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1. Overview 

Organometallic chemistry is a central part of modern organic chemistry. 1  Two methods 

should be highlighted for the generation of organometallic compounds: the hydrogen-metal 

and halogen-metal interconversion.2 The pioneering works of Frankland3and Grignard4 have 

opened up new perspectives in the synthetic chemistry and have served as an inspiration to 

many chemists who followed in their footsteps. The recent advances in these fields show the 

versatility of the developed metallic reagents, confirming them as important tools, which give 

access to a vast number of functionalized molecules.  

The reactivity and selectivity of the organometallic reagent can be tuned by transmetallation. 

A very polar carbon-metal bond, as in the case of organolithium species, is an indication of 

high reactivity but reduced tolerance towards sensitive functional groups. Organomagnesium 

and organozinc reagents represent an alternative, though the latter often require transition 

metal catalysis to promote a reaction with electrophiles. 5  In addition, inductive electron 

withdrawal, metal coordination and steric hindrance are some further factors that if exploited 

accordingly, can lead the reaction to the desired direction.2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
 
1 Wothers, P.; Greeves, N.; Warren, S.; Clayden, J. in Organic Chemistry; Oxford University Press, New York, 
2001. 
2 Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376. 
3 a) Frankland, E. Liebigs Ann. Chem. 1848-49, 71, 171; b) Frankland, E. J. Chem. Soc. 1848-49, 2, 263. 
4 a) Grignard, V. Compt. Rend. Acad. Sci. Paris. 1900, 130, 1322; b) Grignard, V. Ann. Chim. 1901, 24, 433. 
5 For a general overview see: a) Knochel, P.; Leuser, H.; Gong, L. -Z.; Perrone, S.; Kneisel, F. F. in Handbook of 
Functionalized Organometallics; P. Knochel, Ed.; Wiley-VCH, Weinheim 2005: 251; b) Knochel, P.; Millot, N.; 
Rodriguez, A. L.; Tucker, C. E. in Organic Reactions; L. E. Overman, Ed.; Wiley & Sons Inc., New York 2001. 
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RX
THF or Et2O

Mg
RMgX (1)

2 RMgX R2Mg + MgX2 (2)

R = organic rest
X = Cl, Br, I

2. The Halogen-Metal Interconversion 

In 1912, the Nobel Prize for chemistry was awarded to Victor Grignard. The importance of 

Mg-reagents was so high that at the time of his death in 1935, there were over 6000 references 

in the literature.6 The oxidative addition of magnesium to a halogen-carbon bond in etheral 

solvents (V. Grignard´s discovery) is still nowdays an important method for preparing these 

reagents (Scheme 1, Eq. 1).7 

 

 

 

 

Scheme 1: Synthesis of Grignard reagents by oxidative addition (Eq. 1) and Schlenk-

equilibrium (Eq. 2). 

The mechanism of the Grignard reaction is not yet fully clarified, though it is assumed to 

proceed through a single electron transfer.8 In solution Grignard reagents are in equilibrium 

with R2Mg and MgX2 (Schlenk equilibrium) (Scheme 1, Eq. 2). 9  The position of this 

equilibrium is influenced by solvent, temperature and the anion X-. Organomagnesium halides 

in solution can also form dimers or higher oligomers, depending on the concentration.10 

Although the direct reaction of magnesium metal with organic halides is the most commonly 

used method for generating organomagnesium compounds, it lacks good functional group 

tolerance. The often required activation of the magnesium surface by additives11and the 

                                                 
 
6 From Nobel Lectures, Chemistry 1901-1921, Elsevier Publishing Company, Amsterdam, 1966. 
7  a) Thayer, J. S. Adv. Organomet. Chem. 1975, 12, 1; b) Quadbeck-Seeger, H.-J.; Faust, R.; Knaus, G.; 
Siemeling, U. in Chemie Rekorde, Wiley-VCH, Weinheim, 1997. 
8 a) Rogers, H. R.; Hill, C. L.; Fujiwara, Y.; Rogers, R. J.; Mitchell, H. L.; Whitesides, G. M. J. Am. Chem. Soc. 
1980, 102, 217; b) Walborsky, H. M. Acc. Chem. Res. 1990, 23, 286; c) Hamdouchi, C.; Walborsky, H. M. in 
Handbook of Grignard Reagents; Silverman, G. S.; Rakita, P. E. Eds.; Marcel Dekker, New York, 1996, pp 145-
218; d) Garst, J. F. Acc. Chem. Res. 1991, 24, 95; e) Kharasch, M. S.; Reinmuth, O. in Grignard Reactions of 
Nonmetallic Substances, Prentice Hall, New York, 1954; f) Oshima, K. in Main Group Metals in Organic 
Synthesis, Yamamoto, H.; Oshima, K. Eds.; Wiley-VCH, Weinheim, 2004. 
9 Schlenk, W.; Schlenk Jr., W. Chem. Ber. 1929, 62, 920. 
10 Holm, T.; Crossland, I. in Grignard Reagents-New Developments; Richey Jr, H. G. Ed.; Wiley, New York, 
2000, 5. 
11 a) Rieke, R. D. Science 1989, 246, 1260; b) Burns, T. B.; Rieke, R. D. J. Org. Chem. 1987, 52, 3674; c) Lee, 
J.; Velarde-Ortiz, R.; Guijarro, A.; Wurst, J. R.; Rieke, R. D. J. Org. Chem. 2000, 65, 5428; d) Rieke, R. D.; 
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HCBr3 HBr2CMgCl
Me3SiCliPrMgCl

-78 °C
3: 90%

HBr2CSiMe3

1 2

exothermic conditions of the insertion are counted among the limitations of this protocol.12 

Therefore, the halogen-magnesium exchange is the method of choice for the preparation of 

new functionalized Grignard reagents.13  

In 1967, Jean Villiéras showed that magnesium carbenoids can be generated in good yields 

via a bromine-magnesium exchange and trapped with electrophiles as illustrated by the 

reaction of bromoform (1) with iPrMgCl. The magnesium carbenoid 2 can be trapped with 

TMSCl to afford the silane 3 in 90% yield (Scheme 2).14  

 

 

Scheme 2: Br/Mg-exchange of bromoform. 

The halogen-magnesium exchange leads to the formation of the more stable 

organomagnesium compound (sp > sp2(vinyl) > sp2(aryl) >sp3(prim) > sp3(sec)). The 

mechanism is supposed to proceed through a concerted 4-centered mechanism. 15 , 16 

Furthermore, the formation rate of the new organomagnesium reagent is also influenced by 

the electronic properties of the substrate as well as by the nature of the halogen.17 Hence 

electron deficient substrates enhance the exchange reaction rate. The main advantage of the 

halogen-magnesium exchange reaction (especially in the case of I/Mg-exchange) is that it 

enables the preparation of Grignard reagents bearing sensitive functionalities. A number of 

functionalized Grignard reagents of type 4 are now available (Scheme 3).13, 18  

 

                                                 
 
Sell, M. S.; Klein, W. R.; Chen, T.; Brown, J. D.; Hansan, M. V. in Active Metals, Fuerstner, A., Ed.; Wiley-
VCH, Weinheim, 1995; e) Rieke, R. D.; Sell, M. S.; Xiong, H. J. Am. Chem. Soc. 1995, 117, 5429. 
12 Bush, F. R.; De Antonis, D. M. in Grignard Reagents-New Developments; Richey, H. G. Jr., Ed.; Wiley, New 
York, 2000, pp 165-183. 
13 For a review see: Knochel, P.; Dohle, W.; Gommermann, N.; Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, 
I.; Vu, V. A. Angew. Chem. Int. Ed. 2003, 42, 4302. 
14 Villiéras, J. Bull. Soc. Chim. Fr. 1967, 1520. 
15 a) Bailey, W. F.; Patricia, J. J. J. Organomet. Chem. 1988, 352, 1; b) Reich, H. J.; Phillips, N. H.; Reich, I. L. 
J. Am. Chem. Soc. 1985, 107, 4101; c) Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. 1986, 108, 2449. 
16 Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 159. 
17 Tamborski, C.; Moore, G. J. J. Organomet. Chem. 1971, 26, 153. 
18 a) Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 1701; b) Varchi, G.; 
Jensen, A. E.; Dohle, W.; Ricci, A.; Knochel, P. Synlett 2001, 477; c) Sapountzis, I.; Knochel, P. Angew. Chem. 
Int. Ed. 2002, 41, 1610; d) Boudier, A.; Bromm, L. O.; Lotz, M.; Knochel, M. Angew. Chem. Int. Ed. 2000, 39, 
4414. 
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FG
I RMgX

-50 to -20 °C
       THF

FG
MgX

CO2Et

MgBr

CN

MgBr MgCl
O2N

Ph

O

MgCl

F3C I

N

NMe2 MgCl
NO2

NO2

R = iPr, Ph
X = Cl, Br

4

4a 4b 4c 4d 4e

X
FG

iPrMgBr
Hal

X
FG MgBr

N

MgBr

Cl

N N

MgBr

Br

SBrMg Cl

ClCl

OBrMg CO2Et N N
OBn

MgBr

-50 to 0 °C
     THF

X = N, S, O 5

5a 5b 5c 5d 5e

 

 

 

 

 

 

Scheme 3: Synthesis of functionalized arylmagnesium halides.  

Similarly, using the above mentioned method, various magnesiated functionalized 

heterocycles of type 5 could be prepared (Scheme 4).19 

 

 

 

 

 

 

Scheme 4: Synthesis of functionalized heteroarylmagnesium halides. 

Although activated aryl- and heteroaryl bromides and in particular cases even chlorides react 

with iPrMgBr to give the magnesiated species, less active bromides are reluctant to undergo 

the exchange reaction. In some cases, the use of trialkyl magnesiate reagents of type R3MgLi 

                                                 
 
19 a) Bérillon, L.; Lepretre, A.; Turck, A.; Plé, N.; Quéguiner, G.; Cahiez, G.; Knochel, P. Synlett 1998, 1359; b) 
Abarbri, M.; Thibonnet, J.; Bérillon, L.; Dehmel, F.; Knochel, P. J. Org. Chem. 2000, 65, 4618; c) Abarbri, M.; 
Dehmel, F.; Knochel, P. Tetrahedron Lett. 1999, 40, 7449; d) Abarbri, M.; Knochel, P. Synlett 1999, 1577; e) 
Dehmel, F.; Abarbri, M.; Knochel, P. Synlett 2000, 345; Hiriyakkanavar, I.; Baron, O.; Wagner, A. J.; Knochel, 
P. Chem. Commun. 2006, 583. 
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Mg
Cl

Cl
Mg

2 LiCl
Mg

Cl

Cl
Li2 Mg

Cl

Cl
Li

6

2 ArBr
MgAr

Cl

Cl
Li2

X
FG

iPrMgCl·LiCl (6)
Br

X
FG MgCl·LiCl

Cl

MeO MgCl·LiCl

CO2tBu

MgCl·LiCl

CO2Et

N
N
N

MgCl·LiCl N OTs

MgCl·LiClBr N

S
MgCl·LiCl

-50 to 25 °C
      THF

X = C, N, S, O 7

7a 7b 7c 7d 7e

can circumvent this drawback as is shown in the work of Oshima.20 Recently it was found that 

the addition of LiCl catalyzes the Br/Mg-exchange, expanding thereby significantly the 

spectrum of applications of this method.21 Apart from accelerating the exchange reaction, the 

presence of LiCl enhances also the reactivity of the resulting organomagnesium reagents. The 

supposed mechanism postulates that LiCl breaks the aggregates of iPrMgCl forming an ate-

like intermediate of type 6 (Scheme 5).15 This mechanism also explains the stoichiometric 

amount of LiCl needed.  

 

 

Scheme 5: Proposed mechanism of the LiCl catalyzed Br/Mg-exchange. 

The use of the more reactive iPrMgCl·LiCl (6) enables a fast Br/Mg-exchange even at 

inactivated bromides, that was not possible before. This improvement in the organometallic 

chemistry has found many applications, since it allows the use of the cheaper and more stable 

bromides, leading to a broad spectrum of magnesiated and functionalized arenes and 

heteroarenes of type 7 (Scheme 6). 22 

 

 

 

 

 

 

Scheme 6: LiCl-catalyzed Br/Mg-exchange on aryl- and heteroaryl bromides. 

                                                 
 
20 a) Oshima, K.; J. Organomet. Chem. 1999, 575; b) Kitagawa, K.; Inoue, A.; Shinokubo, H.; Oshima, K. 
Angew. Chem. Int. Ed. 2000, 39, 2481; c) Inoue, A.; Kitagawa, K.; Shinokubo, H.; Oshima, K. J. Org. Chem. 
2001, 66, 4333.  
21 Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333. 
22 a) Ren, H.; Knochel, P. Chem. Commun. 2006, 726; b) Liu, C.-Y.; Knochel, P. Org. Lett. 2005, 7, 2543; c) 
Ren, H.; Krasovskiy, A.; Knochel, P. Org. Lett. 2004, 6, 4215. 
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R1

R2

Y

Br

R1

R2

Y

MgBr

SO2Ph

Ph MgBr

CO2tBu

Me MgBr

Me CONEt2

Me MgBr

Me CN

Ph MgBr

H

iPrMgBr
THF, -40 °C

Y = CN, CO2tBu, SO2Ph, CONEt2

8

8a 8b 8c 8d

Another challenge that can be overcome by the use of the reactive iPrMgCl·LiCl is the 

metallation of olefinic systems. Without LiCl halogen-magnesium exchange reactions on 

alkenyl halides proceed very slowly and require higher temperatures, therefore precluding the 

presence of functionalities.23 However, chelating heteroatoms or electron withdrawing groups 

directly linked to the double bond could facilitate an I/Mg- or even a Br/Mg-exchange 

affording organomagnesium alkenes of type 8, though not always stereoselectively (Scheme 

7).24 

 

 

. 

 

 

Scheme 7: Br/Mg-exchange on functionalized alkenyl bromides bearing an electron 

withdrawing group at the α position. 

Employing the more reactive iPrMgCl·LiCl (6), alkenyl iodides with no chelating groups at 

the α position could undergo an I/Mg-exchange even at lower temperatures (Scheme 8).22c, 25 

 

 

 

 

 

                                                 
 
23 Rottländer, M.; Boymond, L.; Cahiez, G.; Knochel, P. J. Org. Chem. 1999, 64, 1080. 
24 a) Thibonnet, J.; Knochel, P. Tetrahedron Lett. 2000, 41, 3319; b) Krause, N. Tetrahedron Lett. 1989, 30, 
5219; c) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 41, 351; d) Fleming, F. F.; Gudipati, V.; 
Steward, O. W. Org. Lett. 2002, 4, 659. 
25 Ren, H.; Krasovskiy, A.; Knochel, P. Chem. Commun. 2005, 543. 
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Scheme 8: LiCl-catalyzed I/Mg-exchange on alkenyl iodides with no chelating group at α 

position. 

 

The halogen-magnesium exchange has been applied in the field of natural product synthesis. 

A recently reported total synthesis of Caerulomycins E and A, that display antibiotic activity, 

employs a Br/Mg-exchange reaction using iPrMgCl·LiCl to furnish the key intermediate 9 

(Scheme 9).26  

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 9: Br/Mg-exchange in the total synthesis of Caerulomycins E and A. 

                                                 
 
26 Duan, X.-F.; Ma, Z.-Q.; Zhang, F.; Zhang, Z.-B. J. Org. Chem. 2009, 74, 939. 
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3. Hydrogen-Metal Interconversion 

The second very prominent method to generate organometallic compounds is the direct 

deprotonation. Since the pioneering work by Gilman 27  and Wittig, 28  the directed ortho 

metallation (DoM) reaction has been widely used as a powerful and efficient method for 

regioselective functionalization of aromatic compounds.2, 29  Organolithium bases had 

dominated this field so far, especially due to their ability to coordinate to a heteroatom-

containing DMG (directing metallation group) leading to an ortho-lithiation.30 However, the 

high reactivity of the resulting Li-compounds is, as in the case of the halogen-magnesium 

exchange, associated with undesired side reactions and limited functional group tolerance. In 

that respect, an improvement was achieved with the works of Hauser31 and Eaton32. Amide 

bases of type R2NMgBr or (R2N)2Mg proved to be more stable than their corresponding Li-

analogues, compromising nevertheless the solubility and kinetic basicity.33  

The real breakthrough for the regioselective deprotonation came in 2006 when it was reported 

for the first time a highly soluble and inexpensive base of the type R2NMgCl·LiCl (10) that 

displayed a high kinetic activity (Scheme 10).34  

 

 

 
                                                 
 
27 Gilman, H.; Bebb, R. L. J. Am. Chem. Soc. 1939, 61, 109. 
28 Wittig, G.; Fuhrmann, G. Ber. Dtsch. Chem. Ges. 1940, 73, 1197. 
29 a) Gschwend, H. W.; Rodriguez, H. R. Org. React. 1979, 26, 1; b) Beak, P.; Snieckus, V. Acc. Chem. Res. 
1982, 15, 306; c) Snieckus, V. Chem. Rev. 1990, 90, 879; d) Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 
2297; e) Clayden, J.; Stimson, C. C.; Keenan, M. Chem. Commun. 2006, 1393; f) Henderson, K. W.; Kerr, W. J. 
Chem. -Eur. J. 2001, 3431; g) Turck, A.; Plé, N.; Mongin, F.; Quéguiner, G. Tetrahedron 2001, 57, 4489; h) 
Mongin, F.; Quéguiner, G. Tetrahedron 2001, 57, 4059; i) Leroux, F.; Jeschke, P.; Schlosser, M. Chem. Rev. 
2005, 105, 827; j) Kauch, M.; Hoppe, D. Synthesis 2006, 1578; k) Clegg, W.; Dale, S. H.; Hevia, E.; Honeyman, 
G. W.; Mulvey, R. E. Angew. Chem. Int. Ed. 2006, 45, 2371; l) Hodgson, D. M.; Miles, S. M. Angew. Chem. Int. 
Ed. 2006, 45, 93; m) Yus, M.; Foubelo, F. in Handbook of Functionalized Organometallics; Knochel, P. Ed.; 
Wiley-VCH: Weinheim, Germany, 2005; Vol. 1, p 7. 
30 a) Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. Int. Ed. 2004, 43, 2206; b) Schlosser, M. 
in Struktur und Reaktivität Polar Organometalle, Springer Verlag; Berlin, 1973; c) Wakefield, B. J. in The 
Chemistry of Organolithium Compounds, Pergamon; Oxford, 1974; d) Wardell, J. L. in Comprehensive 
Organometallic Chemistry; Wilkinson, E.; Stone, F. G. A.; Abel, E.; Eds.; Pergamon; Oxford 1982, Vol 1, 
Chapter 1; e) Bates, R. B.; Ogle, C. A. in Carbanion Chemistry; Springer Verlag; Berlin, 1983. 
31 a) Hauser, C. R.; Walker, H. G. J. Am. Chem. Soc. 1947, 69, 295; b) Hauser, C. R.; Frostick, F. C. J. Am. 
Chem. Soc. 1949, 71, 1350. 
32 a) Eaton, P. E.; Lee, C. H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016; b) Eaton, P. E.; Martin, R. M. J. 
Org. Chem. 1988, 53, 2728; c) Eaton, P. E.; Lukin, K. A. J. Am. Chem. Soc. 1993, 115, 11370; d) Zhang, M. -X.; 
Eaton, P. E. Angew. Chem. Int. Ed. 2002, 41, 2169.  
33  a) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem. Int. Ed. 2007, 46, 3802; b) 
Westerhausen, M. Dalton Trans. 2006, 4768; c) Kondo, Y.; Akihiro, Y.; Sakamoto, T. J. Chem. Soc., Perkin 
Trans.1 1996, 1, 2331.  
34 a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 2958; b) Lin, W.; Baron, O.; 
Knochel, P. Org. Lett. 2006, 8, 5673; c) Mosrin, M.; Knochel, P. Org. Lett. 2008, 10, 2497: d) Mosrin, M.; 
Boudet, N.; Knochel, P. Org. Biomol. Chem. 2008, 6, 3237. 
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Scheme 10: Preparation of the mixed Mg/Li amides of type 10. 

 

Similarly to the halogen-magnesium exchange, the accelerating effect induced by LiCl is 

attributed to the breaking of the oligomeric aggregates of the magnesium amides.33a In 

addition, these amide bases display an excellent thermal stability and can be stored as THF 

solutions at 25 °C for over 6 months with no decrease in concentration. Using 

TMPMgCl·LiCl (10a) for the regioselective metallation of arenes and heteroarenes, a wide 

range of new magnesium species of type 11 can be obtained, which would not be available 

otherwise (Scheme 11).34  

 

 

 

 

 

 

 

 

 

 

Scheme 11: Magnesiation of functionalized aromatic systems using TMPMgCl·LiCl (10a). 

 



A: General Introduction  11 
  

  

N
Li

N Mg·2LiCl
TMPMgCl·LiCl (10a)

0 °C, 30 min
      THF

2

12

FG
X

H
TMP2Mg·2LiCl (12)

CN
Mg(TMP)

N

CO2EtEtO2C

Mg(TMP)

OBoc
O

Ph

Mg(TMP)

FG
X

Mg(TMP)

O

O

O

Mg(TMP)

-40 to 25 °C
      THF

X = C, N 13

13a 13b 13c 13d

A more reactive magnesium bisamide base complexed with LiCl of the general type 

(R2N)2Mg·2LiCl proved to be more powerful than TMPMgCl·LiCl (10a).35 The new base 

TMP2Mg·2LiCl (12) was able to efficiently deprotonate even moderately activated arenes that 

could not be metallated using the monoamide base 10a (Scheme 12). Thus a number of 

metallated species of type 13 could be obtained (Scheme 13).35  

 

 

 

 

 

Scheme 12: Preparation of the magnesium bisamide base TMP2Mg·2LiCl (12). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 13: Regio- and chemoselective directed magnesiation using TMP2Mg·2LiCl (12). 

 

The new magnesium amide bases, along with their excellent stability and reactivity proved 

also to be compatible with a number of sensitive functional groups such as esters, nitriles and 

aryl ketones. However, in the case of sensitive heterocycles or in the presence of nitro groups 

or aldehydes, the magnesium bases were too reactive to allow a selective metallation. The 

need for a milder yet efficient metallating agent became therefore apparent. Based mainly 

upon the works of Kondo,36 Wunderlich and Knochel explored the preparation of a milder 

                                                 
 
35 a) Clososki, G. C.; Rohbogner, C. J.; Knochel, P. Angew. Chem. Int. Ed. 2007, 46, 7681; b) Rohbogner, C. J.; 
Clososki, G. C.; Knochel, P. Angew. Chem. Int. Ed. 2008, 47, 1503; c) Rohbogner, C. J.; Wunderlich, S. H.; 
Clososki, G. C.; Knochel, P. Eur. J. Org. Chem. 2009, 1781. 
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zincate base. Hence, treatment of TMPMgCl·LiCl (10a) with ZnCl2 resulted in the mixed 

Zn/Mg/Li base TMP2Zn·2MgCl2·2LiCl (14) (Scheme 14).34c, 37 

 

 

 

 

 

 

Scheme 14: Preparation of the zincate base TMP2Zn·2MgCl2·2LiCl (14). 

 

This novel base 14 displays a high activity for the zincation of sensitive heterocycles that are 

prone to decomposition when treated with the more reactive Mg- or Li-bases.36 Furthermore 

using 14, zincation was possible even in the presence of nitro groups or aldehydes to produce 

metallated compounds of type 15 (Scheme 15). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 15: Zincation of sensitive heterocycles even bearing an aldehyde or a nitro group 

using TMP2Zn·2MgCl2·2LiCl (14). 

                                                 
 
36 a) Kondo, Y.; Shilai, H.; Uchiyama, M.; Sakamoto, T. J. Am. Chem. Soc. 1999, 121, 3539; b) Imahori, T.; 
Uchiyama, M.; Kondo, Y. Chem. Commun. 2001, 2450; c) Schwab, P. F. H.; Fleischer, F.; Michl, J. J. Org. 
Chem. 2002, 67, 443; d) Uchiyama, M.; Miyoshi, T.; Kajihara, Y.; Sakamoto, T.; Otami, Y.; Ohwada, T.; 
Kondo, Y. J. Am. Chem. Soc. 2002, 124, 8514; e) Uchiyama, M.; Matsumoto, Y.; Nobuto, D-; Furuyama, T.; 
Yamaguchi, K.; Morokuma, K. J. Am. Chem. Soc. 2006, 128, 8748; f) Armstrong, D. R.; Clegg, W.; Dale, S. H.; 
Hevia, E.; Hogg, L. M.; Honeyman, G. W.; Mulvey, R. E. Angew. Chem. Int. Ed. 2006, 45, 2374; g) Naka, H.; 
Uchiyama, M.; Matsumoto, Y.; Wheatly, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am. Chem. Soc. 
2007, 129, 1921. 
37 a) Wunderlich, S. H.; Knochel, P. Angew. Chem. Int. Ed. 2007, 46, 7685; b) Wunderlich, S. H.; Knochel, P. 
Chem. Commun. 2008, 6387; c) Wunderlich, S. H.; Knochel, P. Org. Lett. 2008, 10, 4705. 
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Interestingly, by omitting the magnesium salt, Mosrin and Knochel managed to produce an 

even milder base that could perform metallations of sensitive substrates at 25 °C.38 This new 

mixed Zn/Li base TMPZnCl·LiCl (16) displays an excellent thermal stability and can be 

stored at 25 °C for more than one month (Scheme 16). 

 

 

 

 

 

Scheme 16: Preparation of the base TMPZnCl·LiCl (16). 

 

Contrary to TMP2Zn·2MgCl2·2LiCl (14), this new complex base TMPZnCl·LiCl (16) proved 

to be very good for chemoselective zincations of sensitive aromatics and heteroaromatics at 

25 °C yielding organozinc compounds of type 17 (Scheme 17). The very mild conditions 

under which the zincation proceeds, are of great importance especially for industrial 

applications and convenient reaction upscaling. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 17: Zincation of sensitive arenes and heteroarenes at 25 °C using TMPZnCl·LiCl 

(16). 

 

Overall, the amide bases described above represent very useful tools that can be applied to 

different molecular systems complementary, to achieve high yield metallations.  

                                                 
 
38 Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837. 
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4. Objectives 

After the development of powerful organomagnesium reagents for performing a Br/Mg-

exchange reaction, the field of the metallation of olefinic systems still remained to be 

explored. 

In a first project, the Br/Mg-exchange has been applied to the 1,2-difunctionalization of 

dibromocycloalkenes. The objectives were: 

• 1,2-difunctionalization of dibromocyclopentene derivatives, 

• extension of this methodology to dibromocyclohexene derivatives. 

 

  

 

 

 

Scheme 18: Difunctionalization of cycloalkenylic systems. 

 

The second project was a cooperation with Boehringer Ingelheim GmbH Austria and involved 

the functionalization of 4,5-dihydrobenzo[g]indazoles, a very important scaffold in the 

pharmaceutical industry. The aim of this work was: 

• application of the I/Mg-exchange on the two isomeric 4,5-dihydrobenzo[g]indazole 

heterocycles, 

• direct metallation using the developed amide-bases on the two isomeric 4,5-

dihydrobenzo[g]indazole heterocycles. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Scheme 19: Metallation of the isomeric 4,5-dihydrobenzo[g]indazoles. 
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The third project was devoted to the full functionalization of the pyrazole ring through 

successive regioselective metallations. Following goals needed to be achieved: 

• development of a general procedure for the synthesis of fully substituted pyrazoles 

with complete regiocontrol, starting from readily available unsubstituted pyrazoles, 

• application to the synthesis of the acaricide Tebufenpyrad. 

 

 

 

 
Scheme 20: Proposed full functionalization of the pyrazole core. 
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1. Functionalization of 1,2-Dibromocyclopentene Systems 

 

1.1  Introduction 

 

The cycloalkenylic system is a significant scaffold, present in many natural products. For 

example, cyclopentene derivatives have been isolated from the mushroom species Tricholoma 

columbetta. In fact, the total synthesis of the cyclopentenol derivative Columbetdione (18), 

reported in 2003 by Vidari involves a Br/Li-exchange. The exchange however proceeds 

at -78 °C and results in a mixture of diastereomers (Scheme 21).39 

 

 

 

 

 

 

Scheme 21: Total synthesis of Columbetdione through a Br/Li-exchange. 

 

Furthermore, 1,2-difunctionalized cyclopentene derivatives are also interesting for the 

pharmaceutical industry as potential nonsteroidal anti-inflammatory drugs (NSAIDs).40 1,2-

Diarylcyclopentenes have been reported as very potent and orally active cyclooxygenase 

inhibitors.40  

Nevertheless, cycloalkenes are most prominent in the field of supramolecular chemistry.41 

Trisannelated benzenes of polycyclic structures have attracted considerable interest in the past 

years, due to their unusual electronic features and geometries that make them suitable for 

applications in nanotechnology,42 in the field of liquid crystals43 and as linear polymers with 

                                                 
 
39 Vadalá, A.; Finzi, P. V.; Zanoni, G.; Vidari, G. Eur. J. Org. Chem. 2003, 642. 
40 Reitz, D. B.; Li, J. J.; Norton, M. B.; Reinhard, E. J.; Collins, J. T.; Anderson, G. D.; Gregory, S. A.; Koboldt, 
C. M.; Perkins, W. E.; Seibert, K.; Isakson, P. C. J. Med. Chem. 1994, 37, 3878. 
41 a) Hunter, C. A. Chem. Soc. Rev. 1994, 101; b) Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303; c) 
Lehn, J. -M. Supramolecular Chemistry, VCH, Weinheim, 1995; Diderich, F. Cyclophanes, The Royal Society 
of Chemistry, Cambridge, 1994. 
42 Balzani, V.; Credi, A.; Venturi, M. Chem. -Eur. J. 2002, 8, 5524. 
43 a) Felder, D.; Heinrich, B.; Guillon, D.; Nicoud, J. -F.; Nierengarten, J. -F. Chem. -Eur. J. 2000, 6, 3501; b) 
Cooke, G.; Kaushal, N.; Boden, N.; Bushby, R. J.; Lu, Z.; Lozman, O. Tetrahedron Lett. 2000, 41, 7955; c) 
Holder, S. J.; Elemans, J. A. A.; Donners, J. J. J. M.; Boeraskker, M. J.; de Gelder, R.; Barberá, J.; Rowan, A. E.; 
Nolte, R. J. M. J. Org. Chem. 2001, 66, 391. 
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π-conjugated carbon scaffolds.44 These interesting structures are mainly obtained through 

cyclotrimerization reactions of 1,2-dihalocycloalkenes. A halogen/lithium or a halogen/tin 

exchange furnishes the metallated intermediates 19 that can subsequently undergo a Pd- or 

Cu-catalyzed coupling (Scheme 22). 45  The Li-intermediates are, however, unstable and 

eliminate to form the very reactive alkynes, resulting thus in a mixture of products. De Lucchi 

manages in his work, by using trimethyltin substituted alkenes, to circumvent the rapid 

elimination with a compromise in the toxicity.46 Therefore, there exists a need for a simple 

generation of stable organometallic species of type 19 with a halogen at the β position. 

 

 

 

 

 

 

 

Scheme 22: Cyclotrimerization reaction of cycloalkenylic bromides of type 19. 

 

 

1.2  Selective mono-and 1,2-difunctionalization of cyclopentene derivatives 

 

1.2.1  Monofunctionalization using Br/Mg-exchange 

 

Recently, we have shown that an I/Mg-exchange using iPrMgCl·LiCl (6) allows a 

stereoselective preparation of alkenylmagnesium reagents starting from polyfunctional 

alkenyl iodides.22c, 25 Whereas this exchange proceeds at low temperatures, alkenyl bromides 

do not react with iPrMgCl·LiCl (6) even at 40-50 °C.25 Of special interest would be the 

preparation of magnesium derivatives of 1,2-dibromocycloalkenes, since the corresponding 

                                                 
 
44 Kosinski, C.; Hirsch, A.; Heinemann, F. W.; Hampel, F. Eur. J. Org. Chem. 2001, 3879. 
45 a) Gassman, P.; Gennick, I. J. Am. Chem. Soc. 1980, 102, 6863; b) Singh, S. B.; Hart, H. J. Org. Chem. 1990, 
55, 3412; c) Komatsu, K.; Aonuma, S.; Jinbu, Y.; Tsuji, R.; Hirosawa, C.; Takeuchi, K. J. Org. Chem. 1991, 56, 
195; d) Durr, R.; Cossu, S.; Lucchini, V.; De Lucchi, O. Angew. Chem. Int. Ed. 1997, 36, 2805. 
46 a) Cossu, S.; De Lucchi, O.; Paulon, A.; Peluso, P.; Zonta, C. Tetrahedron Lett. 2001, 42, 3515; b) Cossu, S.; 
Cimenti, C.; Peluso, P.; Paulon, A.; De Lucchi, O. Angew. Chem. Int. Ed. 2001, 40, 4086; c) Peluso, P.; De 
Lucchi, O.; Cossu, S. Eur. J. Org. Chem. 2002, 4032; d) Paulon, A.; Cossu, S.; De Lucchi, O.; Zonta, C. Chem. 
Commun. 2000, 1837; e) Zonta, C.; Cossu, S.; De Lucchi, O. Eur. J. Org. Chem. 2000, 1965; f) Dastan, A.; 
Uzundumlu, E.; Balci, M.; Fabris, F.; De Lucchi, O. Eur. J. Org. Chem. 2004, 183. 
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lithium organometallics 47  are elusive intermediates. Thus, a Br/Li-exchange on 2,3-

dibromobicyclo[2.2.1]hept-2-ene and 1,2-dibromocyclopentene (20) using nBuLi at -78 °C 

leads to unstable organolithium compounds, which decompose at room temperature within 

18 h (Scheme 23).48 

 

 

 

 

 

Scheme 23: Br/Li-exchange on 20, resulting in the formation of cyclopentyne. 

 

The reaction of 1,2-dibromocyclopentene (20) with iPrMgCl·LiCl (6; 1.1 equiv, 25 °C, 24-

30 h) provides the corresponding magnesium reagent 21 bearing a β-bromine (Scheme 24).  

 

 

 

 

 

Scheme 24: Br/Mg-exchange on 1,2-dibromocyclopentene (20) and subsequent trapping with 

electrophiles. 

 

Remarkably, this new magnesium species shows no tendency to eliminate MgClBr at room 

temperature and can be stored for more than a month at 25 °C as a 1 M solution in THF under 

argon with a minimal decrease in activity. Reactions of the magnesium reagent 21 with 

various electrophiles produced the functionalized cyclopentenyl bromides 22a-g in 65-82% 

yield (Table 1).  

Treatment of the magnesium reagent 21 with iodine provides the unsymmetrical 1-bromo-2-

iodocyclopentene (22a) in 82% yield (entry 1 of Table 1). Quenching of 21 with DMF gave 

                                                 
 
47 a) Luparia, M.; Vadalá, A.; Zanoni, G.; Vidari, G. Org. Lett. 2006, 8, 2147; b) Tranmer, G. K.; Yip, C.; 
Handerson, S.; Jordan, R. W.; Tam, W. Can. J. Chem. 2000, 78, 527; c) Dastan, A.; Uzundumlu, E.; Balci, M.; 
Fabris, F.; De Lucchi, O. Eur. J. Org. Chem. 2004, 183; d) Paquette, L. A.; Doyon, J. J. Am. Chem. Soc. 1995, 
117, 6799. e) Gassman, P. G.; Gennick, I. J. Am. Chem. Soc. 1980, 102, 6863; f) Foubelo, F.; Yus, M. Curr. 
Org. Chem. 2005, 9, 459. 
48 a) Wittig, G.; Krebs, A. Chem. Ber. 1961, 94, 3260; b) Wittig, G.; Pohlke, R. Chem. Ber. 1961, 94, 3276; c) 
Wittig, G. Rev. Chim. 1962, 7, 1393; d) Wittig, G.; Weinlich, J.; Wilson, E. R. Chem. Ber. 1965, 98, 458; e) 
Wittig, G.; Heyn, J. Liebigs Ann. Chem. 1969, 726, 57; f) Wittig, G.; Heyn, J. Liebigs Ann. Chem. 1972, 756, 1; 
g) Gilbert, J. C.; Hou, D. -R.; Grimme, J. W. J. Org. Chem. 1999, 64, 1529. 
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the β-bromo-unsaturated aldehyde 22b (82%, entry 2). Reactions with aliphatic and aromatic 

aldehydes afford the allylic alcohols 22c and 22d in 77–80% yield (entries 3 and 4). 

Dimerization of 21, leading to 22e (entry 5), was best performed via a palladium-catalyzed 

Negishi cross-coupling49 in 80% yield. The reaction with (iPrO)3B, followed by the addition 

of 2,2-dimethylpropane-1,3-diol, yielded the cycloalkenyl boronic ester 22f in 72% yield 

(entry 6). Benzoylation of 21 after transmetallation with ZnCl2 and addition of CuCN·2LiCl 

(20 mol%) provided the ketone 22g in 65% yield (entry 7).50 

 

 

Table 1. Reactions of β-bromoalkenylmagnesium chloride (21) with various electrophiles. 

Entry Electrophile Product Yield [%]a 

1 I2 
I

Br
22a

 
82 

2 DMF 
CHO

Br
22b

 
82 

3 
CHO

 
Br

HO

22c
 

80b 

4 

CHO

OMe

MeO

 Br

HO
OMe

OMe

22d

 

77b 

5 
I

Br  
Br

Br

22e

 

80c 

                                                 
 
49 Negishi, E.; King, A. O.; Okukado, N. J. Org. Chem. 1977, 42, 1821. 
50 Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390. 
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Br

Br

R

MgCl·LiCl

R

E

1) RMgCl·LiCl 
    (2.4-3.0 equiv)
    5→9 h, 25 °C
    THF Electrophile (E)

0 °C, THF2) Li2CuCl4, (2 mol%) 
    8→12 h, -10→0 °C
    THF20 23a: R = iPr

23b: R = sBu
23c: R = cPent

24a-g: 63-79%

6 
1) (iPrO)3B
2) HO OH

 
B

Br

O

O

22f
 

72 

7 PhCOCl 

Br

Ph

O

22g
 

65d 

a Yield of analytically pure product. b These experiments were performed by Dr. R. Bauer and are given here for 

the sake of completeness. c 21 was transmetallated with ZnCl2 (1 equiv), followed by the addition of Pd(dba)2 

(5 mol%) and tfp (7 mol%). d At -20 °C, 21 was transmetallated with ZnCl2 (1 equiv), then CuCN·2LiCl (20 

mol%). 

 

 

1.2.2  Difunctionalization via Cu-intermediates 

 

In the presence of an excess of iPrMgCl·LiCl (6; 2.4 equiv) and a catalytic amount of 

Li2CuCl4 (2 mol%, 0 °C, 8–12 h), the β-bromine of the intermediate Grignard reagent 21 is 

substituted by an isopropyl group, furnishing the Grignard reagent 23a (Scheme 25). 

 

 

 

 

 

 

 

Scheme 25: Preparation of alkenylmagnesium reagents 23 via a Cu-catalyzed coupling and 

subsequent reaction with electrophiles. 

