring a wild type copy of TIM44 on 
the URA plasmid was transformed with plasmids 
containing either Tim44-NTD or Tim44-CTD. 
Cells were plated into medium containing 5-
fluorooratic acid which specifically selects the 
cells that have lost the URA plasmid. Plasmids 
carrying the full length Tim44 or an empty 
plasmid were used as the positive and negative 
controls respectively. 
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3.2.6 Substrate induced dissociation of Tim44:Ssc1 

Destabilization of Tim44:Ssc1 complex in presence of substrate protein is believed to be 

an essential feature for this complex to be competent for mitochondrial protein 

translocation. It has been observed earlier that binding of a substrate peptide P5 

(CALLLSPARR) to Ssc1 leads to the dissociation of the Tim44 and Ssc1 complex 

(D'Silva et al., 2004; Liu et al., 2003). Dynamics of dissociation of the complex was 

followed by the recovery of quenched donor fluorescence of Tim44, in the Tim44 (187-

Alexa594)/Ssc1 (481-Atto647N) complex, upon addition of P5 (Figure 3.32, Panel A). 

The complex between the minimal binding regions of Tim44 and Ssc1, namely the 

complex between Tim44-NTDp/Ssc1-PBDp, was able to faithfully reproduce the P5 

induced dissociation of the Tim44:Ssc1 complex (Figure 3.32, Panel B). The substrate 

induced dissociation rate of Tim44/Ssc1/ADP complex was ~0.004 s-1 (t1/2 ~ 173s). 

 

                
 

 

 

 

 

To correlate the rate of substrate induced cycling with the physiological rate of protein 

translocation, we sought to obtain a rough indication of the rate of protein translocation 

across TIM23. A list of mitochondrial proteins was first generated using MITOPRED 

(Guda et al., 2004a; Guda et al., 2004b) followed by the use of the software Submito 

(http://bioinfo.au.tsinghua.edu.cn/subMito/) to generate a list of putative mitochondrial 

Figure 3.32: Substrate peptide (P5) induced dissociation of Tim44:Ssc1 and Tim44-NTD: 
Ssc1-PBD. PanelA: Substrate peptide (P5) induced dissociation of Tim44:Ssc1 was monitored in 
real-time by the recovery of quenched donor fluorescence of donor labeled Tim44 (187C-
Alexa594) in presence of acceptor labeled Ssc1 (481C-647N). Arrows indicate the point of 
addition of Ssc1 or P5. Panel B: The experiment was done with Tim44-NTD and Ssc1-PBD. 
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matrix targeted preproteins. Hsp70-binding sites on these proteins were obtained using a 

DnaK-binding site prediction algorithm (Rudiger et al., 1997) as Ssc1 binding specificity 

was found to be similar to published reports for DnaK (see below). The average size of 

the mitochondrial matrix proteins thus obtained was 503aa with ~12 binding site per 

protein. With these data it was obtained that ~1800 pmol/mg of mitochondrial matrix 

targeted proteins are transported through 20 pmol/mg of TIM23 in ~210min, the doubling 

time of S. cerevisiae (Lim et al., 2001). This indicated that Ssc1 has to cycle off Tim44 in 

approximately 2-3s in order to support physiological rate of protein translocation. 

Surprisingly, the substrate induced dissociation rate (t1/2 ~ 173s) was two orders of 

magnitude slower than the expected rate of cycling of Tim44:Ssc1. This renders the 

substrate induced dissociation rate unsuitable to support physiological rate of protein 

translocation. To further rule out the possibility that extremely high local concentration of 

substrate proteins at the translocase channel would increase the off-rate of Ssc1 from the 

complex, the dissociation rate of the complex was obtained at different concentration of 

P5. The observed rates were found to be independent of P5 concentration (Figure 3.33, 

panel A), indicating further that even with high local concentrations of substrate at the 

translocase, substrate induced dissociation of the Tim44/Ssc1/ADP is too slow to support 

the physiological rate of protein translocation.  

      
 

 

 

 

Figure 3.33: Panel A: Substrate induced dissociation of Tim44:Ssc1 is independent of substrate 
concentration. Substrate peptide (P5) induced dissociation of Tim44:Ssc1was monitored in real-
time by the recovery of quenched donor fluorescence of donor labeled Tim44 (187C-Alexa594) in 
presence of acceptor labeled Ssc1 (481C-647N).The substrate peptide induced dissociation was 
determined in presence of different concentrations of P5. Panel B: Substrate induced dissociation 
of Tim44:Ssc1 is independent of type of substrate. The same Tim44:Ssc1 was complex was 
formed and the dissociation kinetics was monitored in presence of 5µM of either P5 peptide or 
RCMLA or peptide corresponding to the sequence of Su-9 sequence. 
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To rule out the possibility that substrate proteins would act differently from the peptide 

P5, RCMLA, a known substrate for Hsp70 chaperones and Su9 peptide, an authentic pre-

sequence from a matrix targeted pre-protein, was used as a substrates. Identical rates of 

dissociation obtained in all these cases indicated that the rate of dissociation is 

independent of the nature of the substrate proteins further validating that substrate 

induced dissociation rate is unphysiological (Figure 3.33, panel B).  

3.2.7 Nucleotide induced dissociation drives Tim44:Ssc1 reaction 

cycle 

Extremely slow substrate induced dissociation of the Tim44:Ssc1 or Tim44-NTDp/Ssc1-

PBDp complex in presence of ADP indicated the essentiality of nucleotide-induced 

conformational changes induced by Ssc1-NBD in the Tim44:Ssc1 cycle. Nucleotides 

have been shown to modulate the stability of Tim44:Ssc1 complex. To obtain kinetic 

information regarding the stability of the complex under different nucleotide conditions, 

off-rate of Ssc1 from the Tim44:Ssc1 complex was determined by recovery of donor 

fluorescence of Tim44 as described earlier. The spontaneous dissociation rate of the 

Tim44:Ssc1 complex in presence of an excess of unlabelled Tim44 or Ssc1 was not 

measurable with the technique. The dissociation rate was significantly accelerated in 

presence of ATP (~0.27 s-1, t1/2 ~2.5s) whereas the dissociation was negligible in presence 

of either ADP or AMPPNP (Figure 3.34).  

The small amplitude change in fE upon addition of AMPPNP was independent of the 

concentration of the nucleotide used, suggesting these processes to be a minor change in 

Ssc1-Tim44 distance rather than dissociation events. The dissociation rate of Tim44:Ssc1 

complex in presence of ATP was ~70 fold faster than P5 induced dissociation and is 

more compatible with the rate of mitochondrial protein translocation. This dissociation is 

not coupled to the hydrolysis of ATP, as the spontaneous hydrolysis rate of ATP by Ssc1 

in presence or absence of Tim44 was approximately ~150 fold slower than the observed 

rate of Tim44:Ssc1 dissociation (D'Silva et al., 2003). Interestingly, the observed rate of 

dissociation of Tim44:Ssc1 in presence of ATP was independent of ATP concentration 

indicating that the dissociation of the complex occurs subsequent to a conformational 

change upon ATP binding. 
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Consistent with the kinetic stability, the equilibrium dissociation constant of Tim44:Ssc1 

in the presence of ATP is increased to the extent of being immeasurable with the assay. 

The calculated value for the KD in presence of ADP is 1.2µM, which is in qualitative 

agreement with the biochemical evidence. The KD in presence of ATP could not be 

calculated due to inner filter effect at the large concentrations of labeled Ssc1 needed for 

the measurement. 

Consistent with the low affinity of Ssc1 and Tim44 in presence of ATP, in organello 

studies have shown that Tim44:Ssc1 complex is not stable under ATP rich conditions 

(Kronidou et al., 1994; Rassow et al., 1994; Schneider et al., 1994; Ungermann et al., 

1996; von Ahsen et al., 1995). Pull-down experiment performed under different 

nucleotide conditions was corroborative of the kinetic stabilities of Tim44:Ssc1 complex 

under similar conditions (Figure 3.35).  

Figure 3.34: Nucleotide dependent dissociation of Tim44:Ssc1 complex. Panel A: Nucleotide 
dependent dissociation of Tim44:Ssc1 complex was follow by the recovery of donor fluorescence 
on labeled Tim44 (187C). 50nM of labeled Tim44 was mixed with 2µM of acceptor labeled 
Ssc1(448C) leading to quenching of donor fluorescence due to formation of Tim44:Ssc1. 2µM of 
Mge1 was present in buffer in order to facilitate nucleotide-charging of Ssc1 in subsequent steps. 
Different nucleotides, at a final concentration of 1mM, were then added the indicated time point to 
obtain the rate of fluorescence recovery due to dissociation of the complex. Panel B: Tim44:Ssc1 
complex was formed by donor- and acceptor-labeled Tim44 and Ssc1, respectively, as described in 
panel A. The dissociation of the complex was monitored by the recovery of donor fluorescence 
after addition of ATP at the final concentrations shown in the figure. 
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The association of Tim44:Ssc1 monitored in presence of ADP indicated an extremely 

slow apparent on rate (Figure 3.36). The apparent rate of association in the presence of 

AMPPNP, was accelerated by a factor of ~4 with an apparent bimolecular rate constant 

(ka) of 3x104 M-1s-1, indicating an approximate binding time of <1s under physiological 

concentration of Ssc1(~50-100µM) (Rassow et al., 1994; Schmidt et al., 2001; Voisine et 

al., 2000). The equilibrium dissociation constant(KD) of Tim44:Ssc1 calculated from the 

kd and ka of the complex formation was ~10µM which was much higher than the 

concentrations of Ssc1 used for these experiments, hence binding Ssc1/ATP with Tim44 

was not observable with the concentrations used. Higher concentrations of Ssc1 could not 

be used for the study due to the presence of inner filter effect. The high on-rate of Tim44 

with Ssc1 in presence of AMPPNP, an ATP analog, suggests that the Ssc1-ATP complex 

is selected to bind to Tim44 in the presence of a mixture of Ssc1-ATP and Ssc1-ADP in 

the cellular milieu. 

 

         

Figure 3.36: Apparent association rate of 
Tim44 with Ssc1 differs depending on the 
nucleotide state of the Ssc1. Comparison of 
apparent rate of association of Ssc1-
AMPPNP or Ssc1-ADP with Tim44 was 
obtained by following the time dependent 
change of donor labeled Tim44 (481C) 
(50nm) in presence of 2.5μM of acceptor 
labeled Ssc1(481C) pre-incubated with 2mM 
of the different nucleotides. 

