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2 Abbreviations 

(m)EPSP (miniature) Excitatory postsynaptic potential 

°C Degree Celsius 

µ Micro 

A Alanin 

ABP AMPA receptor binding protein 

ACSF Artificial cerebrospinal fluid 

ADAM A-Disintegrin-And-Metalloprotease 

Amp Ampicillin 

AMPA (S)-α-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid 

AP Alkaline phosphatase 

ATP Adenosine-5’-triphosphate 

BAR domain Bin/amphiphysin/Rvs domain 

bp Base pairs 

BSA Bovine serum albumin 

Ca Calcium 

CA1 / CA3 Cornu ammonis; literally ‘Amun's horns’ 

CAM Cell adhesion molecule 

CaMKII Ca2+/calmodulin-dependent kinase 

Cdc42 Cell division cycle 42 

cDNA Complementary DNA 

CFP Cyan fluorescent protein 

CMV Cytomegalovirus 

CNQX 6-Cyano-7-nitroquinoxaline-2,3-dione 

CNS Central nervous system 

C-terminus Carboxy terminus 

DG Dentate gyrus 

DIV Days in vitro 

DMEM Dulbecco’s modified Eagle’s medium 

DNA Desoxyribonucleic acid 

E Embryonic day 

E Glutamic acid 
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eB2KO ephrinB2 knockout 

ECL Enhanced chemiluminescence 

EDTA Ethylenediamine-tetra acetic acid 

Eph Erythropoietin-producing hepatocellular  

Ephexin Eph-interacting exchange protein 

ephrin Eph receptor interacting 

F Phenylalanine 

FAK Focal adhesion kinase 

FBS Fetal bovine serum 

Fc Fragment crystallizable, constant part of the antibody 

GEF Guanine nucleotide exchange factor 

GFP Green fluorescent protein 

GIT1 G-protein coupled receptor kinase-interacting protein 1 

GluR1-4 Glutamate receptor subunit 

GPI Glycosylphosphatidylinositol 

Grb4 Growth-factor-receptor-bound protein 4 

GRIP Glutamate receptor interacting protein 

GTP, GDP Guanosine triphosphate; guanosine diphosphate 

GTPase Enzyme that hydrolyses GTP 

HBSS Hank’s balanced salt solution 

HEK Human embryonic kidney 

HeLa Henrietta Lacks 

Hepes (hydroxyethyl)-piperanzine-ethane sulfonic acid 

HRP Horse reddish peroxidase 

HS Horse serum 

IF Immunofluorescence 

Ig Immunoglobulin 

IP Immunoprecipitation 

JNK c-Jun N-terminal kinases 

Kan Kanamycin monosulfate 

kb kilo base 

kD kilo Dalton 

l Liter 
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LB Luria-bertani 

LTD Long-term-depression 

LTP Long-term-potentiation 

M Molar 

m Milli 

MAGUK Membrane associated guanylate kinase 

min minute 

MLC Myosin II regulatory light chain 

n Nano 

NMDA N-Methyl-D-Aspartic acid 

NR NMDA receptor subunit 

NSF N-ethylmaleimide sensitive factor 

N-terminus Amino terminus 

o/n over night 

P Postnatal day 

PAK p-21 activated kinase 

PBS Phosphate buffered saline 

PCR Polymerase chain reaction 

PDZ Postsynaptic density 95; drosophila Disc large; Zonula occludens-1 

PFA Paraformaldehyde 

pH potentia hydrogenii 

PI3K Phosphatidylinositol-3 kinase 

PICK1 Protein interacting with PKC 

PKC Protein kinase C 

PSD-95 Post synaptic density protein 

Q Glutamine 

R Arginine 

RBD/LBD Receptor/ligand binding domain 

RGS Regulator of heterotrimeric G protein signaling 

RNA Ribonucleic acid 

rpm Round per minute 

RT Room temperature 

RTK Receptor tyrosine kinase 
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S Serine 

SAM Sterile-α-motif 

SAP97 Synapse associated protein 97 

SDS Sodium dodecyl sulfate 

sec second 

SEM Standard error of means 

ser Serine 

SFK Src family kinases 

SH2/3 Src homology domain 2/3 

SLD Synaptic localization domain 

TARP Transmembrane AMPA receptor regulatory protein 

TBS Tris buffered saline 

WB Western blot 

WT Wild type 

Y Tyrosine 

βPIX p-21-activated kinase interacting exchange factor 



3 Summary 

The Eph receptors comprise the largest class of receptor tyrosine kinases (RTK) in the 

human genome. Their ligands, the ephrins, are membrane bound molecules, and 

communication via ephrins and Eph receptors occurs directly from cell to cell at short 

range. A second feature that distinguishes the Eph/ephrin system from other RTK families 

is that the ligands themselves possess a signaling capability known as ‘reverse signaling’. 