 

After transmetallation with ZnCl2, a copper-catalyzed acylation50 yielded the unsaturated 

ketone 24a (entry 1 of Table 2). Quenching with aldehydes provided the allylic and benzylic 

alcohols 24b-g in 63-79% yield over 3 steps in a one-pot procedure (entries 2-7). An excess 

of alkylmagnesium reagent was necessary to overcome undesired homocoupling reactions; 

this was most prevalent when c-C5H9MgCl·LiCl was used, requiring 3 equivalents of the 

reagent to complete both the exchange and coupling steps. Expanding the scope of the 
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reaction beyond secondary alkylmagnesium reagents proved to be unsuccessful. With 

nBuMgCl, nBuLi, tBuMgCl, PhMgCl, and PhLi, coupling between alkenylmagnesium 

species (of both types 21 and 23) was a major side-reaction. Preliminary experiments also 

showed the same difficulties when allyl- and benzylorganomagnesium reagents were used. 

 

Table 2. Products of type 24 obtained via a Cu-catalyzed coupling.a 

Entry RMgCl·LiCl Electrophile Product 
Yield 

[%]b 

1 
iPrMgCl·LiCl 

(2.4 equiv) 

PhCOCl 

(1.5 equiv) 
iPr

O

Ph
24a

 

66c 

2 
iPrMgCl·LiCl 

(2.4 equiv) 

tBuCHO 

(1.5 equiv) 
iPr

HO

tBu
24b

 

74 

3 
sBuMgCl·LiCl 

(2.8 equiv) 

PhCHO 

(1.6 equiv) 
sBu

HO

Ph
24c

 

68 

4 
sBuMgCl·LiCl 

(2.8 equiv) 

CHO

F3C

(1.6 equiv)  sBu

HO

CF3
24d

 

79 

5 
sBuMgCl·LiCl 

(2.8 equiv) 

CHOMeO

OMe
(1.6 equiv)  

sBu

HO
OMe

OMe

24e

 

63 

6 
cPentMgCl·LiCl 

(3.0 equiv) 

CHO

F3C
(1.7 equiv)  

HO

CF3
24f

 

73 
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27a : 72%

27c : 63%

27b : 58%

Br

Br

DMF, THF

I

CO2Et

THF

Ph

O

iPr

CHO

iPr

CO2Et

iPr

MgCl·LiCl

iPr

1) iPrMgCl·LiCl (6; 2.2 equiv)
2) Li2CuCl4 (1 mol%), THF

1) ZnCl2 (1 equiv)
2) Pd(dba)2 (5 mol%), tfp (7 mol%)

1) ZnCl2 (1 equiv)
2) CuCN·2LiCl (20 mol%)
3) PhCOCl (1.3 equiv), THF

25 26

26

7 
cPentMgCl·LiCl 

(3.0 equiv) 

CHO

Cl
(1.7 equiv)  

HO

Cl
24g

 

65 

a These experiments were performed by Dr. R. Bauer and are given here for the sake of completeness. bIsolated, 

analytically pure product. cAt -20 °C, 23a was transmetallated with ZnCl2 (1 equiv), then CuCN·2LiCl 

(20 mol%). 

 

Extension of this reactivity pattern to the norbornadiene framework 51 was effective, as shown 

in Scheme 26. Compared to 1,2-dibromocyclopentene (20), the Br/Mg-exchange on 1,2-

dibromonorbornadiene (25) proceeded at a similar rate (25 °C, 7 h) and coupling with 

iPrMgCl was accomplished using Li2CuCl4 (1 mol%) (Scheme 26).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 26: Preparation and reactions of norbornadienylmagnesium reagent (26). 

 

The reaction of 26 with DMF produced the unsaturated aldehyde 27a in 72% yield. 

Transmetallation of 26 to the corresponding zinc reagent, followed by copper-catalyzed50 

                                                 
 
51 a) Tranmer, G. K.; Tam, W. Synthesis 2002, 1675; b) Yoo, W. -J.; Tsui, G. C.; Tam, W. Eur. J. Org. Chem. 
2005, 1044. 
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benzoylation, afforded the unsaturated ketone 27b. Negishi49 cross-coupling with ethyl 4-

iodobenzoate gave the arylated norbornadiene 27c in 63% yield (Scheme 26).  

 

 

1.2.3  Mechanistic studies 

 

The mechanism of this copper-catalyzed bromine-substitution reaction was investigated. 

Under our standard conditions, the Grignard reagent 21 did not appear to eliminate MgClBr 

to provide cyclopentyne. No trapping of this highly reactive intermediate could be achieved 

by the addition of furan, 2,3,4,5-tetraphenylcyclopentadienone or dihydropyran. 52  We 

therefore prepared the unsymmetrical bicyclo[2.2.1]alkenyl-2,3-dihalide 28 in order to 

determine the regioselectivity of the cross-coupling. The synthesis of the 2-bromo-3-

iodocamphor derivative 28 was accomplished regioselectively starting from D-camphor 29 

over 4 steps in 40% overall yield. Reaction of the D-camphor 29 with hydrazine furnished 

hydrazone 30 in 88% yield that was then subjected to a Shapiro reaction, yielding according 

to the published procedure53 a 1:1 mixture of the desired bromide 31 and the Meerwein 

rearrangement product 32. Deprotonation at the vinylic position with LDA occurred only in 

31. In situ trapping with trimethyltin chloride as described by De Lucchi54 afforded the tin 

derivative 33. The last step was an Sn/I-exchange reaction on the cycloalkenyltin derivative 

33, yielding the iodide 28 in 60% (Scheme 27).54 

 

 

 

 

 

 

 

 

 

 

                                                 
 
52 a) Gilbert, J. C.; McKinley, E. G.; Hou, D. -R. Tetrahedron 1997, 53, 9891; b) Gilbert, J. C.; Hou, D. -R.; 
Grimme, J. W. J. Org. Chem. 1999, 64, 1529; c) Gilbert, J. C.; Hou, D. -R. J. Org. Chem. 2003, 68, 10067. 
53 a) Cremlyn, R.; Bartlet, M.; Lloyd, J. Phosphorus, Sulfur, and Silicon and the related elements 1988, 40, 91. 
b) Pross, A.; Sternhell, S. Aust. J. Chem. 1971, 24, 1437. 
54 Fabris, F.; Zambrini, L.; Rosso, E.; De Lucchi, O. Eur. J. Org. Chem. 2004, 3313.  
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O N NH2 Br Br

Br

SnMe3

Br

I

NH2NH2 H2O

Et2O

I2

nBuOH
H2SO4, kat.

32: 1

Br2, Pyridine
+

31: 1 :30: 88%
75%

1) LDA

2) Me3SnCl
3) 60 °C, ~ 0.1 mbar

28: 60%33

29

 

 

 

 

 

 

 

 

 

 

Scheme 27: Synthesis of (R)-2-bromo-3-iodo-1,7,7-trimethylbicyclo[2.2.1]hept-2-ene (33). 

 

An I/Mg-exchange on the dihalide 28 with iPrMgCl·LiCl (6; 1.1 equiv) proceeded at 0 °C 

within 1 h. The Grignard reagent 34 proved to be significantly less reactive than the 

corresponding norbornadiene derivative 26. Best results for the copper-catalyzed coupling of 

34 with iPrMgCl were obtained by using a stoichiometric amount of CuCN·2LiCl. The 

Grignard reagent 35, after transmetallation to zinc and copper-catalyzed acylation50 with 

benzoyl chloride yielded the unsaturated ketone 36 in 30% overall yield from 28 (Scheme 

28).55  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
 
55 A small amount of the other regioisomer of 35 was observed by GC/MS analysis (major:minor 92:8) but was 
not isolated. 
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iPrMgCl·LiCl (6)
CuCN·2LiCl
-60→10 °C
      THF

-30→ 25 °C
     THF

I

Br

iPrMgCl·LiCl (6)

ZnCl2
CuCN·2LiCl

PhCOCl

MgCl·LiCl

iPr

MgCl·LiCl

Br

O

Ph

iPr

0 °C, 1 h, THF

28 34 35

36 : 30%

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 28:. Regioselective Cu-catalyzed cross-coupling of alkenyl- and alkylmagnesium 

species. 

 

Characterization by 1D and 2D NMR experiments, as well as by X-ray crystallographic 

analysis, confirmed the structure of 36, proving that the new carbon-carbon bond with iPr is 

formed at the carbon atom that initially bore the bromine atom (Figure 1).56 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: X-ray-structure of compound 36. 

                                                 
 
56 Full details about atomic coordinates, bond lengths and bond angles can be obtained from The Cambridge 
Crystallographic Data Centre (CCDC 650282) via www.ccdc.cam.ac.uk/data-request/cif. 
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MgCl·LiCl

Br

MgCl·LiCl

Cu(CN)MgCl·3LiCl

BrMgCl·LiCl

MgCl·3LiCl

Cu(CN)

CuCN·2LiCl

MgCl·LiCl

34

37

35

Therefore, we propose the following mechanism for the copper-catalyzed coupling (Scheme 

29). Transmetallation of iPrMgCl to iPrCu(CN)Li, followed by oxidative addition of the 

carbon-bromine bond in 34 tentatively generates intermediate 37. Reductive elimination gives 

intermediate 35, which is acylated with benzoyl chloride upon transmetallation with 

CuCN·2LiCl (1 equiv). Alternatively, the reaction may proceed through a cuprio(III)-

cyclopropane intermediate, 57  which produces the alkenylmagnesium reagent 35 via a β-

elimination assisted by the polymetallic components of the organocuprate.  

 

 

 

 

 

 

 

 

 

 

 

Scheme 29: Tentative mechanism for the regioselective Cu(I) catalyzed cross-coupling 

reaction. 

 

The presence of a carbon-magnesium bond in β-position to the carbon-bromine bond as found 

in compound 34 may have an accelerating effect for such cross-couplings. This rate increase 

is also found with a related alkenyl bromide bearing a carbon-tin bond in β-position, as was 

proved by a kinetic measurement experiment. 1-Bromocyclopentene58 (1.0 equiv) and 1-

(trimethylstannyl)-2-bromocyclopentene59 (1.0 equiv) were cooled to -65 °C. iPrMgCl·LiCl 

(2.0 equiv) as well as CuCN·2LiCl (4 mol%) were added, and the reaction mixture was 

allowed to slowly warm up to 5 °C over 5 h. The progress of the reaction was monitored by 

GC analysis of hydrolyzed reaction aliquots, taken every 30 min. It was observed that 1-

(trimethylstannyl)-2-bromocyclopentene (t1/2 = 60 min) reacted much faster with 

                                                 
 
57 For a more detailed description of the mechanism of the substitution reaction on an sp2 carbon see: Yoshikai, 
N.; Nakamura, E. J. Am. Chem. Soc. 2004, 126, 12264. 
58 Roman, U.; Ruhdorfer, J.; Knorr, R. Synthesis 1993, 10, 985. 
59 Corey, E. J.; Estreicher, H. Tetrahedron Lett. 1980, 21, 1113. 
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Rate of Copper-Catalyzed Alkylation of 
Bromocyclopentene Derivatives
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1-bromocyclopentene 1-(trimethylstannyl)-2-bromocyclopentene

iPrMgCl·LiCl and catalytic CuCN·2LiCl compared to 1-bromocyclopentene (t1/2 = 135 min). 

1-(Trimethylstannyl)-2-bromocyclopentene was fully consumed within 150 min. The results 

are summarized in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Rate of copper-catalyzed alkylation of two bromocyclopentene derivatives. 

 

 

1.3  Difunctionalization of cyclohexene derivatives 

 

Εxtending this work to the cyclohexene system proved more difficult. Starting from the 1,2 

dibromocyclohexene (38) selective Br/Mg-exchange could not be achieved. Fast MgBrCl 

elimination under formation of cyclohexyne led always to byproducts of type 39-41 (Scheme 

30). 
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Br

Br

iPrMgCl·LiCl MgCl·LiCl

Br

-MgClBr iPrMgCl·LiCl

MgCl·LiCl MgCl·LiCl

25 °C

+

38

39 40 41

2 NuH

iPrMgCl·LiCl

Nu MgCl·LiCl
iPrMgCl·LiCl

Br

Br
MgCl·LiCl

Nu

E

Nu

E+

25 °C, 15 min

25 °C, 20 h

(6; 2.2 equiv)
2

(6; 1.1 equiv)

Nu = SPh, NPh2, NPhMe, indolyl Nu = SPh:     42
Nu = NPh2:    44
Nu = NPhMe: 46 
Nu = indolyl:   48

Nu = SPh:     43
Nu = NPh2:    45
Nu = NPhMe: 47
Nu = indolyl:   49

 

 

 

 

 

 

 

 

 

 

Scheme 30: Attempt of a Br/Mg-exchange on dibromocyclohexene 38.  

 

Contrary to the cyclopentene system, the less strained cyclohexene ring was more prone to 

form a triple bond, so that all attempts to prohibit the elimination step failed. 

Interestingly, a 1,2-difunctionalization of the dibromocyclohexene 38 could be achieved when 

the Br/Mg-exchange is performed in the presence of an excess of a strong nucleophile 

(Scheme 31). 

 

 

 

 

 

 

 

 

 

Scheme 31: 1,2-Difunctionalization of dibromocyclohexene 38. 

 

Hence, a number of different difunctionalized cyclohexenes could be prepared (Table 3). 

Performing the Br/Mg-exchange of dibromocyclohexene 38 in the presence of magnesiated 

thiophenol generated the new organomagnesium compound 42 that was subsequently trapped 

with PhSSO2Ph or pivaldehyde to furnish the expected products 43a and 43b in 56% and 63% 

yields respectively (Table 3, entries 1 and 2). Similarly, reaction with the magnesiated 

diphenyl amine gave organomagnesium reagent 44, which could be allylated in the presence 
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of CuCN·2LiCl affording the cyclohexene derivatives 45a and 45b in 50-61% yield (entries 3 

and 4). Trapping of 44 with benzaldehyde produced the corresponding alcohol 45c in 49% 

yield (entry 5). Apart from diphenylamine, other secondary amines could also be employed. 

Thus, in the presence of N-methylaniline or indoline, cyclohexenylmagnesium reagents 

46 and 48 were obtained respectively. Their Cu(I) catalyzed allylation afforded the 

difunctionalized cyclohexenes 47 and 49 in 50-52% yield (entries 6 and 7). 

 

 

Table 3. Products obtained from a one-pot difunctionalization of cyclohexene. 

Entry Nucleophile (NuH) Electrophile Product 
Yield 

[%]a 

1 

 

PhSH 

 

PhSSO2Ph 
SPh

SPh
43a

 
56 

2 

 

PhSH 

 

 

t-BuCHO 

 SPh

OH

tBu43b
 

63 

3 

 

Ph2NH 

 
CO2Et

Br  NPh2

CO2Et

45a
 

50b 

4 

 

Ph2NH 

 
Br  

NPh2

45b
 

61b 

5 

 

Ph2NH 

 

PhCHO 

NPh2

OH

Ph45c
 

49 
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6 MeNHPh Br  
N
Ph

Me
47

 

52b 

7 N
H  

Br  N
49

 

50b 

a Isolated, analytically pure product. b Catalyzed with 20 mol% CuCN·2LiCl. 

 

A one pot difunctionalization, similarly to the cyclopentene difunctionalization, can thus be 

achieved. However, this reaction proceeds in poor yields and is limited to the use of amines or 

thiols as nucleophiles. Performing the reaction in the presence of aryl or alkyl Grignard 

reagents resulted in complex mixtures of dimeric and trimeric structures of type 39-41.  
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2. Functionalization of 4,5-Dihydrobenzo[g]indazoles using Mg- and Zn- 
Heterocyclic Intermediates 

 

2.1  Introduction 

 

Fused pyrazoles and their derivatives are known to possess a wide range of biological 

activities.60 For example, pyrazoles fused to a steroid A-ring have been reported to enhance 

anti-inflammatory activity.61 Other tricyclic pyrazoles show antimicrobial, antiallergic and 

non-estrogenic contraceptive activities.62 Since steroid based pharmaceuticals often have side 

effects in living organisms, these non-steroidal pyrazole derivatives may deserve attention as 

potential steroid-analogues. 63  It is therefore, of great interest, especially for the 

pharmaceutical industry to develop a general method to obtain functionalized 4,5-

dihydrobenzo[g]indazoles. The metallation procedures developed in our group64 enable the 

introduction of different substituents to a heterocycle, giving thus an easy access to various 

analogs. This approach may find huge application in the industry, since it allows a fast 

generation of molecular libraries just by modifying an already existing heterocyclic core. 

 

4,5-Dihydrobenzo[g]indazole derivatives occur in two isomeric forms, namely of type 50 and 

51. In order to study the metallation of these heterocycles, both isomers were prepared and 

                                                 
 
60 a) Shenone, S.; Bruno, O.; Ranise, A.; Brullo, C.; Bondavalli, F.; Filippelli, W.; Mazzeo, F.; Capuano, A. 
Falcone, G. Il Farmaco 2003, 58, 845; b) Pinna, G. A.; Pirisi, M. A.; Grella, G. E.; Gherardini, L.; Mussinu, J. 
M.; Paglietti, G.; Ferrari, A. M.; Rastelli, G. Arch. Pharm. Med. Chem. 2001, 334, 337. 
61 a) Hamilton, R. W. J. Heterocyclic Chem. 1976, 13, 545; b) Hirschmann, R.; Buchschacher, P.; Steinberg, N. 
G.; Fried, J. H.; Ellis, R.; Kent, G. J.; Tischler, M. J. Am. Chem. Soc. 1964, 86, 1520. 
62 a) Sivaprasad, G.; Sridhar, R.; Perumal, P. T. J. Heterocyclic Chem. 2006, 43, 389; b) Habeck, D. A.; 
Houlihan, W. J. Chem. Abstr. 1977, 84, 121821; c) Coombs, R. V.; Houlihan, W. J. Chem. Abstr. 1974, 82, 
57687; d) Coombs, R. V.; Houlihan, W. J. Chem. Abstr. 1974, 82, 57684; e) Habeck, D. A.; Houlihan, W. J. 
Chem. Abstr. 1974, 81, 25661; f) Arnold, L. D.; Xu, Y.; Barlozzari, T. Chem. Abstr. 1999, 130, 282067; g) Di 
Parsia, M. T.; Suarez, C.; Vitolo, M. J.; Marquez, V. E.; Beyer, B.; Urbina, C.; Hurtado, I. J. Med. Chem. 1981, 
24, 117; h) Bondavalli, F.; Longobardi, M.; Schenone, P. Farmaco, Ed. Sci. 1975, 30, 391; i) Ramalingam, K.; 
Wong, L. F.; Berlin, K. D.; Brown, R. A.; Fischer, R.; Blunk, J.; Durham, N. N. J. Med. Chem. 1977, 20, 664; j) 
Hashem, M. M.; Berlin, K. D.; Chesnut, R. W.; Durham, N. N. J. Carbohydr., Nucleosides, Nucleotides 1975, 2, 
357; k) Hashem, M. M.; Berlin, K. D.; Chesnut, R. W.; Durham, N. N. J. Med. Chem. 1976, 19, 229; l) Chesnut, 
R. W.; Haslam, D. F.; Durham, N. N.; Berlin, K. D. Can. J. Biochem. 1972, 50, 516; m) Morgan, J. G.; Berlin, 
K. D.; Durham, N. N.; Chsnut, R. W. J. Heterocycl. Chem. 1971, 8, 61; n) Hartmann, R. W.; Waechter, G. A.; 
Sergejew, T.; Wuertz, R.; Dueerkop, J. Arch. Pharm.(Weinheim, Germany) 1995, 328, 573; o) Deeb, A.; 
Bayoumy, B.; Hataba, A.; Fikry, R. Heterocycles 1991, 32, 901; p) Allen, M. S.; Skolnick, P.; Cook, J. M. J. 
Med. Chem. 1992, 35, 368.  
63 a) Vazquez Lopez, E. A.; Klimova, E. I.; Klimova, T.; Toledano, C. A.; Ramirez, L. R.; Toscano, R. A.; 
Garcia, M. M. Synthesis 2004, 2471; b) Schvekhgeimer M. G. A. Russ. Chem. Rev. 1996, 65, 80. 
64 Knochel, P. Handbook of Functionalized Organometallics, Knochel, P., Ed., Wiley-VCH, Weinheim, 2005. 
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N N
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 PG = Bn or CH2OEt; X = I or H

metallation

52

53

subjected to I/Mg-exchange or deprotonation reactions leading to the organometallic reagents 

52 and 53 respectively (Scheme 32). 

 

 

 

 

 

 

 

 

 

 

 

Scheme 32. Metallation of the dihydrobenzo[g]indazoles of type 50 and 51. 

 

 

2.2  I/Mg-exchange on 4,5-Dihydro[g]indazoles 

 

The required 4,5-dihydrobenzo[g]indazoles of type 50 and 51 were readily prepared from 

commercially available materials. The reaction of α-tetralone (54) with dimethylformamide 

dimethylacetal under microwave irradiation (150 °C, 1 h) gave the alkylidene ketone 55. 

Subsequent addition of hydrazine in acetic acid (25 °C, 3 h) furnished the desired 4,5-

dihydrobenzo[g]indazole 56 in 60% yield. Protection of the pyrazole moiety with Boc2O gave 

tert-butyl-4,5-dihydro-benzo[g]indazole-2-carboxylate (57) as a single isomer in 91% yield 

(Scheme 33). 
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Scheme 33: Preparation of tert-butyl-4,5-dihydro-benzo[g]indazole-2-carboxylate (57). 

 

Using commercially available TMPMgCl·LiCl (10a) base,65 we were able to deprotonate 57 

selectively at the C3 position of the pyrazole ring at -30 °C within 2 h (Scheme 34). Reaction 

of the resulting magnesiated intermediate with Et3SiCl furnished the 3-triethylsilanyl-4,5-

dihydrobenzo[g]indazole (58) in 60% yield. The Boc-protecting group, known in this kind of 

systems to be very labile, was cleaved during the workup. 

 

 

 

 

 

 

 

Scheme 34: Deprotonation of tert-butyl-4,5-dihydrobenzo[g]indazole-2-carboxylate (57) at 

C3 and reaction with Et3SiCl. 

 

The silylated benzo[g]indazole 58 was then benzylated ((i)NaH, NMP; (ii) BnBr, NMP, 

25 °C, 5 h) providing a mixture of the 1-benzyl-3-triethylsilanyl-4,5-dihydro-1H-

                                                 
 
65 TMPMgCl·LiCl is available from Chemetall (Frankfurt) and Aldrich. 
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2) BnBr, NMP
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N N
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N N
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  ICl, CH2Cl2
0 °C to 25 °C
     3 - 6 h
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59 60

benzo[g]indazole (59) and the 2-benzyl-3-triethylsilanyl-4,5-dihydro-2H-benzo[g]indazole 

(60) which could be separated by column chromatography and isolated in 45% and 21% 

yields respectively (Scheme 35). 

 

 

 

 

 

 

Scheme 35: Benzylation of 4,5-dihydrobenzo[g]indazole 58. 

 

The silyl group of the benzo[g]indazoles 59 and 60 was readily converted to the 

corresponding heterocyclic iodides 61 and 62 by the reaction with ICl in CH2Cl2 (25 °C, 

3-6 h) in 70-72% yields (Scheme 36). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 36: Iodination of benzo[g]indazoles 59 and 60 with ICl. 

 

The iodinated derivatives 61 and 62 were then magnesiated by using an I/Mg-exchange. In 

both cases, a full conversion to the corresponding organomagnesium reagents could be 

achieved using commercially available iPrMgCl·LiCl (6) at -30 °C, leading to the 

corresponding organomagnesium species 63 and 64 (Scheme 37). Interestingly, the I/Mg-
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N
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N N
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Bn

 iPrMgCl·LiCl
(6; 1.1 equiv)

THF, -30 °C, 2 h

THF, -30 °C, 30 min

61

62

63 >90%

64 >90%

 iPrMgCl·LiCl
(6; 1.1 equiv)

exchange rate of 61 was ca. 4 times slower than for the isomer 62, which may be indicative 

for the enhanced stability of 63 compared to 64. 

 

 

 

 

 

 

 

 

 

 

 

Scheme 37: I/Mg-exchange on the isomeric benzo[g]indazoles 61 and 62. 

 

Trapping the magnesiated species 63 and 64 with various electrophiles furnished a range of 

C3-substituted benzo[g]indazoles 65a-f and 66a-d as summarized in Tables 4 and 5. Thus, 

after a transmetallation of the magnesium reagent 63 with ZnCl2, Negishi49 cross-coupling 

reactions with aryl iodides could be carried out furnishing 65a and 65b in 68% and 59% 

yields respectively (Table 4, entries 1 and 2). Reacting 63 with N-methoxy-N-methyltrifluoro-

acetamide provided the ketone 65c in 73% yield (entry 3). Trapping 63 with DMF or 

benzaldehyde resulted in the formation of aldehyde 65d and alcohol 65e in 63% and 61% 

yields, respectively (entries 4 and 5). Transmetallation with CuCN·2LiCl enabled the 

allylation of 63 with allyl bromide, furnishing 65f in 75% yield (entry 6). 

Similarly, the 3-magnesiated heterocycle 64 also undergoes Negishi49 cross-coupling 

reactions (after transmetallation with ZnCl2) affording benzo[g]indazoles 66a and 66b in 65% 

and 67% yields respectively (Table 5, entries 1 and 2). Alcohol 66c was obtained in 68% 

yield after subsequent trapping of 64 with benzaldehyde (entry 3). Allylation of 64 with allyl 

bromide afforded (after transmetallation with CuCN·2LiCl) 66d in 74% yield (entry 4). 
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Table 4. Reactions of the 3-magnesiated heterocycle 63 with electrophiles leading to products 

65a-f. 

Entry Electrophile Product of type 65 Yield [%]a 

1 

I

CO2Et  N
N

Bn

CO2Et

65a

 

68b 

2 

 
I

CF3  
N

N

Bn

CF3

65b

 

59b 

3 N

O

CF3
MeO

Me  
N

N

COCF3

Bn

65c

 

73 

4 DMF 
N

N

CHO

Bn

65d

 

63 

5 PhCHO 
N

N

Bn

HO
Ph

65e

 

61 

6 Br  
N

N

Bn

65f

 

75c 

a Isolated, analytically pure product. b Obtained after transmetallation with ZnCl2 (1.0 equiv) by palladium-

catalyzed cross-coupling using Pd(dba)2 (5 mol%) and tfp (10 mol%). cTransmetallation with CuCN·2LiCl (1.0 

equiv). 
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Table 5. Reactions of the 3-magnesiated heterocycle 64 with electrophiles leading to products 

66a-d. 

Entry Electrophile Product of type 66 Yield [%]a 

1 

I

CO2Et  N
N Bn

CO2Et

66a

 

67b 

2 

 
I

CF3  
N

N Bn

CF3

66b

 

65b 

3 PhCHO 
N

N Bn

HO
Ph

66c

 

68 

4 Br  
N

N Bn
66d

 

74c 

a Isolated, analytically pure product. b Obtained after transmetallation with ZnCl2 (1.0 equiv) by palladium-

catalyzed cross-coupling using Pd(dba)2 (5 mol%) and tfp (10 mol%). cTransmetallation with CuCN·2LiCl (1.0 

equiv). 

 

The reactivity difference of the two isomeric iodides 61 and 62 becomes more apparent when 

performing a zinc insertion.66 In the case of 62, the insertion in the presence of LiCl was 

complete within 12 h at 25 °C, leading to the corresponding zinc reagent which undergoes a 

Negishi49 cross-coupling furnishing 66a in 52% yield (Scheme 38). However, benzo[g]-

indazole 61 proved to be inert towards zinc insertion, even at higher temperatures. 

 

 

 

 

                                                 
 
66 Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040. 
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56

 

 

 

 

 

 

 

 

Scheme 38: Zn-insertion in compound 62 and cross-coupling with ethyl 4-iodobenzoate. 

 

 

2.3  Regioselective metallations on 4,5-dihydro[g]indazoles 

 

Next, we examined the metallation of benzo[g]indazoles of type 50 and 51 by performing 

deprotonation reactions using the new mixed Mg/Li- and Zn/Mg/Li-amide bases of type 10a, 

12 and 14. However, deprotonation in the presence of the benzyl protecting group occurred 

solely at the benzylic position of the protecting group. Therefore we changed to the 

ethoxymethyl as a protecting group. Thus, treatment of 56 at 25 °C with NaH and subsequent 

trapping with EtOCH2Cl yielded 10% of 1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazole 

(67) and 50% of 2-ethoxymethyl-4,5-dihydro-2H-benzo[g]indazole (68) which could be 

readily separated by column chromatography (Scheme 39).  

 

 

 

 

 

 

Scheme 39: Protection of 56 with (chloromethoxy)ethane. 

 

The heterocycles 67 and 68 proved to be well suited for several directed metallations. Thus, 

protected benzo[g]indazole 67 was deprotonated using TMP2Zn·2MgCl2·2LiCl (14) under 

microwave irradiation, leading to the zinc organometallic 69 (Scheme 40).  
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71: >90%

2

 

 

 

 

 

 

 

 

 

 

 

Scheme 40: Selective deprotonation of 67 at C3 using TMP2Mg·2MgCl2·2LiCl (14) and 

TMPMgCl·LiCl (10a). 

 

This zinc reagent readily undergoes a Negishi49 cross-coupling with ethyl 4-iodobenzoate 

using Pd(dba)2 (5 mol%) and (o-furyl)3P (10 mol%) as catalyst providing the expected 

product 70a in 62% yield (Table 6, entry 1). The reaction of 69, after transmetallation with 

CuCN·2LiCl50, with an acyl chloride afforded the expected product 70b in 55% yield (entry 

2). Magnesiation of the benzo[g]indazole 67 could also be performed using base 

TMPMgCl·LiCl (10a) at -20 °C (Scheme 41). The magnesiated species 71 was successfully 

added to pivaldehyde leading to the corresponding alcohol 70c in 60% yield (entry 3). After 

transmetallation with CuCN·2LiCl, the organomagnesium reagent 71 reacted with allyl 

bromide to furnish the allylated product 70d in 68% (entry 4).  

 

 

 

 

 

 

 

 

 

 

 



B: Results and Discussion  41 
  

  

Table 6. Reactions of the metallated species 69 and 71 with electrophiles leading to products 

70a-d. 

Entry 
Mg- orZn- 

reagent 
Electrophile Product of type 70 

Yield 

[%]a 

1 69 

I

CO2Et  
N

N

OEt

CO2Et

70a

 

62b 

2 69 

 

COCl
Cl

 
N

N

OEt

O
Cl

70b

 

55c 

3 71 tBuCHO 
N

N

OEt

HO

70c

 

60 

4 71 Br  N
N

OEt

70d

 

68c 

a Isolated, analytically pure product. b Obtained after transmetallation with ZnCl2 (1.0 equiv) by palladium-

catalyzed cross-coupling using Pd(dba)2 (5 mol%) and tfp (10 mol%). cTransmetallation with CuCN·2LiCl (1.0 

equiv). 
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EtO

N N

EtO

MgTMP

68

TMP2Mg·2LiCl
 (12; 1.1 equiv)
THF, 0 °C, 12 h

72: >90%

Benzo[g]indazole 68, proved to be more difficult to deprotonate at the C3 position. Treatment 

of 68 with TMPMgCl·LiCl (10a) gave only a conversion of 80% after stirring for 48 h at 

25 °C. However, by using the stronger base TMP2Mg·2LiCl (12), a full conversion to the 

magnesiated species 72 could be obtained within 12 h at 0 °C (Scheme 41). 

 

 

 

 

 

 

Scheme 41: Deprotonation of 68 at C3 using TMP2Mg·2LiCl (12). 

 

The organomagnesium reagent 72 undergoes after transmetallation with ZnCl2 a Negishi49 

cross-coupling reaction furnishing 73a in 93% yield (Table 7, entry 1). Transmetallation of 72 

with CuCN·2LiCl52 enabled an acylation reaction with 2-chlorobenzoyl chloride and gave the 

ketone 73b in 60% yield (entry 2). Reaction of 72 with pivaldehyde furnished the C3-

substituted benzo[g]indazole 73c in 70% yield (entry 3). Finally, the reaction of 72 with 

methanethiosulfonic acid S-methyl ester gave the expected product 73d in 83% yield (entry 

4). 

 

Table 7. Reactions of the 3-magnesiated species 72 with electrophiles leading to products 

73a-d. 

Entry Electrophile Product of type 73 Yield [%]a 

1 

I

CO2Et  N
N

OEt

CO2Et

73a

 

93b 

2 

 

COCl
Cl

 
N

N

OEt

O
Cl

73b

 

60c 
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N N
SMe

EtO

73d

F

ZnCl·LiCl

Pd(OAc)2 (2 mol%)
 S-PHOS (4 mol%)
  THF, 45 °C, 12 h

N N

EtO

73e: 62%

F

3 tBuCHO 
N

N

OEt

HO

73c

 

70 

4 MeSSO2Me 
N

N

SMe

OEt

73d

 

83 

a Isolated, analytically pure product. b Obtained after transmetallation with ZnCl2 (1.0 equiv) by palladium-

catalyzed cross-coupling using Pd(dba)2 (5 mol%) and tfp (10 mol%). cTransmetallation with CuCN·2LiCl (1.0 

equiv). 

 

Interestingly, the SMe-moiety of benzo[g]indazole 73d could undergo, under Pd-catalysis, a 

cross coupling reaction with a zinc reagent to furnish 73e in in 62% yield (Scheme 42). This 

reaction is similar to the Liebeskind-Srogl reaction.67 

 

 

 

 

 

 

 

 

Scheme 43: Cross coupling reaction with the SMe-moiety of 73d furnishing the benzyl 

derivative 73e. 

 

 

 

 

 

 

 

 

                                                 
 
67 For an excellent review see: Prokopcová, H.; Kappe, C. O. Angew. Chem. Int. Ed. 2009, 48, 2276. 
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3. Synthesis of Fully Substituted Pyrazoles via Regio- and 
Chemoselective Metallations 

 

3.1  Introduction 

 

Pyrazole derivatives display a broad spectrum of biological activities and are used as 

cholesterol lowering,68 anti-inflammatory,69 anticancer,70 antidepressant and anti-psychotic71 

agents. They are therefore attractive building blocks for pharmaceutical research and 

pyrazoles are present in leading pharmaceuticals as for example Celebrex®69 and Viagra®72. 

These heterocycles have also found applications in the agrochemical industry (e.g. 

Fipronil®) 73  and recently also in the field of photoprotectors, ultraviolet stabilizers and 

energetic materials (Scheme 43).74  

As a result, there is a constant strive to develop new methods for the synthesis of highly 

substituted pyrazoles. So far, the main access to fully functionalized pyrazoles involves 

condensation reactions between hydrazines and 1,3-dicarbonyl compounds and their 

derivatives75 or 1,3-dipolar cycloadditions.76 However, some limitations of these methods are 

                                                 
 
69 Sliskovic, D. R.; Roth, B. D.; Wilson, M. W.; Hoefle, M. L.; Newton, R. S. J. Med. Chem. 1990, 33, 31. 
70 Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. 
F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; 
Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; 
Isakson, P.C. J. Med. Chem. 1997, 40, 1347. 
71 Stauffer, S. R.; Katzenellenbogen, J. A. J. Comb. Chem. 2000, 2, 318. 
72 Moore, K. W.; Bonner, K.; Jones, E. A.; Emms, F.; Leeson, P. D.; Marwood, R.; Patel, S.; Rowley, M.; 
Thomas, S.; Carling, R. W. Bioorg. Med. Chem. Lett. 1999, 9, 1285. 
73 Terrett, N. K.; Bell, A. S.; Brown, D.; Ellis, P. Bioorg. Med. Chem. Lett. 1996, 6, 1819. 
73 a) Tomlin, C. D. S., Ed.; The Pesticide Manual, 12th ed.; British Crop Protection Council: Farnham, UK, 2000; 
pp 413-415; b) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles, 2nd ed.; Wiley & Sons: 
New York, 2004; pp 179-184. 
75 a) Elguero, J. in Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Ed.; Pergamon Press: New York, 
1984; Vol.5, pp 291-297; b) Elguero, J. In Comprehensive Heterocyclic Chemistry II, Shinkai, I., Ed.; Elsevier: 
Oxford, 1996; Vol. 3, pp 3-75; c) Elguero, J.; Goya, P.; Jagerovic, N.; Silva, A. M. S. Targets Heterocycl. Syst. 
2002, 6, 52; d) Gribble, G.; Joule, J. Progress in Heterocyclic Chemistry, 18; Elsevier: Oxford, 2007; e) Cavero, 
E.; Uriel, S.; Romero, P.; Serrano, J. L.; Gimenez, R. J. Am. Chem. Soc. 2007, 129, 11608; f) Catalán, J.; Fabero, 
F.; Guijano, M. S.; Claramunt, R. M.; Maria, M. D. S.; Foces-Foces, M. C.; Cano, F. H.; Elguero, J.; Sastre, R. J. 
Am. Chem. Soc. 1990, 112, 747; g) Catalán, J.; Fabero, F.; Claramunt, R. M.; Maria, M. D. S.; Foces-Foces, M. 
C.; Cano, F. H.; Martinez-Ripoll, M.; Elguero, J.; Sastre, R. J. Am. Chem. Soc. 1992, 114, 5039; h) Ye, C.; Gard, 
G. L.; Winter, R. W.;Syvret, R. G.; Twamley, B.; Shreeve, J. M. Org. Lett. 2007, 9, 3841. 
76 a) Kost, A. N.; Grandberg, I. I. Adv. Heterocycl. Chem. 1996, 6, 347; b) Heller, S. T.; Natarajan, S. R. Org. 
Lett. 2006, 8, 2675; c) Zefirov, N. S.; Kozhushkov, S. I.; Kuznetsova, T. S. Tetrahedron 1982, 38, 1693; d) 
Kokoreva, O. V.; Averina, E. B.; Ivanova, O. A.; Kozhushkov, S. I.; Kuznetsova, T. S. Chem. Heterocycl. 
Comp. 2001, 37, 834; e) Ahmed, M. S.; Kobayashi, K.; Mori, A. Org. Lett. 2005, 7, 4487; f) Alex, K.; Tillack, 
A.; Schwarz, N.; Beller, M. Org. Lett. 2008, 10, 2377. 
77 a) Padwa, A. 1,3-Dipolar Cycloaddition Chemistry; John Wiley & Sons; New York, 1984; Vol I; b) Martin, 
R.; Rodriguez Rivero, M.; Buchwald, S. L. Angew. Chem. Int. Ed. 2006, 45, 7079 ; c) Aggarwal, V. K.; de 
Vicente, J.; Bonnert, R. V. J. Org. Chem. 2003, 68, 5381.  



B: Results and Discussion  45 
  

  

N
N

CF3

Me

SO2NH2

N
N
Me

PrN
HN

O

EtO

O2S N N Me

N
N

ClCl

CF3

CN

H2N

SO
CF3

Celebrex Viagra Fipronil

N
N
R

H

H H

1

3

2

4

5

most acidic
C-H bond

nucleophilic 
   position

unreactive
  position

the poor regioselectivity, multistep synthesis of the starting materials and the harsh conditions 

required.77 

 

 

 

 

 

 

 

 

Scheme 43: Pharmaceutical active pyrazoles. 

 

Deprotonation reactions on the pyrazole ring were until now, limited to lithiations at very low 

temperatures on the most acidic C5 position.78 Functionalization at the C3 position of the 

pyrazole core was only possible through a protecting group switch, while the C4 position was 

accessed through electrophilic substitutions (Scheme 44).79  

 

 

 

 

 

 

 

Scheme 44: Reactivity properties of the pyrazole ring. 