Figure 3.35: Ni-NTA pull-down of 
Ssc1 with Tim44 in different 
nucleotide conditions. 2µM of His6-
tagged Tim44 was mixed with 4µM of 
Ssc1 to form the complexes in absence 
of any nucleotide or in presence of 
2mM  of either of ATP or ADP or 
AMP-PNP or ATPγS and subsequently 
bound and eluted from the Ni-NTA 
column. The eluted proteins were 
subjected to SDS-PAGE followed by 
staining with CBB. 10% of the 
materials used for the reactions were 
used as load.  
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The dissociation of Tim44/Ssc1/ATP occurs in the time-scale of ~2.5s. This, taken 

together with the association rate of Tim44 and Ssc1/AMPPNP yields a KD of ~10µM for 

the complex, indicating that at physiological concentrations of Tim44 and Ssc1 most of 

the Tim44 would be saturated with Ssc1. The complex is transiently formed in presence 

of ATP which then undergoes dissociation to release Ssc1/ATP, the substrate acceptor 

state of Ssc1. The continuous on-off cycle of Ssc1 on Tim44 would maintain a high local 

concentration of Ssc1 near the translocase channel. 

3.2.8 The dissociation of Tim44:Ssc1 complex is a single-step 

reaction 

 To obtain further insight into the kinetic intermediates populated during the dissociation 

of Tim44:Ssc1 complex under various conditions, the dissociation event was followed 

monitoring the different distance vectors in Tim44:Ssc1 complex. In presence of ATP, 

the rate of increase in distance along a distance vector between Tim44-NTD and Ssc1-

NBD [Tim44 (187C)-Ssc1 (161C)], and between Tim44-NTD and Ssc1-PBD  

[Tim44 (187C)-Ssc1(448C)] followed identical kinetics (Figure 3.37, left panel). This 

indicates that both the domains of Ssc1 dissociate from the complex without populating 

an intermediate state where one of the domains remain bound to Tim44. Additionally, 

identical rates of decrease in fE between Tim44 (187C)-Ssc1 (448C) and Tim44 (252C)-

Ssc1 (448C) (Figure 3.37, left panel) indicate further that there is no ordered dissociation 

event during the nucleotide dependent release of Tim44:Ssc1 complex. To rule out the 

possibility of segmental dissociation of the complex in presence of substrates, the same 

pairs of distance vectors were investigated during P5 induced dissociation of the 

Tim44:Ssc1 (Figure 3.37, right panel). Similar rates obtained by the increase in different 

distance vectors support a 2 state mechanism of dissociation of the complex in presence 

of substrate peptides. This experiment showed that the dissociation of Tim44:Ssc1 

complex is a single step reaction. 
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3.2.9 Ssc1 and Tim44 share complementary binding sites on matrix 

targeted pre-proteins 

Brownian ratchet mechanism posits that the vectorial translocation across TIM23 is 

driven by Ssc1 binding to substrates by preventing backsliding of pre-proteins to the 

cytosol (Ungermann et al., 1994). Earlier experiments have shown that a protein 

containing a large stretch of glutamates to which mtHsp70 cannot bind, can be imported 

efficiently (Okamoto et al., 2002). Stretches of negatively charged amino acids are 

known not to bind to Hsp70 group of chaperones and hence have a chance to slide back 

in the cytosol (Rudiger et al., 1997). This raises the question regarding the mechanism 

that prevents backsliding at non-Hsp70-interacting sequences. One possible solution 

might be the presence of other proteins at the TIM23 translocase that can bind transiently 

to these regions and prevent backsliding. Since Tim44  has been shown to be in the 

vicinity of preproteins in transit and interact with the unfolded polypeptides(Blom et al., 

1993; Maarse et al., 1992; Rassow et al., 1994; Schneider et al., 1994), we sought to 

uncover if Tim44 binds to sequence specific regions within incoming preproteins. To 

Figure 3.37: ATP or substrate induced dissociation of Tim44:Ssc1 is monophasic. Left and 
right panel: The dissociation of the Tim44:Ssc1 complex in presence of ATP (left panel) and P5 
(right panel) was monitored by probing different distance vectors between Tim44 and Ssc1. The 
complexes were formed with donor labeled variants of Tim44 and acceptor labeled variants of 
Ssc1. The dissociation was initiated upon manually mixing either 2mM of ATP (left panel) or 6μM 
of P5 (right panel) and the recovery of donor fluorescence was obtained to follow the dissociation 
event. 2µM of Mge1 was present in buffer in order to facilitate ATP-charging of Ssc1 in 
subsequent step in case of ATP induced dissociation. The fluorescence recovery is normalized to 
compare the rate of increase in different distances. 
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understand the distribution of Ssc1-and Tim44-binding site on mitochondrial matrix 

targeted protein, scanning of peptide array of luciferase, a bona-fide substrate of Hsp70 

group of chaperones was performed. The binding specificity observed for Ssc1  was 

mostly similar to the reported specificities of other Hsp70 chaperones like DnaK  

(Gragerov and Gottesman, 1994; Gragerov et al., 1994; Rudiger et al., 1997) (Figure 3.38 

A, upper panel). Surprisingly, when peptide scanning of luciferase was performed to 

probe for Tim44 binding (Figure 3.38 B, upper panel), it was observed that Ssc1 and 

Tim44 share complementary binding sites on luciferase. To probe the generality of the 

complementary binding specificity of Tim44 and Ssc1 peptide array scanning of two 

authentic mitochondrial matrix proteins, mMDH and Hsp60 (Figure 3.38 A, middle and 

lower panel) was performed. Near exact complementary binding sites in all these proteins 

indicated that Ssc1 binds to hydrophobic amino acids surrounded by positively charged 

residues whereas Tim44 binds to peptide sequences rich in negatively charged amino 

acids which do not bind to Hsp70 group of chaperones (Figure 3.38 B, middle and lower 

panel).  

This result hinted towards the possibility that Tim44 would bind to stretches of amino 

acids where Ssc1 is incapable of binding, further implying that Tim44 plays a role in 

preventing back sliding of proteins during translocation. Notably, the binding between 

Tim44 and the peptides could not be detected in solution phase (data not shown), 

indicating that the binding affinities between Tim44 and these peptides are extremely low 

further supporting the previous finding that Tim44 binds to unfolded polypeptides with 

low affinity (Schneider et al., 1994). Physiologically, the low affinity would be consistent 

with transient binding of substrates to Tim44 at the TIM23 translocase channel where a 

high affinity binding would abrogate translocation leading to a stalled translocase. 

DnaK-like binding site specificity of Ssc1 also justified the use of DnaK binding site 

prediction algorithm to obtain Ssc1-binding sites, on mitochondrial-matrix-targeted pre-

proteins, in order to calculate the physiological rate of Ssc1 cycling at TIM23 translocase. 
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In summary, the in vitro reconstitution of Tim44:Ssc1 interaction cycle and its kinetic 

analysis suggested that cycling of Ssc1 on Tim44 is driven by nucleotide bound to Ssc1, 

rather than the substrate. It was evident that the N-terminal domain of Tim44 and PBD of 

Ssc1 constitute the minimal binding domains of Tim44:Ssc1 complex, as probed by pull-

down experiments and FRET based binding analyses. However, in the context of full 

length proteins both the domains of Tim44 were found to be spatially proximal to the 

PBD of Ssc1 and sub-domain Ia of NBD of Ssc1. It was also evident that the dissociation 

of Ssc1 from Tim44 is a single-step process ruling out the possibility of Tim44-anchored 

conformational change of Ssc1. Additionally, peptide-array scanning of authentic 

mitochondrial matrix targeted proteins revealed the near exact complimentarity of 

binding sites of Ssc1 and Tim44 on the precursors. 

Figure 3.38: Peptide scans with purified Ssc1 and Tim44. Cellulose bound peptide scans derived 
from the sequences of Firefly-luciferase(top), Sc mitochondrial MDH(middle), Sc Hsp60 (bottom) 
were screened for binding with Ssc1(A) and Tim44(B). Last spot of each row is indicated with the 
number. 
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 This result together with weak binding affinity of Tim44 to non-Hsp70 binding sites 

might explain how the backsliding of preproteins is prevented at the translocase channel. 

All the data can only be reconciled in the context of Brownian ratchet model of protein 

import motor. 

 

3.3 Conformational dynamics of mtHsp70 (Ssc1) and the 

effects of co-chaperones and substrates on it  

 

Different conformations of Hsp70 chaperones are evident from snapshots of the molecule 

in its different functional states revealing alteration of conformations as the key regulator 

of the chaperone allostery. Though the structural studies provided valuable insights into 

the end states of the chaperone in various stages of the functional chaperone cycle, 

information regarding the kinetics and dynamics of those events are severely lacking 

(Chang et al., 2008; Liu and Hendrickson, 2007; Swain et al., 2007). Moreover, even 

after extensive work on Hsp70s and their co-chaperones there is no unambiguous scheme 

that describes the chaperone cycle in terms of kinetics of binding of the co-chaperones 

and substrates. 

3.3.1 Development of double cysteine substitution mutants of Ssc1 

for fluorophore labelling 

Recent findings suggest that ATP binding to Hsp70 induces docking of two domains and 

domain reorientation (Liu and Hendrickson, 2007; Swain et al., 2007). This has been 

proposed to be a key event in the conformational allostery between the NBD and PBD. 

Furthermore, opening and closing of the α-helical lid region have been observed in the 

crystal and NMR structures of different Hsp70 chaperones in the ATP and ADP-bound 

states respectively explaining the difference in substrate-binding-affinity in these states of 

the chaperones (Pellecchia et al., 2000; Stevens et al., 2003; Zhu et al., 1996). To monitor 

the inter-domain movements and lid movements, double cysteine substitution mutants of 

Ssc1 were constructed to label the protein with both donor and acceptor fluorophores. 
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With the double-labeled proteins semi-quantitative FRET assay was developed. To probe 

the inter-domain movements of Ssc1, it was stoichiometrically labeled with acceptor 

(Atto-647N) and donor fluorophore (Atto-532) at positions 448 and 341.   The distance 

vector 341-448 was monitored in the construct, Ssc1 (341,448), where the position 341 is 

in subdomain IIa of NBD and position 448 is positioned at the base of PBD. In order to 

probe the evolutionary conservation of such conformational changes in the Hsp70 group 

of chaperones, DnaK from E.coli was analyzed in parallel. Before engineering cysteine 

substitutions in DnaK the endogenous cysteine (C15) was substituted to alanine. To study 

the domain movements in DnaK, positions 318 and 425 similar to the positions 341 and 

448 of Ssc1 respectively, were substituted to cyteines to generate DnaK (318,425) 

(Figure 3.39).   

 

 

 

 

 

 

 

To monitor the conformational changes in lid, the docking of lid to the peptide binding 

cleft was followed by monitoring the distance vector 448-590 in the construct 

Ssc1(448,590). The position 448 is in the base of PBD whereas the position 590 is in the 

α-helical lid domain. To probe for similar conformational changes in lid in DnaK, similar 

positions (amino acids 425 and 563) were substituted to cysteines in DnaK (Figure 3.40). 