Eph receptors and ephrins are found in many cell types, and are involved in a variety of 

cellular processes, both during development and in the adult organism, including cell 

migration, axon guidance, segmental patterning, angiogenesis and tumorgenesis. In 

particular, Eph/ephrins play a role in synaptic plasticity, the focus of this thesis.  

Synaptic plasticity is associated with morphological changes to synaptic spines, such as new 

spine formation, spine remodelling and synaptogenesis at the spine heads. In the first part 

of this study we analyzed these processes in cultured hippocampal neurons and found that 

they specifically require reverse signaling by ephrinB ligands. Thus stimulation of these 

neurons with soluble receptors, namely EphB/Fc fusion proteins, led to increased spine 

maturation. Furthermore, the over-expression of a dominant negative ephrinB molecule 

(eB∆C), which is able to activate Eph-receptor forward signaling but unable to transduce 

reverse signaling, did not stimulate, but rather impaired spine formation. Spine 

morphogenesis requires the local activation of cytoskeleton-remodelling pathways, which 

are typically under the control of rho-family GTPases such as Rac. In hippocampal 

neurons, we showed that receptor-activated ephrinBs interact with Grb4, a Src homology 

domain type 2 and 3 (SH2, SH3) containing adaptor protein, which in turn binds and 

recruits GIT1 together with the Rac activation complex. This mechanism downstream of 

ephrinB activation leads to local Rac activity at the spines. Treatments which interfere 

with the binding of Grb4 to ephrinB, or the binding of GIT1 to Grb4 severely impaired 

spine morphogenesis.  

Aside from changes at the morphological level, synaptic plasticity is achieved by the 

modulation of the synaptic transmission property referred to as ‘synaptic strength’. 
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Synaptic strength can be manipulated experimentally by specific stimulation patterns, 

producing either long-term-potentiation (LTP) or long-term-depression (LTD), changes 

which are thought to be the basis for information storage, learning and memory. Previous 

studies had shown that the ablation of ephrinB2 or ephrinB3 in the nervous system leads to 

severe defects in hippocampal LTP and LTD, and we decided, in the second part of this 

thesis, to investigate the molecular mechanisms underlying the plasticity defects observed 

in ephrinB knockouts. Since the amount of active AMPA receptors at the synapse 

determines its transmission properties, a process affecting synaptic strength is the 

regulation of AMPA-receptor trafficking. We found that ephrinB2 ligands play an 

important role in the stabilization of AMPA receptors at the cellular membrane. Thus 

treating cultured hippocampal neurons with AMPA resulted in a robust AMPA-receptor 

internalization, which could be inhibited by simultaneous ephrinB2 activation with soluble 

EphB4/Fc fusion proteins. The ablation of ephrinB2 in hippocampal neurons (conditional 

ephrinB2 knockout) resulted in an enhanced constitutive internalization of AMPA 

receptors and reduced synaptic transmission. Interaction and interference experiments 

revealed that ephrinB ligands and AMPA receptors are bridged by GRIP proteins. This 

interaction is regulated by the phosphorylation of a single serine residue in the cytoplasmic 

tails of ephrinB ligands, a previously undescribed feature of ephrinB-reverse signaling.  

In summary, we have shown that reverse signaling by ephrinB ligands impacts and 

presumably coordinates diverse aspects of synaptic plasticity, ranging from the 

stabilization of individual AMPA receptors to the initiation of gross morphological 

changes. The reverse signaling pathway appears to play a fundamental role in coordinating 

the events of synaptogenesis. 