 

                                                 
 
78 a) Aggarwal, V. K.; De Vicente, J.; Bonnert, R. V. J. Org. Chem. 2003, 68, 5381; b) Heller, S. T.; Natarajan, 
S. R. Org. Lett. 2006 8, 2675; c) Deng, X.; Mani, N. S. Org. Lett. 2008 10, 1307.  
79 a) Science of Synthesis; Stanovnik, B., Svete, J. D., Eds.; Thieme: Stuttgart, 2002; Vol. 12, pp 173-203; b) 
Gupta, R. R.; Kumar, M.; Gupra, V. Heterocyclic Chemistry; Springer: Berlin, 1998; p452; c) Behr, L. C.; 
Fusco, R.; Jarboe, C. H. Pyrazoles, Pyrazolines, pyrazolidines, indazoles and condensed rings. In The Chemistry 
of Heterocyclic Compounds; Wiley, R. H., Ed.; Interscience Publishers: New York, 1967; Vol. 22 pp 107-109; 
d) L´Helgoual´ch, J. -M.; Seggio, A.; Chevallier, F.; Yonehara, M.; Jeanneau, E.; Uchiyama, M.; Mongin, F. J. 
Org. Chem. 2008, 73, 177; e) Schlosser, M.; Volle, J. -N.; Leroux, F.; Schenk, K. Eur. J. Org. Chem. 2002, 
2913; f) Gérard, A. -L.; Bouillon, A.; Mahatsekake, C.; Collot, V.; Rault, S. Tetrahedron Lett. 2006, 47, 4665; g) 
Balle, T.; Vedsǿ, P.; Begtrup, M. J. Org Chem. 1999, 64, 5366; h) Alley, P. W.; Shirley, D. A. J. Am. Chem. 
Soc. 1958, 80, 6271; i) Subramanyam, C. Synth. Comm. 1995, 25, 761.  
80 a) McLaughlin, M.; Marcantonio, K.; Chen, C.-Y.; Davies, I. W. J. Org. Chem. 2008, 73, 4309; b) Goikhman, 
R.; Jacques, T. L.; Sames, D. J. Am. Chem. Soc. 2009, 131, 3042.  
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3.2  Choosing the protecting group 

 

3.2.1  Starting material synthesis 

 

First for the metallation of the pyrazole ring, the most suitable protecting group had to be 

selected. For this purpose the differently protected N-1-pyrazoles 74,80 7581 and 7682 were 

synthesized (Scheme 45).  

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 45: Protection of pyrazole leading to 1-(tetrahydropyran-2-yl)- (74), 1-ethoxymethyl- 

(75) and 1-(2-trimethylsilanyl-ethoxymethyl)-1H-pyrazole (76). 

 

These protecting groups were chosen due to their stability under basic conditions and their 

easy cleavage under acidic conditions. 

 

                                                 
 
80 Young, M. B.; Barrow, J. C.; Glass, K. L.; Lundell, G. F.; Newton, C. L.; Pellicore, J. M.; Rittle, K. E.; 
Selnick, H. G.; Stauffer, K. J.; Vacca, J. P.; Williams, P. D.; Bohn, D.; Clayton, F. C.; Cook, J. J.; Krueger, J. A.; 
Kuo, L. C.; Lewis, S. D.; Lucas, B. J.; McMasters, D. R.; Miller-Stein, C.; Pietrak, B. L.; Wallace, A. A.; White, 
R. B.; Wong, B.; Yan, Y.; Nantermet, P. G. J. Med. Chem. 2004, 47, 2995. 
81 Fray, M. J.; Allen, P.; Bradley, P. R.; Challenger, C. E.; Closier, M.; Evans, T. J.; Lewis, M. L.; Mathias, J. P.; 
Nichols, C. L.; Po-Ba, Y. M.; Snow, H.; Stefaniak, M. H.; Vuong, H. V. Heterocycles 2006, 67, 489. 
82 Fugina, N.; Holzer, W.; Wasicky, M. Heterocycles 1992, 34, 303. 
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3.2.2  Metallations of the differently protected pyrazoles 

 

Starting from the protected pyrazoles 74, 75 and 76, magnesiation of the C5 position could be 

achieved using TMPMgCl·LiCl (10a; 1.1 equiv, 25 °C, 1 h). The resulting magnesiated 

pyrazoles 77, 78 and 79 could be trapped with triethylsilyl chloride furnishing the silylated 

products 80a, 81a and 82a in 84-95% yields (Scheme 46). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 46: Deprotonation at the C5 position using TMPMgCl·LiCl and subsequent trapping 

with Et3SiCl. 

 

The isolated pyrazoles 80a, 81a and 82a were treated for a second time with TMPMgCl·LiCl 

(10a) to achieve metallation at the C3 position (Scheme 47). 
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Scheme 47: Metallation at the C5-position. 

 

After treatment with 1.1 equivalents of 10a, only in the case of 82a could a 90% conversion 

to the magnesiated species 86 be achieved. Trapping 86 with TsCN furnished nitrile 87 in 

62% yield. However, pyrazole 81a needed 2 equivalents of the base 10a to reach a 90% 

conversion to the metallated species 84. Subsequent reaction with TsCN afforded 85 in 42% 

yield. In the case of 80a even with 2 equivalents of 10a a maximum conversion of 45% to 83 

could only be obtained. Employing the stronger base TMP2Mg·2LiCl (12) resulted mainly in 

decomposition of 83. 

On account of these results all further research was focused on the SEM-protected pyrazole 

(76). Furthermore, since the N-methylpyrazole moiety is present in many biologically active 

compounds, we decided to investigate the metallation of N-methylpyrazole (88) as well.  
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3.3  Functionalization at the C5-position 

 

3.3.1  Deprotonation at the C5- position 

 

Starting from the SEM-protected pyrazole 76 or the commercially available 1-methyl-1H-

pyrazole (88), magnesiation of the C5 position could be achieved using TMPMgCl·LiCl (10a) 

under the conditions already mentioned (1.1 equiv, 25 °C, 1 h) (Scheme 48). 

 

 

 

  

 

 

Scheme 48: Magnesiation of pyrazole derivatives 76 and 88 at the C5 position using 

TMPMgCl·LiCl (10a). 

 

Trapping of the resulting magnesiated pyrazole 79 with various electrophiles such as Et3SiCl, 

PhSO2SPh and MeSSO2Me gave the corresponding 5-substituted pyrazoles 82a-c in 72-84% 

yield (Table 8, entries 1-3). Organomagnesium reagent 79 successfully underwent, after 

transmetallation with ZnCl2, a Negishi49 cross-coupling furnishing the expected product 82d 

in 91% yield (entry 4). Similarly, the 5-magnesiated N-methylpyrazole (88) provided after 

reaction with Et3SiCl, PhSSO2Ph and MeSSO2Me the new substituted pyrazole derivatives 

90a-c in 77-83% yields (entries 5-7).  

 

Table 8: C5-substituted pyrazoles of type 82 and 90. 

Entry 
Mg-  

reagent 
Electrophile Product  

Yield 

[%]a 

1 82 Et3SiCl N
N
SEM

Et3Si 82a
 

84 
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2 82 

 

PhSSO2Ph 

 

N
N
SEM

PhS 82b
 

82 

3 82 MeSSO2Me N
N
SEM

MeS 82c
 

72 

4 82 

I

CO2Et  

N
N
SEMEtO2C

82d
 

91b 

5 89 Et3SiCl N
N
Me

Et3Si 90a
 

80 

6 89 PhSSO2Ph N
N
Me

PhS 90b
 

83 

7 89 MeSSO2Me N
N
Me

MeS 90c
 

79 

a Isolated, analytically pure product. b Obtained after transmetallation with ZnCl2 (1.0 equiv) by palladium-

catalyzed cross-coupling using Pd(dba)2 (5 mol%) and tfp (10 mol%).  
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MeS

EtO2C ZnBr·LiCl

N
N
Me

F

N
N
Me

EtO2C

N
N
MeMeO

90c

Pd(OAc)2 (2 mol%)
 S-PHOS (4 mol%)
   THF, 25 °C, 1 h

90c

Pd(OAc)2 (2 mol%)
 S-PHOS (4 mol%)
  THF, 45 °C, 12 h

91b: 80%

90c

Pd(OAc)2 (2 mol%)
 S-PHOS (4 mol%)
   THF, 45 °C, 12 h

91c: 69%

91a: 83%

3.3.2  Direct cross coupling reaction of the S-Me moiety of the pyrazole 

 

1-Methyl-5-methylsulfanyl-1H-pyrazole (90c) could be subjected to a cross coupling reaction, 

similar to the Liebeskind-Srogl reaction.67, 83 However, in this case zinc reagents were used as 

coupling partners instead of the organoboron compounds, mostly employed for the coupling 

of thioesters (Scheme 49). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 49: Cross coupling reaction with the S-Me moiety of the pyrazole leading to products 

of type 91. 

 

Ila and Junjappa have already reported cross coupling reactions between the methylthio 

functionality of a pyrazole derivative and Grignard reagents.84 In their case, the reaction 

proceeds in the presence of 30 mol% NiCl2(dppp) and has to be heated at 90 °C for 12 h to 

reach full conversion. Using zinc reagents in the presence of LiCl, the reaction could be 

performed under milder conditions.85  

                                                 
 
83 Liebeskind, L. S.; Srogl, J. Org. Lett. 2002, 4, 979.  
84 Peruncheralathan, S.; Khan, T. A.; Ila, H.; Junjappa, H. J. Org. Chem. 2005, 70, 10030. 
85 For the LiCl mediated preparation of the zinc compounds, see: a) Krasovskiy, A.; Malakhov, V.; Gavryushin, 
A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040; b) Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 
2008, 10, 1107; c) Metzger, A.; Piller, F. M.; Knochel, P. Chem. Commun. 2008, 5824; d) Metzger, A.; Schade, 
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N
N
R

E1 N
N
R

E1

E2
1) TMPMgCl·LiCl
   (10a; 1.1 equiv)

2) E2

82a-d: R = SEM
90a-c: R = Me

92a-f: R = SEM
93a-e: R = Me

3.4  Selective C3- metallation of pyrazole derivatives 

 

A subsequent deprotonation at position C3 was readily achieved by adding TMPMgCl·LiCl 

(10a; 1.1 equiv) to various 5-substituted pyrazoles of type 82 and 90 (Scheme 50). 

 

 

 

 

 

 

 

Scheme 50: Selective deprotonation at the C3 position of the pyrazole ring. 

 

 Thus, treatment of the SEM-protected pyrazoles 82b and 82c with TMPMgCl·LiCl (10a; 1.1 

equiv, -15 °C, 10 h) and subsequent quenching with TsCN, NCCO2Et, FCl2CCClF2, 86 

(BrCl2C)2 and DMF furnished the 3,5-disubstituted pyrazoles 92a-f in 65-76% yield (Table 9, 

entries 1-6). Similarly, the N-methylated pyrazoles 90b and 90c were magnesiated under the 

same conditions. Metallation of 90c using TMPMgCl·LiCl (10a; 1.1 equiv, -15 °C, 10 h) 

followed by the transmetallation with CuCN·2LiCl50 and addition of benzoyl chloride gave 

the expected ketone 93a in 78% yield (entry 7). Magnesiation of the pyrazole 90b (10a; 1.1 

equiv, -15 °C, 10 h) gave after chlorination with FCl2CCClF2
86 (-15 °C to 25 °C, 5 h) the 

chloro derivative 93b in 69% yield (entry 8) and in the presence of CuCN·2LiCl allylation 

with allyl bromide furnished the pyrazole 93c in 78% yield (entry 9). Quenching of the 

magnesiated 90b with (BrCl2C)2 furnished bromopyrazole 93d in 70% yield (entry 10). The 

5-silylated pyrazole 90a was deprotonated using TMPMgCl·LiCl (10a; 1.1 equiv, 25 °C, 2 h). 

Subsequent reaction with TsCN afforded the corresponding nitrile 93d in 61% yield (entry 

11).  

 

 

                                                 
 
M. A.; Manolikakes, G.; Knochel, P. Chem. Asian J. 2008, 3, 1678; e) Sase, S.; Jaric, M.; Metzger, A.; 
Malakhov, V.; Knochel, P. J. Org. Chem. 2008, 73, 7380. 
86 Marzi, E.; Bobbio, C.; Cottet, F.; Schlosser, M. Eur. J. Org. Chem. 2005, 10, 2116. 
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Table 9. Disubstituted pyrazoles of type 92 and 93 obtained by regioselective magnesiation of 

pyrazoles of type 82 and 90 with TMPMgCl·LiCl (10a) and subsequent quenching with 

electrophiles.  

Entry Substrate Electrophile Product  
Yield 

[%]a 

1 82b TsCN N
N
SEM

PhS

CN

92a

 

68 

2 82b 

 

NCCO2Et 

 

N
N
SEM

PhS

CO2Et

92b

 

71 

3 82b Cl2FCCF2Cl N
N
SEM

PhS

Cl

92c

 

65 

4 82b (BrCl2C)2 N
N
SEM

PhS

Br

92d

 

73 

5 82c (BrCl2C)2 N
N
SEM

MeS

Br

92e

 

75 

6 82c DMF N
N
SEM

MeS

CHO

92f
 

76 

7 90c PhCOCl 
N

NMeS

Me

O
Ph

93a
 

78b 
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N
N
R

E1

E2

N
N
R

E1

E2E3

1) TMP2Mg·2LiCl (12)

2) E3

92a-e: R = SEM
93a-d: R = Me

94a-d: R = SEM
95a-b: R = Me

8 90b Cl2FCCF2Cl N
N
Me

PhS

Cl

93b
 

69 

9 90b Br  N
N
Me

PhS 93c
 

78c 

10 90b (BrCl2C)2 N
N
Me

PhS

Br

93d
 

70 

11 90a TsCN N

CN

N
Me

Et3Si 93e
 

61 

a Isolated, analytically pure product. b Transmetallation with 1.1 equiv of CuCN·2LiCl. c Catalyzed with 5 mol % 

of CuCN·2LiCl. 

 

 

3.5  Selective C4-metallation of pyrazole derivatives 

 

The remaining position 4 of the pyrazole core was smoothly magnesiated using the stronger 

base TMP2Mg·2LiCl (12; 1.1 equiv, -20 °C, 4 h) (Scheme 51). 

 

 

 

 

 

 

 

Scheme 52: Selective deprotonation at the C4 position of the pyrazole ring. 

 

Thus, the disubstituted pyrazole 92c was deprotonated at position 4 and reacted with 

benzaldehyde or DMF giving the corresponding alcohol 94a in 71% yield or aldehyde 94b in 
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67% yield (Table 10, entries 1 and 2). In the presence of CuCN·2LiCl, the magnesiated 92c 

reacted with allyl bromide to give 94c in 74% yield (entry 3). The deprotonation of 92d under 

the same conditions gave after transmetallation with CuCN·2LiCl the expected ketone 94d in 

75% yield (entry 4). Similarly, N-methylpyrazole 93b was magnesiated and transmetallated 

with CuCN·2LiCl, leading after reaction with benzoyl chloride and allyl bromide to the 

trisubstituted pyrazoles 95a and 95b in 70-76% yield (entries 5 and 6).  

 

 

Table 10. Trisubstituted pyrazoles of type 94 and 95 obtained by regioselective magnesiation 

of pyrazoles of type 92 and 93 with TMP2Mg·2LiCl (12) and quenching with electrophiles.  

Entry Substrate Electrophile Product  
Yield 

[%]a 

1 92c PhCOH N
N
SEM

PhS

ClHO
Ph

94a
 

71 

2 92c DMF N
N
SEM

PhS

OHC Cl

94b
 

67 

3 92c Br  
N

N
SEM

PhS

Cl

94c
 

74 

4 92d PhCOCl N
N
SEM

MeS

BrO
Ph

94d
 

75b 

5 93b PhCOCl 
N

N
Me

PhS

ClO
Ph

95a
 

76b 
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N
N
SEM

PhS

CO2Et

N
N
SEM

PhS

CO2EtLiCl·ClMg

N
N
SEM

PhS

CO2Et

Br

 TMPMgCl·LiCl  
(10a; 1.1 equiv)

-30 °C, THF, 2 h

2)
-30 °C to 25 °C

92b

94e: 75%

96

1) CuCN·2LiCl
    (5 mol%)

6 93b Br  
N

N
Me

PhS

Cl

95b
 

70c 

a Isolated, analytically pure product. b Transmetallation with 1.1 equiv of CuCN·2LiCl. c Catalyzed with 5 mol % 

of CuCN·2LiCl. 

 

Interestingly, pyrazole 92b bearing an ester moiety at the C3 position could be deprotonated 

with the milder base TMPMgCl·LiCl (10a; 1.1 equiv, -30 °C, 2 h). Quenching of the resulting 

magnesium reagent 96 in the presence of CuCN·2LiCl with allyl bromide afforded the 

allylated pyrazole 94e in 75% yield (Scheme 52). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 52: Magnesiation of pyrazole 92b at position C4 using TMPMgCl·LiCl (10a).  
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N
N
Me

N
N
Me

EtO2C

1) TMPMgCl·LiCl 
   (10a; 1.1 equiv)
    25 °C, 1 h, THF

2) NCCO2Et
    -10 °C to 25 °C

88 98: 71%

N
N
Me

EtO2C

98

1)  TMPMgCl·LiCl 
    (10a; 1.1 equiv)
    -20 °C, 12 h, THF
2) I2 N

N
Me

EtO2C

99: 56%

I

3.6  Synthesis of the acaricide Tebufenpyrad via successive functionalizations of the 

pyrazole core. 

 

This functionalization of the pyrazole core was applied to the synthesis of the acaricide 

Tebufenpyrad (97).87 N-methylpyrazole 88 was treated with TMPMgCl·LiCl (10a; 1.1 equiv, 

25 °C, 1 h) and quenched with NCCO2Et providing the expected ester 98 (Scheme 53). 

 

 

 

 

 

 

Scheme 53: Synthesis of ethyl-2-methyl-2H-pyrazole-3-carboxylate (98). 

 

Pyrazole 98 was then magnesiated at position C3 using TMPMgCl·LiCl (10a; 1.1 

equiv, -20 °C, 12 h). Reaction with I2 furnished the iodo compound 99 in 56% yield (Scheme 

54). 

 

 

 

 

 

 

Scheme 54: Magnesiation of 98 using TMPMgCl·LiCl (10a) and subsequent iodination 

leading to 99. 

 

To achieve the chlorination at the C4 position, 99 was treated with TMPMgCl·LiCl (10a) at -

20 °C. After stirring for 30 min complete conversion to the magnesiated species 100 was 

observed (Scheme 55).  

 

 
                                                 
 
87 a) Marcic, D. Exp. Appl. Acarol 2005, 36, 177, and references cited therein; b) Fustero, S.; Román, R.; Sanz-
Cervera, J. F.; Simón-Fuentes, A.; Cunat, A. C.; Villanova, S.; Murguía, M. J. Org. Chem. 2008, 73, 3523; c) 
Fustero, S.; Román, R.; Sanz-Cervera, J. F.; Simón-Fuentes, A.; Bueno, J. C.; Villanova, S. J. Org. Chem. 2008, 
73, 8545. 
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99

TMPMgCl·LiCl 
(10a; 1.1 equiv)

-20 °C, 30 min, THF

100

N
N
Me

EtO2C N
N
Me

EtO2C

Cl

98

NaOCl (6 equiv)
AcOH, 25 °C, 6 h

101: 93%

 

 

 

 

 

 

Scheme 55: Magnesiation of pyrazole 98 using TMPMgCl·LiCl (10a).  

 

However, all attempts to trap 100 with a chlorinating electrophile failed due to the instability 

of the organomagnesium reagent 100 at temperatures higher than -20 °C. The electrophiles 

tried (Cl2FCCF2Cl, NCS) were not reactive enough to chlorinate the substrate at -20 °C. 

Knowing that position C4 is also very nucleophilic, we tried to chlorinate pyrazole 98 via an 

electrophilic substitution reaction, by treating it directly with NaOCl in acetic acid.87b,c The in 

situ generated chlorine reacted with 98 forming the disubstituted pyrazole 101 in 93% yield 

(Scheme 56). 

 

 

 

 

 

Scheme 56: Chlorination of 98 with in situ generated Cl2. 

 

 Pyrazole 101 was deprotonated using TMP2Zn·2MgCl2·2LiCl (14; 1.1 equiv, 25 °C, 6 h) and 

subsequent addition of I2 furnished the iodopyrazole 102. Attempts to perform a Negishi cross 

coupling were unsuccessfull. A major side reaction was the I/Zn- exchange at the iodide of 

102. We could circumvent this side reaction however, by transmetallation to indium. Thus, 

iodide 102 undergoes a one-pot cross-coupling reaction with Et3In generated by the reaction 

of EtMgCl (1.5 equiv) with InCl3 (0.5 equiv)88 affording the Tebufenpyrad precursor 103 in 

69% yield. Subsequent reaction of 103 with 4-tert-butyl-benzylamine afforded Tebufenpyrad 

(97) in 75% yield (Scheme 57). 

 

                                                 
 
88 a) Pena, M. A.; Sestelo, J. P.; Sarandeses, L. A. Synthesis 2005, 485; b) Pérez, I.; Pérez-Sestelo, J.; 
Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155.  
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Scheme 57: Synthesis of the acaricide Tebufenpyrad (97). 
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4. Summary and Outlook 

 

This work was focused on the functionalization of cyclic dibromoalkenes and heterocycles 

containing the pyrazole scaffold through metallation reactions. Furthermore, the developed 

procedures were applied to the synthesis of the acaricide Tebufenpyrad. 

4.1  Functionalization of 1,2-dibromocyclopentenes 

 

In summary, the use of iPrMgCl·LiCl (6) allowed a simple, high-yielding preparation of 

previously unknown cyclic β-bromo-substituted alkenylmagnesium reagents. Furthermore, a 

copper-catalysed heterocoupling reaction was performed, permitting the regioselective 

formation of new β-alkylated cycloalkenylmagnesium compounds that could be further 

reacted with a range of electrophiles. This sequence constituted an effective one-pot cascade 

difunctionalisation of cycloalkenes (Scheme 58). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 58: Mono- and difunctionalization of cyclopentene derivatives. 
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Extending this method to the dibromocyclohexene system, we were able to obtain 

difunctionalized cyclohexene derivatives in 49-63% yields (Scheme 59). The reaction on the 

six-membered rings proceeds however, through a different mechanistic pathway than the one 

proposed for the five-membered rings.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 59: Difunctionalization of cyclohexene derivatives. 
 
 
Application of these methods to the synthesis of trisannelated benzenes or π-conjugated 

carbon frameworks could be of great interest in the field of supramolecular chemistry.43, 44, 46 
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N N
PG

E

PG = Bn: 65
PG = CH2OEt: 70

4.2  Functionalization of 4,5-Dihydrobenzo[g]indazoles using Mg- and Zn- 

Heterocyclic Intermediates 

 

We studied the various metallation procedures on the dihydrobenzo[g]indazoles of type 50 

and 51 at the C3 position of the pyrazole moiety. The use of an I/Mg-exchange or direct 

metallations using TMPMgCl·LiCl (10a), TMP2Mg·2LiCl (12) or TMP2Zn·2MgCl2·2LiCl 

(14) proved to be complementary. Dihydrobenzo[g]indazoles of type 50 could be successfully 

metallated using an I/Mg-exchange reaction in the presence of the benzyl protecting group. 

Direct deprotonations could be achieved using both TMPMgCl·LiCl (10a) or the milder base 

TMP2Zn·2MgCl2·2LiCl (14) (Scheme 60). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 60: Metallation of 4,5-dihydrobenzo[g]indazole of type 50. 
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Similarly, dihydrobenzo[g]indazole of type 51 containing a benzyl protecting group could be 

metallated through an I/Mg-exchange reaction. Direct metallation by using TMP2Mg·2LiCl 

(12) was possible, when the benzyl- was replaced with the ethoxymethyl- protecting group 

(Scheme 61). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 61: Metallation of 4,5-dihydrobenzo[g]indazole of type 51. 

 

As this method enables the fast generation of molecular libraries, a large number of 

substituted polycyclic heterocycles can thus be prepared. Further applications of this 

interesting substance class in the pharmaceutical industry are being explored by Boehringer 

Ingelheim. 
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4.3  Synthesis of fully substituted pyrazoles via regio- and chemoselective 

metallations 

 

We developed a new chemo- and regioselective method of functionalization of pyrazoles 

through successive metallations using TMPMgCl·LiCl (10a) and TMP2Mg·2LiCl (12) starting 

from readily available N-substituted pyrazoles. This method has the advantage of avoiding the 

generation of undesired regioisomers. Thus, a number of trisubstituted pyrazoles, including 

the acaricide Tebufenpyrad (97) could be prepared (Scheme 62). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Scheme 62: Full functionalization of pyrazole derivatives through successive metallations. 
 
 
We could develop a rapid route to fully substituted pyrazoles with complete regiocontrol of 

all substituents. An application to the synthesis of the acaricide Tebufenpyrad was also 

reported (Scheme 63). 

 

 

 

 

 

 

 

 

 

 



B: Results and Discussion  65 
  

  

N
N
Me

MeS
RZnCl·LiCl

N
N
Me

F

N
N
MeMeO

N
N
Me

R

N
N
Me

EtO2C

Pd(OAc)2 (2 mol%)
 S-PHOS (4 mol%)
   THF, 25 °C, 1 h

91b: 80% 91c: 69%91a: 83%

N
N
Me

EtO2C

Cl

t-Bu

NH2

NN
Me

Cl

Et

O

N
H

t-Bu

N
N
Me

EtO2C

Cl I

N
N
Me

EtO2C

Cl Et
1) TMP2Zn·2MgCl2·2LiCl  
            (1.1 equiv)
           25 °C, 6 h, THF

2) I2

1) Pd(OAc)2 (2 mol%)
    S-PHOS (5 mol%)
2) Et3In, THF
    25 °C, 8 h,

103: 69%

NaH, 25 °C, THF

Tebufenpyrad (97): 75%

101 102

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 63: Synthesis of Tebufenpyrad (97). 

 

 Furthermore, the thioether functionality could undergo cross-coupling reactions with zinc 

reagents, yielding C5-arylated, alkylated or benzylated pyrazole derivatives (Scheme 64). 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Scheme 64: Cross-coupling reactions with the thioether moiety of the pyrazole ring. 
 
 
Since the pyrazole scaffold plays a significant role in this field, this work can be extended to 

the preparation of more complex pyrazoles and can find important applications in the 

pharmaceutical and agrochemical industry. 
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1. General Considerations 

All reactions were carried out with magnetic stirring and, if air or moisture sensitive, in 

flame-dried glassware under argon. Syringes were used to transfer reagents, and solvents were 

purged with argon prior to use.  

 

Solvents 

 
Solvents were dried according to standard methods by distillation from drying agents as stated 

below and were stored under argon. 

CH2Cl2 and toluene were predried over CaCl2(s) and distilled from CaH2(s).  

Diethyl ether and THF were continuously refluxed and freshly distilled from sodium 

benzophenone ketyl under nitrogen. 

Dimethylformamide (DMF) was heated to reflux for 14 h over CaH2(s) and distilled from 

CaH2(s). 

Ethanol was treated with phthalic anhydride (25g/L) and sodium, heated to reflux for 6 h and 

distilled. 

Methanol was treated with magnesium turnings (20g/L) and sodium, heated to reflux for 6 h 

and distilled. 

Triethylamine was dried over KOH(s) and distilled from KOH(s).  

NMP was heated to reflux for 14 h over CaH2 and distilled from CaH2. 

 

Reagents: metal salt solutions  

 

CuCN·2LiCl solution (1.0 M/THF) was prepared by drying CuCN (869 mg, 10 mmol) and 

LiCl (848 mg, 20 mmol) in a Schlenk flask under vacuum for 5 h at 140 °C. After cooling to 

25 °C, dry THF (10 mL) was added and stirred continuously until the salts were dissolved.  

 

ZnCl2 solution (1.0 M/THF) was prepared by drying ZnCl2 (20.45 g, 150 mmol) under 

vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (150 mmol) was added and stirred 

continuously until the salts were dissolved.  
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Lithium reagents 

 
n-Butyllithium was used as a 1.5 м solution in hexane purchased by Chemetall. 

t-Butyllithium was used as a 1.5 м solution in pentane purchased by Chemetall. 

 
Magnesium reagents 

 
iPrMgCl·LiCl was used as a 1.2 м solution in THF purchased by Chemetall. 

 
TMPMgCl·LiCl (10a): was prepared according to the literature procedure.34a 

 
TMP2Mg·2LiCl (12): was prepared according to the literature procedure.35a 

 
TMP2Zn·2MgCl2·2LiCl (14): was prepared according to the literature procedure.37a 
 
The content of organometallic reagents was determined either by the method of Paquette 

(organolithium or –magnesium reagents)89 or the method of Knochel (organomagnesium or -

zinc reagents)90 prior to use. 

 
Other reagents 

 
The following reagents were prepared according to literature procedures: 

Palladium(II)bis(dibenzylideneacetone), 91  tri-(2-furyl)phosphine 92 , ethyl 2-(bromomethyl)-

acrylate,93 S-phenyl benzenesulfonothioate94 and 2,3-dibromo-bicyclo[2.2.1]hepta-2,5-diene95 

. 

 

 

 

 

 

 

 

                                                 
 
89 Lin, H. -S. Paquette, A. Synth. Commun. 1994, 24, 2503. 
90 Krasovskiy, A. ; Knochel, P. Synthesis 2006, 5, 890. 
91 Takahashi, Y.; Ito, T.; Sakai, S. Chem. Commun. 1970, 1065. 
92 Allen, D. W.; Hutley, B. G.; Mellor, M. T. J. J. Chem. Soc. Perkin Trans. II 1972, 63. 
93 Villieras, J.; Rambaud, M. Org. Synth. 1988, 66, 220. 
94 Fujiki, K.; Tanifuji, N.; Sasaki, Y.; Yokoyama, T. Synthesis, 2002, 343. 
95 Tranmer, G. K.; Yip, C.; Handerson, S.; Jordan, R. W.; Tam, W. Can. J. Chem. 2000, 78, 527. 
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Chromatography 

 
Thin layer chromatography (TLC) was performed using aluminium plates coated with SiO2 

(Merck 60, F-254). The spots were visualized by UV light and/or by staining of the TLC plate 

with the solution below followed, if necessary, by heating with a heat gun: 

• KMnO4 (0.3 g), K2CO3 (20 g), KOH (0.3 g) in water (300 mL) 

• Neat iodine absorbed on silica gel 

• Phosphor molybdic acid (5.0 g), Ce(SO4)2 (2.0 g), conc. H2SO4(12.0 mL) in water 

(230 mL). 

 

Flash column chromatography was performed using SiO2 60 (0.04-0.063 mm, 230-400 mesh 

ASTM) from Merck or aluminium oxide 90 active neutral (0.063-0.200 mm, 70-230 mesh 

ASTM), grade III,96 from Merck. 

 

The column diameters and the amount of silica gel were calculated according to the 

recommendation of W. C. Still.97 

 

Analytical Data 

 
NMR spectra were recorded on Bruker ARX 200, AC 300, WH 400 or AMX 600 

instruments. Chemical shifts are reported as δ-values in ppm relative to the deuterated solvent 

peak: CDCl3 (δ 3 H = 7.25; δ C (ppm) = 77.0), C6D6 (δ H = 7.15; δ C(ppm) = 128.0).  

For the characterization of the observed signal multiplicities, the following abbreviations were 

used: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), td (doublet of triplets), quint 

(quintet), sext (sextet), sept (septet), br (broad), m (multiplet). If not otherwise noted, the 

coupling constants given are C-H coupling constants. 

 

Melting points are uncorrected and were measured on a Büchi B.540 apparatus. 

 

Infrared spectra were recorded from 4000-400 cm-1 on a Nicolet 510 FT-IR or a Perkin- 

Elmer 281 IR spectrometer. Samples were measured either as film between potassium 

                                                 
 
96 Brockmann, H.; Schodder, H. Ber. Deut. Chem. Ges. 1941, 74, 73. 
97 Still, W. C.; Khan, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923. 



C: Experimental Part  70 
  

  

bromide plates (film), as potassium bromide tablets (KBr), or neat (Smiths Detection 

DuraSampl IR II Diamond ATR). 

The absorption bands are reported in wavenumbers (cm-1). For the band characterization, the 

following abbreviations were used: br (broad), vs (very strong), s (strong), m (medium), w 

(weak). 

 

Gas chromatography (GC) was performed with instruments of the type Hewlett-Packard 

6890 or 5890 Series II, using a column of the type HP 5 (Hewlett-Packard, 5% 

phenylmethylpolysiloxane; length: 10 m, diameter: 0.25 mm; film thickness: 0.25 µm). The 

detection was accomplished using a flame ionization detector. Depending on the retention 

time of the substrate, decane or tetradecane were used as internal standards. 

Mass spectra were recorded on a Finnigan MAT 95Q or Finnigan MAT90 instrument for 

electron impact ionization (EI). High resolution mass spectra (HRMS) were recorded on the 

same instrument. 

For the combination of gas chromatography with mass spectroscopic detection, a GC-MS of 

the type Hewlett-Packard 6890 / MSD 5793 networking was used (column: HP 5-MS, 

Hewlett-Packard; 5% phenylmethylpolysiloxane; length: 15 m, diameter 0.25 mm; film 

thickness: 0.25 µm). 
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2. Typical Procedures (TP) 

 

2.1  Typical procedure for the Br/Mg-exchange reaction using iPrMgCl·LiCl (6) of 

1,2-dibromocyclopentene (TP1) 

 

Dibromide 20 (1.00 equiv) was added to a flame-dried flask equipped with a magnetic stirring 

bar, an argon inlet, and a septum. iPrMgCl·LiCl (6; 1.10 equiv in THF) was added at 25 °C 

while stirring. Upon completion of the exchange (determined by GC analysis of reaction 

aliquots quenched with sat. aq. NH4Cl solution, 24-30 h), the reaction mixture was cooled to 

0 °C with an ice bath. The electrophile was slowly added and the solution was allowed to 

warm up to 25 °C. After stirring for 2 h at 25 °C, a sat. NH4Cl solution was added and the aq. 

layer was extracted with Et2O (3 x 20 mL). The combined organic extracts were washed with 

brine, dried over anhydrous MgSO4, and filtered. Removal of the solvent in vacuo and 

purification by flash chromatography (SiO2, initially neutralized with 3% Et3N) afforded the 

desired product. 

 

2.2  Typical procedure for the 1,2-difunctionalization of 1,2-dibromocyclopentene 

derivatives (TP2) 

 

Dibromide 20 or 25 respectively (1.00 equiv) was added to a flame-dried flask equipped with 

a magnetic stirring bar, an argon inlet, and a septum. iPrMgCl·LiCl (6; 2.20-3.00 equiv in 

THF) was added at 25 °C while stirring. Upon completion of the exchange (determined by 

GC analysis of hydrolyzed reaction aliquots, 6 h), the solution was cooled to -10 °C. Li2CuCl4 

(0.10 м solution in THF, 2 mol%) was added dropwise and the solution was slowly allowed to 

warm to 0 °C. Upon completion of the coupling (determined by GC analysis of hydrolyzed 

reaction aliquots, 9 h), the electrophile (1.30-1.70 equiv) was slowly added and the solution 

was warmed to 25 °C. After 2 h stirring at 25 °C, the reaction mixture was quenched with a 

sat. NH4Cl solution and the aq. layer was extracted with Et2O (3 x 20 mL). The combined 

organic extracts were washed with brine, dried over anhydrous MgSO4, and filtered. Removal 

of the solvent in vacuo and purification by flash chromatography (SiO2, initially neutralized 

with 3% Et3N) afforded the desired product. 
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2.3  Typical procedure for the 1,2-difunctionalization of 1,2 dibromocyclopentene 

derivatives and subsequent acylation (TP3) 

 

Dibromide 20 or 25 respectively (1.00 equiv) was added to a flame-dried flask equipped with 

a magnetic stirring bar, an argon inlet, and a septum. iPrMgCl·LiCl (6; 2.20-2.40 equiv) was 

added at 25 °C while stirring. Upon completion of the exchange (determined by GC analysis 

of hydrolyzed reaction aliquots, 6 h), the solution was cooled to -10 °C. Li2CuCl4 (0.10 м in 

THF, 2 mol%) was added dropwise and the solution was slowly warmed to 0 °C. Upon 

completion of the coupling (determined by GC analysis of hydrolyzed reaction aliquots, 9 h), 

the solution was cooled to -30 °C and ZnCl2 solution (1.00 м in THF, 1.00 equiv) was added. 

After stirring for 30 min, the solution was warmed to -20 °C and a CuCN·2LiCl solution (1.00 

м in THF, 20 mol%) was added. After stirring for 5 min, an acid chloride (1.20-1.50 equiv) 

was added and the solution was warmed to 25 °C. The reaction mixture was stirred at 25 °C 

for 2 h, and then quenched with sat. NH4Cl solution. The aq. layer was extracted with Et2O (3 

x 20 mL) and the combined organic extracts were washed with brine, dried over MgSO4, and 

filtered. Removal of the solvent in vacuo and purification by flash chromatography (SiO2, 

initially neutralized with 3% Et3N) afforded the desired product. 

 

2.4  Typical procedure for the I/Mg-exchange reaction on 1-benzyl-3-iodo-4,5-

dihydro-1H-benzo[g]indazole (61) (TP4) 

 

A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was 

charged with 1-benzyl-3-iodo-4,5-dihydro-1H-benzo[g]indazole (61; 386 mg, 1.00 mmol), 

dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 1.00 mL, 1.10 м in THF, 1.10 mmol) was added 

slowly at -30 °C and the resulting mixture was stirred for 2 h. The completion of the exchange 

reaction was checked by GC-analysis of hydrolyzed reaction aliquots. The freshly prepared 

organomagnesium reagent 63 was either transmetallated with ZnCl2 (1.00 mL, 1.00 м, 1.00 

mmol) and used in a Negishi cross-coupling with the corresponding iodides, or 

transmetallated with CuCN·2LiCl (1.00 mL, 1.00 м in THF, 1.00 mmol) for subsequent 

allylation or acylation. When used directly, the corresponding electrophile was added at -30 

°C and the reaction mixture was slowly allowed to warm up to 25 °C. The consumption of the 

magnesium reagent was checked by GC analysis of hydrolyzed reaction aliquots, using 
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tetradecane as internal standard. After complete conversion, the mixture was quenched with 

sat. NH4Cl solution (in the presence of copper a 25% aq. NH3 solution was also added to the 

mixture) and extracted with Et2O (3 x 50 mL). The combined organic extracts were dried over 

anhydrous Na2SO4, filtered and concentrated in vacuo. Purification by flash chromatography 

afforded the desired C3-functionalized 4,5-dihydro-1H-benzo[g]indazoles (65a-f). 