    

Figure 3.39: Schematic representation of Hsp70 molecules indicating the positions of engineered 
cyteines to monitor the inter-domain movements. Panel A. Ssc1 in both ATP (left panel) and ADP 
(right panel) bound forms indicating the positions of engineered cysteines to monitor the inter-domain 
movements. Arrows indicate the distance vectors monitored by intra-molecular FRET to follow the 
conformational changes. Panel B.  Schematic representation of DnaK illustrating the corresponding 
positions for cysteine substitutions for monitoring the similar changes as Ssc1 is depicted. 
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Ssc1 double cysteine mutants after labeling with two fluorophores retained its full 

functionality in terms of its ATPase activity, stimulation of its ATPase activity in 

presence of Mdj1 (Figure 3.41, Panel A) and its ability to bind substrate peptides (see 

below). All the double mutants were also checked for their in vivo functionality and all of 

them were able to support growth of yeast cells in the absence of wild type Ssc1 (Figure 

3.41, Panel B). 

 
 

 

 

Figure 3.40: Schematic representation of Hsp70 molecules indicating the positions of 
engineered cyteines to monitor the movements of the α–helical lid in respect to the base of the 
PBD. Panel A. Ssc1 in both ATP (left panel) and ADP (right panel) bound form indicating the 
positions of engineered cysteines to monitor the movements in the α–helical lid in respect to the 
base of the PBD. Arrows indicate the distance vectors monitored by intra-molecular FRET to 
follow the conformational change. Panel B.  Schematic representation of DnaK illustrating the 
corresponding positions for cysteine substitutions for monitoring the similar change as Ssc1 is 
depicted. 

Figure 3.41: Panel A: ATP hydrolysis activity of fluorescently labelled Ssc1. Panel A: ATP 
hydrolysis activity of Ssc1 was checked by coupled enzymatic detection of ADP produced as 
described in Materials and Methods. The rate of ATP hydrolysis reported is per mole of ATP/mole of 
Ssc1/s. Panel B: Double cysteine substitution mutants of Ssc1 are functional in vivo: A haploid 
deletion strain of Ssc1 harbouring the wild type copy of Ssc1 on the URA plasmid was transformed 
with plasmids containing double cysteine mutants of Ssc1. In vivo functionality of the mutant proteins 
was checked by plasmid shuffling on 5-fluorooratic acid plates. Plasmids carrying the wild type Ssc1 
or an empty plasmid were used as the positive and negative controls respectively. 
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3.3.2 Development of a FRET-based Ssc1 conformation sensor 

Kinetic analysis of Hsp70 conformational changes in its functional chaperone cycle is an 

important step towards understanding the allosteric signaling in this molecular machine. 

Fluorescence resonance energy transfer (FRET) is a powerful technique that precisely 

allows for analysis of the sequence of conformational changes in real time. Towards this 

end, double cysteine mutants of Ssc1 were labeled with Atto-532 as the donor 

fluorophore and Atto-647N as the acceptor fluorophore. The ratio of acceptor to donor 

fluorescence after excitation of the donor fluorophore, subsequently mentioned as PR 

(proximity ratio), has been used as a basis for comparing change in distance between the 

two positions. To obtain the PR from spectrum measurements, donor fluorescence peak 

was normalized to 1 and the PR was then read out from the acceptor peak height. An 

increase in PR would correspond to a decrease in the distance between the two positions 

and vice versa. This relatively simple scheme was used instead of the more elaborate 

comparison of matched donor only and donor-acceptor labeled samples, as Ssc1 did not 

tolerate the specific double labeling steps due to its inherent instability. 

Comparison of the PR of GuHCl denatured protein and native protein showed a large 

decrease upon denaturation (Figure 3.42) demonstrating the validity of the approach for 

studying distance changes in Ssc1 and DnaK.  

    

 Figure 3.42: Fluorescence spectrum of double labeled native and denatured Hsp70s. Fluorescence 
spectrums of 30nM of double labeled Ssc1 (341,448) (left panel) or DnaK (318,425) (right panel) were 
obtained after exciting the donor fluorophore at 530nm under native condition as well after denaturation 
with 6M GuHCl. Donor fluorescence was normalized to 1 to compare the Proximity ratio (PR) of the 
different states as mentioned in the text.  
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3.3.3 Effect of nucleotides on the conformation of Ssc1 from 

ensemble FRET measurements 

Conformational changes of Ssc1 were monitored in both the above mentioned distance 

vectors using the assay developed by ensemble FRET measurements. 

The distance vector 341-448 showed that ATP binding led to a decrease in distance 

between the two domains (Figure 3.43) compared to the ADP-bound state. Similar results 

were obtained for DnaK (318,425) where the ADP-bound state exhibited lower PR 

between the domains than the ATP-bound state. This was indeed consistent with the 

hypothesis that the NBD and PBD of Hsp70s, which are undocked in the presence of 

ADP, undergo docking in presence ATP. 

 

 
 

 

 

 

To monitor the conformational changes in lid, the docking of lid to the peptide binding 

cleft was followed by monitoring the distance vector 448-590 in the construct 

Ssc1(448,590). As expected, a decrease in PR upon ATP binding to Ssc1 indicated lid 

opening (Figure 3.44). In contrast, higher PR in the ADP bound state demonstrated lid 

closure. Essentially the same results were obtained with the corresponding DnaK 

constructs. 

 

Figure 3.43: Changes in inter-domain distance of Ssc1 and DnaK as probed by intra-
molecular FRET experiments. Fluorescence spectrum of  30nM of double labeled Ssc1 (341,448) 
and DnaK (318,425) were obtained after exciting the donor fluorophore at 530nm in presence of 
2mM ATP and 2mM ADP. Donor fluorescence was normalized to 1 to compare the PR of the 
different nucleotide states. 
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3.3.4 Effect of nucleotides on the conformation of Ssc1 from Single-

molecule FRET measurements 

As the ensemble measurements indicate an average of FRET-efficiencies of all the 

molecules being measured, changes in distance as read out from the PR is only indicative 

of mean changes in distance. Single molecule FRET measurements are ideal in obtaining 

insights into the conformational distribution and heterogeneity. Towards elucidation of 

the conformational distribution, single particle FRET (SpFRET) measurements using PIE 

(Pulsed Interleaved Excitation) were performed (Muller et al., 2005).  

For the distance vector 341-448, an unambiguous uni-modal distribution was observed 

upon ATP binding, suggesting majority of the molecules in the domain-docked state. 

Peak values of a Gaussian fit to the FRET efficiency distribution was 0.90 suggesting 

very compact state of majority of molecules. On the contrary, the ADP bound state was 

very broad and after Gaussian fitting two peaks were obtained one at 0.40 and other at 

0.84 (Figure 3.45). This indicates that in the ADP-bound state the domains are flexible, 

populating conformations containing domain-undocked molecules as well as domain-

docked molecules. 

Figure 3.44: Changes in distance between the lid domain and base of PBD of Ssc1 and DnaK 
as probed by intra-molecular FRET experiments. Fluorescence spectrum of  30nM of double 
labeled Ssc1 (448,590)  and DnaK (458,563) were obtained after exciting the donor fluorophore at 
530nm in presence of 2mM ATP and 2mM ADP. Donor fluorescence was normalized to 1 to 
compare the PR in presence of different nucleotides.



91 

 

              
 

 

 

 

 

In case of DnaK (318,425), for the distance vector 318-425, a bi-modal distribution was 

observed upon ATP binding. Peak values of a Gaussian fit to the FRET efficiency 

distribution were at 0.15 and at 0.80 which suggested a very compact state of majority of 

the molecules along with a small subpopulation of domain- undocked molecules. This 

distribution indicated some flexibility of the domains in the ATP state.  On the contrary, 

the ADP bound state was clearly unimodal in distribution and after Gaussian fitting, a 

peak was obtained at 0.15 (Figure 3.46). Such a distribution is different from what was 

obtained for Ssc1 and suggests that the domains are fully undocked and are separated by 

a large distance in case of DnaK.  

 

 

Figure 3.45: Nucleotide induced changes in inter-domain distance of Ssc1 as probed by 
SpFRET measurements. To obtain Single-molecule FRET measurements of double labeled Ssc1 
(341,448) the protein was diluted in the appropriate buffer (as mentioned in the materials and 
methods) to a final concentration of 60 pM, containing either 2mM ATP or 2mM ADP. 
Representative histograms of two different nucleotide conditions are shown. Peak values of a 
Gaussian fit to the FRET efficiency distributions (fE) are indicated. 
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For the distance vector 448-590 in Ssc1 (448,590) probing for the movements of the α-

helical lid in respect to the base of the PBD, a unimodal distribution was observed upon 

ATP binding. Peak values of a Gaussian fit to the FRET efficiency distribution was 0.15 

suggesting lid-open state of majority of molecules. On the contrary, the distribution for 

ADP bound state was very broad and it was not possible to the fit the fE distribution to 

Gaussian fits (Figure 3.47). The flexibility of the lid in the ADP-bound state hinted that 

the lid was not firmly locked on to PBD, as envisioned for canonical Hsp70s. 

            
 

 

 

 

 

Figure 3.46: Nucleotide induced changes in inter-domain distance of DnaK as probed by 
SpFRET measurements. To obtain Single-molecule FRET measurements of double labeled DnaK 
(318,425) the protein was diluted in the appropriate buffer (as mentioned in the materials and 
methods) to a final concentration of 60 pM, containing either 2mM ATP or 2mM ADP. 
Representative histograms of two different nucleotide conditions are shown. Peak values of a 
Gaussian fit to the FRET efficiency distributions (fE) are indicated. 

Figure 3.47: Nucleotide induced changes in distance between lid domain and base of the PBD 
of Ssc1 as probed by SpFRET measurements. To obtain Single-molecule FRET measurements 
of double labeled Ssc1 (448,590) the protein was diluted in the appropriate buffer (as mentioned in 
the materials and methods) to a final concentration of 60 pM, containing either 2mM ATP or 2mM 
ADP. Representative histograms of two different nucleotide conditions are shown. Peak values of 
a Gaussian fit to the FRET efficiency distributions (fE) are indicated. 
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Similar observations were made for the 425-563 in DnaK (425,563). A uni-modal 

distribution was observed upon ATP binding. Peak values of a Gaussian fit to the FRET 

efficiency distribution was 0.20. Like Ssc1, the distribution of fE for the ADP bound state 

was very broad and could be fit to bimodal Gaussian distribution with one peak at 0.16 

and another at 0.58 suggesting large flexibility of the lid in the ADP-bound state (Figure 

3.48). 