 



4 Introduction 

The human brain is a highly complex organ composed of millions of neurons and 

supporting cells. To understand brain function one must appreciate the diversity of cell 

types, their connecting networks and the physiological role of the brain’s specified 

circuits. The brain performs many different tasks at the same time, each mediated through 

the interplay between individual units of the network. Cerebral functions, whether 

involving sensory reception, processing and storage of information and all consequent 

actions, is based on electrical and chemical signals transferred from cell to cell. This signal 

transfer between neurons is localized to specialized contact sites, namely synapses. Even 

after embryonic development, these contacts remain dynamic; new connections are 

formed while others are removed, allowing the system to change dynamically and thus 

providing the basis of learning and memory.  

The aim of thesis is to elucidate the molecular basis of synaptic plasticity while focussing 

on the impact of a particular receptor-ligand system: the Eph receptors and ephrin ligands. 

4.1 Synaptogenesis 

Synaptogenesis is a complex process in which specialized sites of communication between 

neurons, so called functional synapses, are formed. The formation of synapses in 

vertebrates occurs over a prolonged developmental period. Synaptogenesis begins in the 

embryo and continues into early postnatal life, but also occurs in the adult organism, 

where it is thought to contribute significantly to memory formation and learning. During 

development, synapse formation is coupled to neuronal differentiation and the 

establishment of neuronal circuits. Correct connections have to be formed, often initially 

transient, between the presynaptic axon and postsynaptic dendrites. The process of 

synaptogenesis involves multiple molecules that influence not only the timing and location 

of synapse formation, but also determine the specificity and stability of the contact. Some 

of these molecules are soluble and act at a distance, guiding axons to their correct 
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receptive fields, while also promoting neuronal differentiation and maturation. Well 

studied secreted molecules are, for example, from the families of Wnt (combination of 

wingless and Int), FGF (fibroblast growth factor) and neurotrophins. Others are cell 

bound (cell adhesion molecules: CAMs) and act upon cell-to-cell contact. CAMs provide 

positioning information, verify correct targets and initiate signal cascades to induce 

synapse formation, including the assembly of pre- and postsynaptic specializations (Figure 

4-1). Cadherins, Protocadherins, SynCAM, Neuroligin-Neurexin and Eph-ephrins are 

known examples. In addition, synaptic activity is one of the crucial factors deciding on the 

appropriateness of a synaptic contact and its consequent stabilization or removal. Even 

though activity is not essential for synaptogenesis in the developing organism (Verhage et 

al., 2000), it regulates the elimination and stability of synapses during both development 

and adulthood.  

 

 

 

Figure 4-1: Molecules involved in vertebrate synapse formation (Akins and Biederer, 2006). 
Characterized proteins include presynaptic (orange), postsynaptic (red) and secreted or extracellular 
matrix proteins (purple). 

In vertebrates, most of the synapses are chemical synapses transducing electrical signals 

from the axon into chemical signals in forms of neurotransmitters which are released from 

vesicles at the presynaptic terminal. Neurotransmitters diffuse through the synaptic cleft 
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activating neurotransmitter-gated ion-channels situated at the postsynaptic site and 

converting the chemical signal back into an electrical impulse. Two categories of synapses 

are found in the nervous system, namely inhibitory and excitatory synapses. They are so 

called due to their effect on the membrane potential of the postsynaptic target and differ 

significantly with regard to their structure and molecular organization. For example, 

inhibitory synapses are localized directly at dendritic shafts whereas the postsynaptic site of 

an excitatory synapse is more commonly situated on a short dendritic protrusion named a 

spine.  

The focus of this thesis is put on glutamatergic synapses, the main type of excitatory 

synapse in the mammalian brain. Glutamatergic synapses use glutamate as a 

neurotransmitter which acts on AMPA- and NMDA-type (Ca2+-channel) glutamate 

receptors expressed at the postsynaptic target site. 