 

2.5  Typical procedure for the I/Mg-exchange reaction on 2-benzyl-3-iodo-4,5-2H-

benzo[g]indazole (62) (TP5) 

 

A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was 

charged with 2-benzyl-3-iodo-4,5-dihydro-2H-benzo[g]indazole (62; 386 mg, 1.00 mmol), 

dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 1.00 mL, 1.10 м in THF, 1.10 mmol) was 

added slowly at -30 °C and the resulting mixture was stirred for 30 min. The completion of 

the exchange reaction was checked by GC-analysis of hydrolyzed reaction aliquots. The 

freshly prepared organomagnesium reagent 64 was either transmetallated with ZnCl2 (1.00 

mL, 1.00 м in THF, 1.00 mmol) and used in a Negishi cross-coupling with the 

corresponding iodides, or transmetallated with CuCN·2LiCl (1.00 mL, 1.00 м in THF, 1.00 

mmol) for subsequent allylation or acylation. When used directly, the corresponding 

electrophile was added at -30 °C and the reaction mixture was slowly allowed to warm up 

to 25 °C. The consumption of the magnesium reagent was checked by GC analysis of 

hydrolyzed reaction aliquots, using tetradecane as internal standard. After complete 

conversion, the mixture was quenched with sat. NH4Cl solution (in the presence of copper a 

25% aq. NH3 solution was also added to the mixture) and extracted with Et2O (3 x 50 mL). 

The combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated in vacuo. Purification by flash chromatography afforded the desired C3-

functionalized 4,5-dihydro-2H-benzo[g]indazoles (66a-d). 

 

2.6  Typical procedure for the deprotonation of 1-ethoxymethyl-4,5-dihydro-1H-

benzo[g]indazole (67) using TMP2Zn·2MgCl2·2LiCl (14) (TP6) 

 

A dry and argon flushed 10 mL pressurized vial, equipped with a magnetic stirring bar, was 

charged with 1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazole (67; 228 mg, 1.00 mmol) 
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dissolved in THF (1.0 mL). The TMP2Zn·2MgCl2·2LiCl base (14; 1.50 mL, 0.40 м in THF, 

0.60 mmol) was added and the reaction mixture was heated using a Discover BenchMate® 

Microwave system at 80 °C and 200 W for 2 h. The completion of the metallation was 

checked by GC-analysis of reaction aliquots quenched with I2 in dry THF. After complete 

metallation and cooling to 25 °C the organozinc reagent 69 was either used directly in a 

Negishi cross-coupling reaction or was cooled to -20 °C and transmetallated with 

CuCN·2LiCl (1.00 mL, 1.00 м in THF, 1.00 mmol) for a subsequent reaction with an acyl 

chloride. The consumption of the zinc reagent was checked by GC analysis of hydrolyzed 

reaction aliquots, using tetradecane as internal standard. After complete conversion, the 

mixture was quenched with sat. NH4Cl solution (in the presence of copper a 25% aq. NH3 

solution was also added to the mixture) and extracted with Et2O (3 x 50 mL). The combined 

organic extracts were dried over anhydrous Na2SO4, filtered and concentrated in vacuo. 

Purification by flash chromatography afforded the desired C3-functionalized 4,5-dihydro-1H-

benzo[g]indazoles (70a-b). 

 

2.7  Typical procedure for the deprotonation of 1-ethoxymethyl-4,5-dihydro-1H-

benzo[g]indazole (67) using TMPMgCl·LiCl (10a) (TP7) 

 

A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was 

charged with 1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazole (67; 228 mg, 1.00 mmol), 

dissolved in THF (1.0 mL). TMPMgCl·LiCl (10a; 1.00 mL, 1.10 м in THF, 1.10 mmol) was 

added slowly at -20 °C and the mixture was stirred for 24 h. The completion of the exchange 

reaction was checked by GC-analysis of reaction aliquots quenched with I2 in dry THF. After 

complete metallation the organomagnesium reagent 71 was either reacted directly with 

electrophiles, or transmetallated with CuCN·2LiCl (1.00 mL, 1.00 м in THF, 1.00 mmol) to 

undergo a subsequent allylation or acylation. The consumption of the magnesium reagent was 

checked by GC analysis of hydrolyzed reaction aliquots, using tetradecane as internal 

standard. After completion of the reaction the mixture was quenched with sat. NH4Cl solution 

(in the presence of copper a 25% aq. NH3 solution was also added to the mixture) and 

extracted with Et2O (3 x 50 mL). The combined organic extracts were dried over anhydrous 

Na2SO4, filtered and concentrated in vacuo. Purification by flash chromatography afforded 

the desired C3-functionalized 4,5-dihydro-1H-benzo[g]indazoles (70c-d). 
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2.8  Typical procedure for the deprotonation of 2-ethoxymethyl-4,5-dihydro-2H-

benzo[g]indazole (68) using TMP2Mg·2LiCl (12) (TP8) 

 

A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was 

charged with 2-ethoxymethyl-4,5-dihydro-2H-benzo[g]indazole (68; 228 mg, 1.00 mmol), 

dissolved in THF (1.0 mL). TMP2Mg·2LiCl (12; 1.80 mL, 0.60 м in THF, 1.10 mmol) was 

added slowly at 0 °C and the mixture was stirred for 12 h. The completion of the exchange 

reaction was checked by GC-analysis of reaction aliquots quenched with I2 in dry THF. After 

complete metallation the organomagnesium reagent 72 was either reacted directly with 

electrophiles, or transmetallated with CuCN·2LiCl (1.00 mL, 1.00 м in THF, 1.00 mmol) to 

undergo a subsequent allylation or acylation. Transmetallation with ZnCl2 (1.00 mL, 1.00 м in 

THF, 1.00 mmol) was necessary before performing a Negishi cross-coupling. The 

consumption of the magnesium reagent was checked by GC analysis of hydrolyzed reaction 

aliquots, using tetradecane as internal standard. After complete conversion, the mixture was 

quenched with sat. NH4Cl solution (in the presence of copper a 25% aq. NH3 solution was 

also added to the mixture) and extracted with Et2O (3 x 50 mL). The combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated in vacuo. Purification 

by flash chromatography afforded the desired C3-functionalized 4,5-dihydro-2H-

benzo[g]indazoles (73a-d). 

 

2.9  Typical procedure for the deprotonation reaction at the C5 position of the 

pyrazole ring (TP9) 

 

A dry and argon flushed flask equipped with a magnetic stirring bar and a septum, was 

charged with the pyrazole (1.00 mmol) and THF (1.0 mL). TMPMgCl·LiCl (10a; 1.00 mL, 

1.10 м in THF, 1.10 mmol) was added dropwise at 25 °C and the reaction mixture was stirred 

for 2 h. The completion of the deprotonation was checked by GC analysis of reaction aliquots 

quenched with I2. After complete conversion, the electrophile (1.20 mmol) was added at 0 °C 

and the mixture was allowed to slowly warm up to 25 °C. The consumption of the 

organomagnesium reagent was checked by GC-analysis of hydrolyzed reaction aliquots and 

the reaction mixture was quenched with brine and extracted with EtOAc (3 x 50 mL). The 
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organic extracts were dried over anhydrous Na2SO4, filtered and concentrated in vacuo. 

Purification by flash chromatography furnished the desired products. 

2.10 Typical procedure for the deprotonation reaction at the C3 position of the 

pyrazole ring (TP10) 

 

A dry and argon flushed flask equipped with a magnetic stirring bar and a septum, was 

charged with the pyrazole (1.00 mmol) and THF (1.0 mL). The reaction mixture was cooled 

to -15 °C and TMPMgCl·LiCl (10a; 1.00 mL, 1.10 м in THF, 1.10 mmol) was added 

dropwise. The reaction mixture was stirred for 8 h. The completion of the deprotonation was 

checked by GC analysis of reaction aliquots quenched with I2. After complete conversion, the 

electrophile (1.20 mmol) was added at -20 °C and the mixture was allowed to slowly warm up 

to 25 °C. The consumption of the organomagnesium reagent was checked by GC-analysis of 

hydrolyzed reaction aliquots and the reaction mixture was quenched with brine and extracted 

with EtOAc (3 x 50 mL). The organic extracts were dried over anhydrous Na2SO4, filtered 

and concentrated in vacuo. Purification by flash chromatography furnished the desired 

products. 

 

2.11 Typical procedure for the deprotonation reaction at the C4 position of the 

pyrazole ring (TP11) 

 

A dry and argon flushed flask equipped with a magnetic stirring bar and a septum, was 

charged with the pyrazole (1.00 mmol) and THF (1.0 mL). The reaction mixture was cooled 

to -20 °C and TMP2Mg·2LiCl (12; 2.00 mL, 0.56 м in THF, 1.10 mmol) was added dropwise. 

The reaction mixture was stirred for 4 h at -20 °C. The completion of the deprotonation was 

checked by GC analysis of reaction aliquots quenched with I2. After complete conversion the 

electrophile (1.20 mmol) was added at -20 °C and the mixture was allowed to slowly warm up 

to 25 °C. The consumption of the organomagnesium reagent was checked by GC-analysis of 

hydrolyzed reaction aliquots and the reaction mixture was quenched with brine and extracted 

with EtOAc (3 x 50 mL). The organic extracts were dried over anhydrous Na2SO4, filtered 

and concentrated in vacuo. Purification by flash chromatography furnished the desired 

products.  
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2.12 Typical procedure for the cross-coupling of thioethers (TP12) 

 

A flame-dried flask equipped with a magnetic stirring bar, an argon inlet, and a septum was 

charged with the corresponding thioether (1.00 mmol) dissolved in THF (1.0 mL). To this 

solution was added 2 mol% Pd(OAc)2 (4.50 mg, 0.02 mmol) and 4 mol% SPhos (16.5 mg, 

0.04 mmol). The zinc reagent was added dropwise and the mixture was warmed to the desired 

temperature and stirred for the appropriate amount of time. The completion of the reaction 

was checked by GC-analysis of hydrolyzed reaction aliquots. The mixture was quenched with 

sat. aq. Na2CO3 solution and extracted with EtOAc (3 x 50 mL). The combined organic 

extracts were dried over anhydrous Na2SO4, filtered and concentrated in vacuo. Purification 

by flash chromatography afforded the desired products. 
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3. Selective Mono- and 1,2-Difunctionalization of Cyclopentene and 
Cyclohexene Derivatives via Mg and Cu intermediates 

 

3.1  Starting Materials 

 

Synthesis of 1,2-dibromocyclopentene (20) 98 

 

 

 

 

To a dry and nitrogen flushed 2L 3-neck flask equipped with a thermometer, a dropping 

funnel and a magnetic stirring bar containing a suspension of PCl5 (215 g, 1.03 mol) in 

benzene (250 mL), cyclopentanone (91.6 mL, 1.04 mol) was added dropwise, keeping the 

temperature below 35 °C. After addition of the ketone the reaction mixture was stirred for 40 

min at 25 °C and the formed HCl was removed in a N2 flow. The yellow solution was cooled 

to -20 °C and Br2 (30 mL, 0.60 mol) was added dropwise within 40 min. After completion of 

the reaction the solution was poured onto ice and extracted with pentane. The organic extracts 

were dried over MgSO4, filtered and concentrated in vacuo. The residue was added to a 3-

neck flask equipped with a dropping funnel and a magnetic stirring bar, dissolved in pentane 

(150 mL) and cooled to -25 °C. A suspension of tBuOK (120 g, 1.07 mol) in THF (500 mL) 

was added dropwise within 1 h. After completion of the addition the reaction mixture was 

poured onto ice and extracted with pentane. The organic extracts were dried over MgSO4, 

filtered and concentrated in vacuo. The brown oil was purified by distillation (10 mbar, 60 

°C) yielding 1,2-dibromo cyclopentene as a colourless oil (46.3 g, 21%). 
1H-NMR (CDCl3, 300 MHz): δ = 2.60 (t, 3JH-H = 7.5 Hz, 4 H), 2.09-1.99 (m, 2 H). 
13C-NMR (CDCl3, 75 MHz): δ = 121.9, 39.0, 22.4. 

MS (70 eV, EI), m/z (%): 226 (53), 224 (M+, 50) 145 (48), 119 (6), 65 (100). 

IR (film): 2954 (w), 2853 (w), 1724 (w), 1622 (m), 1442 (w), 1309 (w), 1200 (w), 1106 (s), 

1059 (m), 935 (vw), 839 (vs). 

HRMS (EI) calcd. for C5H6
79Br2: 223.8836, found: 223.8846.  

                                                 
 
98 K. Voigt, P. von Zezschwitz, K. Rosauer, A. Lansky, A. Adams, O. Reiser, A. de Meijere, Eur. J. Org. Chem. 
1998, 1521.  
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Synthesis of 1,2-dibromocyclohexene (38)  

 

 

 

 

To a dry and nitrogen flushed 2L 3-neck flask equipped with a thermometer, a dropping 

funnel and a magnetic stirring bar, containing a suspension of PCl5 (108.3 g, 0.52 mol) in 

chloroform (270 mL), cyclohexanone (49.1 g, 0.50 mol) dissolved in chloroform (160 mL) 

was added dropwise at 0 °C within 1 h. After addition of the ketone the reaction mixture was 

stirred for 1 h at 25 °C and then refluxed for 2 h. The yellow solution was poured onto ice and 

treated with NaHCO3 until neutral pH was obtained. The organic extracts were dried over 

anhydrous MgSO4, filtered and concentrated in vacuo. The residue was added to a 3-neck 

flask equipped with a dropping funnel and a magnetic stirring bar, dissolved in CH2Cl2 (30 

mL) and cooled to -10 °C. A solution of Br2 (32.0 g, 0.20 mol) in CH2Cl2 (12 mL) was added 

dropwise over a period of 1 h to the reaction mixture. After completion of the addition the 

mixture was poured onto ice and extracted with pentane. The organic extracts were dried over 

anhydrous MgSO4, filtered and concentrated in vacuo. The yellow residue was dissolved in 

pentane (75 mL) and cooled to -25 °C. A suspension of tBuOK (56.0 g, 0.50 mol) in THF 

(250 mL) was added dropwise to the solution. After completion of the reaction the mixture 

was poured onto ice and extracted with pentane. The organic extracts were dried over 

anhydrous MgSO4, filtered and concentrated in vacuo. The residue was purified by flash 

chromatography (SiO2, pentane) and recrystallized from methanol. 1,2 Dibromocyclohexene 

was isolated as colourless crystals (90 g, 75%).  

m.p.: 45.8-47.2 °C  
1H-NMR (CDCl3, 300 MHz): δ = 2.57-2.54 (m, 4 H), 1.76-1.72 (m, 4 H). 
13C-NMR (CDCl3, 75 MHz): δ = 122.9, 37.2, 24.0. 

IR (Diamond ATR): 2944 (m), 2927 (m), 1718 (w), 1634 (m), 1447 (m), 1429 (m), 1322 

(m), 1262 (w), 1170 (w), 1140 (w), 1114 (w), 1073 (w), 989 (s), 962 (s), 852 (m), 816 (m), 

748 (s). 

MS (70 eV, EI), m/z (%): 242 (28), 240 (49), 238 (M+, 25), 161 (35), 159 (37), 133 (12), 131 

(15), 91 (20), 80 (26), 79 (100), 78 (11), 77 (39), 57 (13), 55 (14), 52 (13), 51 (23), 50 (12), 

44 (36), 43 (16), 41 (11).  

HRMS (EI) calcd. for C6H8
79Br2: 237.8993, found: 237.8993.  
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3.2  Monofunctionalization of 1,2-dibromocyclopentene 

 

 Synthesis of 1-bromo-2-iodocyclopentene (22a)  

 

 

 

 

Dibromide 20 (1.00 mmol, 226 mg) was reacted according to TP1 with iPrMgCl·LiCl (6; 0.89 

mL, 1.24 м in THF, 1.10 mmol). After completion of the exchange, the organomagnesium 

reagent 21 was quenched with iodine (305 mg, 1.20 mmol) in THF (2.00 mL) at -20 °C. 

Purification by flash chromatography was done according to TP1, (SiO2, pentane) yielding 1-

bromo-2-iodocyclopentene (22a), as a pale yellow oil (223 mg, 82%). 
1H-NMR (CDCl3, 300 MHz): δ = 2.67-2.59 (m, 4 H), 2.05 (quint, 3JH-H = 7.5 Hz, 2 H). 
13C-NMR (CDCl3, 75 MHz): δ = 130.2, 97.2, 43.5, 39.6, 24.1. 

IR (film): 2951 (m), 2848 (m), 1604 (m), 1440 (m), 1382 (w), 1306 (m), 1287 (w), 1199 (w), 

1132 (w), 1091 (s), 1042 (w), 1028 (w), 903 (w), 824 (s), 747 (w), 692 (w). 

MS (EI, 70 eV), m/z (%): 272 (M+, 100), 206 (2), 193 (17), 145 (21), 127 (13), 65 (63). 

HRMS (EI): calcd. for C5H6
79BrI: 271.8698, found: 271.8686. 

 

Synthesis of 2-bromocyclopent-1-enecarbaldehyde (22b) 

 

 

 

 

According to TP1, iPrMgCl·LiCl (6; 1.65 mL, 1.06 м in THF, 1.75 mmol) was added to 20 

(359 mg, 1.59 mmol). The alkenylmagnesium species 21 was quenched with DMF (0.15 mL, 

1.91 mmol). Following work-up, the obtained oil was purified by flash chromatography 

(SiO2, pentane:CH2Cl2/1:1) to give the product 22b as a pale yellow oil (228 mg, 82%). 
1H-NMR (CDCl3, 300 MHz): δ = 9.89 (s, 1 H), 2.92-2.87 (m, 2 H), 2.55-2.50 (m, 2 H), 2.01 

(quint, 3JH-H = 7.5 Hz, 2 H). 
13C-NMR (CDCl3, 75 MHz): δ = 189.5, 141.6, 140.3, 42.8, 29.5, 21.6. 

IR (film): 2925 (w), 1662 (s), 1599 (s), 1329 (w), 1240 (w), 1195 (w), 1074 (m), 909 (m), 

720 (s). 
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MS (EI, 70 eV), m/z (%): 174 (M+, 100), 145 (10), 95 (45), 94 (12), 67 (90), 66 (41), 65 (73), 

41 (20). 

HRMS (EI): calcd. for C6H7
79BrO: 173.9680, found: 173.9681. 

 

Synthesis of 2,2'-dibromobicyclopentyl-1,1'-diene (22e) 

 

 

 

 

 

According to TP1, iPrMgCl·LiCl (6; 4.50 mL, 1.22 м in THF, 5.50 mmol) was added to 20 

(1.13 g, 5.00 mmol). The alkenylmagnesium species 21 was transmetallated with ZnCl2 (1.00 

м in THF solution, 2.75 mL) at -20 °C and the solution was stirred for 15 min. 1-Bromo-2-

iodocyclopentene (22a;1.36 g, 5.00 mmol) was then added to the reaction mixture at -20 °C 

followed by Pd(dba)2 (144 mg, 5 mol%) and (o-furyl)3P (81 mg, 7 mol%). After the work-up, 

the obtained oil was purified by flash chromatography (SiO2, pentane) to give the product 22e 

as a colourless oil (1.16 g, 77%). 
1H-NMR (CDCl3, 300 MHz): δ = 2.71-2.53 (m, 8 H), 1.96 (quint, 3J H-H = 7.6 Hz, 4 H). 
13C-NMR (CDCl3, 75 MHz): δ = 136.9, 119.0, 41.4, 35.0, 22.8. 

IR (film): 4329 (w), 4250 (w), 2966 (m), 2946 (m), 2893 (m), 2846 (s), 1668 (w), 1615 (w), 

1435 (m), 1308 (m), 1283 (m), 1202 (w), 1134 (w), 1118 (w), 1082 (m), 1033 (s), 998 (w), 

922 (m), 907 (m), 876 (w), 784 (s). 

MS (EI, 70 eV), m/z (%): 292 (M+, 100), 290 (47), 213 (32), 211 (32), 132 (58), 131 (61), 

129 (10), 117 (28), 116 (11), 115 (14), 104 (16), 103 (14), 91 (30), 77 (17), 65 (23), 64 (25), 

63 (10), 51 (16). 

HRMS (EI): calcd. for C10H12
79Br2 : 289.9306, found: 289.9316. 
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Synthesis of 2-(2-bromocyclopent-1-enyl)-5,5-dimethyl[1,3,2]dioxaborinane (22f) 

 

 

 

 

 

 

According to TP1, iPrMgCl·LiCl (6; 0.90 mL, 1.22 м in THF, 1.10 mmol) was added to 20 

(226 mg, 1.00 mmol) at 25 °C. The alkenylmagnesium species 21 was reacted with (i-PrO)3B 

(0.28 mL, 1.20 mmol) at -20 °C and the reaction mixture was slowly warmed up to 25 °C. 

2,2-Dimethylpropane-1,3-diol (156 mg, 1.50 mmol) was then added neat to the solution. After 

the work-up, the obtained oil was purified by flash chromatography (SiO2, pentane:ether/7:3) 

to give the product 22f as a brown oil (185 mg, 72%). 
1H-NMR (C6D6, 300 MHz): δ = 3.34 (s, 4 H), 2.61-2.53 (m, 4 H), 1.58 (quint, 3JH-H = 7.6 Hz, 

2 H), 0.57 (s, 6 H). 
13C-NMR (C6D6, 75 MHz): δ = 132.2, 71.9, 44.0, 36.3, 31.3, 23.4, 21.5 (olefinic C attached 

to B not observed due to quadrupolar coupling). 

IR (film): 2958 (m), 2926 (m), 1731 (m), 1616 (m), 1476 (m), 14181318 (s), 1253 (s), 1118 

(s), 1073 (w), 840 (w), 696 (m), 672 (w).  

MS (EI, 70 eV), m/z (%): 258 (M+, 100), 180 (40), 179 (63), 135 (46), 93 (62), 79 (28). 

HRMS (EI): calcd. for C10H16B79BrO2: 258.0427, found: 258.0433. 

 

Synthesis of (2-bromocyclopent-1-enyl)-phenylmethanone (22g) 

 

 

 

 

 

According to TP1, iPrMgCl·LiCl (6; 0.85 mL, 1.30 м in THF, 1.10 mmol) was added to 20 

(226 mg, 1.00 mmol). After the exchange was complete, the solution was cooled to -30 °C 

and ZnCl2 solution (1.00 mL, 1.0 м in THF, 1.00 mmol) was added. After stirring for 30 min, 

the solution was warmed to -20 °C and CuCN·2LiCl solution (1.00 mL, 1.00 м in THF, 1.00 

mmol) was added. After stirring for 5 min, benzoyl chloride (0.14 mL, 1.20 mmol) was added 

and the solution was warmed to 25 °C. After stirring 2 h at 25 °C, a sat. NH4Cl solution (5 
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mL) was added and the aq. layer was extracted with Et2O (3 x 10 mL). The combined organic 

extracts were washed with brine, dried over MgSO4, and filtered. Removal of solvent in 

vacuo and purification by flash chromatography (SiO2, pentane:ether/9:1) afforded the 

product 22g as a pale yellow oil (162 mg, 65%). 
1H-NMR (C6D6, 400 MHz): δ = 7.92 (d, 3JH-H = 7.0 Hz, 2 H), 7.20-7.12 (m, 3 H), 2.49-2.40 

(m, 4 H), 1.50 (quint, 3JH-H = 7.6 Hz, 2 H). 
13C-NMR (C6D6, 75 MHz): δ = 194.0, 140.7, 136.7, 133.0, 129.6, 128.6, 123.4, 41.9, 35.5, 

22.1. 

IR (film): 1653 (s), 1616 (m), 1595 (m), 1451 (m), 1321 (s), 1283 (s), 1072 (m), 955 (m), 840 

(m), 792 (m), 713 (s), 687 (s), 675 (s).  

MS (EI, 70 eV), m/z (%): 252 (64), 251 (17), 250 (M+, 66), 175 (23), 173 (23), 172 (13), 171 

(100), 170 (11), 143 (32), 128 (15), 105 (47), 77 (22). 

HRMS (EI): calcd. for C12H11
79BrO: 249.9993, found: 249.9992. 

 

 

3.3  Difunctionalization of cyclopentene derivatives  

 

 

Synthesis of 3-isopropylbicyclo[2.2.1]hepta-2,5-diene-2-carbaldehyde (27a) 

 

 

 

 

According to TP2, iPrMgCl·LiCl (6; 1.80 mL, 1.22 м in THF, 2.20 mmol) was added to 25 

(250 mg, 1.00 mmol). After the exchange was complete, Li2CuCl4 was added (0.1 mL, 0.10 м 

in THF, 0.01 mmol). The newly formed alkenylmagnesium species 26 was quenched with 

DMF (0.12 mL, 1.50 mmol). After the work-up, the resultant oil was purified by flash 

chromatography (SiO2, pentane:ethyl acetate/9:1) to give the product 27a as a yellow oil (116 

mg, 72%). 
1H-NMR (CDCl3, 300 MHz): δ = 9.87 (s, 1 H), 6.65-6.63 (m, 1 H), 6.38-6.36 (m, 1 H), 4.09 

(s, 1 H), 3.22 (s, 1 H), 2.93 (sept, 3JH-H = 6.8 Hz, 1 H), 1.77 (d, 3JH-H = 6.7 Hz, 1 H), 1.63 (d, 
3JH-H = 6.7 Hz, 1 H), 0.81 (d, 3JH-H = 6.8 Hz, 3 H), 0.63 (d, 3JH-H = 6.8 Hz, 3 H). 
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13C-NMR (C6D6, 75 MHz): δ = 183.5, 182.5, 147.0, 143.7, 141.0, 70.0, 51.8, 47.7, 27.0, 

19.0. 

IR (film): 3437 (w), 2966 (s), 1659 (s), 1465 (m), 1332 (w), 1291 (m), 701 (w), 664 (w). 

MS (EI, 70 eV), m/z (%): 162 (M+, 45), 147 (16), 133 (10), 129 (12), 119 (21), 105 (17), 96 

(10), 92 (12), 91 (52), 77 (14), 67 (10), 66 (100), 65 (13), 41 (13). 

HRMS (EI): calcd. for C11H14O: 162.1045, found: 162.1035. 

 

Synthesis of (3-isopropylbicyclo[2.2.1]hepta-2,5-dien-2-yl)phenylmethanone (27b) 

 

 

 

 

According to TP3, iPrMgCl·LiCl (6; 1.80 mL, 1.22 м in THF, 2.20 mmol) was added to 25 

(250 mg, 1.00 mmol). After the exchange was complete, Li2CuCl4 was added (0.10 mL, 0.10 

м in THF, 0.01 mmol). The newly formed alkenylmagnesium species 26 was transmetallated 

with ZnCl2 (1.00 mL, 1.00 м in THF, 1.0 mmol) and subsequently with CuCN·2LiCl (0.20 

mL, 1.00 м in THF, 0.20 mmol), and the resultant copper-zinc reagent was quenched with 

benzoyl chloride (0.17 mL, 1.50 mmol). After the work-up, the resultant oil was purified by 

flash chromatography (SiO2, pentane:ethyl acetate/9:1) to give the product 27a as a pale 

yellow solid (138 mg, 58%). 

m.p.: 47.8-50.4 °C. 
1H-NMR (C6D6, 400 MHz): δ = 7.76 (d, 3JH-H = 6.7 Hz, 2 H), 7.14-7.07 (m, 3 H), 6.90-6.88 

(m, 1 H), 6.52-6.50 (m, 1 H), 3.86 (s, 1 H), 3.38 (s, 1 H), 2.87 (sept, 3JH-H = 6.7 Hz, 1 H), 1.89 

(d, 3JH-H = 6.5 Hz, 1 H), 1.85 (d, 3JH-H = 6.5 Hz, 1 H), 0.91 (d, 3JH-H = 3.3 Hz, 3 H), 0.62 (d, 
3JH-H = 3.3 Hz, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 193.0, 172.3, 145.4, 143.4, 141.0, 140.4, 131.8, 128.7, 

128.2, 69.6, 53.0, 51.7, 28.2, 20.4, 18.7. 

IR (film): 2966 (m), 2868 (w), 1628 (s), 1334 (m), 1288 (m), 1250 (m), 999 (w), 884 (w), 808 

(w), 725 (s), 696 (m), 662 (s). 

MS (EI, 70 eV), m/z (%): 238 (M+, 39), 223 (11), 195 (11), 173 (17), 172 (34), 115 (10), 105 

(100), 91 (22), 78 (11), 77 (80), 66 (41), 65 (14), 51 (31), 43 (11), 41 (37). 

HRMS (EI): calcd. for C17H18O: 238.1358, found 238.1344. 
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Synthesis of ethyl 4-(3-isopropylbicyclo[2.2.1]hepta-2,5-dien-2-yl)benzoate (27c) 

 

 

 

 

 

According to TP2, iPrMgCl·LiCl (6; 1.80 mL, 1.22 м in THF, 2.20 mmol) was added to 25 

(250 mg, 1.00 mmol). After the exchange was complete, Li2CuCl4 was added (0.01 mmol, 

0.10 м in THF, 0.10 mL). The newly formed alkenylmagnesium species 26 was coupled with 

ethyl 4-iodobenzoate (414 mg, 1.50 mmol) using 5 mol% Pd(dba)2 (29 mg, 0.05 mmol) and 7 

mol% (o-furyl)3P (16 mg, 0.07 mmol). After the work-up, the resultant oil was purified by 

flash chromatography (SiO2, pentane:ethyl acetate/19:1) to give the product 27c as a white 

solid (177 mg, 63%). 

m.p.: 42.3-43.7 °C. 
1H-NMR (C6D6, 400 MHz): δ = 8.24 (d, 3JH-H = 8.4 Hz, 2 H), 7.21-7.19 (m, 2 H), 6.79-6.77 

(m, 1 H), 6.66-6.64 (m, 1 H), 4.15 (q, 3JH-H = 7.0 Hz, 2 H), 3.52 (s, 1 H), 3.44 (s, 1 H), 2.93 

(sept, 3JH-H = 6.7 Hz, 1 H), 1.93 (s, 2 H), 1.08-1.03 (m, 6 H), 0.72 (d, 3JH-H = 6.7 Hz, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 166.1, 158.4, 144.6, 142.5, 142.1, 129.9, 128.6, 126.2, 69.9, 

60.5, 55.0, 51.1, 27.3, 21.4, 19.0, 14.2. 

IR (film): 2960 (m), 1712 (s), 1604 (m), 1463 (w), 1365 (w), 1268 (s), 1176 (m), 1103 (s), 

1022 (m), 857 (w), 808 (w), 772 (s), 724 (s), 708 (s).  

MS (EI, 70 eV), m/z (%): 283 (20), 282 (M+, 100), 259 (12), 235 (17), 215 (35), 214 (55), 

171 (10), 167 (11), 165 (10), 143 (52), 128 (12).  

HRMS (EI): calcd. for C19H22O2: 282.1620, found: 282.1635. 
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Synthesis of 2-bromo-3-iodo-1,7,7-trimethylbicyclo[2.2.1]hept-2-ene (28)  

 

 

 

 

 

(R)-2-Bromo-1,7,7-trimethylbicyclo[2.2.1]hept-2-ene (2.15 g, 10 mmol), obtained via a 

Shapiro reaction from the camphor hydrazone according to the published procedure99 was 

deprotonated at the vinylic position with LDA (25 mmol, 1 м in THF) and trapped in situ with 

trimethyltin chloride (2.0 g, 10 mmol), as described by De Lucchi.100 The product 33 was not 

isolated, but quenched in situ with iodine (2.79 g, 11.0 mmol) dissolved in THF (20 mL) to 

yield 28. The reaction mixture was concentrated under high vacuum, to remove the Me3SnI, 

and the product was extracted with pentane and washed with a saturated Na2S2O3 solution and 

water. The resultant oil was purified by flash chromatography (SiO2, pentane) to give the 

product 28 as a pale yellow oil (1.68 g, 60%). 
1H-NMR (C6D6, 400 MHz): δ = 2.34 (d, 3JH-H = 3.5 Hz, 1 H), 1.42-1.36 (m, 1 H), 1.23-1.18 

(m, 1 H), 1.04-0.97 (m, 2 H), 0.94 (s, 3 H), 0.76 (s, 3 H), 0.47 (s, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 139.2, 99.2, 63.8, 59.5, 56.8, 31.8, 25.0, 19.6, 18.9, 13.4. 

IR (film): 2958 (s), 2871 (m), 1574 (m), 1472 (w), 1441 (w), 1388 (w), 1300 (w), 1152 (w), 

1111 (w), 1013 (s), 969 (m), 815 (m), 773 (m), 730 (s). 

MS (EI, 70 eV), m/z (%): 342 (36), 340 (M+, 41), 314 (12), 216 (12), 215 (98), 214 (12), 213 

(96).  

HRMS (EI): calcd. for C10H14BrI : 339.9324, found 339.9335.  

 

 

 

 

 

 

 

                                                 
 
99 a) R. Cremlyn, M. Bartlet, J. Lloyd, Phosphorus, Sulfur, and Silicon and the related elements, 1988, 40, 91; b) 
A. Pross, S. Sternhell, Aust. J. Chem. 1971, 24, 1437. 
100 F. Fabris, L. Zambrini, E. Rosso, O. De Lucchi, Eur. J. Org. Chem. 2004, 3313.  
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Synthesis of (3-isopropyl-4,7,7-trimethylbicyclo[2.2.1]hept-2-en-2-yl)(phenyl)methanone 

(36) 

 

 

 

 

According to TP3, iPrMgCl·LiCl (6; 1.80 mL, 1.22 м in THF, 2.20 mmol) was added to 33 

(340 mg, 1.00 mmol). After the exchange was complete (1 h, 0 °C), CuCN·2LiCl was added 

(1.00 mL, 1.00 mmol) at -60 °C. The newly formed alkenylmagnesium species 35 was 

transmetallated first to ZnCl2 (1.00 mL, 1.00 м in THF, 1.00 mmol) and subsequently after 10 

min with CuCN·2LiCl (1.00 mL, 1.00 M, 1.00 mmol) and then quenched with benzoyl 

chloride (0.17 mL, 1.50 mmol) at -30 °C. After the work-up, the resultant oil was purified by 

flash chromatography (SiO2, pentane:ethyl acetate/19:1) to give the product 36, which was 

recrystallized from heptane to give colourless crystals (85 mg, 30%). 

m.p.: 61.7-64.5 °C. 
1H-NMR (C6D6, 400 MHz): δ = 7.97-7.95 (m, 2 H), 7.13-7.10 (m, 3 H), 2.76 (sept, 3JH-H = 

7.0 Hz, 1 H), 2.64 (d, 3JH-H = 3.5 Hz, 1 H), 1.86-1.79 (m, 1 H), 1.59-1.43 (m, 2 H), 1.29-1.22 

(m, 1 H), 1.03-0.95 (m, 12 H), 0.62 (s, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 195.7, 159.9, 140.6, 140.1, 132.1, 129.1, 128.4, 58.2, 56.1, 

55.6, 33.1, 29.1, 26.3, 20.8, 20.5, 20.0, 19.3, 13.2. 

IR (film): 2962 (s), 2872 (w), 1629 (s), 1595 (m), 1446 (m), 1331 (m), 1272 (m), 1249 (m), 

809 (m), 778 (w), 720 (s), 692 (s), 660 (s). 

MS (EI, 70 eV), m/z (%): 283 (23), 282 (M+, 100), 280 (28), 279 (18), 267 (22), 265 (20), 

254 (10), 239 (25), 237 (11), 105 (35). 

HRMS (EI): calcd. For C20H26O: 282.1984, found 282.1992. 
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3.4  Difunctionalization of Cyclohexene Derivatives  

 

Synthesis of 1,1´-[cyclohex-1-ene-1,2-diylbis(thio)]dibenzene (43a) 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, 

thiophenol (242 mg, 2.20 mmol) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 1.90 mL, 

1.30 м in THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred until no 

gas evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was added to the 

mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in THF, 2.20 

mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the reaction was 

checked by GC analysis of hydrolyzed reaction aliquots. After complete conversion to the 

organomagnesium reagent 42 was achieved, the reaction mixture was cooled to -20 °C and 

reacted with methanethiosulfonic acid S-methyl ester (315 mg, 2.50 mmol). The mixture was 

allowed to slowly warm up to 25 °C. The solution was quenched with a sat. aq. NH4Cl 

solution, and extracted with ether (3 x 50 mL). The combined organic extracts were dried 

over anhydrous Na2SO4, filtered and concentrated in vacuo. Purification by column 

chromatography (Al2O3; pentane) yielded 43a as a pale yellow oil (333 mg, 56%). 
1H-NMR (C6D6, 300 MHz): δ = 7.42-7.38 (m, 4 H), 7.05-6.92 (m, 6 H), 2.16-2.12 (m, 4 H), 

1.30-1.25 (m, 4 H). 
13C-NMR (C6D6, 75 MHz): δ = 135.0, 134.3, 132.0, 129.1, 127.1, 32.6, 23.7. 

IR (film): 2930 (w), 1581 (m), 1474 (m), 1438 (m), 1326 (w), 1020 (m), 914 (w), 782 (w), 

736 (s), 689 (s). 

MS (EI, 70 eV) m/z: 300 (9), 299 (17), 298 (M+, 100), 189 (22), 160 (10), 155 (7), 147 (41), 

128 (5), 115 (4), 111 (5), 109 (6), 79 (9), 77 (9). 

HRMS (EI): calcd. for C18H18S2: 298.0850, found: 298.0844. 
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Synthesis of 2,2-dimethyl-1-(2-phenylsulfanylcyclohex-1-enyl) propan-1-ol (43b) 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, 

thiophenol (242 mg, 2.20 mmol) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 1.90 mL, 

1.30 м in THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred until no 

gas evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was added to the 

mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in THF, 2.20 

mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the reaction was 

checked by GC analysis of hydrolyzed reaction aliquots. After complete conversion to the 

organomagnesium reagent 42 was achieved, the reaction mixture was cooled to -20 °C and 

reacted with pivaldehyde (215 mg, 2.50 mmol). The mixture was allowed to slowly warm up 

to 25 °C. The solution was quenched with a sat. aq. NH4Cl solution and extracted with ether 

(3 x 50 mL). The combined organic extracts were dried over anhydrous Na2SO4, filtered and 

concentrated in vacuo. Purification by column chromatography (Al2O3; pentane) yielded 43b 

as a pale yellow oil (347 mg, 63%). 
1H-NMR (C6D6, 300 MHz): δ = 7.31 (d, 3JH-H = 8.1 Hz, 2 H), 7.05 (t, 3JH-H = 7.5 Hz, 2 H), 6.94 

(t, 3JH-H = 7.3 Hz, 1 H), 5.02 (s, 1 H), 2.58-2.45 (m, 1 H), 2.30-2.20 (m, 2 H), 2.19-2.06 (m, 1 

H), 1.50-1.38 (m, 4 H), 1.04 (s, 9 H). 
13C-NMR (C6D6, 75 MHz): δ = 145.8, 136.6, 129.7, 129.2, 127.5, 126.1, 78.8, 36.8, 32.1, 27.5, 

27.3, 24.3, 23.0. 

IR (film): 2931 (s), 1583 (m), 1477 (m), 1439 (m), 1362 (w), 1192 (w), 1087 (w), 994 (s), 

956 (m), 905 (w), 814 (m), 739 (s), 720 (m), 690 (s).  

MS (EI, 70 eV) m/z: 276 (M+, 3), 258 (8), 243 (6), 221 (6), 220 (14), 219 (100), 217 (4), 202 

(7), 201 (39), 147 (7), 141 (7), 133 (3), 127 (4), 123 (3), 115 (3), 110 (6), 109 (4), 105 (5), 97 

(4), 91 (9), 83 (6), 81 (13), 79 (15), 77 (10), 69 (7), 67 (7), 57 (11), 55 (11), 41 (15). 