        
 

 

 

 

 

Thus, with the ensemble and SpFRET analyses, the nucleotide dependent changes in 

conformations of Ssc1 and its bacterial homologue DnaK could be probed. Using the 

same assay developed, we went further to look for effects of J domain co-chaperone and 

substrate on the conformations of Ssc1 in respect to its functional chaperone cycle. 

Simultaneously, the same experiments were performed with DnaK to compare 

similarities in two systems. 

Figure 3.48: Nucleotide induced changes in distance between lid domain and base of the PBD 
of DnaK as probed by SpFRET measurements. To obtain Single-molecule FRET measurements 
of double labeled DnaK (458,563) the protein was diluted in the appropriate buffer (as mentioned 
in the materials and methods) to a final concentration of 60 pM, containing either 2mM ATP or 
2mM ADP. Representative histograms of two different nucleotide conditions are shown. Peak 
values of a Gaussian fit to the FRET efficiency distributions (fE) are indicated.
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3.3.5 Effect of J-domain co-chaperone and peptide substrate on the 

conformation of Ssc1 

3.3.5.1 Binding of substrate and Mdj1 to Ssc1 

The domain-docked lid-open state of Hsp70 formed after ATP binding is thought to act 

as the substrate acceptor state in vivo. Since Hsp70s have high association and 

dissociation rates for substrate in the ATP-bound state, binding of substrates to Hsp70s in 

its ATP bound state requires the presence of J-domain co-chaperones that can assist 

efficient capture of the substrates by the chaperone through their ability to stimulate ATP 

hydrolysis of Hsp70s (Karzai and McMacken, 1996; Laufen et al., 1999; Liberek et al., 

1991; Wittung-Stafshede et al., 2003). To monitor the binding of substrate-peptide P5 to 

Ssc1, in context of nucleotide- and co-chaperone-bound states of Ssc1, we developed a 

FRET based binding assay. Binding of substrate peptide P5 to Ssc1 was monitored by the 

quenching of fluorescence of fluorescein labeled P5 (P5-fl) in the presence of acceptor 

(Atto-647N) labeled Ssc1 [Ssc1 (448-A)] (Figure 3.49, panel A). To simplify the 

interpretation of the experiments with Ssc1, which are inherently convoluted with 

residual nucleotide-exchange-induced cycling, all the measurements with P5 and Mdj1 

were monitored under single turnover conditions, unless mentioned otherwise. To design 

single-turnover ATP-hydrolysis based binding experiments, Ssc1 binding to ATP was 

followed by the quenching of excess ATP by the addition of glucose and hexokinase. 

Subsequently P5 or Mdj1 or Mdj1/P5 was added to monitor the affect of J-domain co-

chaperone and substrate. As observed for other Hsp70s, P5-fl was able to bind Ssc1/ATP 

significantly faster in presence of Mdj1 confirming that the J-domain co-chaperone 

assists substrate binding to Ssc1/ATP (Figure 3.49, panel A). Binding rate of substrate to 

Ssc1/ATP was identical to the ATP-hydrolysis rate of Ssc1 in presence of the substrate 

(Figure 3.49, panel B) suggesting that the substrate capture is rate determined by the 

ATP-hydrolysis rate of Ssc1. This is further supported by the fact that the accelerated 

binding of substrate to Ssc1/ATP in presence of Mdj1 is also identical to the ATP-

hydrolysis rate of Ssc1 in presence of Mdj1(Figure 3.49, panel B).  Substrate association 

with Ssc1 can be formulated as a two step reaction (Figure 3.49, panel C) with ATP-

hydrolysis being the rate-determining step for substrate capture.   
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Since, dissociation rate of P5 from Ssc1/P5/ADP is extremely slow (Figure 3.49, panel 

D), substrate stays locked with Ssc1 once this complex is formed. To show that a similar 

complex is formed even in presence of Mdj1, we obtained the off-rate of P5 from the 

complex formed in presence of Mdj1 (Figure 3.49, panel D). Identical off-rates of P5 

from Ssc1-ADP and from the Ssc1-ADP-P5 complex formed in presence of Mdj1 

indicates that Mdj1 does not alter the conformational properties of Ssc1 to induce 

substrate locking but promotes substrate association with Ssc1 through the stimulation of 

ATPase activity of Ssc1. 
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J-domain co-chaperones and substrates have been proposed to induce conformational 

changes in Hsp70s that affect the allosteric communication between the two domains of 

Hsp70s. To probe for the changes in interdomain distance in Ssc1 resulting from 

interactions with the J-cochaperone Mdj1 and substrate (P5 peptide), ensemble and single 

molecule FRET measurements were performed. The binding of P5 and Mdj1 to 

Ssc1/ATP led to the formation a domain-undocked state in Ssc1 (Figure 3.50) whereas 

Mdj1 alone was insufficient to effect a similar change in conformation. In case of Mdj1, a 

heterogeneous bimodal distribution could be observed. This distribution was similar to 

the distributions obtained for Ssc1 in its ADP-bound state. This result indicated that Mdj1 

alone is insufficient to change the interdomain distance of Ssc1/ATP but causes a change 

in the conformation due to the formation of Ssc1/ADP. The inability of Mdj1 to modulate 

the conformational change could be due to the inability of Mdj1 to form stable complex 

with Ssc1/ATP after the hydrolysis. However, the presence of substrate led to a change in 

conformation which was not brought about by Mdj1 or ADP, indicating that substrates 

play and active role in modulating interdomain communication in Ssc1. 

Figure 3.49: Substrate binding to Ssc1 is facilitated by ATP-hydrolysis mediated capture. Panel A:  
Ssc1(448-A((500nM) was briefly incubated with ATP(2mM) followed by the addition of 
hexokinase(2U)/glucose(20mM), to quench excess ATP. Subsequently, either 20nM of P5-D(black open 
circles) or P5-D(20nM)/Mdj1(500nM)(red open circles) was added to observe the binding of P5-D as 
monitored by the quenching of donor fluorescence of P5-D. Ssc1-A(500nM) was incubated with 
Mge1(500nM) and ATP(2mM), followed by the addition of P5-D(20nM) where no binding was observed 
due to continuous cycling of Ssc1 to the ATP-bound state. Panel B: Steady state ATP hydrolysis rate was 
measure with a coupled enzymatic detection of ADP produced, as described in materials and methods. The 
rate of ATP hydrolysis reported is mole of ATP hydrolysed per mole of Ssc1 per second. All the conditions 
shown had 2µM of Mge1 in the buffer to support nucleotide exchange and hence steady-state ATP 
hydrolysis by Ssc1. The red circles refer to the right axis which is the apparent rate of P5 binding to Ssc1 but 
under conditions of single turnover ATP hydrolysis, as observed in panel A. Panel C: Schematic of Ssc1 
binding to P5 to indicate the kATPase, the ATP-hydrolysis rate if Ssc1, dictates the final binding rate in case of 
fast on- (kon) and off-rates(koff) of substrate binding to Ssc1. Panel D: Dissociation of P5-D from preformed 
Ssc1(448-A)(500nM)/P5-D(20nM)/ADP(2mM) or Ssc1(448-A)(500nM)/P5-D(20nM)/Mdj1(1µM)/ATP, 
formed as described in panel A, was monitored by the recovery of P5-D after addition of  unlabelled P5. 
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The conformational modulation of Ssc1 upon substrate binding was further observed in 

terms of lid-closure. Similar to domain-undocking, the complete lid-closure was induced 

only in the presence of Mdj1 and P5 whereas Mdj1 alone could not induce this state. This 

is also consistent with the observation that Ssc1-ADP and Ssc1/ADP/Mdj1 also has very 

similar conformational distributions underlining the inability of Mdj1 to affect large 

allosteric changes in terms of inter-domain communication or lid-movement. The two 

major modes of conformational changes in Ssc1, the domain-docking and lid-closure, 

were majorly affected in the presence of substrates indicating the active role of substrates 

in changing the conformations of Ssc1 (Figure 3.51).  

Figure 3.50: Effect of J-protein and substrate peptide on the inter-domain distance of Ssc1 
as probed by ensemble and SpFRET measurements. Panel A: Fluorescence spectra of 30nM 
of double labeled Ssc1 (341,448) was obtained in presence of ATP (2mM), ATP 
(2mM)/Mdj1(5µM) or ATP(2mM)/Mdj1(5µM)/P5(50µM) after exciting the donor fluorophore. 
In all the cases, except the ATP-bound state, in order to maintain single turnover conditions, 
prior to addition of Mdj1 or Mdj1/P5, excess ATP was quenched by hexokinase 
(2U)/glucose(20mM) after briefly incubating Ssc1 with 2mM ATP. Panel B: SpFRET analysis 
of double labeled Ssc1(341,448) was performed after the protein was diluted in the appropriate 
buffer, to a final concentration of 60pM, containing either ATP(2mM)/Mdj1(5µM) (left panel) 
or ATP(2mM)/Mdj1(5µM)/P5(50µM) (right panel). In all the cases, except the ATP-bound 
state, in order to maintain single turnover conditions, prior to addition of Mdj1 or Mdj1/P5, 
excess ATP was quenched by hexokinase(2U)/glucose(20mM) after briefly incubating Ssc1 
with 2mM ATP.  
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Since Ssc1-ADP state did not differ from the state of Ssc1 when Mdj1 was added to 

Ssc1/ATP there remained a possibility that Mdj1 dissociates from Ssc1 after it has 

stimulated the ATP hydrolysis of Ssc1. The step of dissociation of J-domain co-

chaperone from Hsp70s in context of the chaperone cycle is not well defined so far and 

there have been propositions stating that J-domain proteins leave Hsp70s upon 

completion of ATP hydrolysis by Hsp70s. To investigate whether Mdj1 remains 

associated with Ssc1 after ATP hydrolysis and more generally to monitor the dynamics of 

binding and release of J-protein in context of the Hsp70 chaperone cycle, we developed a 

FRET based assay to probe Mdj1 binding to Ssc1. Towards this end, Mdj1 was labeled 

with cysteine specific Alexa-488 maleimide (Mdj1-D) and the functionality of this 

molecule was checked by its ability to induce hydrolysis of Ssc1 (Figure 3.52) to the 

same extent as that of the unlabeled protein.      