The functional properties of a synapse change when the organism develops due to 

presynaptic and postsynaptic modifications. The probability of transmitter release 

decreases and a larger number of transmitter-filled vesicles accumulate at the presynaptic 

terminal. The kinetics of the synaptic response change with the type of neurotransmitter 

receptor expressed at the postsynaptic site and its subunit composition, which is different 

in young premature synapses, compared those which are stabilized and mature. During 

development, most synapses are initially void of AMPA receptors but possess functional 

NMDA receptors. The early activity of the latter is important for the formation of the 

developing contact. Once the synaptic contact is established, NMDA-receptor activity can 

induce the insertion of AMPA receptors leading to fully functional synapses (Constantine-

Paton and Cline, 1998). Moreover, even later on in the mature organism, synapses are 

found in different regions of the brain that still express only functional NMDA but lack 

AMPA receptors at the synaptic surface. These synapses are referred to as ‘silent synapses’ 

because, at normal resting membrane potentials, they remain functionally silent with no 

measurable current flow. Similarly, these synapses can be ‘unsilenced’ by NMDA-

receptor activity that induces the recruitment of AMPA receptors to the postsynaptic site. 

The observations, that activity induces the delivery and insertion of AMPA receptors, led 
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to the idea that AMPA-receptor trafficking might be one of the key mechanisms of 

synaptic plasticity. Soon after, it was reported that additional AMPA receptors are indeed 

inserted to the synapse to increase synaptic transmission during some forms of plasticity, 

termed as long-term-potentiation (LTP). As mentioned before, different receptor 

subunits can influence synaptic properties because they differ in ligand-sensitivity, 

conductance and in their interaction with intracellular molecules. For example, the 

subunit composition of NMDA receptors changes during development. NMDA receptors 

consist of at least one NR1 subunit and different types of NR2 (NR2A-D) subunits. 

Initially, in the developing brain, the NR2B and NR2D subunits are the most prominent 

but are partially replaced by NR2A subunits when the organism matures (Monyer et al., 

1994). Later on, the subunit composition determines the localization of NMDA receptors 

in mature synapses: NR2A-containing NMDA receptors are concentrated at synaptic sites 

whereas NR2B-containing receptors localize at both synaptic and extrasynaptic sites 

(Thomas et al., 2006). Furthermore, as expected, the subunit composition of synaptic 

AMPA receptors changes during maturation and activity, as will be described more in 

detail in a later section. 

4.2 Postsynaptic density 

The microanatomy of a glutamatergic synapse clearly defines pre- and postsynaptic 

structures that are visible in the electron microscope. The presynaptic structure includes 

an accumulation of synaptic vesicles and a thickened plasma membrane, the so called 

‘active zone’, to which some of the synaptic vesicles are attached preceding exocytosis. 

The postsynaptic site is separated from the active zone via a gap of 20-25 nm (Lucic et al., 

2005) known as the synaptic cleft, and is easily identified by an electron dense thickening 

of the postsynaptic membrane, a structure known as PSD (postsynaptic density). The 

thickening arises from an enormous accumulation of membrane associated molecules, such 

as glutamate receptors, receptor-tyrosine kinases, G-protein-coupled receptors, ion-

channels and adhesion molecules, but also from cytoplasmic scaffolding proteins, 

downstream signaling units and cytoskeletal elements (Figure 4-2).  
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Figure 4-2 Scheme of a glutaminergic synapse (Kim and Sheng, 2004). Only a subset of known 
protein interactions is illustrated with special focus on PDZ-proteins that are highly enriched in synapses. 
Although not shown, LIN2, LIN7 and LIN10 are also present postsynaptically, and many of the proteins of 
the postsynaptic domain are also present in the presynaptic terminal. Abbreviations: AKAP79 - A-kinase 
anchor protein 79; AMPAR - AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptor; 
βPIX - PAAK-interactive exchange factor; CaMKIIα - α-subunit of Ca2+/calmodulin-dependent protein 
kinase II; GK, guanylate kinase-like domain; EphR, ephrin receptor; ErbB2, EGF-related peptide receptor; 
GKAP - guanylate kinase-associated protein; GRIP - glutamate-receptor-interacting protein; IP3R - IP3 
receptor; IRSp53 - insulin-receptor substrate p53; K ch - potassium channel; LIN7 - lin7 homologue; 
LIN10 - lin10 homologue; mGluR - metabotropic glutamate receptor; NMDAR - NMDA (N-methyl-D-
aspartate) receptor; nNOS - neuronal nitric oxide synthase; PICK1 - protein interacting with C kinase 1; 
PSD-95 - postsynaptic density protein 95; SER - smooth endoplasmic reticulum; SH3 - Src homology 3 
domain; Shank - SH3 and ankyrin repeat-containing protein; SPAR - spine-associated RapGAP; SynGAP - 
synaptic Ras GTPase-activating protein.  