HRMS (EI): calcd. for C17H24OS: 276.1548, found: 276.1540. 
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Synthesis of ethyl 2-(2-diphenylaminocyclohex-1-enylmethyl) acrylic carboxylate (45a) 

 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, 

diphenylamine (2.20 mmol, 372 mg) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 

1.90 mL, 1.30 м in THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred 

until no gas evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was 

added to the mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in 

THF, 2.20 mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the 

reaction was checked by GC analysis of hydrolyzed reaction aliquots. After complete 

conversion to the organomagnesium reagent 44 was achieved, the reaction mixture was 

cooled to -20 °C and transmetallated with CuCN·2LiCl (2.00 mL, 1.00 м in THF, 2.00 mmol). 

2-Bromomethyl acrylic acid ethyl ester (483 mg, 2.50 mmol) was then added and the mixture 

was stirred for 1 h at -20 °C. The solution was quenched with a sat. aq. NH4Cl solution 

followed by a 25% aq. NH3 solution and extracted with ether (3 x 50 mL). The combined 

organic extracts were dried over anhydrous Na2SO4, filtered and concentrated in vacuo. 

Purification by flash chromatography (Al2O3, pentane:ether/9:1) yielded 45a as a yellow oil 

(357 mg, 50%). 
1H-NMR (C6D6, 600 MHz): δ = 7.19 (d, 3JH-H = 7.5 Hz, 4 H), 7.12 (t, 3JH-H = 7.9 Hz, 4 H), 

6.83 (t, 3JH-H = 7.3 Hz, 2 H), 6.10 (s, 1 H), 5.05 (s, 1 H), 3.97 (q, 3JH-H = 7.1 Hz, 2 H), 3.2, (s, 

2 H), 2.15-2.11 (m, 2 H), 1.99-1.96 (m, 2 H), 1.50-1.44 (m, 4 H), 0.92 (t, 3JH-H = 7.1 Hz, 3 H). 
13C-NMR (C6D6, 150 MHz): δ = 166.8, 146.8, 138.7, 137.1, 131.8, 129.4, 125.9, 121.4, 

121.1, 60.5, 35.1, 28.8, 28.6, 23.8, 23.2, 14.2. 

IR (film): 2930 (w), 1712 (s), 1587 (s), 1488 (s), 1294 (m), 1249 (m), 1146 (m), 1027 (m), 

945 (w), 879 (w), 817 (w), 747 (s), 692 (s), 646 (w). 

MS (EI, 70 eV) m/z: 361 (M+, 10), 263 (16), 262 (71), 261 (9), 260 (37), 259 (14), 258 (11), 

256 (12), 249 (39), 248 (100), 247 (20), 246 (23), 244 (10), 232 (9), 219 (17), 218 (19), 217 

(9), 206 (26), 204 (9), 194 (15), 180 (12), 167 (12), 91 (10), 77 (9), 44 (11). 

HRMS (EI): calcd. for C24H27NO2: 361.2042, found: 361.2039. 
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Synthesis of (2-allyl cyclohex-1-enyl)diphenylamine (45b) 

 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, 

diphenylamine (372 mg, 2.20 mmol) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 

1.90 mL, 1.30 м in THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred 

until no gas evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was 

added to the mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in 

THF, 2.20 mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the 

reaction was checked by GC analysis of hydrolyzed reaction aliquots. After complete 

conversion to the organomagnesium reagent 44 was achieved, the reaction mixture was 

cooled to -20 °C and transmetallated with CuCN·2LiCl (2.00 mL, 1.00 м in THF, 2.00 mmol). 

Allyl bromide (300 mg, 2.50 mmol) was then added and the mixture was stirred for 1 h at -20 

°C. The solution was quenched with a sat. aq. NH4Cl solution followed by a 25% aqueous 

NH3 solution and extracted with ether (3 x 50 mL). The combined organic extracts were dried 

over anhydrous Na2SO4, filtered and concentrated in vacuo. Purification by flash 

chromatography (Al2O3, pentane) yielded 45b as a pale yellow oil (352 mg, 61%). 
1H-NMR (C6D6, 400 MHz): δ = 7.15-7.09 (m, 8 H), 6.85-6.80 (m, 2 H), 5.55-5.45 (m, 1 H), 

4.89-4.81 (m, 2 H), 2.80 (d, 3JH-H = 7.0 Hz, 2 H), 2.12-2.05 (m, 2 H), 1.98-1.93 (m, 2 H), 1.52-

1.44 (m, 4 H). 
13C-NMR (C6D6, 100 MHz): δ = 146.9, 136.2, 135.8, 133.0, 129.4, 121.3, 120.8, 116.2, 37.6, 

28.7, 28.4, 23.9, 23.1. 

IR (film): 2926 (w), 1586 (s), 1486 (s), 1309 (m), 1293 (m), 1247 (m), 1175 (w), 1138 (w), 

995 (w), 910 (m), 746 (s), 691 (s). 

MS (EI, 70 eV) m/z: 290 (22), 289 (M+, 100), 288 (37), 274 (7), 260 (15), 249 (18), 248 (99), 

247 (16), 246 (20), 232 (5), 220 (6), 219 (7), 218 (10), 212 (7), 206 (15), 198 (20), 170 (7), 

169 (8), 168 (8), 167 (11), 130 (7), 117 (8), 115 (6), 91 (11), 77 (18). 

HRMS (EI): calcd. for C21H23N: 289.1830, found: 289.1808. 
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Synthesis of (2-diphenylaminocyclohex-1-enyl)phenylmethanol (45c) 

 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, 

diphenylamine (372 mg, 2.20 mmol) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 

1.90 mL, 1.30 м in THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred 

until no gas evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was 

added to the mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in 

THF, 2.20 mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the 

reaction was checked by GC analysis of hydrolyzed reaction aliquots. After complete 

conversion to the organomagnesium reagent 44 was achieved, the reaction mixture was 

cooled to -20 °C and reacted with benzaldehyde (265 mg, 2.50 mmol). The mixture was 

allowed to slowly warm up to 25 °C. The solution was quenched with a sat. aq. NH4Cl 

solution and extracted with ether (3 x 50 mL). The combined organic extracts were dried over 

anhydrous Na2SO4, filtered and concentrated in vacuo. Purification by flash chromatography 

(Al2O3, pentane) yielded 45c as a pale yellow oil (348 mg, 49%). 
1H-NMR (CDCl3, 300 MHz): δ = 7.37-7.33 (m, 2 H), 7.23-7.18 (m, 8 H), 7.14-7.10 (m, 3 H), 

6.86 (t, 3JH-H = 7.2 Hz, 2 H), 5.98 (s, 1 H), 2.46-2.36 (m, 1 H), 2.26-1.99 (m, 3 H), 1.47-1.32 (m, 

4 H). 
13C-NMR (CDCl3, 75 MHz): δ = 142.9, 138.5, 137.0, 129.6, 128.2, 127.0, 126.4, 121.7, 121.0, 

118.2, 71.2, 28.6, 23.4, 23.4, 22.8. 

IR (film): 3358 (w), 2934 (w), 1696 (m), 1590 (s), 1493 (s), 1448 (m), 1417 (w), 1310 (s), 

1173 (w), 1143 (w), 1027 (w), 875 (w), 745 (s), 690 (s). 

MS (EI, 70 eV) m/z: 338 (13), 337 (44), 336 (55), 260 (10), 249 (17), 248 (80), 247 (85), 246 

(31), 244 (14), 232 (10), 220 (16), 219 (68), 218 (100), 217 (37), 206 (18), 204 (14), 115 (15), 

109 (14), 105 (10), 97 (17), 91 (!4), 85 (21), 83 (19), 77 (21), 71 (29), 70 (11), 69 (20), 57 

(45), 56 (12), 55 (27), 43 (33). 

HRMS (EI): calcd. for C25H25NO: 355.1936, found: 355.1921. 
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Synthesis of (2-allylcyclohex-1-enyl)-N-methylaniline (47) 

 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, methyl-

phenyl-amine (236 mg, 2.20 mmol) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 1.90 

mL, 1.30 м in THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred until 

no gas evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was added to 

the mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in THF, 

2.20 mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the reaction was 

checked by GC analysis of reaction aliquots. After complete conversion to the 

organomagnesium reagent 46 was achieved, the reaction mixture was cooled to -20 °C and 

transmetallated with CuCN·2LiCl (2.00 mL, 1.00 м in THF, 2.00 mmol). Allyl bromide (300 

mg, 2.50 mmol) was then added and the mixture was stirred for 1 h at -20 °C. The solution 

was quenched with a sat. aq. NH4Cl solution followed by a 25% aq. NH3 solution and 

extracted with ether (3 x 50 mL). The combined organic extracts were dried over anhydrous 

Na2SO4, filtered and concentrated in vacuo. Purification by flash chromatography (Al2O3, 

pentane) yielded 47 as a pale yellow oil (312 mg, 52%). 
1H-NMR (C6D6, 600 MHz): δ = 7.27 (t, 3JH-H = 8.6 Hz, 2 H), 6.80 (t, 3JH-H = 7.3 Hz, 1 H), 6.68 

(d, 3JH-H = 7.9 Hz, 2 H), 5.74-5.67 (m, 1 H), 4.96 (s, 1 H), 4.94-4.93 (m, 1 H), 2.75-2.74 (m, 2 

H), 2.70 (s, 3 H), 1.96-1.94 (m, 2 H), 1.90-1.88 (m, 2 H), 1.51-1.43 (m, 4 H).  
13C-NMR (C6D6, 150 MHz): δ = 148.3, 137.7, 136.6, 132.8, 129.5, 116.8, 115.7, 112.7, 37.0, 

37.0, 28.4, 25.1, 23.8, 23.1.  

IR (film): 2927 (m), 1597 (s), 1574 (w), 1498 (s), 1448 (w), 1355 (m), 1329 (m), 1298 (w), 

1232 (m), 1185 (w), 1117 (w), 1038 (m), 990 (m), 908 (m), 864 (m), 745 (s), 692 (s), 622 (w). 

MS (EI, 70 eV) m/z: 228 (14), 227 (M+, 100), 226 (36), 212 (34), 199 (10), 198 (30), 187 

(10), 186 (73), 185 (17), 170 (8), 144 (9). 

HRMS (EI): calcd. for C16H21N: 227.1674, found: 227.1670. 
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Synthesis of 1-(2-allyl cyclohex-1-enyl)-2,3-dihydro-1H-indole (49) 

 

 

 

 

 

 

In a dry and argon flushed flask equipped with a septum and a magnetic stirring bar, indoline 

(262 mg, 2.20 mmol) was dissolved in THF (1.0 mL). iPrMgCl·LiCl (6; 1.90 mL, 1.30 м in 

THF, 2.50 mmol) was added at 25 °C and the reaction mixture was stirred until no gas 

evolution occurred. 1,2-Dibromocyclohexene (38; 480 mg, 2.00 mmol) was added to the 

mixture followed by a second equivalent of iPrMgCl·LiCl (6; 1.70 mL, 1.30 м in THF, 2.20 

mmol). The mixture was stirred for 12 h at 25 °C, and the completion of the reaction was 

checked by GC analysis of hydrolyzed reaction aliquots. After complete conversion to the 

organomagnesium reagent 48 was achieved, the reaction mixture was cooled to -20 °C and 

transmetallated with CuCN·2LiCl (2.00 mL, 1.00м in THF, 2.00 mmol). Allyl bromide (300 

mg, 2.50 mmol) was then added and the mixture was stirred for 1 h at -20 °C. The solution 

was quenched with a sat. aq. NH4Cl solution followed by a 25% aq. NH3 solution and 

extracted with ether (3 x 50 mL). The combined organic extracts were dried over anhydrous 

Na2SO4, filtered and concentrated in vacuo. Purification by column chromatography (Al2O3, 

pentane) yielded 49 as a pale yellow oil (240 mg, 50%). 
1H-NMR (C6D6, 600 MHz): δ = 7.10 (t, 3JH-H = 7.6 Hz, 1 H), 7.06 (d, 3JH-H = 7.1 Hz, 1 H), 6.75 

(t, 3JH-H = 7.3 Hz, 1 H), 6.37 (d, 3JH-H = 7.9 Hz, 1 H), 5.83-5.76 (m, 1 H), 5.04-4.98 (m, 2 H), 

3.23 (t, 3JH-H = 8.5 Hz, 2 H), 3.01-2.88 (s, br, 2 H), 2.74 (t, 3JH-H = 8.1 Hz, 2 H), 2.02-2.00 (m, 2 

H), 1.92-1.85 (m, 2 H), 1.54-1.46 (m, 4 H). 
13C-NMR (C6D6, 150 MHz): δ = 151.1, 137.3, 133.5, 132.9, 129.7, 127.7, 124.7, 117.7, 115.4, 

107.9, 51.5, 37.2, 28.9, 28.7, 23.8, 23.2, 23.1. 

IR (film): 2925 (m), 1604 (s), 1485 (s), 1458 (m), 1373 (w), 1259 (s), 1204 (w), 994 (w), 908 

(m), 741 (s), 687 (w). 

MS (EI, 70 eV) m/z: 240 (20), 239 (M+, 100), 238 (60), 224 (60), 222 (19), 212 (13), 211 

(30), 210 (61), 208 (14), 198 (15), 196 (46), 194 (16), 182 (32), 181 (13), 180 (15), 168 (23), 

167 (17), 130 (20), 119 (13), 118 (27), 91 (26), 79 (14), 77 (20), 44 (17), 41 (13). 

HRMS (EI): calcd. for C17H21N: 239.1674, found: 239.1668. 
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4. Functionalization of 4,5-Dihydrobenzo[g]indazoles using Mg or Zn 
intermediates 

 

4.1  Starting materials 

 

Synthesis of 4,5-dihydro-2H-benzo[g]indazole (56) 

 

 

 

 

 

α-Tetralone (5.4 mL, 40 mmol) and dimethylformamide dimethylacetal (10.8 mL, 80 mmol) 

were dissolved in DMF (50 mL) and the reaction mixture was heated under microwave 

irradiation at 150 °C (200 W) for 60 min. To the dark red solution was then added acetic acid 

(200 mL) and hydrazine hydrate (64% aq. solution, 4 mL). The reaction mixture was stirred at 

25 °C for 3 h. The completion of the reaction was checked by GC analysis of hydrolyzed 

reaction aliquots. Most of the acetic acid was then removed by evaporation. The mixture was 

quenched with 50% sat. NaHCO3 and then extracted with toluene. The organic phase was first 

washed with NaHCO3 until neutral pH was obtained, then with water and was finally dried 

over anhydrous Na2SO4. After evaporation of the solvent the residue was recrystallized from 

heptane to yield yellow crystals (4.1 g, 60%).  

m.p.: 126.0-127.8 °C. 
1H-NMR (C6D6, 300 MHz): δ = 8.05 (d, 3JH-H = 7.1 Hz, 1 H), 7.13-7.03 (m, 3 H), 6.98 (s, 1 

H), 2.65 (t, 3JH-H = 7.3 Hz, 2 H), 2.45 (t, 3JH-H = 7.3 Hz, 2 H). 
 13C-NMR (C6D6, 75 MHz): δ = 146.5, 137.0, 130.0, 130.0, 128.7, 127.6, 127.2, 122.6, 

116.1, 30.1, 19.5.  

IR (Diamond ATR): 3142 (m), 2927 (m), 1469 (m), 1435 (m), 1382 (w), 1320 (w), 1169 

(w), 1097 (w), 1066 (m), 954 (m), 887 (w), 789 (s), 767 (s), 736 (s), 716 (s), 652 (w), 609 

(m). 

MS (EI, 70 eV) m/z, (%): 171 (9), 170 (M+, 100), 169 (63), 155 (2), 143 (27), 142 (27), 139 

(3), 115 (21), 89 (5), 70 (4). 

HRMS (EI): calcd. for C11H10N2 :170.0844, found:170.0836. 
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Synthesis of tert-butyl- 4,5-dihydro-benzo[g]indazole-2-carboxylate (57) 

 

 

 

 

 

4,5-Dihydro-2H-benzo[g]indazole (56; 4.3 g, 25 mmol) was dissolved in CH2Cl2 (50 mL). Di-

tert-butyldicarbonate (7.0 g, 33 mmol) and DMAP (611 mg, 5.0 mmol) were added at 25 °C 

and the reaction mixture was stirred for 6 h. The completion of the reaction was checked by 

TLC and the excess of the unreacted di-tert-butyldicarbonate was removed by adding 3 drops 

of diethylene diamine. The reaction mixture was quenched with water and extracted with 

ether. The organic phase was washed with water and brine and dried over Na2SO4. After 

evaporation of the solvent the residue was purified by flash chromatography (SiO2, 

pentane:ether/9:1) to give pale yellow crystals (840 mg, 91%).  

m.p.: 74.7-76.0 °C 
1H-NMR (CDCl3, 400 MHz): δ = 8.03-8.01 (m, 1 H), 7.79 (dd, 4JH-H = 1.1 Hz , 1 H), 7.28-

7.19 (m, 3 H), 2.91 (t, 3JH-H = 7.2 Hz, 2 H), 2.76 (t, 3JH-H = 7.2 Hz, 2 H), 1.63 (s, 9 H). 
 13C-NMR (CDCl3, 100 MHz): δ = 152.5, 148.0, 137.7, 128.8, 128.3, 128.3, 126.9, 126.5, 

123.8, 119.7, 84.7, 29.1, 28.0, 19.1. 

IR (Diamond ATR): 2970 (w), 2938 (w), 1737 (s), 1450 (m), 1412 (m), 1356 (s), 1251 (s), 

1149 (s), 959 (s), 845 (m), 764 (m), 719 (m). 

MS (EI, 70 eV) m/z, (%): 270 (M+, 7), 171 (10), 170 (100), 169 (56), 143 (24), 141 (19), 115 

(17), 57 (13), 41 (11). 

HRMS (EI): calcd. for C16H18N2O2: 270.1368, found: 270.1371. 

 

Synthesis of 3-triethylsilyl-4,5-dihydro-2H-benzo[g]indazole (58) 

 

 

 
 

 

A flame dried flask was flushed with argon and charged with tert-butyl 4,5-

dihydrobenzo[g]indazole-2-carboxylate (57; 1.35 g, 5.0 mmol) and THF (2.0 mL). The 

solution was cooled to -30 °C and TMPMgCl·LiCl (10a; 5.0 mL, 1.1 м in THF, 5.5 mmol) 
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6059

was added dropwise. The deprotonation was followed by GC analysis of reaction aliquots 

previously quenched with I2. After 2 h the deprotonation was complete and triethylsilyl 

chloride (904 mg, 6.0 mmol) was added at -30 °C. The reaction mixture was allowed to warm 

up to 25 °C. After completion of the reaction, the mixture was quenched with 50% sat. 

NaHCO3 and was extracted with ether. The organic phase was washed with water and brine 

and dried over anhydrous Na2SO4. After evaporation of the solvent, the residue was purified 

by flash chromatography (SiO2, pentane:ether/1:1) to give a white solid (815 mg, 60%).  

m.p.: 124.6 °C-126.2 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 7.90 (d, 3JH-H = 7.6 Hz, 1 H), 7.29-7.19 (m, 3 H), 2.96 (t, 
3JH-H = 7.4 Hz, 2 H), 2.84 (t, 3JH-H = 7.2 Hz, 2 H), 1.01 (t, 3JH-H = 8.1 Hz, 9 H), 0.88 (q, 3JH-H = 

7.8 Hz, 6 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 148.7, 136.6, 135.3, 130.0, 128.1, 127.2, 126.7, 124.2, 

122.5, 30.0, 20.5, 7.3, 3.3.  

IR (Diamond ATR): 2952 (w), 1738 (s), 1436 (w), 1377 (w), 1216 (m), 1064 (m), 995 (m), 

891 (w), 769 (m), 723 (s). 

MS (EI, 70 eV) m/z, (%): 286 (4), 285 (16), 284 (M+, 73), 256 (15), 255 (50), 228 (17), 227 

(100), 199 (41), 170 (10), 128 (3), 114 (8), 100 (10), 59 (7). 

HRMS (EI): calcd. for C17H24N2Si: 284.1709, found: 284.1704. 

 

Synthesis of 1-benzyl-3-triethylsilyl-4,5-dihydro-1H-benzo[g]indazole (59) and 2-benzyl-

3-triethylsilyl-4,5-dihydro-2H-benzo[g]indazole (60)  

 

 

 

 

 

 

 

A flame dried flask was flushed with argon and charged with 3-(triethylsilyl)-4,5-dihydro-2H-

benzo[g]indazole (58; 3.12 g, 11 mmol) and NMP (20 mL). At 25 °C NaH 60% in oil (480 

mg, 12 mmol) was added and the mixture was stirred until no gas emission occured. After 2 h, 

benzyl bromide (2.2 g, 13 mmol) was added and the reaction mixture was stirred for 6 h. The 

completion of the reaction was checked by GC analysis, which showed that the 2 

regioisomers were formed in a ratio of 2:1 (59:60). The crude mixture was quenched with 
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water and extracted with ether. The organic phase was washed with water and brine and dried 

over Na2SO4. After evaporation of the solvent the two regioisomers were separated by flash 

chromatography (SiO2, pentane:ether/8:2). In the first fraction benzo[g]indazole 59 was 

isolated as a pale yellow oil in 44% yield (1.8 g) whereas 60 was isolated as a pale yellow oil 

in the second fraction in 21% yield (860 mg).  

 

1-Benzyl-3-triethylsilyl-4,5-dihydro-1H-benzo[g]indazole (59): 

 
1H-NMR (CDCl3, 600 MHz): δ = 7.38-7.36 (m, 1 H), 7.32-7.29 (m, 2 H), 7.26-7.23 (m, 2 H), 

7.12-7.08 (m, 4 H), 5.70 (s, 2 H), 2.88 (t, 3JH-H = 7.4 Hz, 2 H), 2.77 (t, 3JH-H = 7.4 Hz, 2 H), 

1.03 (t, 3JH-H = 7.9 Hz, 9 H), 0.89 (q, 3JH-H = 7.9 Hz, 6 H).  
 13C-NMR (CDCl3, 150 MHz): δ = 145.7, 138.0, 137.7, 137.5, 128.7, 128.5, 127.4, 127.2, 

126.9, 126.7, 126.2, 126.1, 122.2, 54.6, 31.2, 21.1, 7.5, 3.8.  

IR (Diamond ATR): 2952 (w), 2873, 1739 (s), 1454 (w), 1334 (m), 1276 (m), 1253 (m), 

1154 (m), 1002 (m), 974 (w), 864 (w), 763 (m), 725 (s), 694 (s). 

MS (EI, 70 eV) m/z, (%): 375 (26), 374 (M+, 79), 373 (10), 347 (18), 346 (64), 345 (62), 318 

(17), 317 (56), 290 (12), 289 (44), 287 (12), 284 (20), 283 (78), 256 (19), 255 (79), 253 (11), 

228 (13), 227 (55), 226 (14), 225 (17), 199 (15), 198 (18), 197 (22), 195 (9), 170 (20), 169 

(11), 167 (12), 143 (8), 115 (20), 110 (8), 92 (8), 91 (100), 87 (14), 59 (18). 

HRMS (ESI): calcd. for C24H30N2Si: 374.2178, found: 375.2253 [M+H]+. 

 

2-Benzyl-3-triethylsilyl-4,5-dihydro-2H-benzo[g]indazole (60): 
 

1H-NMR (CDCl3, 600 MHz): δ = 7.88 (d, 3JH-H = 7.7 Hz, 1 H), 7.27-7.18 (m, 6 H), 6.96 (d, 
3JH-H = 7.0 Hz, 2 H), 5.49 (s, 2 H), 2.96 (t, 3JH-H = 7.3 Hz, 2 H), 2.87 (t, 3JH-H = 7.6 Hz, 2 H), 

0.87 (t, 3JH-H = 7.8 Hz, 9 H), 0.73 (q, 3JH-H = 7.5 Hz, 6 H).  
 13C-NMR (CDCl3, 150 MHz): δ = 147.9, 138.8, 136.2, 135.9, 130.0, 128.4, 128.0, 127.1, 

127.1, 127.0, 126.8, 125.9, 122.5, 55.9, 30.0, 21.1, 7.2, 3.7. 

IR (Diamond ATR): 2952 (m), 2874 (w), 1737 (s), 1454 (w), 1334 (m), 1248 (s), 1154 (s), 

1001 (m), 957 (w), 892 (w), 840 (w), 723 (s), 695 (s). 

MS (EI, 70 eV) m/z, (%): 376 (6), 375 (23), 374 (M+, 24), 346 (30), 345 (100), 317 (6), 287 

(6), 197 (6), 172 (9), 91 (31), 59 (17). 

HRMS (ESI): calcd. for C24H30N2Si: 374.2178, found: 375.2257[M+H]+. 
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Synthesis of 1-benzyl-3-iodo-4,5-dihydro-1H-benzo[g]indazole (61) 

 

 

 

 

 

A dry flask was flushed with argon and charged with 1-benzyl-3-(triethylsilyl)-4,5-dihydro-

1H-benzo[g]indazole (59; 748 mg, 2.0 mmol) and CH2Cl2 (2.0 mL). ICl (390 mg, 2.4 mmol) 

was added to the solution at 0 °C. The completion of the reaction was checked by GC-

analysis of hydrolyzed reaction aliquots. After 3 h, the mixture was quenched with sat. 

Na2S2O3 and extracted with ether. The organic phase was washed with water and brine and 

dried over anhydrous Na2SO4. After evaporation of the solvent the crude mixture was purified 

by flash chromatography (SiO2, pentane:ether/9:1) to yield 61 as a white solid (540 mg, 70%). 

m.p.: 119.1-120.8 °C. 
1H-NMR (CDCl3, 300 MHz): δ = 7.36-7.26 (m, 5 H), 7.21-7.10 (m, 4 H), 5.64 (s, 2 H), 2.92 

(t, 3JH-H = 7.4 Hz, 2 H), 2.62 (t, 3JH-H = 7.4 Hz, 2 H).  
 13C-NMR (CDCl3, 75 MHz): δ = 139.3, 137.9, 136.8, 129.0, 128.9, 128.1, 127.6, 126.9, 

126.2, 126.1, 124.3, 122.5, 95.7, 55.1, 30.5, 20.9. 

 IR (Diamond ATR): 2932 (w), 1450 (w), 1409 (m), 1358 (w), 1307 (w), 1150 (w), 1083 

(m), 907 (m), 763 (m), 726 (s), 694 (s). 

MS (EI, 70 eV) m/z, (%): 388 (2), 387 (16), 386 (M+, 100), 385 (29), 384 (2), 294 (4), 260 

(5), 259 (24), 258 (5), 257 (4), 232 (2), 193 (3), 168 (3), 143 (3), 140 (4), 139 (6), 129 (3), 

127 (2), 115 (2), 91 (63). 

HRMS (EI): calcd. for C18H15IN2: 386.0280, found: 386.0276. 

 

Synthesis of 2-benzyl-3-iodo-4,5-dihydro-2H-benzo[g]indazole (62) 

 

 

 

 

 

A dry flask was flushed with argon and charged with 2-benzyl-3-(triethylsilyl)-4,5-dihydro-

2H-benzo[g]indazole (60; 380 mg, 1.0 mmol) and CH2Cl2 (1.0 mL). ICl (194 mg, 1.1 mmol) 

was added to the solution at 0 °C. The completion of the reaction was checked by GC-
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analysis of hydrolyzed reaction aliquots. After 6 h, the mixture was quenched with sat. 

Na2S2O3 and extracted with ether. The organic phase was washed with water and brine and 

dried over anhydrous Na2SO4. After evaporation of the solvent the crude mixture was purified 

by flash chromatography (SiO2, pentane:ether, 9:1) to yield 62 as a pale yellow solid (277 mg, 

72%). 

m.p.: 96.4-97.9 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 7.84 (d, 3JH-H = 7.7 Hz, 1 H), 7.32-7.30 (m, 2 H), 7.27-7.21 

(m, 6 H), 5.45 (s, 2 H), 2.96 (t, 3JH-H = 7.4 Hz, 2 H), 2.65 (t, 3JH-H = 7.4 Hz, 2 H).  
 13C-NMR (CDCl3, 150 MHz): δ = 149.5, 136.8, 136.6, 129.3, 128.6, 128.4, 127.7, 127.7, 

127.2, 126.9, 123.8, 122.1, 81.0, 55.5, 29.2, 20.6.  

IR (Diamond ATR): 2913 (m), 2877 (m), 1474 (w), 1456 (w), 1373 (w), 1358 (w), 1320 

(m), 1237 (m), 1068 (s), 1005 (m), 843 (m), 772 (m), 736 (s), 722 (s), 698 (s). 

MS (EI, 70 eV) m/z, (%): 386 (M+, 1), 296 (29), 295 (25), 294 (100), 293 (20), 259 (46), 230 

(2), 217 (5), 203 (17), 168 (2), 140 (3), 115 (3), 91 (85), 65 (7). 

HRMS (EI): calcd. for C18H15IN2: 386.0280, found: 386.0276. 

 

Synthesis of 1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazole (67) and 2-ethoxymethyl-

4,5-dihydro-2H-benzo[g]indazole (68)  

 

 

 

 

 

 

A flame dried flask was flushed with argon and charged with 4,5-dihydro-2H-

benzo[g]indazole (56; 1.7 g, 10 mmol) and NMP (10 mL). At 25 °C NaH 60% in oil (450 mg, 

11 mmol) was added and the mixture was stirred until no gas evolution occured. After 30 min, 

(chloromethoxy)ethane (1.1 g, 12 mmol) was added and the reaction mixture was stirred for 4 

h at 25 °C. The completion of the reaction was checked by GC analysis, which showed that 

the 2 regioisomers were formed in a ratio of 1:5 (67:68). The crude mixture was quenched 

with water and extracted with ether. The organic phase was washed with water and brine and 

dried over Na2SO4. After evaporation of the solvent the two regioisomers were separated by 

flash chromatography (SiO2, pentane:ether/9:1). In the first fraction benzo[g]indazole 67 was 



C: Experimental Part  101 
  

  

isolated in 10% yield (230 mg) as yellow oil, whereas 68 was isolated in the second fraction 

in 50% yield (1.1 g) as a yellow oil.  

 

1-Ethoxymethyl-4,5-dihydro-1H-benzo[g]indazole (67): 

 
1H-NMR (CDCl3, 600 MHz): δ = 7.86 (d, 3JH-H = 7.8 Hz, 1 H), 7.38 (s, 1 H), 7.34-7.29 (m, 2 

H), 7.24-7.21 (m, 1 H), 5.64 (s, 2 H), 3.70 (q, 3JH-H = 7.0 Hz, 2 H), 2.89 (t, 3JH-H = 7.4 Hz, 2 

H), 2.71 (t, 3JH-H = 7.4 Hz, 2 H), 1.21 (t, 3JH-H = 7.0 Hz, 3 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 138.6, 137.5, 136.2, 128.6, 127.6, 127.1, 126.9, 123.7, 

119.3, 79.2, 64.2, 30.5, 19.7, 14.9. 

IR (Diamond ATR): 2975 (w), 2937 (w), 1707 (w), 1514 (w), 1466 (m), 1448 (m), 1382 

(m), 1303 (m), 1262 (w), 1231 (w), 1161 (w), 1089 (s), 1017 (m), 984 (m), 891 (m), 845 (m), 

784 (s), 763 (s), 734 (s), 695 (s), 627 (m). 

MS (EI, 70 eV) m/z, (%): 228 (M+, 11), 192 (14), 184 (24), 183 (100), 169 (12), 165 (8), 143 

(4), 142 (5), 128 (5), 127 (5), 115 (11), 101 (8), 83 (4), 74 (6), 69 (5), 59 (12), 57 (7), 55 (5), 

45 (6), 44 (7), 43 (6), 41 (5). 

HRMS (EI): calcd. for C14H16N2O: 228.1263, found: 228.1261. 

 

 

2-Ethoxymethyl-4,5-dihydro-2H-benzo[g]indazole (68): 

 
1H-NMR (CDCl3, 600 MHz): δ = 7.88 (d, 3JH-H = 7.5 Hz, 1 H), 7.34 (s, 1 H), 7.27-7.19 (m, 3 

H), 5.44 (s, 2 H), 3.58 (q, 3JH-H = 7.0 Hz, 2 H), 2.93 (t, 3JH-H = 7.3 Hz, 2 H), 2.77 (t, 3JH-H = 7.4 

Hz, 2 H), 1.18 (t, 3JH-H = 7.0 Hz, 3 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 148.8, 136.7, 129.6, 128.3, 127.5, 126.8, 126.3, 122.4, 

117.9, 80.5, 64.6, 29.5, 19.2, 14.9. 

IR (Diamond ATR): 2976 (w), 2933 (w), 1470 (m), 1439 (w), 1423 (w), 1330 (m), 1234 

(m), 1141 (m), 1093 (s), 991 (m), 892 (m), 794 (m), 764 (s), 736 (m), 716 (s), 681 (w), 651 

(w). 

MS (EI, 70 eV) m/z, (%): 229 (13), 228 (M+, 95), 184 (100), 183 (81), 181 (12), 170 (19), 

169 (51), 168 (13), 143 (15), 142 (19), 140 (11), 139 (11), 128 (14), 127 (12), 116 (14), 115 

(37), 59 (13). 

HRMS (EI): calcd. for C14H16N2O: 228.1263, found: 228.1261. 
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4.2  Preparation of functionalized 4,5-dihydrobenzo[g]indazoles 

 

4.2.1  Functionalization through I/Mg-exchange 

 

Synthesis of ethyl 4-(1-benzyl-4,5-dihydro-1H-benzo[g]indazol-3-yl)benzoate (65a) 

 

 

 

 

 

According to TP4, the 3-magnesiated heterocycle 63 (1.00 mmol) was transmetallated with 

ZnCl2 (1.00 mL, 1.00 м in THF, 1.00 mmol) and stirred for 30 min at -30 °C. Ethyl 4-

iodobenzoate (331 mg, 1.20 mmol) was dissolved in THF (1.00 mL) and mixed with Pd(dba)2 

(28 mg, 0.05 mmol) and (o-furyl)3P (23 mg, 0.10 mmol). This mixture was added to the zinc-

reagent at -30 °C and the mixture was allowed to slowly warm up to 25 °C. After purification 

by flash chromatography (SiO2, pentane:ether/9:1) 65a was isolated as a white solid (277 mg, 

68%). 

m.p.: 117.8-119.2 °C. 
1H-NMR (CDCl3, 400 MHz): δ = 8.14 (d, 3JH-H = 8.6 Hz, 2 H), 7.86 (d, 3JH-H = 8.6 Hz, 2 H), 

7.35-7.26 (m, 5 H), 7.21-7.15 (m, 4 H), 5.73 (s, 2 H), 4.41 (q, 3JH-H = 7.2 Hz, 2 H), 2.99-2.93 

(m, 4 H), 1.42 (t, 3JH-H = 7.2 Hz, 3 H). 
13C-NMR (CDCl3, 100 MHz): δ = 166.5, 146.1, 139.7, 138.1, 137.4, 137.1, 129.8, 129.1, 

128.8, 128.7, 127.6, 127.5, 126.9, 126.8, 126.1, 122.3, 116.7, 60.9, 54.8, 30.9, 20.6, 14.3. 

IR (Diamond ATR): 2981 (m), 1709 (s), 1611 (m), 1449 (m), 1364 (m), 1270 (s), 1099 (s), 

1018 (m), 857 (m), 776 (m), 721 (s), 695 (m). 

MS (EI, 70 eV) m/z, (%): 409 (24), 408 (M+, 100), 407 (91), 406 (33), 393 (4), 379 (7), 363 

(6), 331 (10), 317 (6), 303 (3), 289 (4), 259 (7), 244 (4), 216 (6), 215 (12), 91 (50). 

HRMS (EI): calcd. for C27H24N2O2: 408.1838, found: 408.1826. 
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Synthesis of 1-benzyl-3-(3-(trifluoromethyl)phenyl)-4,5-dihydro-1H-benzo[g]indazole 

(65b) 

 

 

 

 

 

According to TP4, the 3-magnesiated heterocycle 63 (1.00 mmol) was transmetallated with 

ZnCl2 (1.00 mL, 1.00 м in THF, 1.00 mmol) and stirred for 30 min at -30 °C. 1-Iodo-3-

trifluoromethylbenzene (327 mg, 1.2 mmol) was dissolved in THF (1.00 mL) and mixed with 

Pd(dba)2 (28 mg, 0.05 mmol) and (o-furyl)3P (23 mg, 0.10 mmol). This mixture was added to 

the zinc reagent at -30 °C and the mixture was allowed to slowly warm up to 25 °C. After 

purification by flash chromatography (SiO2, pentane:ether/9:1) 65b was isolated as a white 

solid (238 mg, 59%). 

m.p.: 80.7-82.7 °C.  
1H-NMR (CDCl3, 600 MHz): δ = 8.07 (s, 1 H), 7.98-7.96 (m, 1 H), 7.69-7.49 (m, 3 H), 7.36-

7.27 (m, 4 H), 7.23-7.17 (m, 4 H), 5.75 (s, 2 H), 2.97 (s, 4 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 145.8, 139.8, 137.5, 137.1, 134.4, 130.9 (q, JC-F = 32.3 

Hz), 130.4, 129.0, 128.9, 128.8, 127.7, 127.5, 126.9, 126.1, 126.1, 124.6 (q, JC-F = 3.7 Hz), 

124.2 (q, JC-F = 272.3 Hz), 124.0 (q, JC-F = 3.7 Hz), 122.4, 118.7, 54.8, 30.9, 20.5. 

IR (Diamond ATR): 1452 (m), 1325 (s), 1316 (s), 1156 (s), 1122 (s), 1073 (w), 913 (m), 807 

(m), 736 (m), 727 (s), 700 (s). 

MS (EI, 70 eV) m/z, (%): 406 (5), 405 (24), 404 (M+, 100), 403 (80), 402 (19), 401 (5), 389 

(5), 385 (4), 327 (18), 314 (4), 313 (15), 312 (3), 285 (3), 283 (6), 259 (11), 215 (3), 214 (12), 

141 (4), 115 (3), 92 (6), 91 (66), 65 (6), 57 (3), 44 (19), 43 (3). 

HRMS (EI): calcd. for C25H19F3N2: 404.1500, found: 404.1490. 
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Synthesis of 1-(1-benzyl-4,5-dihydro-1H-benzo[g]indazol-3-yl)-2,2,2-trifluoroethanone 

(65c) 

 

 

 

 

 

According to TP4, the 3-magnesiated heterocycle 63 (1.0 mmol) was reacted with 2,2,2-

trifluoro-N-methoxy-N-methylacetamide (189 mg, 1.2 mmol) at -30 °C. The mixture was 

slowly allowed to warm up to 25 °C. After purification by flash chromatography (SiO2, 

pentane:ether/9:1) 65c was isolated as a white solid (260 mg, 73%). 

m.p.: 105.0-106.9 ° C.  
1H-NMR (CDCl3, 300 MHz): δ = 7.39-7.30 (m, 5 H), 7.24-7.15 (m, 4 H), 5.78 (s, 2 H), 3.11 

(t, 3JH-H = 7.6 Hz, 2 H), 2.95 (t, 3JH-H = 7.5 Hz, 2 H).  
13C-NMR (CDCl3, 75 MHz): δ = 176.4 (q, JC-F = 36.1 Hz), 140.4, 140.0, 137.6, 135.5, 129.1, 

128.5, 128.0, 127.0, 126.2, 125.4, 124.7, 124.7, 122.5, 116.4 (q, JC-F = 290.7 Hz), 56.0, 29.9, 

19.7. 