Figure 3.51: Effect of J-protein and substrate peptide on the distance between lid domain and base 
of the PBD of Ssc1 as probed by ensemble and SpFRET measurements. Panel A: Fluorescence 
spectra of 30nM of double labeled Ssc1 (448,590) was obtained in presence of ATP(2mM), 
ATP/Mdj1(5µM) or ATP(2mM)/Mdj1(5µM)/P5(50µM) after exciting the donor fluorophore. In all the 
cases, except the ATP-bound state, in order to maintain single turnover conditions, prior to addition of 
Mdj1 or Mdj1/P5, excess ATP was quenched by hexokinase(2U)/glucose(20mM) after briefly incubating 
Ssc1 with 2mM ATP. Panel B: SpFRET analysis of double labeled Ssc1(448,590) was performed after 
the protein was diluted in the appropriate buffer, to a final concentration of 60pM, containing either 
ATP(2mM)/Mdj1(5µM) (left panel) or ATP(2mM)/Mdj1(5µM)/P5(50µM) (right panel). In all the cases, 
except the ATP-bound state, in order to maintain single turnover conditions, prior to addition of Mdj1 or 
Mdj1/P5, excess ATP was quenched by hexokinase(2U)/glucose(20mM) after briefly incubating Ssc1 
with 2mM ATP. 
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Binding of Mdj1-D to acceptor labeled Ssc1 [Ssc1(448-A)] could be followed by the 

quenching of donor fluorescence on Mdj1 (Figure 3.53, panel A).  In terms of association 

rate, Mdj1 only weakly bound to Ssc1-ADP (Figure 3.53, panel A) consistent with 

previous observations (Mayer et al., 1999), indicating that Mdj1 would preferentially 

bind to Ssc1-ATP complex over Ssc1-ADP complex. Ssc1(448-A)/P5/Mdj1-D could be 

kinetically populated in the presence of ATP, though Mdj1 subsequently dissociated from 

the complex with a rate of 8x10-3s-1 (Figure 3.53, panel B). Importantly, the spontaneous 

dissociation rate of Mdj1 from Ssc1/P5/Mdj1 complex is ~7 fold slower than the 

chaperone cycle of Ssc1 in presence of Mdj1, as observed by steady state ATP-hydrolysis 

rate. Hence, in context of the functional Ssc1 cycle, the spontaneous dissociation of Mdj1 

from the substrate captured complex of Ssc1 would not support the chaperone cycle. 

Notably, when Ssc1(448-A)/Mdj1-D complex was formed in presence of ATP but in 

absence of substrate, Mdj1 dissociation from the complex was slower by a factor of ~2, 

indicating that substrates also modulate the interaction between the J-domain co-

chaperone and Hsp70. Hence the single molecule distributions obtained with Mdj1 is a 

result of the conformation of Ssc1 solely affected by ATP-hydrolysis without the 

presence of any bound Mdj1. Since single molecule experiments lack the time resolution 

needed to look at the Mdj1-bound conformation of Ssc1, we performed ensemble kinetic 

measurements to monitor the change in domain (Figure 3.53, panel C) and lid 

Figure 3.52: Fluorescently labeled 
co-chaperones are functionally 
active in inducing the ATPase 
activity of Ssc1. ATP hydrolysis 
activity of Ssc1 was checked by 
coupled enzymatic detection of ADP 
produced as described in Materials and 
Methods with the fluorescently labeled 
Mdj1(Mdj1-D) and Mge1(Mge1-D). 
The rate of ATP hydrolysis reported is 
per mole of ATP/mole of Ssc1/s. In all 
the cases the concentrations of Ssc1, 
Mdj1(or Mdj1-D), Mge1 (or Mge1-D) 
were 500nM, 500nM and 1µM, 
respectively.  
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conformation (Figure 3.53, panel D). It was observed that Mdj1 binding to Ssc1/ATP led 

a rapid undocking of the domains and closure of the lid which was similar in magnitude 

to the change observed with Mdj1 and P5 together. Subsequent to this, the domains 

docked and the lids opened up with a rate of 2x10-1s-1, which is slower than the rate of 

Mdj1 dissociation from Ssc1 in presence of ATP. This indicated that though Mdj1 is able 

to affect the same conformational change on Ssc1 like P5, it cannot remain stably 

associated with Ssc1 upon ATP hydrolysis and hence dissociates from the complex 

allowing Ssc1 to relax back to the ADP-bound conformation. Since the excess ATP in 

these reactions was quenched by glucose/hexokinase, possibility of residual cycling by 

replacement of ADP with ATP on Ssc1 was abrogated. Hence, these experiments are 

analogous to single turnover hydrolysis experiments and under these conditions Mdj1 

dissociates from Ssc1 after a single round of ATP hydrolysis. 

The kinetic stability of Ssc1/P5/Mdj1 complex suggests that in the context of Ssc1 

cycling, Mdj1 does not leave Ssc1 after ATP hydrolysis and forms an authentic substrate-

captured complex with Ssc1. This opens up the possibility that J-domain release from 

Ssc1 is modulated at the next step of the chaperone cycle, the binding of Mge1 and the 

nucleotide exchange. 
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Figure 3.53:   Association-dissociation kinetics of Mdj1 and kinetics of conformational 
changes by Mdj1 or Mdj1/P5 in context of Ssc1 chaperone cycle. Panel A: Binding kinetics of 
Mdj1 was followed by the quenching of donor fluorescence of donor fluorophore-labelled (Alexa 
488-maleimide) Mdj1(Mdj1-D after 1:1 mixing of 200nM Mdj1-D with 500nM acceptor labeled 
(Atto 647N-maleimide) Ssc1(Ssc1-A), Ssc1(448-A)/ATP or Ssc1(448-A)/ADP in a stopped flow 
mixing device. Panel B:  To monitor of the off rate of Mdj1 from the Ssc1/P5/Mdj1 or Ssc1/Mdj1 
complex the binding kinetics of Mdj1-D to Ssc1-A/ATP was followed upon manual mixing of 
200nM Mdj1 with 500nM of Ssc1-A/ATP (green curve). To observe the dissociation of Mdj1 in 
presence of substrate 200nM Mdj1 and 50µM P5 were simultaneously mixed with 500nM of Ssc1-
A/ATP (blue curve). Since Mdj1-D does not rebind to Ssc1-ADP formed upon ATP hydrolysis, the 
off-rate could be observed even in absence of added unlabeled Mdj1.  Panel C: The kinetics of 
domain undocking of double labeled Ssc1(341,448) was followed by monitoring the change in PR. 
Single turnover ATP hydrolysis condition was established by charging Ssc1(100nM) with 
ATP(1mM) in presence of Mge1(1µM). Immediately after the addition of Mge1, excess ATP was 
quenched with Hexokinase(2U)/Glucose(10mM). The change in PR was then monitored as such or 
after addition of Mdj1(4µM), P5(50µM) or simultaneous addition of both Mdj1 and P5. Panel D: 
The kinetics of lid-closing in double labeled Ssc1(448,590) was followed by monitoring the change 
in PR analogous to panel C. 
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3.3.5.2 Binding of Mge1 to the substrate captured complex of Ssc1  

Since exchange factors have been proposed to lead to release of substrates resulting in the 

start of a new Hsp70 cycle, we sought to uncover if an ordered series of events in terms 

of conformational changes are initiated upon Mge1 binding. Mge1 binding to Ssc1 was 

monitored using a FRET based assay. Mge1was labeled at the N-terminus with Alexa-

488 (Mge1-D) and its ability to support steady-state ATP hydrolysis rate of Ssc1 was 

found to be identical to that of wild-type Mge1 indicating no perturbation of Mge1 

function upon fluorophore labeling (Figure 3.52). Quenching of donor fluorescence of 

Mge1-D was monitored to observe the binding of Mge1-D to the acceptor labeled Ssc1 

[Ssc1(448-A)] in Ssc1(448-A)/P5/Mdj1/ADP.Pi complex (Figure 3.54, Panel A). This 

was possible as the rate of binding of Mge1, at the concentration used, was much faster 

than the dissociation of Mdj1 from the Ssc1(448-A)/P5/Mdj1/ADP.Pi complex. There 

was a stable interaction indicating that Mge1 stably associates with the substrate-captured 

complex of Ssc1 in absence of excess ATP. 

                         

 

 

 

In presence of ATP, the Ssc1/P5/Mdj1/Mge1/ADP complex dissociates rapidly. The rate 

of dissociation of Mge1 was followed by the recovery of donor fluorescence of Mge1-D 

upon dissociation from Ssc1(448-A)/P5/Mdj1/Mge1-D/ADP complex (Figure 3.54, Panel 

Figure 3.54: Association and dissociation kinetics of Mge1 in the functional cycle of Ssc1. 
Panel A: Decrease in fluorescence of  Mge1-D is followed after a 1:1 mixing of 200nM Mge1-D 
with 500nM of Ssc1(448-A)/ADP in a stopped flow mixing device. Panel B: Increase in 
fluorescence of Mge1-D is followed after 1:1 mixing of 100nm preformed complex of Ssc1(448-
A)/P5/Mdj1/Mge1-D/ADP with either 1mM or 100µM of ATP in a stopped flow device. 
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B) in presence of ATP and excess of unlabelled Mge1. It was observed that in presence 

of 1mm ATP, Mge1 dissociated from the complex rapidly (t1/2~35ms), the rate being 

dependent on ATP concentration, indicating that the dissociation closely follows the 

association of ATP with Ssc1(448-A)/P5/Mdj1/Mge1-D/ADP complex. To obtain insight 

into the order of release of substrate and Mdj1 from Ssc1 in context of this cycle, we 

investigated the dissociation rate of Mdj1 and P5 separately using the corresponding 

labeled protein/peptide to obtain the substrate captured complex with Ssc1. The 

dissociation of Mdj1-D (Figure 3.55, blue curve) or P5-fl (Figure 3.55, red curve) from 

Ssc1(448-A)/P5/Mdj1-D/Mge1/ADP or Ssc1(448-A)/P5-fl/Mdj1/Mge1/ADP 

respectively, was followed by the recovery of the respective donor fluorescences of either   

                     

 

 

 

 

 

 

Figure 3.55: Kinetics of Conformational changes and dissociation of Mdj1 and P5 during the 
dissociation of Ssc1/ADP/Mdj1/P5/Mge1 complex in the functional cycle of Ssc1. The 
conformational changes are measured as proximity ratios and the dissociation of Mdj1 and P5 are 
measured as recovery of donor fluorescence of donor labeled Mdj1 or P5 respectively. To provide 
visual comparison of the different rates, normalized changes in signals for all of them are plotted. 
Change in fluorescence of Mdj1-D is followed after 1:1 mixing of 100nM of preformed Ssc1(448-
A)/Mdj1-D/P5/Mge1/ADP with 2mM ATP and 1µM Mdj1 in a stopped flow mixing device(Blue 
curve). Change in fluorescence of P5-fl is followed after 1:1 mixing of 100nM of preformed 
Ssc1(448-A)/Mdj1/P5-fl/Mge1/ADP with 2mMATP and 5µM P5 in a stopped flow mixing 
device(Red curve). Change in the PR monitored along the distance vector 341-448 is followed after 
a 1:1 mixing of 100nM preformed Ssc1 (341,448)/Mdj1/P5/Mge1/ADP with 2mM of ATP in a 
stopped flow mixing device(Pink curve). Change in the PR monitored along the distance vector 448-
590 is followed after a 1:1 mixing of 100nm preformed Ssc1 (448,590)/Mdj1/P5/Mge1/ADP with 
2mM of ATP in a stopped flow mixing device (Cyan curve). 