 

One highly enriched scaffolding molecule is PSD-95 (Post Synaptic Density 95), which is 

is widely used as marker for postsynaptic structures. The PSD is situated at the very tip of 

a dendritic spine, connected to the rest of the dendrite solely via a small thin shaft. Thus, 
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it occupies its own separated, and highly specialized, biochemical compartment. 

Sometimes even given the status of an organelle, the PSD controls the number and 

composition of neurotransmitter receptors and thus regulates synaptic strength and the 

kinetics of the synaptic response. 

4.3 Dendritic spines 

Santiago Ramón y Cajal (19th century) was the first to describe spines as small protrusions 

emerging from branched projections of a neuron, namely dendrites, and suggested that 

these are in fact contact sites between neurons (Figure 4-3) 

 

 

Figure 4-3: Dendritic spines. (a) After 14 days in culture an YFP-labeled hippocampal neuron shows a 
highly developed dendritic tree covered with spines of various shape and size (large picture). The 
enlargement of a dendrite (Harms and Dunaevsky, 2007) highlights the shape variations of spines from 
stubby spines, long and thin spines, to mushroom spines with defined spine heads (scale bar 5µm). (b) 
Drawing from the 20th century by Santiago Ramón y Cajal of neurons in the pigeon cerebellum. Denoted 
are purkinje cells (A) as an example of a bipolar neuron with small dendritic protrusions, the spines, 
distributed all over the dendritic tree and granule cells (B) which are multipolar. 

 

Today dendritic spines are defined as small structures (<2 µm) emerging from the 

dendrite via a thin neck, or shaft, ending in a bulbous enlargement, the spine head, which 
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serves as the site of synaptic contact. Spines occur in various shapes and sizes and are 

described being thin, stubby, cup-, or mushroom-shaped (Lippman and Dunaevsky, 2005) 

(Figure 4-3). 

Although the shape and size of spines might be correlated to their function (Tsay and 

Yuste, 2004), shape descriptions are only regarded as attempts to categorize spines based 

on snap-shots. In actual fact, dendritic spines are dynamic structures able to change their 

size, form and appearance within a short time range (Parnass et al., 2000). Indeed, while 

looking at spine turnover rates in the cortex of adult mice, Trachtenberg et al. (2002) 

found that only 50 % of the spines were stable for more than 1 month (somatosensory 

cortex) whereas others were added, or eliminated, within hours or days. Even though 

peers in the field failed to agree on the proportion of stable spines, they supported the 

findings that some spines were stable while others were short-lived (Grutzendler et al., 

2002). However, the concrete number of stable spines might be highly dependent on the 

cortical region and experimental procedures. Of importance is the general tendency of all 

the above findings, that large spines with thick ‘mushroom-shaped’ heads seem to be more 

stable than thinner spines, or even filopodia, and that the turnover rate of spines declines 

with age (Grutzendler et al., 2002; Trachtenberg et al., 2002; Zuo et al., 2005). Once 

the mature brain has established its neuronal circuits, the elimination rate of spines 

decreases and, consequently, more spines become stable over a longer time-period. 

4.4 From filopodia to spines 

By definition, filopodia are thin, long (>2 µm), highly motile dendritic protrusions with 

short life spans. In general, young neurons possess more filopodia-like protrusions 

whereas older cells are more abundant in mature dendritic spines (Dailey and Smith, 

1996). Put into numbers, the proportion of filopodia-like protrusions declines from 60 % 

in two-week-old mice to less than 2 % in 4-5 month old animals (Grutzendler et al., 

2002; Zuo et al., 2005). These filopodia-like protrusions are not simply lost in older 

animals but have, most likely, transformed into thin or mushroom-like spines (Majewska 

et al., 2006). It is noteworthy, that only a small percentage of these short-lived 
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protrusions actually transforms into spines (<2 µm), while the vast majority disappear 

within two days of formation (Zuo et al., 2005). However, not every spine seems to arise 

from a filopodia-like transition stage. Other studies have confirmed the direct emergence 

of spines from the dendrite without a filopodia-like precursor (Engert and Bonhoeffer, 