IR (Diamond ATR): 2981 (w), 1705 (s), 1498 (m), 1432 (m), 1320 (m), 1195 (s), 1141 (s), 

1019 (m), 957 (s), 887 (s), 760 (m), 726 (s), 693 (m). 

MS (EI, 70 eV) m/z, (%): 357 (15), 356 (M+, 67), 355 (18), 287 (16), 279 (12), 266 (6), 265 

(36), 264 (7), 259 (8), 195 (4), 168 (13), 143 (4), 139 (5), 92 (10), 91 (100), 83 (5), 71 (6), 69 

(5), 65 (10), 57 (7), 44 (15), 41 (5). 

HRMS (EI): calcd. for C20H15F3N2O: 356.1136, found: 356.1133. 
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Synthesis of 1-benzyl-4,5-dihydro-1H-benzo[g]indazole-3-carbaldehyde (65d) 

 

 

 

 

 

According to TP4, the 3-magnesiated heterocycle 63 (1.0 mmol) was reacted with DMF (0.08 

mL, 1.5 mmol) at -30 °C. The mixture was allowed to slowly warm up to 25 °C. After 

purification by flash chromatography (SiO2, pentane:ether/9:1) 65d was isolated as a white 

solid (181 mg, 63%). 

m.p.: 99.3-100.5 °C. 
1H-NMR (CDCl3, 400 MHz): δ = 10.09 (s, 1 H), 7.38-7.28 (m, 5 H), 7.23-7.14 (m, 4 H), 

5.73 (s, 2 H), 3.07 (t, 3JH-H = 7.5 Hz, 2 H), 2.92 (t, 3JH-H = 7.5 Hz, 2 H). 
 13C-NMR (CDCl3, 100 MHz): δ = 187.8, 146.3, 140.5, 137.9, 135.9, 129.0, 128.2, 127.9, 

126.9, 126.2, 125.9, 122.3, 120.5, 55.6, 30.1, 19.3. 

IR (Diamond ATR): 1738 (s), 1686 (s), 1496 (w), 1439 (m), 1365 (m), 1217 (m), 1159 (w), 

1017 (m), 833 (m), 791 (s), 766 (s), 725 (s), 704 (m), 693 (m). 

MS (EI, 70 eV) m/z, (%): 289 (18), 288 (M+, 91), 287 (13), 260 (6), 259 (26), 211 (9), 198 

(11), 197 (82), 196 (17), 170 (7), 169 (58), 142 (8), 139 (8), 115 (12), 91 (100) 89 (6), 65 

(17), 43 (24). 

HRMS (EI): calcd. for C19H16N2O: 288.1263, found: 288.1258. 

 

Synthesis of (1-benzyl-4,5-dihydro-1H-benzo[g]indazol-3-yl)phenylmethanol (65e) 

 

 

 

 

 

According to TP4, the 3-magnesiated heterocycle 63 (1.0 mmol) was reacted with 

benzaldehyde (127 mg, 1.2 mmol) at -30 °C. The mixture was allowed to slowly warm up to 

25 °C. After purification by flash chromatography (SiO2, pentane:ether/8:2) 65e was isolated 

as a pale yellow oil (223 mg, 61%). 
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1H-NMR (CDCl3, 400 MHz): δ = 7.46 (d, 3JH-H = 7.0 Hz, 2 H), 7.36-7.31 (m, 4 H), 7.28-7.21 

(m, 4 H), 7.15-7.08 (m, 4 H), 5.96 (d, 3JH-H = 3.8 Hz, 1 H), 5.63 (s, 2 H), 3.43 (s, br, 1 H), 

2.77 (t, 3JH-H = 7.4 Hz, 2 H), 2.41 (t, 3JH-H = 7.3 Hz, 2 H). 
 13C-NMR (CDCl3, 100 MHz): δ = 149.7, 142.6, 139.6, 137.6, 137.3, 137.3, 128.8, 128.7, 

128.3, 127.5, 127.5, 126.8, 126.8, 126.6, 126.2, 122.2, 115.8, 70.8, 54.6, 30.6, 19.2. 

IR (Diamond ATR): 2980 (m), 1496 (m), 1453 (m), 1382 (m), 1326 (m), 1261 (w), 1163 

(m), 1122 (m), 764 (m), 724 (s), 695 (s). 

MS (EI, 70 eV) m/z, (%): 367 (26), 366 (M+, 100), 365 (8), 350 (12), 349 (14), 348 (21), 347 

(31), 275 (25), 273 (10), 271 (8), 259 (22), 258 (8), 257 (25), 256 (7), 244 (7), 229 (11), 197 

(7), 183 (11), 169 (19), 115 (7), 105 (21), 92 (8), 91 (98), 77 (12), 65 (7).  

HRMS (EI): calcd. for C25H22N2O: 366.1732, found: 366.1725. 

 

Synthesis of 3-allyl-1-benzyl-4,5-dihydro-1H-benzo[g]indazole (65f) 

 

 
 

 

 

According to TP4, the 3-magnesiated heterocycle 63 (1.0 mmol) was transmetallated with 

CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol). After 15 min stirring at -30 °C, it was reacted 

with allyl bromide (144 mg, 1.2 mmol). The mixture was allowed to slowly warm up to 25 

°C. After purification by flash chromatography (SiO2, pentane:ether/9:1) 65f was isolated as a 

pale yellow oil (225 mg, 75%). 
1H-NMR (CDCl3, 400 MHz): δ = 7.33-7.22 (m, 5 H), 7.17-7.09 (m, 4 H), 6.08-5.98 (m, 1 H), 

5.61 (s, 2 H), 5.15-5.06 (m, 2 H), 3.46 (td, 3JH-H = 6.2 Hz, 4JH-H = 1.6 Hz, 2 H), 2.89 (t, 3JH-H = 

7.4 Hz, 2 H), 2.64 (t, 3JH-H = 7.4 Hz, 2 H).  
 13C-NMR (CDCl3, 100 MHz): δ = 146.0, 138.7, 137.6, 137.6, 135.7, 128.8, 128.7, 127.3, 

127.2, 127.2, 126.8, 126.1, 122.2, 117.0, 115.6, 54.3, 31.5, 30.9, 19.2.  

IR (Diamond ATR): 2980 (m), 1639 (w), 1486 (m), 1453 (m), 1158 (w), 912 (m), 760 (m), 

728 (s), 694 (s). 

MS (EI, 70 eV) m/z, (%): 301 (22), 300 (M+, 100), 299 (68), 285 (9), 271 (4), 259 (8), 257 

(8), 223 (15), 210 (7), 209 (38), 207 (7), 183 (10), 181 (8), 168 (6), 165 (7), 152 (4), 127 (4), 

115 (7), 91 (59), 65 (7), 44 (9). 

HRMS (EI): calcd. for C21H20N2: 300.1626, found: 300.1620. 
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Synthesis of ethyl 4-(2-benzyl-4,5-dihydro-2H-benzo[g]indazol-3-yl)benzoate (66a) 

 

 

 

 

 

 

A. Through I/Mg-exchange: 

According to TP5, the 3-magnesiated heterocycle 64 (1.00 mmol) was transmetallated with 

ZnCl2 (1.00 mL, 1.00 м in THF, 1.00 mmol) and stirred for 30 min at -30 °C. Ethyl 4-

iodobenzoate (331 mg, 1.20 mmol) was dissolved in THF (1.00 mL) and mixed with Pd(dba)2 

(28 mg, 0.05 mmol) and (o-furyl)3P (23 mg, 0.10 mmol). This mixture was added to the zinc 

reagent at -30 °C and the mixture was allowed to slowly warm up to 25 °C. After purification 

by flash chromatography (SiO2, pentane:ether/9:1) 66a was isolated as a white solid (273 mg, 

67%). 

 

B. Through Zn-insertion: 

A flame dried flask was flushed with argon and charged with LiCl (127 mg, 3.00 mmol). The 

salt was dried under high vacuum at 300 °C and then flushed with Ar. The process was 

repeated three times. The Zn-powder (196 mg, 3.00 mmol) was then added and the procedure 

repeated. After the mixture cooled down to 25 °C, THF (1 mL) was added and the Zn was 

activated by adding a few drops of 1,2-dibromoethane. The mixture was heated twice until 

reflux and then cooled down to 25 °C again. A few drops of trimethylsilylchloride were added 

and the mixture was heated to reflux again. 2-Benzyl-3-iodo-4,5-dihydro-1H-

benzo[g]indazole (62) (374 mg, 1.00 mmol) was then added. After stirring at 25 °C for 14 h, 

GC-analysis of reaction aliquots showed complete conversion to the desired Zn-species. A 

second flame dried flask flushed with argon, was charged with Pd(dba)2 (28.75 mg, 0.05 

mmol), tfp (16.25 mg, 0.07 mmol) and THF (1 mL). After 10 min stirring ethyl 4-iodo-

benzoate (415 mg, 1.5 mmol) was added, followed by the addition of the Zn-compound. The 

reaction mixture was stirred overnight and then quenched with sat. aq. NH4Cl. After work up 

according to TP5 and evaporation of the solvent the crude product was purified by flash 

chromatography (SiO2, pentane:ether/9:1) to yield 66a a white solid (201 mg, 52%). 

m.p: 94.5-95.5 °C. 
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1H-NMR (CDCl3, 400 MHz): δ = 8.05 (d, 3JH-H = 8.3 Hz, 2 H), 7.93 (d, 3JH-H = 7.4 Hz, 1 H), 

7.33 (d, 3JH-H = 8.1 Hz, 2 H), 7.30-7.20 (m, 6 H), 7.06, (d, 3JH-H = 7.4 Hz, 2 H), 5.37 (s, 2 H), 

4.35 (q, 3JH-H = 7.2 Hz, 2 H), 2.96 (t, 3JH-H = 7.3 Hz, 2 H), 2.73 (t, 3JH-H = 7.3 Hz, 2 H), 1.40 (t, 
3JH-H = 7.1 Hz, 3 H). 
13C-NMR (CDCl3, 100 MHz): δ = 165.1, 147.0, 137.8, 136.7, 135.6, 133.6, 129.3, 128.8, 

128.8, 128.1, 127.6, 127.3, 126.5, 126.4, 125.8, 125.7, 121.4, 115.4, 60.2, 52.5, 28.6, 18.4, 

13.3. 

IR (Diamond ATR): 2930 (w), 2831 (w), 1722 (s), 1612 (m), 1475 (m), 1436 (m), 1362 (m), 

1310 (m), 1267 (s), 1101 (s), 1027 (m), 1008 (m), 864 (m), 770 (s), 728 (s), 701 (s). 

MS (EI, 70 eV) m/z, (%): 409 (23), 408 (M+, 100), 407 (48), 378 (7), 331 (8), 317 (10), 289 

(6), 259 (15), 215 (12), 149 (4), 115 (4), 91 (30). 

HRMS (EI): calcd. for C27H24N2O2: 408.1838, found: 408.1826. 

 

Synthesis of 2-benzyl-3-(3-(trifluoromethyl)phenyl)-4,5-dihydro-2H-benzo[g]indazole 

(66b) 

 

 

 

 

 

According to TP5, the 3-magnesiated heterocycle 64 (1.00 mmol) was transmetallated with 

ZnCl2 (1.00 mL, 1.0 м in THF, 1.00 mmol) and stirred for 30 min at -30 °C. 1-Iodo-3-

trifluoromethyl-benzene (327 mg, 1.20 mmol) was dissolved in THF (1.00 mL) and mixed 

with Pd(dba)2 (28 mg, 0.05 mmol) and (o-furyl)3P (23 mg, 0.10 mmol). This mixture was 

added to the zinc reagent at -30 °C and the mixture was allowed to slowly warm up to 25 °C. 

After purification by flash chromatography (SiO2, pentane:ether/9:1) 66b was isolated as a 

yellow oil (263 mg, 65%). 
1H-NMR (CDCl3, 400 MHz): δ = 7.96 (d, 3JH-H = 7.5 Hz, 1 H), 7.65 (d, 3JH-H = 7.7 Hz, 1 H), 

7.55-7.42 (m, 3 H), 7.33-7.22 (m, 6 H), 7.8, (d, 3JH-H = 7.5 Hz, 2 H), 5.35 (s, 2 H), 2.97 (t, 3JH-

H = 7.3 Hz, 2 H), 2.72 (t, 3JH-H = 7.2 Hz, 2 H). 
 13C-NMR (CDCl3, 100 MHz): δ = 147.8, 138.2, 137.5, 136.5, 132.5, 131.1 (q, JC-F = 32.4 

Hz), 131.1, 129.7, 129.2, 128.6, 128.3, 127.6, 127.5, 126.9, 126.7, 126.1 (q, JC-F = 3.8 Hz), 

125.1 (q, JC-F = 3.5 Hz), 123.8 (q, JC-F = 272.6 Hz), 122.4, 116.4, 53.6, 29.6, 19.3.  
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IR (Diamond ATR): 1496 (w), 1455 (w), 1331 (s), 1319 (s), 1168 (m), 1124 (s), 1073 (m), 1025 

(w), 806 (w), 775 (w), 730 (s), 701 (s). 

MS (EI, 70 eV) m/z, (%): 406 (3), 405 (23), 404 (M+, 100), 403 (48), 402 (5), 389 (2), 385 

(3), 329 (3), 328 (12), 315 (5), 314 (16), 285 (2), 283 (3), 260 (3), 259 (15), 216 (4), 215 (10), 

213 (2), 142 (3), 115 (5), 92 (5), 91 (60), 89 (2), 65 (4), 44 (2). 

HRMS (EI): calcd. for C25H19F3N2: 404.1500, found: 404.1490. 

 

Synthesis of (2-benzyl-4,5-dihydro-2H-benzo[g]indazol-3-yl)phenylmethanol (66c) 

 

 

 

 

 

According to TP5, the 3-magnesiated heterocycle 64 (1.0 mmol) was reacted with 

benzaldehyde (127 mg, 1.2 mmol) at -30 °C. The mixture was allowed to slowly warm up to 

25 °C. After purification by flash chromatography (SiO2, pentane:ether/8:2) 66c was isolated 

as a pale yellow oil (249 mg, 68%). 
1H-NMR (C6D6, 400 MHz): δ = 8.19 (d, 3JH-H = 7.4 Hz, 1 H), 7.25-7.21 (m, 2 H), 7.13-6.94 

(m, 11 H), 5.80 (s, 1 H), 5.21 (d, 3JH-H = 4.5 Hz, 2 H), 4.54 (s, br, 1 H), 2.62-2.49 (m, 2 H), 

2.45-2.38 (m, 1 H), 2.25-2.15 (m, 1 H). 
13C-NMR (C6D6, 100 MHz): δ = 148.0, 141.7, 141.6, 140.5, 138.0, 136.7, 130.3, 128.6, 

128.5, 128.5, 127.6, 127.5, 127.4, 127.0, 126.4, 122.9, 116.1, 67.0, 53.7, 29.6, 19.4. 

IR (Diamond ATR): 1496 (w), 1453 (m), 1438 (m), 1290 (m), 1124 (w), 1097 (w), 1025 

(m), 728 (s), 696 (s). 

MS (EI, 70 eV) m/z, (%): 367 (22), 366 (M+, 100), 365 (5), 364 (8), 350 (5), 349 (5), 348 

(11), 347 (15), 276 (5), 275 (29), 273 (3), 271 (6), 260 (4), 259 (17), 258 (3), 257 (9), 229 (6), 

228 (4), 197 (9), 169 (5), 115 (4), 105 (10), 92 (4), 91 (49), 77 (4). 

HRMS (EI): calcd. for C25H22N2O: 366.1732, found: 366.1731. 
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Synthesis of 3-allyl-2-benzyl-4,5-dihydro-2H-benzo[g]indazole (66d) 

 

 

 

 

 

According to TP5, the 3-magnesiated heterocycle 64 (1.0 mmol) was transmetallated with 

CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol). After 15 min stirring at -30 °C, it was reacted 

with allyl bromide (144 mg, 1.2 mmol). The mixture was slowly allowed to warm up to 25 

°C. After purification by flash chromatography (SiO2, pentane:ether/9:1) 66d was isolated as 

a pale yellow solid (222 mg, 74%). 

m.p.: 60.8-62.4 °C. 
1H-NMR (CDCl3, 400 MHz): δ = 7.90 (d, 3JH-H = 7.6 Hz, 1 H), 7.32-7.18 (m, 6 H), 7.13-7.11 

(m, 2 H), 5.81-5.71 (m, 1 H), 5.36 (s, 2 H), 5.07-4.97 (m, 2 H), 3.28 (td, 3JH-H = 5.8 Hz, 4JH-H 

= 1.6 Hz, 2 H), 2.95 (t, 3JH-H = 7.4 Hz, 2 H), 2.68 (t, 3JH-H = 7.2 Hz, 2 H).  
 13C-NMR (CDCl3, 100 MHz): δ = 147.1, 137.5, 136.5, 135.5, 133.4, 130.1, 128.6, 128.2, 

127.4, 127.1, 126.7, 126.5, 122.1, 116.5, 115.5, 53.2, 29.6, 28.6, 18.9.  

IR (Diamond ATR): 2942 (w), 1738 (s), 1640 (w), 1485 (m), 1456 (m), 1379 (m), 1319 (m), 

1207 (m), 917 (m), 765 (m), 736 (s), 699 (m). 

MS (EI, 70 eV) m/z, (%): 301 (23), 300 (M+, 100), 299 (37), 298 (6), 285 (8), 271 (10), 259 

(13), 258 (4), 257 (10), 223 (18), 210 (7), 209 (34), 207 (6), 183 (6), 181 (6), 178 (4), 168 (5), 

165 (7), 152 (5), 115 (7), 92 (6), 91 (62), 83 (4), 65 (8), 44 (15). 

HRMS (EI): calcd. for C21H20N2: 300.1626, found: 300.1622. 
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4.2.2  Functionalization through deprotonation reactions 

 

Synthesis of ethyl 4-(1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazol-3-yl)benzoate 

(70a) 

 

 

 

 

According to TP6, the 3-zincated heterocycle 69 (1.00 mmol) was transmetallated with ZnCl2 

(1.0 mL, 1.0 м in THF, 1.0 mmol) and stirred for 10 min at 25 °C. Ethyl 4-iodobenzoate (331 

mg, 1.20 mmol) was dissolved in THF (1.0 mL) and mixed with Pd(dba)2 (28 mg, 0.05 mmol) 

and (o-furyl)3P (23 mg, 0.10 mmol). This mixture was added to the zinc reagent 69 at 25 °C. 

After purification by flash chromatography (SiO2, pentane:ether/9:1) 70a was isolated as a 

white solid (233 mg, 62%). 

m.p.: 114.2-115.6 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 8.11 (d, 3JH-H = 8.1 Hz, 2 H), 7.93 (d, 3JH-H = 7.7 Hz, 1 H), 

7.80 (d, 3JH-H = 8.3 Hz, 2 H), 7.36-7.32 (m, 2 H), 7.28-7.26 (m, 1 H), 5.71 (s, 2 H), 4.40 (q, 
3JH-H = 7.2 Hz, 2 H), 3.76 (q, 3JH-H = 7.0 Hz, 2 H), 2.93 (s, 4 H), 1.41 (t, 3JH-H = 7.1 Hz, 3 H), 

1.23 (t, 3JH-H = 7.0 Hz, 3 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 166.5, 146.2, 140.3, 137.9, 137.3, 129.9, 129.4, 128.5, 

127.9, 127.3, 127.0, 126.9, 123.9, 117.3, 79.5, 64.4, 61.0, 30.6, 20.5, 14.9, 14.4. 

IR (Diamond ATR): 1707 (s), 1611 (m), 1444 (w), 1387 (w), 1366 (w), 1277 (s), 1228 (w), 

1178 (w), 1112 (m), 1085 (s), 1020 (m), 862 (m), 806 (w), 780 (m), 765 (m), 722 (s), 706 

(m), 650 (w). 

MS (EI, 70 eV) m/z, (%): 376 (M+, 5), 332 (30), 331 (100), 303 (13), 258 (4), 216 (4), 143 

(3), 115 (3). 

HRMS (EI): calcd. for C23H24N2O3: 376.1787, found: 376.1777. 
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Synthesis of (2-chloro-phenyl)-(1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazol-3-yl)-

methanone (70b) 

 

 

 

 

 

According to TP6, the 3-zincated heterocycle 69 (1.0 mmol) was transmetallated with 

CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol) at -20 °C. After 15 min stirring at -20 °C, it 

was reacted with 2-chlorobenzoyl chloride (209 mg, 1.2 mmol). The mixture was slowly 

allowed to warm up to 25 °C. After purification by flash chromatography (SiO2, 

pentane:ether/9:1) 70b was isolated as a pale yellow solid (219 mg, 55%). 

m.p.: 131.8-133.6 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 7.89 (d, 3JH-H = 7.7 Hz, 1 H), 7.55 (d, 3JH-H = 7.5Hz, 1 H), 

7.45-7.39 (m, 2 H), 7.36-7.32 (m, 3 H), 7.29-7.26 (m, 1 H), 5.64 (s, 2 H), 3.67 (q, 3JH-H = 7.0 

Hz, 2 H), 3.07 (t, 3JH-H = 7.6 Hz, 2 H), 2.94 (t, 3JH-H = 7.4 Hz, 2 H), 1.19 (t, 3JH-H = 7.0 Hz, 3 

H). 
 13C-NMR (CDCl3, 150 MHz): δ = 190.3, 145.3, 140.6, 139.0, 137.5, 131.7, 131.1, 130.0, 

129.8, 128.7, 128.3, 127.2, 126.2, 126.1, 123.7, 122.5, 80.0, 64.5, 30.0, 19.8, 14.8. 

IR (Diamond ATR): 2980 (w), 2931 (w), 2880 (w), 1648 (m), 1589 (w), 1435 (m), 1356 (w), 

1309 (w), 1274 (w), 1193 (w), 1162 (w), 1111 (m), 1090 (s), 1057 (m), 958 (m), 892 (m), 807 

(m), 757 (s), 735 (s). 

MS (EI, 70 eV) m/z, (%): 368 (14), 367 (10), 366 (M+, 41), 324 (19), 323 (30), 322 (55), 321 

(71), 310 (9), 309 (31), 308 (17), 307 (52), 306 (9), 293 (11), 287 (21), 286 (9), 285 (25), 272 

(10), 227 (8), 216 (9), 215 (20), 197 (24), 195 (15), 184 (15), 183 (96), 182 (10), 181 (34), 

169 (17), 154 (9), 141 (33), 139 (100), 115 (14), 113 (11), 111 (32), 75 (10). 

HRMS (EI): calcd. for C21H19ClN2O2: 366.1135, found: 366.1129 
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Synthesis of 1-(1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazol-3-yl)-2,2-dimethyl-

propan-1-ol (70c) 

 

 

 

 

 

According to TP7, the 3-magnesiated heterocycle 71 (1.0 mmol) was reacted with 

pivaldehyde (103 mg, 1.2 mmol) at -20 °C. The mixture was slowly allowed to warm up to 25 

°C. After purification by flash chromatography (SiO2, pentane:ether/8:2) 71 was isolated as a 

white solid (161 mg, 60%). 

m.p.: 93.2-94.3 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 7.86 (d, 3JH-H = 7.5 Hz, 1 H), 7.33-7.29 (m, 2 H), 7.24-7.23 

(m, 1 H), 5.66-5.58 (m, 2 H), 4.45 (s, 1 H), 3.70 (q, 3JH-H = 7.0 Hz, 2 H), 2.87 (t, 3JH-H = 7.2 

Hz, 2 H), 2.70-2.64 (m, 2 H), 1.21 (t, 3JH-H = 7.0 Hz, 3 H), 0.96 (s, 9 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 148.6, 139.3, 137.6, 130.1, 128.5, 127.8, 127.2, 123.9, 

117.4, 79.0, 76.0, 64.2, 36.9, 30.6, 25.8, 20.2, 15.0.  

IR (Diamond ATR): 3258 (m), 2923 (s), 2854 (s), 1476 (m), 1458 (m), 1447 (m), 1358 (m), 

1310 (w), 1296 (w), 1260 (w), 1173 (w), 1070 (s), 1008 (s), 930 (w), 897 (w), 828 (m), 782 

(m), 766 (m), 737 (m), 716 (w), 652 (w).  

MS (EI, 70 eV) m/z, (%): 314 (12), 258 (15), 257 (19), 212 (13), 211 (100), 199 (10), 59 

(61). 

HRMS (EI): calcd. for C19H26O2N2: 314.1994, found: 314.1986. 

 

Synthesis of 3-allyl-1-ethoxymethyl-4,5-dihydro-1H-benzo[g]indazole (70d) 

 

 

 

 

 

According to TP7, the 3-magnesiated heterocycle 71 (1.0 mmol) was transmetallated with 

CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol) at -20 °C. After 15 min stirring at -20 °C, it 

was reacted with allyl bromide (144 mg, 1.2 mmol). The mixture was allowed to slowly warm 
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up to 25 °C. After purification by flash chromatography (SiO2, pentane:ether/9:1) 70d was 

isolated as a white solid (182 mg, 68%). 

m.p.: 114.2-115.6 °C. 
1H-NMR (C6D6, 400 MHz): δ = 8.06 (d, 3JH-H = 7.6 Hz, 1 H), 7.14-7.12 (m, 1 H), 7.08-7.01 

(m, 2 H), 6.13-6.03 (m, 1 H), 5.41 (s, 2 H), 5.14-5.03 (m, 2 H), 3.62 (t, 3JH-H = 7.0 Hz, 2 H), 

3.44 (td, 3JH-H = 6.5 Hz, 4JH-H = 1.6 Hz, 2 H), 2.65 (t, 3JH-H = 7.4 Hz, 2 H), 2.41 (t, 3JH-H = 7.4 

Hz, 2 H), 0.99 (t, 3JH-H = 7.0 Hz, 3 H). 
 13C-NMR (C6D6, 100 MHz): δ = 146.1, 139.3, 137.4, 136.3, 128.8, 128.0, 127.6, 127.4, 

124.1, 117.7, 115.5, 79.2, 64.3, 31.8, 30.9, 19.5, 15.0. 

IR (Diamond ATR): 2976 (w), 2933 (w), 2896 (w), 1483 (m), 1446 (m), 1368 (w), 1310 

(m), 1263 (w), 1222 (w), 1169 (w), 1088 (s), 1017 (m), 934 (m), 912 (s), 835 (m), 759 (s), 

734 (m), 700 (m). 

MS (EI, 70 eV) m/z, (%): 268 (M+, 7), 261 (3), 225 (3), 224 (23), 223 (100), 222 (2), 221 

(7), 210 (2), 209 (4), 207 (3), 196 (4), 195 (4), 183 (3), 181 (5), 169 (3), 168 (3), 165 (3), 154 

(3), 142 (2), 128 (2), 115 (4). 

HRMS (EI): calcd. for C17H20N2O: 268.1576, found: 268.1575. 

 

Synthesis of ethyl 4-(2-ethoxymethyl-4,5-dihydro-2H-benzo[g]indazol-3-yl)benzoate 

(73a) 

 

 

 

 

 

According to TP8, the 3-magnesiated heterocycle 72 (1.0 mmol) was transmetallated with 

ZnCl2 (1.0 mL, 1.0 м in THF, 1.0 mmol) and stirred for 30 min at 0 °C. Ethyl 4-iodobenzoate 

(331 mg, 1.2 mmol) was dissolved in THF (1.0 mL) and mixed with Pd(dba)2 (28 mg, 0.05 

mmol) and (o-furyl)3P (23 mg, 0.10 mmol). This mixture was added to the zinc reagent at 0 

°C, and the mixture was allowed to slowly warm up to 25 °C. After purification by flash 

chromatography (SiO2, pentane:ether/9:1) 73a was isolated as a white solid (350 mg, 93%). 

m.p.: 117.7-119.8 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 8.16 (d, 3JH-H = 8.1 Hz, 2 H), 7.94 (d, 3JH-H = 7.5Hz, 1 H), 

7.65 (d, 3JH-H = 8.3 Hz, 2 H), 7.31-7.28 (m, 1 H), 7.24-7.23 (m, 2 H), 5.44 (s, 2 H), 4.41 (q, 
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3JH-H = 7.2 Hz, 2 H), 3.73 (q, 3JH-H = 7.0 Hz, 2 H), 2.95 (t, 3JH-H = 7.2 Hz, 2 H), 2.78 (t, 3JH-H = 

7.3 Hz, 2 H), 1.41 (t, 3JH-H = 7.1 Hz, 3 H), 1.21 (t, 3JH-H = 7.0 Hz, 3 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 166.2, 148.1, 139.1, 136.8, 134.1, 130.3, 129.9, 129.3, 

129.2, 128.4, 127.9, 126.9, 122.7, 117.0, 78.3, 64.7, 61.2, 29.5, 19.6, 15.0, 14.3. 

IR (Diamond ATR): 2927 (m), 1718 (s), 1610 (m), 1438 (m), 1367 (w), 1304 (w), 1271 (s), 

1220 (w), 1170 (w), 1099 (s), 1076 (s), 1027 (m), 995 (w), 864 (m), 831 (m), 771 (s), 732 (s), 

704 (s). 

MS (EI, 70 eV) m/z, (%): 376 (M+, 5), 334 (5), 333 (31), 332 (100), 303 (10), 289 (2), 273 

(1), 258 (4), 244 (2), 215 (6), 202 (2), 189 (1), 143 (3), 142 (2), 128 (2), 115 (3), 97 (1), 59 

(1). 

HRMS (EI): calcd. for C23H24N2O3: 376.1787, found: 376.1789. 

 

Synthesis of (2-chloro phenyl)-(2-ethoxymethyl-4,5-dihydro-2H-benzo[g]indazol-3-yl)-

methanone (73b) 

 

 

 

 

 

According to TP8, the 3-magnesiated heterocycle 72 (1.0 mmol) was transmetallated with 

CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol) at -20 °C. After 15 min stirring at -20 °C, it 

was reacted with 2-chlorobenzoyl chloride (209 mg, 1.2 mmol). The mixture was slowly 

allowed to warm up to 25 °C. After purification by flash chromatography (SiO2, 

pentane:ether/9:1) 73b was isolated as a pale yellow solid (220 mg, 60%). 

m.p.: 96.9-98.4 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 7.92 (d, 3JH-H = 7.7 Hz, 1 H), 7.47-7.38 (m, 4 H), 7.27 (t, 
3JH-H = 7.5 Hz 1 H), 7.21 (t, 3JH-H = 7.4 Hz 1 H), 7.15 (d, 3JH-H = 7.5 Hz, 1 H), 5.93 (s, 2 H), 

3.65 (q, 3JH-H = 7.0 Hz, 2 H), 2.74 (t, 3JH-H = 7.4 Hz, 2 H), 2.14 (t, 3JH-H = 7.4 Hz, 2 H), 1.19 (t, 
3JH-H = 7.0 Hz, 3 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 185.0, 148.1, 139.0, 136.0, 135.4, 131.9, 131.3, 130.3, 

129.0, 128.6, 128.2, 128.1, 127.3, 127.0, 124.1, 122.6, 80.1, 64.8, 28.7, 19.9, 15.0. 

IR (Diamond ATR): 1658 (s), 1590 (w), 1426 (s), 1320 (w), 1281 (m), 1235 (w), 1093 (s), 

1057 (m), 1031 (m), 915 (s), 836 (m), 760 (s), 735 (s), 643 (m). 
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MS (EI, 70 eV) m/z, (%): 366 (M+, 39), 337 (17), 323 (22), 322 (18), 321 (64), 309 (34), 308 

(16), 307 (22), 293 (21), 288 (15), 287 (72), 286 (14), 285 (28), 227 (17), 215 (19), 197 (29), 

183 (71), 181 (26), 169 (24), 141 (30), 139 (100), 115 (15), 111 (31), 74 (14), 59 (25). 

HRMS (EI): calcd. for C21H19ClN2O2: 366.1135, found: 366.1129. 

 

Synthesis of 1-(2-ethoxymethyl-4,5-dihydro-2H-benzo[g]indazol-3-yl)-2,2-dimethyl-

propan-1-ol (73c) 

 

 

 

 

 

According to TP8, the 3-magnesiated heterocycle 72 (1.0 mmol) was reacted with 

pivaldehyde (103 mg, 1.2 mmol) at 0 °C. The mixture was slowly allowed to warm up to 

25 °C. After purification by flash chromatography (SiO2, pentane:ether/8:2) 73c was isolated 

as a pale yellow solid (220 mg, 70%). 

m.p.: 93.9-96.0 °C. 
1H-NMR (CDCl3, 600 MHz): δ = 7.84 (d, 3JH-H = 7.3 Hz, 1 H), 7.26-7.24 (m, 1 H), 7.21-7.18 

(m, 2 H), 5.68-5.66 (m, 1 H), 5.50-5.48 (m, 1 H), 4.71 (s, 1 H), 3.57-3.51 (m, 2 H), 2.89 (t, 
3JH-H = 7.2 Hz, 2 H), 2.78-2.70 (m, 2 H), 1.12 (t, 3JH-H = 7.1 Hz, 3 H), 0.99 (s, 9 H). 
 13C-NMR (CDCl3, 150 MHz): δ = 147.8, 139.2, 136.8, 129.6, 128.2, 127.6, 126.8, 122.4, 

117.6, 80.0, 75.0, 64.6, 38.0, 29.6, 26.1, 20.8, 14.8.  

IR (Diamond ATR): 3257 (w), 2948 (w), 2482 (w), 1442 (w), 1359 (w), 1296 (m), 1244 (w), 

1199 (w), 1104 (s), 1088 (s), 1063 (m), 1013 (m), 896 (w), 872 (m), 760 (m), 739 (m), 715 

(m). 

MS (EI, 70 eV) m/z, (%): 314 (M+, 3), 269 (2), 257 (7), 212 (13), 211 (100), 199 (3), 183 

(4), 169 (3), 154 (1), 142 (2), 127 (1), 115 (3), 59 (5), 44 (2), 41 (2). 

HRMS (EI): calcd. for C19H26N2O2: 314.1994, found: 314.2000. 
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Synthesis of 2-ethoxymethyl-3-methylsulfanyl-4,5-dihydro-2H-benzo[g]indazole (73d) 

 

 
 

 

 

According to TP8, the 3-magnesiated heterocycle 72 (1.0 mmol) was reacted with 

methanethiosulfonic acid S-methyl ester (152 mg, 1.2 mmol) at 0 °C. The mixture was 

allowed to slowly warm up to 25 °C. After purification by flash chromatography (SiO2, 

pentane:ether/8:2) 73d was isolated as a yellow oil (227 mg, 83%). 
1H-NMR (CDCl3, 300 MHz): δ = 7.88 (d, 3JH-H = 7.3 Hz, 1 H), 7.29-7.20 (m, 3 H), 5.64 (s, 2 

H), 3.64 (t, 3JH-H = 7.0 Hz, 2 H), 2.96 (t, 3JH-H = 7.4 Hz, 2 H), 2.82-2.77 (m, 2 H), 2.34 (s, 3 

H), 1.17 (t, 3JH-H = 7.0 Hz, 3 H).  
 13C-NMR (CDCl3, 75 MHz): δ = 148.2, 136.8, 132.1, 129.1, 128.4, 128.0, 126.9, 122.7, 

122.5, 67.9, 64.5, 29.2, 19.5, 19.3, 15.0.  

IR (Diamond ATR): 2929 (w), 1472 (m), 1438 (m), 1296 (m), 1278 (m), 1240 (m), 1098 (s), 

1068 (s), 1028 (w), 973 (w), 892 (w), 825 (m), 772 (s), 726 (s), 685 (w). 

MS (EI, 70 eV) m/z, (%): 275 (3), 274 (M+, 20), 231 (7), 230 (24), 229 (100), 227 (9), 216 

(5), 215 (13), 197 (14), 187 (4), 184 (2), 183 (14), 182 (10), 181 (18), 171 (14), 169 (10), 168 

(9), 156 (6), 154 (6), 153 (4), 152 (3), 142 (5), 141 (3), 140 (5), 139 (4), 128 (12), 127 (8), 

117 (3), 116 (4), 115 (8), 89 (4), 59 (6), 43 (2). 

HRMS (EI): calcd. for C15H18N2OS: 274.1140, found: 274.1133. 

 

Synthesis of 2-ethoxymethyl-3-(4-fluorobenzyl)-4,5-dihydro-2H-benzo[g]indazole (73e) 

  

 

 

 
 

According to TP12 benzo[g]indazole 73d (275 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

reacted with 4-fluorobenzylzinc chloride (2.1 mL, 0.72 м in THF in THF, 1.5 mmol). The 

reaction mixture was heated to 45 °C for 12 h. Purification by flash chromatography (SiO2, 

pentane:EtOAc/95:5) afforded the desired product 73e as a pale yellow oil (208 mg, 62%). 
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1H-NMR (CDCl3, 300 MHz): δ = 8.33 (d, 3JH-H = 7.7 Hz, 1 H), 7.22-7.18 (m, 2 H), 7.10-7.07 

(m, 2 H), 6.78 (s, 2 H), 6.76-6.75 (m, 1 H), 5.18 (s, 2 H), 3.71 (s, 2 H), 3.42 (q, 3JH-H = 7.0 Hz, 2 

H), 2.68 (t, 3JH-H = 7.3 Hz, 2 H), 2.30 (t, 3JH-H = 7.3 Hz, 2 H), 0.93 (t, 3JH-H = 7.0 Hz, 3 H).  
13C-NMR (CDCl3, 75 MHz): δ = 162.0 (d, 1JC-F = 244.4 Hz), 147.9, 136.8, 134.0 (d, 3JC-F = 3.4 

Hz), 130.9, 130.1, 130.0, 128.6, 127.7, 127.3, 123.0, 116.7, 115.5 (d, 2JC-F = 21.4 Hz), 78.8, 

64.3, 29.9, 29.2, 19.3, 14.9.  

IR (film): 2929 (w), 1602 (m), 1508 (s), 1483 (m), 1440 (m), 1357 (m), 1309 (m), 1284 (m), 

1220 (s), 1157 (m), 1081 (s), 1016 (m), 891 (w), 834 (m), 767 (s), 733 (m). 

MS (EI, 70 eV) m/z, (%): 336 (M+, 13), 293 (7), 292 (39), 291 (100), 290 (3), 289 (6), 277 

(6), 233 (4), 197 (4), 183 (6), 181 (5), 169 (4), 115 (7), 109 (17), 97 (5), 83 (6), 71 (6), 70 (4), 

69 (8), 57 (10), 56 (4), 55 (9), 40 (19), 38 (9), 37 (8).  

HRMS (EI): calcd. for C21H21FN2O: 336.1638, found: 336.1623. 
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5. Synthesis of Fully Substituted Pyrazoles via Regio- and 
Chemoselective Metallations 

 

5.1  Starting materials 

 

Synthesis of 1-(tetrahydropyran-2-yl)-1H-pyrazole (74)101 

 

 

 

In a flask equipped with a magnetic stirring bar and a reflux condenser, a mixture of pyrazole 

(14.3 g, 210.0 mmol), 3,4-dihydro-2H-pyran (29 mL, 320.0 mmol), and trifluoroacetic acid 

(0.1 mL, 1.3 mmol) was refluxed for 5 h. Addition of sodium hydride (60% in oil; 200 mg, 

8.0 mmol) and distillation (70 °C, 1.1 mbar) gave 1-tetrahydropyran-2-yl-pyrazole as a 

colourless oil (30.34 g, 94%).  
1H NMR (CDCl3, 300 MHz): δ = 7.57 (d, 3JH-H = 2.4 Hz, 1 H), 7.51 (d, 3JH-H = 0.7 Hz, 1 H), 

6.25 (s, 1 H), 5.37-5.33 (m, 1 H), 4.04-3.99 (m, 1 H), 3.69-3.61 (m, 1 H), 2.17-1.98 (m, 3 H), 

1.68-1.54 (m, 3 H). 
13C NMR (CDCl3, 75 MHz): δ = 139.4, 127.4, 105.8, 87.3, 67.6, 30.3, 24.8, 22.3. 