104 

 

Mdj1-D or P5-fl. It was observed that the rate of dissociation of P5 from the complex (t1/2 

~1.2 s) was slightly faster than the rate of dissociation of Mdj1 (t1/2~2s) indicating that 

the substrate leaves the complex followed by the dissociation of the J-domain co-

chaperone. Both the rates are significantly slower than the rate of dissociation of Mge1 

(t1/2 ~35 ms) from the complex suggesting the ordered release to exchange factor 

followed by the substrate and J-domain protein from the complex. 

Since the semi-quatitative measure of intra-molecular FRET efficiency for Ssc1 provided 

analogous results as the SpFRET measurements, we used PR to obtain the kinetics of 

domain-docking and lid-opening during the dissociation of the subsrate-captured 

complex of Ssc1. To obtain the rate of domain-docking and lid-opening, the complex 

Ssc1/P5/Mdj1/Mge1/ADP was formed with double labeled Ssc1 (341,448) and 

Ssc1(448,590) respectively, and dissociation was initiated with ATP. Time dependent 

changes in PR were obtained on a stopped-flow apparatus to obtain the rates of domain-

docking and lid-opening. The rates of domain-docking (Figure 3.55, pink curve) and lid-

opening (Figure 3.55, cyan curve) during this process were near simultaneous (t1/2~700 

ms) and preceded the dissociation of P5 or Mdj1 indicating that domain docking and lid-

opening leads to the dissociation of Mdj1 and P5 from Ssc1. The rate was significantly 

slower than the dissociation rate of Mge1 suggesting that Mge1 dissociation upon ATP 

binding precedes all the other changes that restart the cycle.  

Here, with the aid of FRET based conformational analysis and binding studies we 

obtained a more complete picture of the Ssc1 chaperone cycle. From the conformational 

analysis of Ssc1 it is also evident that conformational transitions in Ssc1 are dually 

regulated by the nucleotide and substrate. Notably, the timing of the various events, in 

terms of conformational changes on Ssc1 and binding of co-chaperones, could be 

resolved in context of the chaperone cycle. 
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4 Discussion 

4.1 Characterization of Pam17 and Tim21, the non-essential 

components of the TIM23 complex 

Extensive research in the field of protein translocation into mitochondria, during the last 

15 years has advanced our knowledge about the subject considerably. Especially, after 

the availability of the complete genome sequence of yeast (S. cerevisiae), many new 

components of the different translocases have been discovered within a very short span of 

time. In recent years many essential as well as non-essential components of the TIM23 

complex of mitochondria have been discovered. These discoveries have furthered our 

knowledge about the mode of function of the TIM23 complex.  

The original idea behind the present work was to reconstitute the events of the TIM23 

translocase using the purified components. In vitro Reconstitution of the whole 

translocase is necessary to understand the detailed mechanism of action. The 

reconstitution is experimentally difficult because of unavailability of purified membrane 

components and plausible missing components of the translocase. As the principal 

components of the import motor Tim44 and Ssc1 could be purified recombinantly in 

functional forms, we started the reconstitution of the events of  the import motor. 

Recently, Pam17 was identified as a component of the import motor of the TIM23 

translocase (van der Laan et al., 2005). Before initiating the reconstitution of the import 

motor, Pam17 was characterized in detail. For that purpose, the association of Pam17 and 

its possible role in the translocase was studied systematically. Along with Pam17, the role 

of another nonessential component Tim21 was studied, in parallel. 

Different experiments performed in the present work, showed that Pam17 is associated 

exclusively with the membrane embedded sector of the translocase. The Tim17-Tim23 

core is the minimal domain of its association within the translocase. Importantly, Pam17 

is not located in close vicinity of the motor part of the translocase. This is in contrast to 

the proposed role of Pam17 in the TIM23 translocase (van der Laan et al., 2005). In 

parallel, Tim21 is also mainly associated with the membrane sector of the translocase. 

Interestingly, in spite of the fact that both Pam17 and Tim21 were found to be associated 
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with the Tim17-Tim23 core of the membrane sector of the translocase, these proteins 

could never be co-isolated. In contrast to Pam17, a small but detectable fraction of Tim21 

was coisolated with the motor component Tim16. This finding strongly argues against the 

proposed ‘railroad-switch model’ or ‘two translocase theory’ of TIM23 translocase 

(Chacinska et al., 2005). According to this model TIM23 translocase exists in two 

modular states in mitochondria: the first module is sorting competent and consists of 

Tim23, Tim17, Tim50 and Tim21 but lacks the import motor. On the contrary, for 

translocation into the matrix, Tim21 leaves the sorting module and the import motor joins 

the rest to make the matrix translocation module. This model implies Tim21 to be 

specifically found in a motor free form of the translocase and would therefore exclude co-

purification with motor components. Furthermore, based on the ‘two translocase theory’, 

Pam17 was classified as a motor component because of its lack of co-isolation with 

Tim21 (van der Laan et al., 2005). The results presented in the current study show that 

indeed Tim21 and Pam17 were not co-isolated though both were associated with the 

membrane sector of the translocase. Furthermore, a functional interrelationship between 

these two nonessential components was found out. Both proteins interact with the TIM23 

complex in a dynamic manner and binding of one modulates the membrane embedded 

part in such a manner that is not competent for binding of the other. Furthermore the 

results presented here show that Pam17 is needed for obtaining a conformation of the 

membrane sector of the translocase which is competent for efficient translocation of 

precursor proteins into the mitochondrial matrix (Popov-Celeketic et al., 2008a). This 

function of Pam17 would explain the observed defects in the translocation of matrix 

targeted precursors (van der Laan et al., 2005).  

 

Taken together, the non essential components of the translocase, Pam17 and Tim21, 

associate with the Tim17-Tim23 core, which is the minimal domain needed for their 

association with the TIM23 complex. Finally, although both Pam17 and Tim21 are 

dispensable for cell viability, they do modulate the functionality of the translocase in an 

antagonistic manner. 
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4.2  In vitro reconstitution of the Tim44:Ssc1 interaction cycle 

In the in vitro reconstitution of the events of import motor, we describe the kinetic and 

structural characteristics of the interaction of Tim44 and Ssc1, the key components of it. 

The results presented here identify the interacting domains and regions of both 

components. Furthermore, the findings provide insights into the dynamics of association 

and dissociation advancing our understanding of the translocation process. The results 

presented here are in agreement with the Brownian ratchet model of the import motor. 

Understanding the contributions of the individual domains of Tim44 and Ssc1 is critical 

for understanding the mechanism of proein translocation to mitochondrial matrix by the 

TIM23 translocase(Neupert and Brunner, 2002). Several studies have addressed this 

question previously, however, have led to conflicting conclusions. A study using yeast 

two hybrid assay and  in vitro import of intact  Ssc1 and its domains showed that Tim44 

interacts with the Ssc1-NBD, yet with much lower affinity as compared to full length 

Ssc1 (Krimmer et al., 2000). Other results have shown that Tim44 interacts with the β-

sandwitch core of the PBD of Ssc1 (Moro et al., 2002). An in vitro analysis using 

purified proteins led to the conclusion that both domains of Ssc1 can interact 

independently with Tim44 (D'Silva et al., 2004). In the current study, for the first time, 

the proximities of the different domains of Tim44 and Ssc1 in the context of the full 

length proteins were determined using domain specific FRET efficiency (FE) 

measurements.  Ssc1-PBD turned out to be more proximal to Tim44 than Ssc1-NBD. 

Experiments with isolated domains were in agreement with the results obtained with 

full-length proteins. Ssc1-PBD was able to interact with Tim44 with the same affinity as 

the full-length Ssc1, whereas Ssc1-NBD did not interact. This interaction of Tim44 with 

Ssc1-PBD exhibited the same substrate sensitive dissociation observed with the 

Tim44:Ssc1 complex, excluding necessity of Ssc1-NBD for substrate-assisted 

dissociation of Tim44:Ssc1. The proximity of Tim44 to Ssc1-PBD and the subdomain Ia 

of Ssc1-NBD suggests interaction of Tim44 with the junction of the Ssc1-NBD and 

Ssc1-PBD, with PBD contributing the majority of the interacting residues. Recent 

structural studies on Tim44-CTD suggested this domain to be the most plausible part 

involved in membrane binding of Tim44, in line with biochemical evidence for a lack of 
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Tim44-CTD in contributing to complex formation with Ssc1 (Josyula et al., 2006; 

Schiller et al., 2008; Slutsky-Leiderman et al., 2007). According to the results presented 

here, indeed isolated Tim44-CTD does not display significant binding to Ssc1, although 

this domain is spatially close to Ssc1 as is Tim44-NTD in the context of full length 

protein which indicates that Tim44-NTD is the major Ssc1-interacting domain.  

 

Substrate induced dissociation of the Ssc1:Tim44 complex has been intuitively 

considered to be a key step in the cycling of Ssc1 at the translocase. However, in light of 

the results presented in this study, substrate induced dissociation is unlikely to be the 

basis of Ssc1 cycling. A two order of magnitude difference between the rates at which 

substrates can dissociate Ssc1 from Tim44:Ssc1 as compared to the proposed rate of 

Ssc1 cycling at the TIM23 translocase has been reported. Notably, Tim44 was found to 

bind transiently to Ssc1-ATP with a half life of 2-3s. This kinetics is consistent with the 

rate of Ssc1 cycling required for a physiological rate of protein translocation. The 

dissociation of the complex followed single-step kinetics excluding the possibility of a 

large conformational change of Ssc1 during the dissociation process. This is consistent 

with the Brownian ratchet mechanism, which does not imply large conformational 

changes in Ssc1, in contrast to a lever-type function in a power-stroke mechanism. 

Hsp70 chaperones are known to assume in a lid-closed conformation when in the ADP-

bound state, with extremely slow association rates for substrates. The ATP-bound state, 

though having lower affinity for substrates, is believed to be the substrate acceptor state 

as it has a high association rate for substrates. The higher association rate of Tim44 for 

Ssc1-ATP compared to that for Ssc1-ADP implies kinetic selection of Ssc1-ATP 

complexes. The resulting increase in local concentration of Ssc1-ATP at the translocase 

channel, in conjunction with  ATP-bound Hsp70 as substrate acceptor in vivo, leads to a 

model in which Tim44 functions in positioning  Ssc1 at the site of entrance of substrate 

into the matrix space, in consistence with previous proposals (Schneider et al., 1994; 

Ungermann et al., 1994). Similar mechanism of kinetic selection associated with 

transient interaction may have evolved for other Hsp70s, associated with protein 

translocation systems such as present in the ER and chloroplasts.  
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Binding of substrates to Ssc1 at the translocase was proposed to be the trigger of 

Brownian ratchet mediated translocation by TIM23. The ability of Tim44 to bind with 

low affinity to sequences of precursor proteins which are not recognized by Hsp70-

binding described here may assist in preventing retrograde movement.  