IR (Diamond ATR): 2943 (m), 2856 (w), 1382 (m), 1207 (m), 1195 (m), 1176 (m), 1082 (s), 

1037 (s), 962 (s), 919 (s), 876 (s), 749 (s), 621 (s). 

MS (70 eV, EI): m/z (%): 152 (M+, 15), 124 (38), 85 (100), 84 (76), 69 (68). 

HRMS (EI): calcd. for C8H12N2O: 152.0950, found: 152.0945. 

 

 

 

 

 

 

 

                                                 
 
101 Young, M. B.; Barrow, J. C.; Glass, K. L.; Lundell, G. F.; Newton, C. L.; Pellicore, J. M.; Rittle, K. E.; 
Selnick, H. G.; Stauffer, K. J.; Vacca, J. P.; Williams, P. D.; Bohn, D.; Clayton, F. C.; Cook, J. J.; Krueger, J. A.; 
Kuo, L. C.; Lewis, S. D.; Lucas, B. J.; McMasters, D. R.; Miller-Stein, C.; Pietrak, B. L.; Wallace, A. A.; White, 
R. B.; Wong, B.; Yan, Y.; Nantermet, P. G. J. Med. Chem. 2004, 47, 2995. 



C: Experimental Part  120 
  

  

N
N
SEM

N
N

EtO

Synthesis of 1-ethoxymethyl-1H-pyrazole (75) 

 

 

 

A dry and argon flushed Schlenk-flask equipped with a magnetic stirring bar and a septum 

was charged with 1H-pyrazole (3.4 g, 50 mmol) dissolved in THF (50 mL). At 25 °C NaH 

(60% in oil; 1.32 g, 55 mmol) was added and the mixture was stirred for 1 h. The reaction 

mixture was then cooled to 0 °C followed by addition of ethoxymethyl chloride (5.16 mL, 

55 mmol). The completion of the reaction was checked by GC analysis of hydrolyzed reaction 

aliquots. After 2 h stirring the mixture was quenched with brine and extracted with EtOAc. 

The organic extracts were dried over Na2SO4, filtered and the solvent was removed in vacuo. 

The crude residue was purified by distillation (95 °C, 101 mbar), producing a colourless oil 

(4.95 g, 78 %). 
1H NMR (CDCl3, 300 MHz): δ = 7.56 (d, 3JH-H = 2.4 Hz, 1 H), 7.54 (d, 3JH-H = 2.0 Hz, 1 H), 

6.32 (t, 3JH-H = 2.0 Hz, 1 H), 5.44 (s, 2 H), 3.54-3.47 (q, 3JH-H = 7.1 Hz, 2 H), 1.15 (t, 3JH-H = 

7.1 Hz, 3 H).  
13C NMR (CDCl3, 75 MHz): δ = 139.9, 129.4, 106.8, 80.3, 64.7, 14.8 

IR (Diamond ATR): 2980 (w), 1737 (m), 1715 (m), 1517 (m), 1383 (s), 1289 (s), 1242 (m), 

1100 (s), 1085 (s), 1049 (s), 1021 (s), 964 (m), 743 (s), 617 (s).  

MS (70 eV, EI): m/z (%): 126 (M+, 2), 83 (11), 82 (33), 68 (100), 59 (40). 

HRMS(EI): calcd. for C6H10N2O: 127.0871, found: 127.0860 

 

Synthesis of 1-(2-(trimethylsilyl)ethoxymethyl)-1H-pyrazole (76)102 

 

 

 

 

A dry and argon flushed Schlenk-flask equipped with a magnetic stirring bar and a septum 

was charged with 1H-pyrazole (1.9 g, 28 mmol) dissolved in THF (30 mL). At 25 °C NaH 

(60% in oil; 720 mg, 31 mmol) was added and the mixture was stirred for 1 h. The reaction 

mixture was then cooled to 0 °C followed by addition of (trimethylsilyl)-ethoxymethyl 

chloride (5.50 mL, 31 mmol). The completion of the reaction was checked by GC analysis of 

                                                 
 
102 Fugina, N.; Holzer, W.; Wasicky, M. Heterocycles 1992, 34, 303. 
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hydrolyzed reaction aliquots. After 2 h stirring the mixture was quenched with brine and 

extracted with EtOAc (3 x 50 mL). The organic extracts were dried over anhydrous Na2SO4, 

filtered and the solvent was removed in vacuo. The crude residue was purified by distillation 

(174-180 °C, 100 mbar), furnishing 76 as a colourless oil (4.6 g, 83 %) 
1H-NMR (C6D6, 300 MHz): δ = 7.53 (d, 3JH-H = 1.8 Hz, 1 H), 7.10 (d, 3JH-H = 2.3 Hz, 1 H), 

6.07 (t, 3JH-H = 2.0 Hz, 1 H), 5.10 (s, 2 H), 3.52 (t, 3JH-H = 7.9 Hz, 2 H), 0.80 (t, 3JH-H = 7.9 

Hz, 2 H), -0.10 (s, 9 H). 
13C-NMR (C6D6, 75 MHz): δ = 139.8, 129.1, 106.7, 80.1, 66.6, 17.8, -1.4.  

IR (Diamond ATR): 1517 (m), 1391 (m), 1377 (m), 1288 (m), 1248 (s), 1085 (s), 1024 (w), 

964 (w), 916 (m), 858 (m), 832 (s), 745 (s), 693 (m), 617 (m). 

MS (EI, 70 eV) m/z, (%): 198 (M+, 1), 155 (14), 125 (100), 115 (8), 98 (12), 97 (9), 82 (49), 

81 (56), 73 (46), 70 (5), 69 (4), 59 (4), 43 (5). 

HRMS (EI): calcd. for C9H18N2OSi : 198.1188, found: 198.1202. 

 

5.2  Preparation of C5-substituted pyrazoles 

 

Synthesis of 1-(tetrahydropyran-2-yl)-5-triethylsilyl-1H-pyrazole (80a) 

 

 

 

 

According to TP9, pyrazole 74 (3.0 g, 20 mmol) dissolved in THF (20 mL) was treated with 

TMPMgCl·LiCl (10a; 20 mL, 1.1 м in THF, 22 mmol) at 25 °C. After stirring for 1 h, 

triethylsilyl chloride (3.6 mL, 22 mmol) was added to the mixture. Purification by flash 

chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/9:1) afforded the 

product as a yellow oil (5.06 g, 95%). 
1H NMR (CDCl3, 300 MHz): δ = 7.58 (d, 3JH-H = 1.5 Hz, 1 H), 6.39 (d, 3JH-H = 1.7 Hz, 1 H), 

5.27-5.23 (m, 1 H), 4.07-4.00 (m, 1 H), 3.64-3.56 (m, 1 H), 2.12-1.90 ( m, 3 H), 1.76- 1.53 

(m, 3 H), 0.99-0.93 (m, 9 H), 0.85-0.77 (m, 6 H). 
13C NMR (CDCl3, 75 MHz): δ = 140.3, 139.3, 115.9, 87.3, 67.7, 30.2, 24.9, 22.9, 7.2, 3.7. 

IR (Diamond ATR): 2953 (m), 2875 (m), 1741 (w), 1243 (m), 1084 (s), 1043.4 (s), 1000 (s), 

928 (m), 914 (m), 788 (m), 733 (s), 721 (s), 702 (s). 

MS (70 eV, EI): m/z (%): 266 (M+, 1), 238 (13), 237 (89). 
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HRMS: calcd. for C14H26N2OSi : 266.1814, found: 266.1803. 

 

Synthesis of 1-ethoxymethyl-5-triethylsilyl-1H-pyrazole (81a) 

 

 

 

 

 

According to TP9, 1-ethoxymethylpyrazole (75; 960 mg, 7.6 mmol) dissolved in THF (7.6 

mL) was treated with TMPMgCl·LiCl (10a; 7.6 mL, 1.1 м in THF, 8.4 mmol) at 25 °C. After 

stirring for 1 h, triethylsilyl chloride (1.3 mL, 9.0 mmol) was added to the mixture. 

Purification by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/9:1) afforded the product as a yellow oil (1.7 g, 94%). 
1H NMR (CDCl3, 300 MHz): δ = 7.52 (d, 3JH-H = 1.7 Hz, 1 H), 6.47 (d, 3JH-H = 1.7 Hz, 1 H), 

5.47 (s, 2 H), 3.50- 3.43 (q, 3JH-H = 7.1 Hz, 2 H), 1.12 (t, 3JH-H =7.1 Hz, 3 H), 0.99-0.91 (m, 9 

H), 0.88-0.80 (m, 6 H). 
13C NMR (CDCl3, 75 MHz): δ = 138.8, 117.3, 99.4, 80.7, 64.2, 14.8, 7.2, 3.4. 

IR (Diamond ATR): 2954 (m), 2876 (m), 1458 (w), 1301 (m), 1234 (m), 1108 (s), 1080 (s), 

1003 (m), 928 (m), 790 (m), 760 (s), 721 (s), 702 (s). 

MS (70 eV, EI): m/z (%): 240 (M+, 1), 211 (57), 167 (35), 139 (100), 110 (36), 103 (32). 

HRMS (EI): calcd. for C12H24N2OSi: 240.1658, found: 240.1655. 

 

Synthesis of 5-triethylsilyl-1-(2-trimethylsilyl-ethoxymethyl)-1H-pyrazole (82a)  

 

 

 

 

According to TP9, the pyrazole (76; 1.9 g, 10 mmol), dissolved in THF (10 mL) was treated 

with TMPMgCl·LiCl (10a; 10 mL, 1.1 м in THF, 11 mmol). After stirring for 1 h, triethylsilyl 

chloride (1.8 mL, 11 mmol) was added to the mixture. Purification by flash chromatography 

(SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/9:1) afforded the desired compound 

82a as a yellow oil (2.64 g, 84%). 
1H NMR (CDCl3, 300 MHz): δ = 7.51 (d, 3JH-H = 1.7 Hz, 1 H), 6.45 (d, 3JH-H = 1.7 Hz, 1 H), 

5.46 (s, 2 H), 3.48 (t, 3JH-H = 8.1 Hz, 2 H), 0.97-0.79 (m, 17 H), -0.05 (s, 9 H). 
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13C NMR (CDCl3, 75 MHz): δ = 140.0, 138.7, 117.2, 80.4, 66.1, 17.8, 7.2, 3.4, -1.5. 

IR (Diamond ATR): 2954 (m), 2876 (m), 1458 (w), 1417 (w), 1249 (m), 1111 (s), 1079 (s), 

1002 (m), 927 (m), 858 (s), 833 (s), 790 (m), 761 (s), 734 (s), 701 (s). 

MS (70 eV, EI): m/z (%): 312 (M+, 1), 269 (13), 255 (14), 198 (13), 196 (23), 168 (41), 167 

(12), 140 (15), 139 (16), 73 (100). 

HRMS (EI): calcd. for C15H32N2OSi2: 312.2053, found: 312.2044. 

 

Synthesis of 5-(phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (82b) 

 

 

 

 

According to TP9, 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (76; 1.98 g, 10 mmol), 

dissolved in THF (10 mL) was treated with TMPMgCl·LiCl (10a;10 mL, 1.1 м in THF, 11 

mmol). The resulting organomagnesium reagent 79 was added dropwise at 0 °C to a solution 

of S-phenyl benzenesulfonothioate (3.0 g, 12 mmol) in THF (10 mL). Purification by flash 

chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5) afforded the 

desired compound 82b as a yellow oil (2.5 g, 82%).  
1H-NMR (C6D6, 600 MHz): δ = 7.50 (d, 3JH-H = 1.8 Hz, 1 H), 7.05 (d, 3JH-H = 8.3 Hz, 2 H), 

6.90 (t, 3JH-H = 7.6 Hz, 2 H), 6.83 (t, 3JH-H = 7.3 Hz, 1 H), 6.35 (d, 3JH-H = 1.6 Hz, 1 H), 5.40 

(s, 2 H), 3.57 (t, 3JH-H = 7.9 Hz, 2 H), 0.75 (t, 3JH-H = 7.9 Hz, 2 H), -0.10 (s, 9 H). 
13C-NMR (C6D6, 150 MHz): δ = 140.1, 136.4, 131.3, 129.3, 127.7, 126.4, 115.2, 77.9, 66.7, 

17.8, -1.4. 

IR (Diamond ATR): 1584 (m), 1479 (m), 1441 (w), 1372 (w), 1303 (w), 1285 (w), 1247 

(m), 1114 (m), 1078 (s), 1024 (w), 998 (w), 920 (w), 857 (m), 833 (s), 791 (m), 738 (s), 688 

(s). 

MS (EI, 70 eV) m/z, (%): 306 (M+, 7), 263 (22), 261 (15), 233 (24), 206 (21), 191 (12), 190 

(83), 189 (52), 179 (11), 176 (19), 171 (14), 167 (9), 157 (23), 153 (11), 116 (13), 115 (7), 

113 (12), 110 (8), 109 (14), 91 (22), 87 (20), 73 (100). 

HRMS (EI): calcd. for C15H22N2OS : 306.1222, found: 306.1223. 
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Synthesis of 5-(methylthio)-1-[(2-trimethylsilyl)ethoxy]methyl-1H-pyrazole (82c) 

 

 

 

 

 

According to TP9, 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (76; 1.98 g, 10 mmol), 

dissolved in THF (10 mL) was treated with TMPMgCl·LiCl (10a; 10 mL, 1.1 м in THF, 11 

mmol). The resulting organomagnesium reagent 79 was added dropwise at 0 °C to a solution 

of methanethiosulfonic acid S-methyl ester (1.5 g, 12 mmol) in THF (10 mL). Purification by 

flash chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5) afforded 

the desired compound 82c as a yellow oil (1.76 g, 72%).  
1H-NMR (C6D6, 400 MHz): δ = 7.48 (d, 3JH-H = 1.8 Hz, 1 H), 6.12 (d, 3JH-H = 2.0 Hz, 1 H), 

5.41 (s, 2 H), 3.64 (t, 3JH-H = 8.0 Hz, 2 H), 1.96 (s, 3 H), 0.83 (t, 3JH-H = 8.0 Hz, 2 H), -0.09 (s, 

9 H). 
13C-NMR (C6D6, 100 MHz): δ = 139.7, 136.9, 110.4, 77.7, 66.6, 18.9, 17.9, -1.4. 

IR (Diamond ATR): 1420 (w), 1372 (w), 1287 (w), 1247 (m), 1113 (m), 1078 (s), 997 (w), 

973 (w), 920 (w), 857 (s), 832 (s), 751 (s), 693 (m), 664 (w). 

MS (EI, 70 eV) m/z, (%): 244 (M+, 3), 201 (50), 199 (27), 186 (16), 172 (13), 171 (100), 153 

(48), 144 (29), 128 (86), 127 (47), 116 (10), 114 (9), 73 (21). 

HRMS (EI): calcd. for C10H20N2OSSi: 244.1066, found: 244.1073. 

 

Synthesis of ethyl 4-[2-(2-trimethylsilanyl-ethoxymethyl)-2H-pyrazol-3-yl]benzoate (82d) 

 

 

 

 

According to TP9, 1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole (76; 198.0 mg, 

1.00 mmol), dissolved in THF (1.0 mL) was treated with TMPMgCl·LiCl (10a; 1.00 mL, 1.10 

м in THF, 1.10 mmol) leading to the organomagnesium reagent 5a which was transmetallated 

with ZnCl2 (1.00 mL, 1.00 м in THF, 1.00 mmol). Ethyl 4-iodobenzoate (331.0 mg, 1.20 

mmol) dissolved in THF (1.0 mL) and mixed with 2 mol% Pd(OAc)2 (4.5 mg, 0.02 mmol) 

and 4 mol% S-PHOS (16.5 mg, 0.04 mmol) was added at 25 °C to the zinc reagent. 
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Purification by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/9:1) furnished the desired compound 82d as colourless oil (315 mg, 91%).  
1H-NMR (C6D6, 300 MHz): δ = 8.20 (d, 3JH-H = 8.6 Hz, 2 H), 7.65 (d, 3JH-H = 8.6 Hz, 2 H), 

7.54 (d, 3JH-H = 1.8 Hz , 1 H), 6.22 (d, 3JH-H = 1.8 Hz, 1 H), 5.21 (s, 2 H), 4.14 (q, 3JH-H = 7.2 

Hz, 2 H), 3.79 (t, 3JH-H = 8.0 Hz, 2 H), 1.03 (t, 3JH-H = 7.2 Hz, 3 H), 0.87 (t, 3JH-H = 8.0 Hz, 2 

H), -0.08 (s, 9 H). 
13C-NMR (C6D6, 75 MHz): δ = 165.8, 143.3, 139.4, 134.9, 130.9, 130.3, 128.9, 107.6, 78.2, 

67.0, 60.9, 18.0, 14.2, -1.4. 

IR (Diamond ATR): 2953 (w), 1714 (s), 1614 (m), 1378 (m), 1271 (s), 1185 (m), 1084 (s), 

1023 (m), 982 (w), 925 (w), 860 (m), 833 (s), 762 (s), 704 (m), 648 (w). 

MS (EI, 70 eV) m/z, (%): 346 (M+, 1), 303 (11), 301 (9), 287 (10), 273 (8), 259 (2), 245 (6), 

230 (62), 229 (100), 216 (8), 201 (11), 185 (4), 171 (8), 157 (5), 114 (8), 73 (24).  

HRMS (EI): calcd. for C18H26N2O3Si : 346.1713, found: 346.1702. 

 

Synthesis of 1-methyl-5-(triethylsilyl)-1H-pyrazole (90a)  

 

 

 

 

According to TP9, N-methylpyrazole (88; 820 mg, 10 mmol), dissolved in THF (10 mL) was 

treated with TMPMgCl·LiCl (10a;10 mL, 1.1 м in THF, 11 mmol). The resulting 

organomagnesium reagent 89 was added dropwise at 0 °C to a solution of triethylsilyl 

chloride (1.8 g, 12 mmol) in THF (10 mL). Purification by flash chromatography (SiO2 

initially neutralized with 3% Et3N, pentane:EtOAc/95:5) furnished the desired compound 90a 

as a yellow oil (1.56 g, 80%).  
1H-NMR (CDCl3, 300 MHz): δ = 7.48 (d, 3JH-H = 1.9 Hz, 1 H), 6.37 (d, 3JH-H = 1.7 Hz 1 H), 

3.94 (s, 3 H), 0.98-0.92 (m, 9 H), 0.86-0.77 (m, 6 H). 
13C-NMR (CDCl3, 75 MHz): δ = 139.5, 138.2, 115.7, 39.7, 7.3, 3.5. 

IR (Diamond ATR): 2954 (s), 1738 (s), 1370 (s), 1229 (m), 1045 (m), 929 (w), 716 (s). 

MS (EI, 70 eV) m/z, (%): 219 (5), 196 (M+, 7), 167 (57), 149 (2), 139 (100), 111 (59), 109 

(2), 97 (2), 82 (7), 71 (3), 57 (5), 55 (3), 44 (7). 

HRMS (EI): calcd. for C10H20N2Si : 196.1396, found: 196.1383. 
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Synthesis of 1-methyl-5-(phenylthio)-1H-pyrazole (90b) 

 

 

 

 

According to TP9, N-methylpyrazole (88; 820 mg, 10 mmol), dissolved in THF (10 mL) was 

treated with TMPMgCl·LiCl (10a;10 mL, 1.1 м in THF, 11 mmol). The resulting 

organomagnesium reagent 5b was added dropwise at 0 °C to a solution of S-phenyl 

benzenesulfonothioate (3.0 g, 12 mmol) in THF (10 mL). Purification by flash 

chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5) furnished the 

desired compound 90b as a yellow oil (1.58 g, 83%).  
1H-NMR (CDCl3, 600 MHz): δ = 7.57 (d, 3JH-H = 1.9 Hz, 1 H), 7.26-7.24 (m, 2 H), 7.18-7.15 

(m, 1 H), 7.06-7.04 (m, 2 H), 6.54 (d, 3JH-H = 1.9 Hz, 1 H), 3.83 (s, 3 H). 
13C-NMR (CDCl3, 150 MHz): δ = 138.8, 135.2, 129.3, 129.3, 127.1, 126.4, 114.0, 36.7.  

IR (Diamond ATR): 2970 (m), 1739 (s), 1582 (w), 1478 (m), 1440 (m), 1408 (m), 1380 (m), 

1217 (m), 1081 (m), 922 (m), 782 (m), 737 (s), 688 (s), 651 (m). 

MS (EI, 70 eV) m/z, (%): 190 (M+, 100), 175 (11), 162 (12), 157 (4), 147 (6), 134 (3), 130 

(3), 121 (8), 118 (12), 109 (3), 103 (5), 91 (4), 77 (7), 69 (3), 57 (5), 44 (23). 

HRMS (EI): calcd. for C10H10N2S : 190.0565, found: 190.0563. 

 

Synthesis of 1-methyl-5-(methylthio)-1H-pyrazole (90c) 

 

 

 

 

 

According to TP9, N-methylpyrazole (88; 820 mg, 10 mmol), dissolved in THF (10 mL) was 

treated with TMPMgCl·LiCl (10a; 10 mL, 1.1 м in THF, 11 mmol). The resulting 

organomagnesium reagent 89 was added dropwise at 0 °C to a solution of 

methanethiosulfonic acid S-methyl ester (1.5 g, 12 mmol) in THF (10 mL). After purification 

by flash chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5), the 

desired compound 90c was isolated as a yellow oil (1.01 g, 79%).  
1H-NMR (C6D6, 400 MHz): δ = 7.49 (d, 3JH-H = 1.8 Hz, 1 H), 6.11 (d, 3JH-H = 1.9 Hz, 1 H), 

3.46 (s, 3 H), 1.75 (s, 3 H). 



C: Experimental Part  127 
  

  

N
N
Me

F

N
N
MeMeO

13C-NMR (C6D6, 100 MHz): δ = 138.9, 135.3, 109.4, 36.1, 18.4. 

IR (Diamond ATR): 1729 (w), 1682 (w), 1625 (w), 1412 (s), 1381 (s), 1319 (w), 1272 (m), 

1192 (m), 1110 (w), 1038 (w), 992 (m), 973 (m), 924 (s), 870 (w), 778 (s), 707 (s), 650 (m). 

MS (EI, 70 eV) m/z, (%): 130 (5), 129 (6), 128 (M+, 100), 113 (33), 98 (4), 95 (14), 86 (9), 

81 (5), 71 (7), 70 (14), 69 (11), 67 (20), 59 (3), 57 (4), 54 (5), 52 (5), 45 (10), 43 (4). 

HRMS (EI): calcd. for C5H8N2S : 128.0408, found: 128.0397. 

 

Synthesis of 5-(4-methoxy-phenyl)-1-methyl-1H-pyrazole (91a) 

 

 

 

 

According to TP12 pyrazole 90c (128 mg, 1.0 mmol), dissolved in THF (1.0 mL) was reacted 

with 4-methoxybenzylzinc iodide (1.4 mL, 1.09 м in THF, 1.5 mmol). The reaction mixture 

was stirred at 25 °C for 1 h. Purification by flash chromatography (SiO2, pentane:EtOAc/9:1) 

afforded the desired product 91a as a white solid (156 mg, 83%). 

m.p.: 47.3-48.5 

1H-NMR (CDCl3, 300 MHz): δ = 7.49 (d, JH-H = 2.2 Hz, 1 H), 7.34-7.30 (m, 2 H), 6.99-6.95 

(m, 2 H), 6.24 (d, JH-H = 2.0 Hz, 1 H), 3.85 (s, 3 H), 3.84 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz): δ = 159.7, 143.4, 138.2, 130.0, 123.0, 114.1, 105.6, 55.3, 37.3. 

IR (film): 1610 (w), 1575 (w), 1539 (w), 1464 (m), 1381 (m), 1283 (m), 1248 (s), 1180 (m), 

1114 (w), 1026 (m), 980 (m), 925 (w), 836 (s), 773 (s), 604 (m). 

MS (EI, 70 eV) m/z, (%): 189 (11), 188 (M+, 100), 187 (2), 174 (9), 173 (58), 146 (3), 145 

(13), 133 (2), 118 (7), 117 (5), 116 (2), 115 (2), 103 (2), 102 (5), 94 (4), 91 (7), 90 (2), 89 (4), 

77 (4), 76 (4), 75 (2), 65 (4), 63 (4), 50 (2).  

HRMS (EI): calcd. for C11H12N2O: 188.0950, found: 188.0951. 

 

Synthesis of 5-(4-fluoro-benzyl)-1-methyl-1H-pyrazole (91b) 

 

 

 

 

According to TP12 pyrazole 90c (128 mg, 1.0 mmol), dissolved in THF (1.0 mL) was reacted 

with 4-fluorobenzylzinc chloride (2.1 mL, 0.72 м in THF, 1.5 mmol). The reaction mixture was 
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heated to 45 °C for 12 h. Purification by flash chromatography (SiO2, pentane:EtOAc/95:5) 

afforded the desired product 91b as a pale yellow oil (152 mg, 80%). 
1H-NMR (CDCl3, 300 MHz): δ = 7.50 (d, JH-H = 2.0 Hz, 1 H), 6.75-6.70 (m, 2 H), 6.66-6.63 

(m, 2 H), 5.80 (d, JH-H = 1.8 Hz, 1 H), 3.31 (s, 2 H), 3.17 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz): δ = 162.0 (d, JH-H = 244.1 Hz), 138.2, 133.7 (d, JH-H = 3.5 Hz), 

130.1, 130.0, 115.5, (d, JH-H = 21.1 Hz), 105.9, 35.9, 30.8. 

IR (film): 1602 (w), 1508 (s), 1483 (m), 1440 (m), 1357 (m), 1284 (m), 1220 (s), 1157 (m), 

1081 (s), 1016 (m), 891 (w), 835 (s), 767 (s), 733 (m). 

MS (EI, 70 eV) m/z: 191 (13), 190 (M+, 100), 189 (40), 175 (30), 162 (12), 148 (19), 146 

(17), 135 (5), 133 (9), 127 (7), 120 (6), 109 (17), 97 (6), 95 (35), 85 (8), 83 (7), 71 (10), 69 

(7), 57 (17), 56 (6), 55 (10), 44 (7), 43 (12), 41 (9). 

HRMS (EI): calcd. for C11H11FN2: 190.0906, found: 190.0894. 

 
Synthesis of ethyl 4-(2-methyl-2H-pyrazol-3-yl)butanoate (91c) 

 

 

 

 

 

According to TP12 pyrazole 90c (128 mg, 1.0 mmol), dissolved in THF (1.0 mL) was reacted 

with 4-(ethylcarboxy)butylzinc bromide (4.2 mL, 0.36 м in THF, 1.5 mmol). The reaction 

mixture was heated to 45 °C for 12 h. Purification by flash chromatography (SiO2, 

pentane:EtOAc/95:5) afforded the desired product 91c as a pale yellow oil (135 mg, 69%). 
1H-NMR (CDCl3, 300 MHz): δ = 7.36 (d, JH-H = 1.5 Hz, 1 H), 6.02 (d, JH-H = 1.5 Hz, 1 H), 

4.12 (q, JH-H = 7.1 Hz, 2 H), 3.79 (s, 3 H), 2.64 (t, JH-H = 7.7 Hz, 2 H), 2.36 (t, JH-H = 7.1 Hz, 2 

H), 1.94 (quint, JH-H = 7.3 Hz, 2 H), 1.24 (t, JH-H = 7.1 Hz, 3 H). 
13C-NMR (CDCl3, 75 MHz): δ = 173.0, 141.8, 137.9, 104.4, 60.4, 36.0, 33.3, 24.8, 23.6, 14.2. 

IR (film): 2940 (w), 1728 (s), 1397 (w), 1375 (w), 1178 (m), 1025 (m), 930 (m), 859 (w), 771 

(m), 651 (w). 

MS (EI, 70 eV) m/z, (%): 197 (3), 196 (M+, 26), 152 (5), 151 (58), 124 (6), 123 (11), 121 (6), 

110 (7), 109 (100), 108 (31), 107 (8), 96 (37), 95 (50), 80 (4), 68 (5), 61 (4), 60 (6), 55 (5), 52 

(8), 42 (8), 41 (9). 

HRMS (EI): calcd. for C10H16N2O2: 196.1212, found: 196.1205. 
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5.3  Preparation of C3-substituted pyrazoles 

 

Synthesis of 1-ethoxymethyl-5-triethylsilyl-1H-pyrazole-3-carbonitrile (85)  

 

 

 

 

 

According to TP10 pyrazole 81a (730 mg, 3.0 mmol) dissolved in THF (3.0 ml) was treated 

with TMPMgCl·LiCl (10a; 6 mL, 1.1 м in THF, 6.6 mmol) at 25 °C. After stirring for 2 h, the 

obtained organomagnesium reagent 84 was reacted with TsCN (1.3 g, 7.8 mmol). Purification 

by flash chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/9:1) 

furnished 85 as a yellow oil (331 mg, 42%). 
1H NMR (CDCl3, 600 MHz): δ = 6.79 (s, 1 H), 5.47 (s, 2 H), 3.50-3.46 (q, 3JH-H =7.1, 2 H), 

1.14 ( t, 3JH-H = 6.9 Hz, 3 H), 0.93 (t, 3JH-H = 7.6, 9 H), 0.87-0.85 (m, 6 H). 
13C NMR (CDCl3, 150 MHz): δ = 143.1, 124.5, 121.9, 114.2, 81.5, 65.0, 14.6, 7.1, 3.2. 

IR (Diamond ATR): 2957 (m), 2877 (m), 2241 (m), 1739(m), 1457 (w), 1388(m), 1307 (m), 

1237 (m), 1106 (s), 1080 (s), 1005 (s), 766 (s), 723(s), 703 (s), 610 (m).  

MS (70 eV, EI): m/z, (%): 266 (M+H, 1), 236 (38), 208 (12), 192 (44), 165 (11), 164 (100), 

136 (22), 103 (30). 

HRMS (EI): calcd. for C13H23N3OSi: 265.1610, found: 266.1679 [M+H]+. 

 

Synthesis of 5-triethylsilyl-1-(2-trimethylsilyl-ethoxymethyl)-1H-pyrazole-3-carbonitrile 

(87):  

 

 

 

According to TP10 pyrazole 82a (312, 10.0 mmol) dissolved in THF (1.0 ml) was treated 

with TMPMgCl·LiCl (10a; 2.0 mL, 1.1 м in THF, 2.2 mmol) at 25 °C. After stirring for 2 h, 

the obtained organomagnesium reagent 86 was reacted with TsCN (434 mg, 2.6 mmol). 

Purification by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/9:1) furnished 87 as a yellow oil (243 mg, 72%). 
1H NMR (CDCl3, 600 MHz): δ = 6.79 (s, 1 H), 5.46 (s, 2 H), 3.49 (t, 3JH-H = 8.3 Hz, 2 H), 

0.95-0.83 (m, 17 H), -0.02 (s, 9 H). 
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13C NMR (CDCl3, 150 MHz): = 143.0, 124.4, 121.9, 114.2, 81.2, 67.0, 17.7, 7.1, 3.2,  

-1.5.  

IR (Diamond ATR): 2955 (m), 2877 (m) 2241 (w) , 1739 (w,b), 1388 (m) 1458 (w), 1417 

(w), 1305 (m), 1248 (m), 1098 (s), 1080 (s), 1007 (s), 939 (m), 914 (m), 859 (s), 834 (s), 765 

(s), 737 (s) 724 (s), 702 (s), 610 (m) 

MS (70 eV, EI): m/z (%): 337 (M+, 1), 294 (19), 280 (15), 221 (11), 193 (11), 164 (9), 101 

(12), 73 (100). 

HRMS (EI): calcd. for C16H31N3OSi2: 337.2006, found: 337.2000. 

 

Synthesis of 5-(phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole-3-carbo-

nitrile (92a)  

 

 

 

 

According to TP10, the pyrazole 82b (306 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). TsCN (217 mg, 1.2 

mmol), dissolved in THF (1.0 mL) was added dropwise at -15 °C. Purification by flash 

chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5) furnished the 

desired compound 92a as a yellow oil (225 mg, 68%).  
1H-NMR (CDCl3, 400 MHz): δ = 7.30-7.18 (m, 5 H), 6.73 (s, 1 H), 5.49 (s, 2 H), 3.50 (t, 3 

JH-H = 8.3 Hz, 2 H), 0.77 (t, 3JH-H = 8.3 Hz, 2 H), -0.08 (s, 9 H). 
13C-NMR (CDCl3, 100 MHz): δ = 136.1, 132.8, 129.61, 129.56, 128.0, 125.5, 117.8, 113.3, 

78.7, 67.4, 17.6, -1.5. 

IR (Diamond ATR): 2970 (s), 2243 (w), 1739 (s), 1365 (m), 1217 (m), 1073 (m), 1000 (w), 

834 (s), 740 (m), 688 (m), 615 (w). 

MS (EI, 70 eV) m/z, (%): 331 (M+, 3), 288 (23), 286 (11), 274 (14), 273 (48), 272 (42), 258 

(27), 215 (33), 206 (12), 201 (6), 196 (5), 182 (5), 179 (6), 150 (6), 146 (3), 135 (3), 129 (5), 

121 (3), 116 (3), 109 (8), 103 (3), 91 (25), 84 (5), 77 (5), 73 (100), 65 (3), 59 (3), 45 (6). 

HRMS (EI): calcd. for C16H21ClN3OSSi: 331.1175, found: 331.1160. 

 

 

 



C: Experimental Part  131 
  

  

N
N
SEM

PhS

Cl

N
N
SEM

PhS

CO2Et

Synthesis of ethyl 5-(phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole-3-

carboxylate (92b)  

 

 

 

 

According to TP10, the pyrazole 82b (306 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (1.0 mL, 1.1 м in THF, 1.1 mmol). NCCO2Et (120 mg, 1.2 

mmol) was added dropwise at -15 °C and the mixture was allowed to slowly warm up to 25 

°C. Purification by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/9:1) furnished the desired compound 92b as a yellow oil (268 mg, 71%).  
1H-NMR (CDCl3, 600 MHz): δ = 7.30-7.17 (m, 5 H), 6.99 (s, 1 H), 5.56 (s, 2 H), 4.40 (q, 
3JH-H = 7.2 Hz, 2H), 3.55-3.50 (m, 2 H), 1.38 (t, 3JH-H = 7.2 Hz, 3 H), 0.80-0.74 (m, 2 H), -

0.07 (s, 9 H). 
13C-NMR (CDCl3, 150 MHz): δ = 161.8, 143.9, 134.6, 134.1, 129.4, 128.7, 127.2, 116.5, 

78.6, 67.0, 61.2, 17.7, 14.3, -1.5. 

IR (Diamond ATR): 2970 (s), 1739 (s), 1365 (m), 1204 (s), 1091 (m), 834 (m), 740 (w), 688 

(w). 

MS (EI, 70 eV) m/z, (%): 378 (M+, 1), 333 (21), 305 (29), 291 (6), 277 (100), 262 (54), 261 

(33), 248 (16), 233 (29), 229 (24), 215 (9), 202 (8), 197 (4), 185 (15), 153 (4), 146 (6), 139 

(4), 123 (3), 109 (9), 91 (12), 73 (36).  

HRMS (EI): calcd. for C18H26N2O3SSi: 378.1433, found: 378.1426. 

 

Synthesis of 3-chloro-5-(phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole 

(92c)  

 

 

 

 

According to TP10, the pyrazole 82b (306 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). The resulting 

organomagnesium reagent was added dropwise at -15 °C to Cl2FCCF2Cl (372 mg, 2.0 mmol) 

dissolved in THF (1.0 mL). Purification by flash chromatography (SiO2 initially neutralized 
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with 3% Et3N, pentane:EtOAc/95:5) furnished the desired compound 92c as a yellow oil (221 

mg, 65%).  
1H-NMR (CDCl3, 300 MHz): δ = 7.31-7.19 (m, 5 H), 6.38 (s, 1 H), 5.43 (s, 2 H), 3.53 (t, 3JH-

H = 8.2 Hz, 2H), 0.81 (t, JH-H = 8.3 Hz, 2H), -0.05 (s, 9 H). 
13C-NMR (CDCl3, 75 MHz): δ = 140.1, 135.1, 133.9, 129.4, 128.8, 127.3, 112.6, 77.8, 66.9, 

17.7, -1.5. 

IR (Diamond ATR): 1582 (m), 1468 (m), 1441 (m), 1362 (m), 1275 (w), 1231 (m), 1083 (s), 

1022 (m), 957 (s), 740 (s), 688 (s). 

MS (EI, 70 eV) m/z, (%): 340 (M+, 2), 297 (33) 295 (16), 282 (20), 267 (19), 224 (67), 223 

(43), 205 (23), 189 (15), 147 (38), 141 (11), 134 (10), 121 (12), 111 (14), 109 (15), 99 (14), 

97 (19), 93 (14), 91 (26), 85 (47), 83 (26), 77 (12), 73 (100), 71 (57), 69 (23), 57 (70), 55 

(24), 44 (52), 43 (40), 41 (17). 

HRMS (EI): calcd. for C15H21ClN2OSSi: 340.0832, found: 340.0827. 

 

Synthesis of 3-bromo-5-phenylthio-1-(2-trimethylsilylethoxymethyl)-1H-pyrazole (92d)  

 

 

 

 

According to TP10, pyrazole (82b) (306 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). Dibromtetrachlorethane 

(390 mg, 1.2 mmol), dissolved in THF (1.0 mL) was added dropwise at -15 °C. After 

purification by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/95:5), pyrazole 92f was isolated as a yellow oil (280 mg, 73%).  
1H-NMR (CDCl3, 300 MHz): δ = 7.03-6.99 (m, 2 H), 6.91-6.84 (m, 3 H), 6.24 (s, 1 H), 5.20 

(s, 2 H), 3.50 (t, 3JH-H = 7.9 Hz, 2 H), 0.71 (t, 3JH-H = 7.9 Hz, 2 H), -0.11 (s, 9 H). 
13C-NMR (CDCl3, 75 MHz): δ = 134.9, 134.8, 129.5, 128.8, 127.1, 127.0, 116.4, 77.9, 67.0, 

17.7, -1.4. 

IR (Diamond ATR): 1583 (w), 1472 (m), 1441 (w), 1357 (m), 1293 (m), 1248 (m), 1086 (s), 

1024 (m), 956 (s), 913 (w), 857 (m), 832 (s), 738 (s), 688 (s), 663 (m), 612 (w). 

MS (EI, 70 eV) m/z, (%): 384 (M+, 2), 343 (14), 341 (25), 339 (12), 328 (9), 326 (8), 313 (8), 

311 (8), 270 (21), 269 (18), 268 (21), 267 (17), 256 (6), 254 (6), 251 (11), 249 (11), 237 (8), 

235 (7), 190 (9), 189 (78), 188 (14), 167 (9), 148 (42), 139 (7), 137 (7), 121 (10), 109 (10), 91 

(20), 73 (100). 
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HRMS (EI): calcd. for C15H21
79BrN2OSSi : 384.0327, found: 384.0320. 

 

Synthesis of 3-bromo-5-(methylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole 

(92e)  

 

 

 

 

According to TP10, the pyrazole 82c (245 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). 

Dibromotetrachloroethane (390 mg, 1.2 mmol), dissolved in THF (1.0 mL) was added 

dropwise at -15 °C. Purification by flash chromatography (SiO2 initially neutralized with 3% 

Et3N, pentane:EtOAc/95:5) furnished the desired compound 92e as a yellow oil (242 mg, 

75%).  
1H-NMR (CDCl3, 300 MHz): δ = 6.29 (s, 1 H), 5.42 (s, 2 H), 3.50 (t, 3JH-H = 8.3 Hz, 2 H), 

2.43 (s, 3 H), 0.88 (t, 3JH-H = 8.3 Hz, 2 H), -0.03 (s, 9 H). 
13C-NMR (CDCl3, 75 MHz): δ = 140.1, 126.4, 111.5, 77.7, 66.8, 18.7, 17.8, -1.5. 

IR (Diamond ATR): 2952 (w), 1472 (m), 1355 (w), 1292 (m), 1248 (m), 1083 (s), 956 (m), 

913 (w), 857 (s), 833 (s), 755 (s), 693 (m). 

MS (EI, 70 eV) m/z, (%): 322 (M+, 1), 280 (11), 279 (22), 277 (12), 266 (15), 264 (15), 251 

(29), 249 (25), 233 (12), 231 (12), 213 (4), 208 (42), 207 (25), 206 (40), 205 (21), 194 (4), 

192 (4), 170 (4), 139 (11), 137 (11), 127 (18), 115 (4), 105 (16), 103 (4), 86 (16), 79 (4), 74 

(8), 73 (100), 61 (5), 59 (5), 45 (7). 

HRMS (EI): calcd. for C10H19BrN2OSSi: 322.0171, found: 322.0169. 

 

Synthesis of 5-(methylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazole-3-carb-

aldehyde (92f)  

 

 

 

 

According to TP10, the pyrazole 82c (245 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). DMF (0.12 mL, 1.5 

mmol), was added at -15 °C. Purification by flash chromatography (SiO2 initially neutralized 
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with 3% Et3N, pentane:EtOAc/9:1) furnished the desired compound 92f as a yellow oil (207 

mg, 76%).  
1H-NMR (C6D6, 400 MHz): δ = 10.08 (s, 1 H), 6.66 (s, 1 H), 5.20 (s, 2 H), 3.53 (t, 3JH-H = 

7.9 Hz, 2 H), 1.78 (s, 3 H), 0.70 (t, 3JH-H = 7.9 Hz, 2 H), -0.10 (s, 9 H). 
13C-NMR (C6D6, 100 MHz): δ = 185.5, 151.9, 140.9, 107.7, 78.6, 67.0, 17.8, 17.7, -1.47. 

IR (Diamond ATR): 2953 (w), 1699 (s), 1413 (w), 1306 (w), 1247 (m), 1183 (w), 1097 

(m),1069 (m), 913 (w), 858 (m), 834 (s), 775 (m), 752 (s), 694 (w). 

MS (EI, 70 eV) m/z, (%): 272 (M+, 1), 229 (4) 227 (12), 214 (11), 201 (10), 200 (17), 199 

(100), 156 (86), 155 (14), 143 (7), 127 (4), 116 (3), 109 (3), 100 (4), 85 (3), 83 (6), 78 (5), 73 

(85), 69 (3), 61 (6), 59 (5), 57 (6), 43 (6), 39 (17). 

HRMS (EI): calcd. for C11H20N2O2SSi: 272.1015, found: 272.1003.# 

 

Synthesis of (1-methyl-5-methylthio-1H-pyrazol-3-yl) phenylmethanone (93a)  

 

 

 

 

 

According to TP10, 1-methyl-5-(methylthio)-1H-pyrazole (90b; 128 mg, 1.0 mmol), 

dissolved in THF (1.0 mL) was treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 

mmol). The resulting organomagnesium reagent was transmetallated with CuCN·2LiCl (1.0 

mL, 1.0 м in THF, 1.0 mmol) at -15 °C. Benzoyl chloride (168 mg, 1.2 mmol) was added and 

the reaction mixture was allowed to warm up to 25 °C. Purification by flash chromatography 

(SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/9:1) furnished the desired compound 

93a as a pale yellow solid (181 mg, 78%).  

m.p.: 52.8-54.2 °C. 
1H-NMR (C6D6, 400 MHz): δ = 8.65-8.62 (m, 2 H), 7.21-7.19 (m, 3 H), 7.02 (s, 1 H), 3.26 

(s, 3 H), 1.70 (s, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 186.3, 151.0, 138.5, 138.0, 132.5, 131.1, 128.2, 111.2, 36.6, 

17.5. 

IR (Diamond ATR): 1716 (w), 1645 (s), 1597 (w), 1576 (w), 1449 (m), 1395 (m), 1364 (m), 

1282 (m), 1233 (s), 1175 (w), 1133 (w), 1014 (w), 966 (w), 896 (s), 781 (m), 730 (s), 698 (s), 

672 (m), 640 (m). 
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MS (EI, 70 eV) m/z, (%): 234 (4), 233 (12), 232 (M+, 100), 231 (4), 217 (3), 204 (8), 191 (2), 

189 (6), 185 (16), 158 (13), 157 (6), 155 (44), 144 (3), 105 (26), 80 (4), 77 (28). 

HRMS (EI): calcd. for C12H12N2OS: 232.0670, found: 232.0665. 

 

 

Synthesis of 3-chloro-1-methyl-5-(phenylthio)-1H-pyrazole (93b)  

 

 

 

 

According to TP10, 1-methyl-5-(phenylthio)-1H-pyrazole (90b; 190 mg, 1.0 mmol) dissolved 

in THF (1.0 mL) was treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). 

The resulting organomagnesium reagent was added dropwise at -15 °C to a solution of 

Cl2FCCF2Cl (372 mg, 2.0 mmol) in THF (1.0 mL). Purification by flash chromatography 

(SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5) furnished the desired 

compound 93b as a yellow oil (168 mg, 75%).  
1H-NMR (C6D6, 400 MHz): δ = 6.88-6.80 (m, 5 H), 6.27 (s, 1 H), 3.21 (s, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 134.9, 132.7, 129.6, 127.5, 126.7, 125.3, 115.9, 36.4.  

IR (Diamond ATR): 1582 (m), 1465 (s), 1441 (m), 1363 (s), 1278 (w), 1084 (w), 1070 (w), 

1024 (m), 958 (s), 754 (m), 738 (m), 722 (s), 688 (s), 637 (m), 617 (m). 

MS (EI, 70 eV) m/z, (%): 226 (41), 225 (11), 224 (M+, 100), 209 (12), 196 (6), 189 (10), 174 

(5), 156 (6), 148 (5), 135 (7), 130 (5), 121 (8), 109 (7), 91 (7), 77 (9), 71 (6), 57 (9), 44 (22). 

HRMS (EI): calcd. for C10H9ClN2S: 224.0175, found: 224.0171. 

 

Synthesis of 3-allyl-1-methyl-5-(phenylthio)-1H-pyrazole (93c)  

 

 

 

 

According to TP10, the pyrazole 90b (190 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). The resulting 

organomagnesium reagent was transmetallated with CuCN·2LiCl (0.1 mL, 1.0 м in THF, 0.1 

mmol) at -15 °C. Allyl bromide (146 mg, 1.2 mmol) was added and the reaction mixture was 

allowed to warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized 
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with 3% Et3N, pentane:EtOAc/95:5) furnished the desired compound 93c as a yellow oil (179 

mg, 78%).  
1H-NMR (C6D6, 400 MHz): δ = 6.95-6.78 (m, 5 H), 6.32 (s, 1 H), 6.09-5.99 (1 H), 5.12-5.00 

(m, 2 H), 3.43 (s, 2 H), 3.41 (s, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 150.7, 136.4, 136.3, 129.5, 128.3, 126.8, 126.1, 115.9, 

113.2, 36.1, 33.4. 

IR (Diamond ATR): 2970 (m), 1739 (s), 1641 (w), 1582 (w), 1507 (m), 1478 (m), 1440 (m), 

1365 (m), 1217 (m), 1075 (w), 1024 (w), 914 (m), 804 (w), 737 (s), 688 (s), 652 (w). 

MS (EI, 70 eV) m/z, (%): 231 (13), 230 (M+, 100), 229 (21), 215 (2), 204 (18), 197 (1), 189 

(3), 121 (22), 109 (6), 105 (2), 94 (2), 80 (5), 77 (3). 

HRMS (EI): calcd. for C13H14N2S: 230.0878, found:230.0871. 

 

Synthesis of 3-bromo-1-methyl-5-(phenylthio)-1H-pyrazole (93d)  

 

 

 

 

 

According to TP10, 1-methyl-5-(phenylthio)-1H-pyrazole (90b) (190 mg, 1.0 mmol) 

dissolved in THF (1.0 mL) was treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 

mmol). The resulting organomagnesium reagent was added dropwise at -15 °C to a solution 

of dibromtetrachlorethane (390 mg, 1.2 mmol) in THF (1.0 mL). Purification by flash 

chromatography (SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/95:5) afforded 

pyrazole 93d as a yellow oil (188 mg, 70%).  
1H-NMR (CDCl3, 300 MHz): δ = 7.30-7.17 (m, 3 H), 7.11-7.08, (m, 2 H), 6.49 (s, 1 H), 3.78 

(s, 3 H). 
13C-NMR (CDCl3, 75 MHz): δ = 134.0, 133.4, 129.5, 127.8, 126.9, 124.9, 115.4, 37.0. 

IR (Diamond ATR): 2970 (m), 1739 (s), 1581 (w), 1464 (m), 1362 (s), 1217 (m), 1066 (w), 

1023 (w), 957 (s), 789 (w), 737 (s), 688 (s). 

MS (EI, 70 eV) m/z, (%): 270 (100), 269 (12), 268 (M+, 100), 255 (3), 189 (28), 174 (9), 162 

(6), 156 (6), 148 (5), 146 (5), 134 (2), 130 (4), 121 (9), 118 (5), 116 (7), 109 (12), 80 (6), 68 

(6). 

HRMS (EI): calcd. for C10H9
79BrN2S: 267.9670, found: 267.9657. 
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Synthesis of 1-methyl-5-(triethylsilyl)-1H-pyrazole-3-carbonitrile (93e)  

 

 

 

 

 

According to TP10, the pyrazole 90a (196 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol) at 25 °C. After stirring 

for 5 h, full conversion to the organomagnesium reagent was achieved. TsCN (217 mg, 1.2 

mmol), dissolved in THF (1.0 mL) was added dropwise at -15 °C and the mixture was 

allowed to warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized 

with 3% Et3N, pentane:EtOAc/9:1) furnished the desired compound 93e as a yellow oil (135 

mg, 61%).  
1H-NMR (CDCl3, 300 MHz): δ = 6.69 (s, 1 H), 3.95 (s, 3 H), 0.95-0.89 (m, 9 H), 0.85-0.76 

(m. 6 H). 
13C-NMR (CDCl3, 75 MHz): δ = 142.4, 123.7, 120.9, 114.2, 40.6, 7.0, 3.1. 

IR (Diamond ATR): 2956 (m), 2877 (m), 2239 (m), 1457 (w), 1416 (w), 1392 (m), 1288 

(w), 1239 (w), 1145 (w), 1088 (m), 1012 (s), 810 (m), 723 (s), 695 (s). 

MS (EI, 70 eV) m/z, (%): 221 (M+, 2), 192 (67), 164 (100), 136 (40), 124 (3), 107 (2), 91 (3),  

HRMS (EI): calcd. for C11H19N3Si : 221.1348, found: 221.1341. 

 

5.4  Preparation of C4-substituted pyrazoles 

 

Synthesis of (3-chloro-5-(phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-pyrazol-4-

yl)(phenyl)methanol (94a) 

 

 

 

 

According to TP11, the pyrazole 92c (370 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMP2Mg·2LiCl (12; 1.8 mL, 0.6 м in THF, 1.1 mmol). After completion of the 

deprotonation, benzaldehyde (127 mg, 1.2 mmol) was added and the solution was allowed to 

warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized with 3% 
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Et3N, pentane:EtOAc/9:1) furnished the desired compound 94a as a pale yellow oil (317 mg, 

71%). 
1H-NMR (C6D6, 400 MHz): δ = 7.43-7.40 (m, 2 H), 7.11-6.77 (m, 8 H), 6.02 (s, 1 H) 5.22-

5.15 (m, 1H), 5.18 (s, 1 H), 3.50 (t, 3JH-H = 8.0 Hz, 2H), 2.01 (s, 1 H), 0.68 (t, 3JH-H = 8.0 Hz, 

2H), -0.13 (s, 9 H). 
 13C-NMR (C6D6, 100 MHz): δ = 142.6, 139.3, 135.0, 131.4, 129.4, 128.4, 128.3, 127.6, 

127.4, 126.7, 126.3, 78.0, 68.4, 67.1, 17.7, -1.4.  

IR (Diamond ATR): 1728 (m), 1430 (w), 1378 (m), 1301 (m), 1249 (m), 1098 (s), 1019 (m), 

937 (w), 923 (w), 860 (s), 835 (s), 759 (s), 737 (s), 694 (s), 687 (s). 

MS (EI, 70 eV) m/z, (%): 446 (M+, 7), 403 (21), 369 (16), 330 (19), 328 (11), 311 (16), 309 

(10), 295 (24), 293 (29), 243 (18), 241 (12), 239 (33), 109 (12), 105 (22), 91 (35), 77 (14), 73 

(100). 

HRMS (EI): calcd. for C22H27ClN2O2SSi: 446.1251, found: 446.1245. 

 

Synthesis of 3-chloro-5-phenylthio-1-(2-trimethylsilylethoxymethyl)-1H-pyrazole-4-

carbaldehyde (94b) 

 

 

 

 

According to TP11, the pyrazole 92c (370 mg, 1.0 mmol) was treated with TMP2Mg·2LiCl 

(12; 1.8 mL, 0.6 м in THF, 1.1 mmol). DMF (0.12 mL, 1.5 mmol) was then added and the 

reaction mixture was allowed to warm up to 25 °C. Purification by flash chromatography 

(SiO2 initially neutralized with 3% Et3N, pentane:EtOAc/9:1) furnished the desired compound 

94b as a pale yellow oil (239 mg, 65%). 
1H-NMR (C6D6, 400 MHz): δ = 9.89 (s, 1 H), 7.01-6.99, (m, 2 H), 6.82-6.80 (m, 3 H), 5.10 

(s, 2 H), 3.48-3.43 (m, 2 H), 0.72-0.68 (m, 2 H), -0.12 (s, 9 H). 
13C-NMR (C6D6, 100 MHz): δ = 182.1, 142.0, 139.5, 133.4, 129.7, 129.4, 127.7, 121.6, 77.9, 

67.6, 17.7, -1.5.  

IR (Diamond ATR): 2970 (w), 2952 (w), 2900 (w), 1739 (s), 1690 (s), 1494 (m), 1412 (m), 

1354 (m), 1297 (w), 1248 (m), 1217 (m), 1096 (s), 858 (s), 833 (s), 776 (s), 740 (m), 687 (m). 

MS (EI, 70 eV) m/z, (%): 368 (M+, 10), 327 (16), 326 (9), 325 (47), 323 (30), 312 (15), 311 

(47), 310 (37), 309 (99), 303 (9), 297 (10), 295 (21), 254 (19), 253 (16), 252 (48), 251 (29), 

232 (18), 229 (13), 219 (10), 217 (33), 110 (14), 109 (25), 93 (14), 91 (21), 73 (100). 
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HRMS (EI): calcd. for C16H21ClN2O2SSi: 368.0782, found: 368.0768. 

 

Synthesis of 4-allyl-3-chloro-5-(phenylthio)-1-((2-(trimethylsilyl)ethoxy)methyl)-1H-

pyrazole (94c) 

 

 

 

 

According to TP11, 3-chloro-5-phenylthio-1-(2-trimethylsilylethoxymethyl)-1H-pyrazole (92c; 

370 mg, 1.0 mmol), dissolved in THF (1.0 mL) was treated with TMP2Mg·2LiCl (12; 1.8 mL, 

0.6 м in THF, 1.1 mmol). After completion of the deprotonation, CuCN·2LiCl (0.1 mL, 1.0 м in 

THF, 0.1 mmol) was added and the mixture was stirred for 5 min before adding allyl bromide 

(146 mg, 1.2 mmol). The solution was allowed to warm up to 25 °C. The crude product was 

purified by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/95:5) and yielded the pure product as a colourless oil (281 mg, 74%). 
1H-NMR (CDCl3, 400 MHz): δ = 7.27-7.16 (m, 3 H), 7.08-7.06 (m, 2 H), 5.82-5.72 (m, 1 H), 

5.47 (s, 2 H), 4.99-4.94 (m, 2 H), 3.58-3.54 (m, 2 H), 3.26 (dt, 3JH-H = 6.2 Hz, 4JH-H = 1.5 Hz, 

2 H), 0.83-0.78 (m, 2 H), -0.03 (s, 9 H). 
13C-NMR (CDCl3, 100 MHz): δ = 140.2, 134.7, 134.2, 131.2, 129.2, 127.1, 126.5, 123.3, 

115.9, 77.8, 66.8, 27.9, 17.7, -1.5. 

IR (Diamond ATR): 2953 (m), 1739 (s), 1375 (s), 1248 (m), 1217 (m), 1092 (s), 913 (m), 

833 (s), 737 (s), 688 (s). 

MS (EI, 70 eV) m/z, (%): 380 (M+, 2), 337 (19), 335 (13), 307 (8), 287 (13), 271 (6), 265 

(11), 264 (24), 263 (22), 250 (6), 245 (6), 241 (6), 228 (19), 213 (36), 188 (4), 177 (4), 173 

(4), 167 (6), 155 (4), 123 (5), 115 (5), 110 (8), 109 (12), 105 (5), 95 (5), 93 (13), 91 (39), 73 

(100). 

HRMS (EI): calcd. for C18H25ClN2SSi :380.1145, found:380.1131. 
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Synthesis of [3-bromo-5-methylthio-1-(2-trimethylsilylethoxymethyl)-1H-pyrazol-4-yl]-

phenylmethanone (94d) 

 

 

 

According to TP11, the pyrazole 92d (323 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMP2Mg·2LiCl (12; 1.8 mL, 0.6 м in THF, 1.1 mmol). After completion of the 

deprotonation, CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol) was added and the mixture 

was stirred for 5 min before adding benzoyl chloride (169 mg, 1.2 mmol). The solution was 

allowed to warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized 

with 3% Et3N, pentane:EtOAc/9:1) furnished the desired compound 94d as a pale yellow oil 

(320 mg, 75%). 

1H-NMR (CDCl3, 300 MHz): δ = 7.82-7.79 (m, 2 H), 7.62-7.56 (m, 1 H), 7.48-7.43 (m, 2 H), 

5.60 (s, 2 H), 3.70 (t, 3JH-H = 8.3 Hz, 2 H), 2.37 (s, 3 H), 0.92 (t, 3JH-H = 8.2 Hz, 2H), 0.00 (s, 9 

H). 

13C-NMR (CDCl3, 75 MHz): δ = 189.7, 140.2, 137.2, 133.5, 129.9, 128.4, 126.6, 125.6, 

78.0, 67.4, 20.2, 17.9, -1.44. 

IR (Diamond ATR): 1657 (s), 1598 (w), 1482 (m), 1365 (m), 1247 (s), 1230 (s), 1175 (w), 

1088 (s), 1015 (W), 903 (m), 833 (s), 765 (m), 731 (m), 692 (s).  

MS (EI, 70 eV) m/z, (%): 426 (M+, 1), 385 (15), 383 (23), 381 (10), 369 (6), 355 (12), 353 

(13), 337 (19), 335 (20), 317 (12), 312 (34), 311 (16), 310 (33), 309 (11), 293 (7), 279 (7), 

256 (6), 231 (36), 139 (8), 137 (8), 105 (70), 91 (9), 77 (35), 73 (100), 43 (11). 

HRMS (EI): calcd. for C17H23
79BrN2O2SSi: 426.0433, found: 426.0428. 
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Synthesis of ethyl 4-allyl-5-(phenylthio)-1-(2-trimethylsilylethoxymethyl)-1H-pyrazole-3-

carboxylate (94e)  

 

 

 

 

 

Ethyl 5-(phenylthio)-1-(2-trimethylsilylethoxymethyl)-1H-pyrazole-3-carboxylate (92b; 380 

mg, 1.0 mmol) was dissolved in THF (1.0 mL) and added to a flame-dried flask equipped 

with a magnetic stirring bar, an argon inlet and a septum. The mixture was cooled to -30 °C 

and TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol) was added while stirring. Upon 

completion of the exchange (determined by GC analysis of reaction aliquots quenched with I2, 

2 h), CuCN·2LiCl (0.1 mL, 1.0 м in THF, 0.1 mmol) was added and the reaction mixture was 

stirred for 5 min before adding allyl bromide (146 mg, 1.2 mmol). The solution was then 

allowed to slowly warm up to 25 °C. After stirring at room temperature for 2 h, the reaction 

mixture was quenched according to TP11. Removal of the solvent in vacuo and purification 

by flash chromatography (SiO2, initially neutralized with 3% Et3N, pentane:EtOAc, 9:1) 

afforded the desired product as a yellow oil (297 mg, 71 %). 
1H-NMR (CDCl3, 300 MHz): δ = 7.24-7.13 (m, 3 H), 7.02-6.99 (m, 2 H), 5.91-5.78 (m, 1 H), 

5.56 (s, 2 H), 4.93-4.87 (m, 2 H), 4.43 (q, 3JH-H = 7.2 Hz, 2 H), 3.57-3.49 (m, 4 H), 1.40 (t, 
3JH-H = 7.2 Hz, 3 H), 0.77-0.71 (m, 2 H), -0.08 (s, 9 H). 
13C-NMR (CDCl3, 75 MHz): δ = 162.2, 141.6, 135.7, 134.9, 131.6, 130.0, 129.2, 126.9, 

126.4, 115.4, 78.7, 67.0, 61.0, 28.8, 17.7, 14.4, -1.5. 

IR (Diamond ATR): 2970 (s), 1718 (s), 1480 (w), 1365 (m), 1306 (w), 1247 (s), 1091 (s), 

912 (w), 834 (s), 738 (m), 688 (m). 

MS (EI, 70 eV) m/z, (%): 418 (M+, 10), 373 (30), 346 (13), 345 (51), 331 (16), 318 (13), 317 

(57), 315 (13), 302 (50), 301 (25), 299 (14), 288 (28), 287 (34), 256 (16), 255 (17), 242 (14), 

230 (23), 229 (100), 228 (24), 213 (12), 190 (12), 111 (13), 109 (17), 97 (28), 91 (45), 85 

(12), 83 (16), 81 (12), 75 (16), 73 (80), 71 (17), 69 (19), 59 (13), 57 (24), 55 (17), 44 (24). 

HRMS (EI): calcd. for C21H30N2O3SSi :418.1746, found:418.1749. 
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Synthesis of (3-chloro-1-methyl-5-phenylthio-1H-pyrazol-4-yl)phenylmethanone (95a) 

 

 

 

 

 

According to TP11, the pyrazole 93b (225 mg, 1.0 mmol), dissolved in THF (1.0 mL) was 

treated with TMP2Mg·2LiCl (12; 1.8 mL, 0.6 м in THF, 1.1 mmol). After completion of the 

deprotonation CuCN·2LiCl (1.0 mL, 1.0 м in THF, 1.0 mmol) was added and the mixture was 

stirred for 5 min before adding benzoyl chloride (169 mg, 1.2 mmol). The solution was 

allowed to warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized 

with 3% Et3N, pentane:EtOAc/9:1) furnished the desired compound 95a as a pale yellow oil 

(240 mg, 73%). 
1H-NMR (C6D6, 400 MHz): δ = 7.80-7.78 (m, 2 H), 7.11-6.76 (m, 8 H), 3.16 (s, 3 H). 
13C-NMR (C6D6, 100 MHz): δ = 188.1, 138.7, 138.1, 135.1, 133.8, 133.1, 130.0, 129.6, 

128.6, 128.5, 127.1, 124.3, 36.8. 

IR (Diamond ATR): 2970 (m), 1737 (s), 1653 (s), 1580 (w), 1478 (m), 1378 (m), 1244 (s), 

1078 (m), 906 (m), 812 (w), 732 (s), 688 (s). 

MS (EI, 70 eV) m/z, (%): 330 (24), 329 (16), 328 (M+, 66), 295 (3), 255 (34), 254 (14), 253 

(100), 224 (6), 196 (4), 188 (3), 175 (3), 136 (2), 109 (5), 107 (3), 105 (32), 77 (20). 

HRMS (EI): calcd. for C17H13ClN2OS: 328.0437, found: 328.0430. 

 

Synthesis of 4-allyl-3-chloro-1-methyl-5-(phenylthio)-1H-pyrazole (95b) 

 

 

 

 

 

According to TP11, the pyrazole 93b (225 mg, 1.0 mmol) dissolved in THF (1.0 mL) was 

treated with TMP2Mg·2LiCl (12; 1.8 mL, 0.6 м in THF, 1.1 mmol). After completion of the 

deprotonation, CuCN·2LiCl (0.1 mL, 1.0 м in THF, 0.1 mmol) was added and the mixture 

was stirred for 5 min before adding allyl bromide (146 mg, 1.2 mmol). The solution was 

allowed to warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized 
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with 3% Et3N, pentane:EtOAc/95:5) furnished the desired compound 95b as a colourless oil 

(185 mg, 70%). 
1H-NMR (CDCl3, 400 MHz): δ = 7.29-7.12 (m, 3 H), 7.03-7.00 (m, 2 H), 5.86-5.76 (m, 1 H), 

5.02-4.97 (m, 2 H), 3.80 (s, 3 H), 3.28-3.26 (m, 2 H). 
13C-NMR (CDCl3, 100 MHz): δ = 138.4, 134.7, 134.5, 130.4, 129.4, 126.7, 126.4, 122.1, 

115.8, 37.1, 28.1. 

IR (Diamond ATR): 2970 (m), 1739 (s), 1582 (w), 1365 (s), 1217 (s), 1078 (m), 910 (m), 

805 (w), 737 (s), 688 (s). 

MS (EI, 70 eV) m/z, (%): 266 (30), 265 (19), 264 (M+, 100), 263 (23), 249 (19), 237 (14), 

235 (11), 230 (20), 202 (9), 201 (9), 196 (26), 189 (15), 187 (39), 185 (11), 173 (9), 161 (11), 

160 (11), 155 (10), 151 (11), 120 (17), 119 (30), 115 (7), 114 (10), 113 (25), 44 (49). 

HRMS (EI): calcd. for C13H13ClN2S: 264.0488, found: 264.0480. 

 

5.5  Preparation of the acaricide Tebufenpyrad 

 

Synthesis of ethyl 1-methyl-1H-pyrazole-5-carboxylate (98) 

 

 

 

 

According to TP9, the pyrazole 88 (820 mg, 10 mmol), dissolved in THF (10 mL) was treated 

with TMPMgCl·LiCl (10a; 10 mL, 1.1 м in THF, 11 mmol). The resulting organomagnesium 

reagent was added dropwise at 0 °C to a solution of ethyl cyanoformate (990 mg, 12 mmol) in 

THF (10 mL). Purification by flash chromatography (SiO2 initially neutralized with 3% Et3N, 

pentane:EtOAc/9:1) furnished the desired compound 98 as a yellow oil (1.19 g, 77%).  
1H-NMR (CDCl3, 300 MHz): δ = 7.42 (d, 3JH-H = 2.2 Hz, 1 H), 6.80 (d, 3JH-H = 2.2 Hz 1 H), 

4.34-4.27 (q, 3JH-H = 7.2 Hz, 2H), 4.15 (s, 3H), 1.34 (t, 3JH-H = 7.1 Hz, 3H). 
13C-NMR (CDCl3, 75 MHz): δ = 159.8, 137.6, 132.4, 111.1, 60.9, 39.5, 14.2. 

IR (Diamond ATR): 2982 (w), 1719 (s), 1516 (m), 1472 (m), 1392 (m), 1317 (s), 1249 (s), 

1113 (s), 1022 (s), 930 (m), 761 (s), 653 (m). 

MS (EI, 70 eV) m/z, (%): 169 (6), 154 (M+, 57), 131 (6), 126 (35), 118 (11), 109 (100), 95 

(10), 81 (8), 72 (3), 69 (17), 54 (6), 44 (9). 

HRMS (EI): calcd. for C7H10N2O2: 154.0742, found: 154.0745. 
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Synthesis of ethyl 3-iodo-1-methyl-1H-pyrazole-5-carboxylate (99)  

 

 

 

 

 

According to TP10, pyrazole 98 (155 mg, 1.0 mmol), dissolved in THF (1.0 mL) was treated 

with TMPMgCl·LiCl (10a; 1.0 mL, 1.1 м in THF, 1.1 mmol). I2 (305 mg, 1.2 mmol), 

dissolved in THF (1.0 mL) was added dropwise at -15 °C and the mixture was allowed to 

warm up to 25 °C. Purification by flash chromatography (SiO2 initially neutralized with 3% 

Et3N, pentane:EtOAc/95:5) afforded pyrazole 99 as a yellow oil (154 mg, 55%).  
1H-NMR (CDCl3, 300 MHz): δ = 6.94 (s, 1 H), 4.31 (q, 3JH-H = 7.1 Hz, 2H), 4.15 (s, 3 H), 

1.34 (t, 3JH-H = 7.2 Hz, 3 H). 
13C-NMR (CDCl3, 75 MHz): δ = 158.5, 134.4, 119.5, 92.5, 61.3, 39.8, 14.1. 

IR (Diamond ATR): 2925 (w), 1723 (s), 1506 (w), 1467 (m), 1367 (m), 1351 (m), 1318 (m), 

1300 (m), 1246 (s), 1130 (m), 1081 (m), 1029 (m), 954 (m), 816 (w), 762 (s), 721 (w). 

MS (EI, 70 eV) m/z, (%): 281 (10), 280 (M+, 27), 256 (46), 239 (20), 207 (12), 149 (12), 143 

(11), 129 (17), 125 (11), 111 (11), 102 (37), 97 (22), 95 (14), 91 (16), 83 (26), 71 (22), 69 

(32), 60 (22), 57 (35), 44 (100), 41 (43). 

HRMS (EI): calcd. for C7H9IN2O2 : 279.9709, found: 279.9702. 

 

Synthesis of ethyl 4-chloro-2-methyl-2H-pyrazole-3-carboxylate (101)  

 

 

 

 

 

A flask equipped with a magnetic stirring bar was charged with the pyrazole 98 (462 mg, 3.0 

mmol) dissolved in acetic acid (10 mL). At 25 °C NaOCl (13% aq. solution; 7.0 mL, 12 

mmol) was added and the reaction mixture was stirred for 6 h. Complete reaction conversion 

was checked by GC-analysis of hydrolyzed reaction aliquots. The mixture was quenched with 

water and extracted with EtOAc (3 x 50 mL). The organic extracts were dried over anhydrous 

Na2SO4 and filtered. Removal of the solvents furnished the product 101 as a white solid in 

(525 mg, 93%) yield.  
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m.p.: 33.7-34.2 °C. 
1H-NMR (C6D6, 400 MHz): δ = 7.27 (s, 1 H), 3.97 (q, 3JH-H = 7.1 Hz, 2 H), 3.68 (s, 3 H), 

0.96 (t, 3JH-H = 7.1 Hz, 3 H).  
13C-NMR (C6D6, 100 MHz): δ = 158.9, 137.5, 127.9, 115.2, 61.0, 40.6, 14.0. 

 IR (Diamond ATR): 2929 (w), 1718 (s), 1453 (m), 1422 (m), 1388 (m), 1266 (s), 1110 (s), 

1031 (m), 991 (m), 863 (m), 840 (m), 776 (m), 748 (w), 649 (w). 

MS (EI, 70 eV) m/z, (%): 190 (28), 188 (M+, 100), 162 (11), 161 (13), 160 (43), 159 (36), 

146 (4), 145 (22), 144 (12), 143 (86), 142 (6), 141 (12), 131 (6), 129 (19), 116 (9), 115 (11), 

114 (8), 88 (10), 80 (5), 61 (5), 52 (4). 

HRMS (EI): calcd. for C7H9ClIN2O2: 188.0353, found: 188.0350. 

 

Synthesis of ethyl 4-chloro-5-ethyl-2-methyl-2H-pyrazole-3-carboxylate (103)  

 

 

 

 

In a dry and argon-flushed Schlenk-flask equipped with a magnetic stirring bar and a septum, 

pyrazole 101 (188 mg, 1.00 mmol) was dissolved in THF (1.0 mL). At 25 °C 

TMP2Zn·2MgCl2·2LiCl (14; 2.80 mL, 0.4 м in THF, 1.10 mmol) was added dropwise and the 

mixture was stirred for 30 min. Completion of the metallation was checked by GC-analysis of 

reaction aliquots previously quenched with I2. After full conversion was achieved, I2 (305.0 

mg, 1.20 mmol) was added to the mixture and the consumption of the metallated reagent was 

checked by GC-analysis of hydrolyzed reaction aliquots. After 30 min stirring, iodide 102 

was mixed with 2 mol% Pd(OAc)2 (4.5 mg, 0.02 mmol) and 4 mol% S-PHOS (16.5 mg, 0.04 

mmol). To this mixture, a pre-mixed solution of EtMgCl (0.53 mL, 2.80 м in THF, 1.50 

mmol) and InCl3 in THF (0.50 mL, 1.00 м in THF in THF, 0.50 mmol) was added dropwise. 

The reaction mixture was stirred for 8 h and completion of the cross-coupling was determined 

by GC-analysis. The mixture was quenched with water and extracted with EtOAc (3 x 20 

mL). The organic extracts were dried over anhydrous Na2SO4, filtered and concentrated in 

vacuo. Purification by flash chromatography (SiO2, pentane:EtOAc/9:1) furnished the desired 

compound 103 as a white solid (149 mg, 69%).  

m.p.: 33.4-34.8 oC. 
1H-NMR (C6D6, 300 MHz): δ = 4.01 (q, 3JH-H = 7.2 Hz, 2 H), 3.73 (s, 3 H), 2.63 (q, 3JH-H = 

7.5 Hz, 2 H), 1.25 (t, 3JH-H = 7.5 Hz, 3 H), 0.00 (t, 3JH-H = 7.2 Hz, 3 H).  
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13C-NMR (C6D6, 75 MHz): δ = 159.1, 150.2, 129.2, 113.1, 60.9, 40.3, 19.6, 14.0, 12.9. 

IR (Diamond ATR): 2977 (w), 1714 (s), 1476 (m), 1449 (m), 1414 (w), 1272 (s), 1242 (m), 

1117 (s), 1069 (m), 1032 (s), 872 (w), 774 (m), 626 (w). 

MS (EI, 70 eV) m/z, (%): 219 (3), 218 (26), 217 (10), 216 (M+, 100), 215 (9), 203 (13), 201 

(40), 190 (5), 189 (11), 188 (16), 187 (35), 175 (15), 173 (60), 171 (26), 157 (9), 143 (4), 135 

(3), 88 (3). 

HRMS (EI): calcd. for C9H13ClN2O2: 216.0666, found: 216.0669. 

 

Synthesis of 4-chloro-5-ethyl-2-methyl-2H-pyrazole-3-carboxylic acid 4-tert-butyl-

benzylamide (97)  

 

 

 

In a dry and argon-flushed Schlenk-tube equipped with a magnetic stirring bar and a septum, 

4-tert-butylbenzylamine (196 mg, 1.2 mmol), dissolved in THF (1.0 mL) was deprotonated 

with NaH (60% in oil; 60 mg, 1.5 mmol). After gas emission had ceased, pyrazole 103 (216 

mg, 1.0 mmol) dissolved in THF (1.0 mL) was added to the mixture at 25 °C. The reaction 

mixture was stirred for 3 h, quenched with water and extracted with EtOAc (3 x 20 mL). The 

organic extracts were dried over Na2SO4, filtered and concentrated in vacuo. Purification by 

flash chromatography (SiO2, pentane: EtOAc/9:1) furnished Tebufenpyrad (97) as colourless 

crystals (250 mg, 75%).  

m.p.: 55.7-57.4 oC. 
1H-NMR (C6D6, 400 MHz): δ = 7.26-7.24 (m, 2 H), 7.19-7.16 (m, 2 H), 6.69 (s, br, 1 H), 

4.44 (d, 3JH-H = 5.7 Hz, 2 H), 3.96 (s, 3 H), 2.55 (q, 3JH-H = 7.6 Hz, 2 H), 1.23 (t, 3JH-H = 7.6 

Hz, 3 H), 1.20 (s, 9 H).  
13C-NMR (C6D6, 100 MHz): δ = 158.3, 150.5, 149.2, 135.5, 131.5, 127.8, 125.9, 107.4, 43.2, 

40.5, 34.4, 31.4, 19.5, 12.9. 

IR (Diamond ATR): 3309 (w), 2966 (m), 1646 (s), 1546 (s), 1512 (m), 1449 (w), 1290 (s), 

1270 (m), 1094 (w), 986 (w), 828 (w), 789 (w), 622 (m). 

MS (EI, 70 eV) m/z, (%): 336 (4), 335 (22), 334 (14), 333 (M+, 75), 321 (5), 320 (29), 319 

(17), 318 (100), 298 (6), 278 (12), 277 (7), 276 (39), 173 (22), 172 (6), 171 (78), 162 (6), 159 

(7), 152 (5), 147 (7), 146 (7), 145 (18), 138 (9), 137 (12), 131 (14), 117 (8). 

HRMS (EI): calcd. for C18H24ClN3O: 333.1608, found: 333.1601. 
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1. Data of the X-ray Analysis 

 

Synthesis of (3-isopropyl-4,7,7-trimethylbicyclo[2.2.1]hept-2-en-2-yl)(phenyl)methanone 

(36) 

 

 

 

 

Crystal Data 

 

Formula: C20H26O 
Formula weight:  282.42 
Crystal system: monoclinic 
Space group: P21 (No. 4) 
[a, b, c] (Å): [10.6530(4), 7.2770(3), 10.6892(4)] 
[α, β, γ] (deg): [90.00, 98.652(2), 90.00] 
V (Å3): 819.22(5) 
Z: 2 
Dcalc (g/cm-3): 1.14 
M(MoKa) (mm-1): 0.068 
F(000): 308 
Crystal size [mm]: 0.15 x 0.13 x 0.11 
Temperature (K): 200 
Radiation (MoKa) (Å): 0.71073 
θmin, θmax (deg): 3.4, 27.5 
Dataset: -13: 13; -9: 9; -13: 13 
Tot., Uniq. Data, Rint: 7147, 3587, 0.0432 
Observed data [I > 2.0 σ(I)]: 2980 
Nref, Npar: 3587, 295 
R, wR2, S: 0.0410, 0.0899, 1.054 
Min. and max. resd. dens. (e. Å-3): -0.14, 0.13 
 
 
CCDC 650282 contains the supplementary crystallographic data for this compound. These 

data can be obtained online free of charge from the Cambridge Crystallographic Data Centre. 
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