Taken together, this study gave new insights into the domain contribution of Tim44 and 

Ssc1 in Tim44:Ssc1 complex formation in the context of full-length proteins. 

Furthermore, kinetic analyses of association and dissociation events of Tim44:Ssc1 

indicated that the interaction is a transient one where Tim44 mainly localize the 

substrate-acceptor forms of Ssc1 near the translocase channel. The one-step dissociation 

of Ssc1 from Tim44:Ssc1 and sharing of complimentary substrate specificity between 

Tim44 and Ssc1 were in agreement with the Brownian ratchet mediated protein 

translocation across the TIM23 translocase. 

 

4.3  The chaperone cycle of Ssc1 in the mitochondrial matrix  

The complete chaperone cycle of the prototypical Hsp70 chaperone, DnaK, has been 

worked on for over a decade and controversies still exist as to the order of events in the 

functional chaperone cycle (Genevaux et al., 2007; Swain et al., 2007). Armed with a 

multitude of conformational sensors positioned on the mitochondrial Hsp70, Ssc1, we 

were able to monitor the principal modes of conformational changes of Ssc1 in real time 

and also elucidate the order of events that lead to a productive chaperone cycle. 

ATP-bound state is known to be the substrate acceptor state of Hsp70s with low affinity 

but high exchange rate for substrate proteins (Wittung-Stafshede et al., 2003; Zhu et al., 

1996). In this work we were able to present convincing evidence that Ssc1, a bona-fide 

member of the Hsp70 group of chaperones, exist in a domain docked and lid open state in 

the ATP-bound form as hypothesized from numerous biochemical and biophysical 

evidences (Schmid et al., 1994; Swain et al., 2007; Zhu et al., 1996) or from the crystal 

structure of Hsc70 or Hsp110 (Jiang et al., 2005; Liu and Hendrickson, 2007), an Hsp70 

homolog. This form is extremely homogeneous without any evidence of heterogeneity in 

the distances as probed by single-molecule fluorescence spectroscopy. On the contrary, 
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the ADP bound form was found to be more heterogenous in respect to the interdomain 

distance and distance of lid domain to the base of the PBD.  

Substrate was found to efficiently bind to Ssc1 in the presence of its J-domain co-

chaperone Mdj1 reconfirming the previous reports on the essentiality of J-domain 

proteins in assisting substrate binding (Karzai and McMacken, 1996; Laufen et al., 1999; 

Liberek et al., 1991; Wittung-Stafshede et al., 2003). The binding of the substrate 

peptide, P5, to Ssc1 in presence of Mdj1 led to the formation of a lid-closed and domain 

undocked structure. Binding of Mdj1 to Ssc1-ATP complex led to the transient formation 

of lid-closed, domain-undocked conformation, followed by the release of Mdj1 to form a 

heterogeneous population of Ssc1 molecules which was extremely similar to the 

conformational distribution of Ssc1-ADP complex, suggesting the possible effect of 

Mdj1 on Ssc1 conformation to be driven solely by ATP-hydrolysis. Bimodal distribution 

of the inter-domain distance of Ssc1 for Ssc1/ADP indicates that Ssc1 might be a 

dynamic molecule in this state, fluctuating between the domain-docked and the undocked 

state. Contrary to observations made with DnaK (Chang et al., 2008; Swain et al., 2007), 

we found that that ADP binding to Ssc1 is not able to efficiently undock the domains or 

lock the lid onto the base of the PBD which was affected efficiently only upon substrate 

binding. This indicates that substrate binding to Ssc1 is essential to bring about 

conformational changes and is corroborative with previous studies that examined the 

effect of substrate binding to isolated domains of DnaK (Tanaka et al., 2005). 

Even though it is well understood that binding of J-domain co-chaperone is essential for 

substrate capture by Hsp70s, the timing of the exit of this J-domain protein in the 

chaperone cycle is unknown. We were able to develop a FRET based sensor for Mdj1-

Ssc1 interaction and reproduce the reported observation that J-domain co-chaperones 

bind much faster to Hsp70s in the ATP-bound state than in the ADP-bound state (Mayer 

et al., 1999). Using the same sensors we observed that Mdj1 does not dissociate from the 

Ssc1/P5/Mdj1/ATP complex soon after hydrolysis of ATP.   Even though Mdj1 was 

found to dissociate from Ssc1/P5, the off-rate measured was extremely slow to account 

for the functional chaperone cycle. Interestingly, it was observed that substrate can 

modulate the interaction between Ssc1 and Mdj1, with Mdj1 having a higher off-rate 

from Ssc1 in presence of the substrate Mge1, the bona fide nucleotide exchange factor of 
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Ssc1, could bind to Ssc1 only in the ADP bound state of Ssc1. It was also found that after 

the exogenous ATP was depleted, Mge1 could form a quaternary complex, 

Ssc1/P5/Mdj1/Mge1, which dissociated upon addition of ATP. This is consistent with a 

model of the cycle in which the cycle ends with the binding of the exchange factor to the 

ternary complex of Hsp70, substrate and J-domain co-chaperone.  

Exchange factor assisted ATP-binding to Hsp70 is known to restart the cycle by releasing 

bound substrates (Brehmer et al., 2001; Harrison et al., 1997), however the sequence of 

release of the exchange factor and the substrate is not well studied. We were able to show 

that addition of ATP to Ssc1/P5/Mdj1/Mge1 leads to an instantaneous release of Mge1 

from the complex followed by lid opening and domain-docking. This further leads to the 

dissociation of Mdj1 and P5 from Ssc1. In this work we were able to discern the 

dissociation of the J-domain protein from Hsp70 in a time resolved manner and show that 

contrary to some previously held convention (Genevaux et al., 2007), the J-domain co-

chaperone dissociates from the Hsp70 at the end of the cycle simultaneous to substrate 

dissociation. This sequence of events restarts the cycle of Ssc1 which comes back to the 

substrate-acceptor state. The re-binding rate of a substrate would be dependent on the 

association rates and the concentrations of Ssc1, substrate and Mdj1. The rebinding rate 

in turn would dictate the time scale a substrate remains free in solution to be partitioned 

into folding competent state. Highly hydrophobic stretches, present at high 

concentrations, would have an inherent tendency to aggregate and since the Ssc1-binding 

rate for these would also be high, they would spend lesser time unbound from Ssc1 in an 

aggregation competent state. Based on all the results obtained, a comprehensive model 

for Ssc1 chaperone cycle in the mitochondrial matrix is summarized (Fig.4.1).  
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In this study the comparison between DnaK and Ssc1 reveals interesting new insights 

into the conformational differences between the two chaperones. In presence of ADP, the 

conformation of Ssc1 is highly heterogeneous implying that the domain connectivity 

might be dynamic under these conditions, whereas in the case of DnaK the domains are 

fully disjoined. Residual domain connectivity in Ssc1-ADP state suggests that although 

ATP is needed in DnaK to facilitate physical contact and hence allosteric signaling 

between the two domains, it might not be an essential feature in Ssc1 and in general of 

the Hsp70 chaperones. 

Figure 4.1: A comprehensive model of the Ssc1 chaperone cycle in the mitochondrial matrix. (1). 
Ssc1 in the ATP-bound state (domain-docked, lid-open state) interacts with the substrate via its PBD with 
low affinity which becomes effective only in presence of Mdj1. (2). Binding of Mdj1 and substrate and 
acceleration of hydrolysis of ATP by Mdj1 and substrate closes the PBD leading to high affinity binding 
of the substrate forming a ternary complex of Ssc1/Mdj1/substrate.  (3). Mge1 can bind to this ternary 
complex in absence of an exogenous ATP. (4). Addition of ATP to the quaternary complex leads to 
instantaneous exchange of ADP with the ATP in the NBD of Ssc1 with release of Mge1. (5 & 6). 
Subsequently, ATP induced conformational changes of Ssc1 take place followed by near simultaneous 
dissociation of substrate and Mdj1 from Ssc1 in the ATP-state which starts a new cycle. 
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5 Summary 
The vast majority of mitochondrial proteins are synthesized by the cytosolic ribosomes as 

precursor proteins which have to be transported into the organelle to reach their sites of 

function. The whole process of recognition, translocation, intra-mitochondrial sorting of 

and assembly of precursor proteins is achieved by the concerted action of different 

mitochondrial translocases. All proteins destined for the mitochondrial matrix and some 

inner membrane proteins are imported first by the TOM complex of the outer membrane 

and subsequently by the TIM23 complex of the inner membrane in an energy-driven 

process. The TIM23 complex was found to consist of ten components, conventionally 

divided into two sectors: membrane sector harbouring the translocation channel and the 

import motor on the matrix side of the membrane sector. 

In the first part of the present work, the two most recently discovered subunits of the 

TIM23 complex, Pam17 and Tim21 were characterized. A systematic characterization 

revealed that both of these non-essential subunits of the translocase are associated with 

Tim17-Tim23 core of the membrane sector of the TIM23 translocase. A functional 

connection between the two non-essential components was discovered. Results presented 

in this part showed that Pam17 and Tim21 modulate the functions of the TIM23 complex 

in an antagonistic manner. 

 

The second part of the work was directed towards understanding the motor sector of the 

translocase in terms of the regulated interaction between Tim44 and Ssc1. Previous 

studies on the Tim44:Ssc1 interaction were able to discern the steady-state properties of 

Tim44:Ssc1 interaction in organello and in vitro. However, due to the limitations of the 

techniques used, they were unable to shed light on the kinetics and dynamics of the 

process. The translocation event is a dynamic event with conformational cycling of the 

various components. Therefore, the kinetic components essential in defining the cycle of 

events in the motor sector were explored. A FRET based assay to analyze the 

Tim44:Ssc1 interaction in real time was developed. The same set of tools was also used 

to resolve the regions of the two proteins that determine their interaction. The substrate 
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induced dissociation of Tim44:Ssc1 complex was found to be too slow to support a 

physiological rate of protein translocation. ATP-induced dissociation was observed to be 

fast enough to be physiologically relevant. The dissociation of Ssc1 from Tim44 occurred 

in a one step manner without Tim44 anchored conformational changes. Furthermore, 

peptide-array scanning of mitochondrial matrix proteins revealed that Ssc1 and Tim44 

share complementary binding sites on the precursor proteins which could prevent 

backsliding of preproteins. The data support the Brownian ratchet model mediated 

translocation of preproteins into the mitochondrial matrix. 

 

The third part of the work aimed at dissecting the chaperone cycle of Ssc1 in the 

mitochondrial matrix, in terms of conformational changes and binding of co-chaperones. 

Using the FRET sensors developed, the inter-domain conformation and lid-base 

conformations of the PBD of Ssc1 could be investigated. Single particle FRET (SpFRET) 

analysis showed that in the ATP-bound form Ssc1 populates a homogeneous 

conformational state with respect to the inter-domain conformation and conformation of 

the lid to base of the PBD. On the contrary, in the ADP-bound state the conformation of 

the chaperone is heterogenous. Using the same sensors on bacterial homologue DnaK, 

specific differences in conformational distributions were observed. Furthermore, the 

active role of substrates in determining the inter-domain conformation and lid-closing 

was evident from the SpFRET based conformational analyses. Using ensemble time 

resolved FRET, the kinetics and dynamics of conformational changes along with binding 

of co-chaperones were explored. This provided a better understanding of the 

conformational dynamics of Ssc1 in the context of functional chaperone cycle in the 

mitochondrial matrix. 
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6 Zusammenfassung 
 

Die meisten mitochondrialen Proteine werden von cytosolischen Ribosomen als 

Vorstufenproteine synthetisiert, die anschließend in das Organell transportiert werden, 

um den Ort ihrer Funktion zu erreichen. Der gesamte Prozess der Erkennung, 

Translokation, intramitochondrialer Sortierung sowie der Assemblierung der 

Vorstufenproteine wird durch die aufeinander abgestimmte Aktivität verschiedener 

mitochondrialer Proteintranslokasen erreicht. 

Alle für die Matrix bestimmten sowie einige Innenmembranproteine werden in einem 

energieabhängigen Prozess zunächst vom TOM-Komplex der äußeren Membran und 

anschließend vom TIM23-Komplex der inneren Membran transportiert. Der TIM23-

Komplex, der im Zentrum dieser Arbeit steht, setzt sich aus zehn Komponenten 

zusammen. Er wird gewöhnlich in zwei Sektoren unterteilt; den den Translokationskanal 

beinhaltenden Membran-Sektor und den Import-Motor an der zur Matrix gerichteten 

Seite des Membran-Sektors. 

 

Im ersten Teil der vorliegenden Arbeit werden die beiden erst kürzlich entdeckten 

Untereinheiten Pam17 und Tim21 des TIM23-Komplexes charakterisiert. Eine 

systematische Untersuchung dieser beiden nicht-essentiellen Proteine der Translokase 

ergab eine direkte Assoziation der beiden Untereinheiten mit dem Tim17-Tim23-Kern 

des Membran-Sektors der TIM23-Translokase. Des Weiteren konnte eine funktionelle 

Verbindung der beiden nicht-essentiellen Untereinheiten miteinander aufgedeckt werden. 

Pam17 und Tim21 modulieren demnach die Funktion des TIM23-Komplexes. 

 

Der zweite Teil der Arbeit richtet sich auf das Verständnis des Motor-Sektors und seine 

Rolle in der regulierten Interaktion zwischen Tim44 und Ssc1. Tim44 kann als Protein 

angesehen werden, das die dynamische Interaktion mit den diversen anderen 

Komponenten des Importmotors reguliert. Das mitochondriale Chaperon mtHsp70, in 

Hefe als Ssc1 bezeichnet, ist die Energie-transduzierende ATP-abhängige und 

gleichzeitig die zu translozierenden Polypeptide bindende Komponente des 
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Importmotors. Sie besteht aus zwei Domänen, der Nukleotid-bindenden Domäne (NBD) 

und der Peptid-bindenden Domäne (PBD).  Vorausgegangene Studien der Tim44:Ssc1-

Interaktion hatten die Eigenschaften des stationären Zustands in organello und in vitro 

beschrieben. Über die Kinetik und Dynamik des Prozesses konnte kein Aufschluss geben 

werden. Der Translokationsvorgang ist jedoch ein dynamischer Prozess, welcher einen 

zyklischen Wechsel der Konformationen der Untereinheiten beinhaltet. Folglich wurden 

die Kinetiken der Teilreaktionen des Zyklus des Motor-Sektors untersucht. Dazu wurde 

ein auf Fluoreszenz-Resonanz-Elektronen-Transfer (FRET) basiertes Messverfahren zur 

Echtzeit-Analyse der Tim44:Ssc1-Interaktion entwickelt. Dieses Verfahren wurde auch 

zur Festlegung der die Interaktion bedingenden Regionen beider Proteine angewandt, die 

der Interaktion zu Grunde liegen. Dabei stellte sich heraus, dass die Substrat-induzierte 

Dissoziation des Tim44:Ssc1-Komplex zu langsam abläuft, um eine physiologische 

Translokationsrate der Vorstufenproteine zu ermöglichen. Die in vitro gemessene ATP-

induzierte Dissoziation hingegen erwies sich als ausreichend schnell, um die 

physiologische Translokationsrate zu erklären.  Die Loslösung des Ssc1 von Tim44 

erfolgt in einem einstufigen Prozess ohne zu beobachtende Tim44-gebundene 

Konformationsintermediate. Weiterhin wurden Experimente durchgeführt, in denen 

mitochondriale Matrixproteine hinsichtlich der Präsenz von Bindungsstellen für Ssc1 und 

Tim44 durchmustert wurden. Jeweils wurden mehrere solche Bindungsstellen beobachtet, 

die nicht überlappend waren. Diese Bindungsspezifität kann erklären, warum bei der 

Translokation eine retrograde Bewegung der Polypeptidketten verhindert wird. Somit 

unterstützen diese Befunde das Modell des Brown’schen Ratchet (Sperrklinke) als 

plausiblen Translokationsmechanismus.  

 

Der dritte Abschnitt dieser Arbeit zielt auf die Aufklärung des Chaperonzyklus des 

Matrix-ständigen Ssc1. Insbesondere ging es dabei um die Erfassung konformativer 

Änderungen und die Bindung der Co-Chaperone Tim14 und Tim16. Der Einsatz von 

FRET-Sonden ermöglichte die Untersuchung  der Domänen sowie der “lid-base“-

Konformation der PBD des Ssc1. Messungen mittels Einzelpartikel-FRET (single particle 

FRET, spFRET) zeigen, dass Ssc1 in der ATP-gebundenen Form einen homogenen 

Zustand einnimmt, und zwar in Bezug auf das Verhalten der beiden Domänen als auch in 
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Bezug auf die “lid-base“-Interaktion. Im Gegensatz dazu erwies sich der 

Konformationszustand der ADP-gebundenen Form als heterogen. Das bakterielle Ssc1-

Homologe, DnaK, wurde mit derselben Technik untersucht; trotz der sehr großen 

strukturellen Ähnlichkeit wurden ausgeprägte Unterschiede hinsichtlich der Verteilung 

der Konformere beobachtet. Ferner wurde eine aktive Rolle der Proteinsubstrate bei der 

Verteilung der Konformationszustände von Ssc1 festgestellt. Die Dynamik und Kinetik 

der Konformationsänderungen aufgelöst in Real Time-FRET und die Bindung der Co-

Chaperone Tim14 und Tim16 wurden ebenfalls untersucht. Insgesamt führen die hier 

beschriebenen Ergebnisse zu einem  genaueren Verständnis der Funktion des Ssc1 als 

zentrale Komponente des Chaperonzyklus der Mitochondrien. 
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ABBREVIATIONS 
α   anti-body 

AAC    ADP/ATP carrier 

Ab   antibody 

ADP    adenosine diphosphate 

Amp    ampicillin 

APS    ammonium peroxodisulfate 

ATP    adenosine triphosphate 

ATPase   adenosine triphosphatase 

BN-PAGE   blue native polyacrylamide gel electrophoresis 

BSA    bovine serum albumin 

C-    carboxy- 

CBB    coomassie brilliant blue 

cDNA    complementary DNA 

CNBr    cyanogen bromide 

CV    column volume 

DHFR    dihydrofolate reductase 

DMSO   dimethylsulfoxid 

DNA    deoxyribonucleic acid 

dNTP    deoxyribonucleoside triphosphate 

DLD   D-lactate dehydrogenase 

DSG    disuccinimidyl glutarate 

DSS    disuccinimidyl suberate 

DTT    dithiotreitol 

∆Ψ    membrane potential 

E. coli    Escherichia coli 

EDTA    ethylendiamine tetraacetate 

F1β    F1β subunit of the ATP synthase 

FRET                          Fluorescence Resonance Energy Transfer 

gDNA    genomic DNA 
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HEPES   N-2 hydroxyl piperazine-N´-2-ethane sulphonic acid 

His   histidine 

Hsp    heat shock protein 

IgG    immunoglobuline G 

IM    inner membrane 

Imp    inner membrane peptidase 

IMS    intermembrane space 

IPTG    isopropyl-β,D-thiogalactopyranoside 

KAN    kanamycin 

kDa    kilodalton 

LB    Luria Bertani 

MBP    maltose binding protein 

MOPS   N-morpholinopropane sulphonic acid 

MPP    mitochondrial processing peptidase 

MTS    matrix targeting signal 

MTX    methotrexate 

N-    amino- 

N. crassa   Neurospora crassa 

NADH   nicotine amide adenine dinucleotide 

NADPH   nicotine amide adenine dinucleotide phosphate 

Ni-NTA   nickel-nitrilo triacetic acid 

NMR    nuclear magnetic resonance 

ODx    optical density at x nm 

OM    outer membrane 

Oxa   oxidase assembly 

PAGE    polyacrylamide gel electrophoresis 

PAS    protein A-Sepharose 

PCR    polymerase chain reaction 

PEG    polyethylene glycol 

PI    preimmune serum 

PIE                              pulsed interleaved excitation 
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PK    proteinase K 

PMSF    phenylmethylsulfonyfluoride 

Preprotein  precursor protein 

ProtA    Protein A 

PVDF    polyvinylidene difluoride 

RNA    ribonucleic acid 

RNasin   ribonuclease inhibitor 

RT    room temperature 

S. cerevisiae   Saccharomyces cerevisiae 

SDS    sodium dodecyl sulfate 

STD   mitochondria isolated under standard conditions 

TBS    TRIS buffered saline 

TCA    trichloroacetic acid 

TEMED   N,N,N‘,N‘-tetramethylene diamine 

TIM    translocase of the inner mitochondrial membrane 

TOB   translocase of outer membrane β-barrel proteins 

TOM    translocase of the outer mitochondrial membrane 

Tris    tris-(hydroxymethyl)-aminomethane 

TX-100   Triton X-100 

v/v    volume per volume 

w/v    weight per volume 

WT    wild type 
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