1999). In vivo live-imaging studies have shown that most excitatory synapses form on 

dendritic filopodia, transforming them into spines while the synaptic contacts are 

stabilized. Hence, filopodia formation and spine motility have been implied as important 

processes during synaptogenesis (Fiala et al., 1998; Ziv and Smith, 1996). However, – 

whether derived from filopodia-like precursors or directly from the dendrite – when 

newly developed protrusions become more stable, their volume increases and synapses 

form (Knott et al., 2006). The volume increase is mainly governed by an enlargement of 

the spine head which can then accommodate enlarged postsynaptic structures (Holtmaat et 

al., 2006). The PSD becomes larger and possess more AMPA receptors and signaling 

molecules. Thus a direct correlation can be drawn between the size of a synaptic contact 

and its strength.  

Both the formation of spines and the subsequent morphological changes during synapse-

establishment involve actin-based cytoskeleton rearrangements. A huge variety of 

molecules have been implicated in the regulation of these rearrangements, including 

different PSD-proteins and cell adhesion molecules. Among these are the Eph receptors 

and their ephrin ligands which have been shown to control actin-binding proteins or 

calcium-dependent signaling mechanisms as well as Rho and Ras family GTPases. Rho 

family GTPases act as molecular switches that are bound to GTP during their active state 

and to GDP during their inactive state. Guanosine nucleotide exchange factors (GEFs) 

mediate the exchange from GDP to GTP therefore activating Rho. GTPase activating 

proteins (GAPs) in turn promote the hydrolysis of GTP to GDP transferring Rho back 

into the inactive state (Luo, 2000) (Figure 4-4, b). Upstream signals, for example from 

Eph receptors, regulate Rho GTPases via the specific activation of GEFs or GAPs. The 

local activation of Rac, a member of the Rho GTPases, is known to be crucial for spine 

and synapse formation. Local Rac activation can occur when GIT1 (G -protein-coupled 

receptor kinase-interacting protein) localizes to synapses bringing along PIX (p-21-
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activated kinase interacting exchange factor), which is a guanine exchange factor for Rac 

(Zhang et al., 2003). During spine and synapse formation, the known downstream 

effectors of activated Rac are PAK (p-21 activated kinase) and MLC (myosin II regulatory 

light chain) (Zhang et al., 2005). However, the upstream signal which actually recruits 

GIT1 and the PIX-Rac-PAK module to synapses remains unknown (Figure 4-4, a). The 

Eph/ephrin system, which is known to control cytoskeletal events, is a possible candidate 

for initiating local Rac signaling.  

The first part of this thesis elucidates the involvement of ephrinB signaling in spine 

morphogenesis and the downstream signaling pathway which possibly involves Rac.  

 

 

Figure 4-4: GIT1 and βPIX are involved in spine formation. (a) Local Rac activity is mediated by 
the assembly of a signaling complex including G-protein coupled receptor kinase-interacting protein 1 
(GIT1) and the exchange factor for Rac (GEF), β-Pix (Zhang et al., 2003). The known downstream 
effectors of activated Rac during spine and synapse formation are PAK (p-21 activated kinase) and MLC 
(myosin II regulatory light chain). The signal upstream of GIT1 that recruits the Rac-signaling complex to 
the site of the forming spine is unknown. (b) Molecular switch of Rho family GTPases. Inactive Rho bound 
to GDP is transformed into its active GTP bound state by guanosine nucleotide exchange factors (GEFs). 
GTPase activity is promoted by a GTPase activating protein (GAP) that turns Rho back into its inactive 
GDP-bound state. 
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4.5 Synaptic plasticity 

The capability of the nervous system to re-modulate its neural circuitry is generally 

termed as ‘plasticity’. Synaptic plasticity is apparent during development when neural 

circuits are first formed, but it also occurs in the adult brain where it is thought to be the 

basis for learning and memory. On a structural level, plasticity is based on changes of the 

quality and number of synaptic contacts which are directed by environmental inputs. The 

processes involved in plasticity include spine motility, changes in the shape and size of 

spines, and the elimination or establishment of synaptic contacts. To study these processes 

during plasticity different experimental approaches have been used including learning 

paradigms, enrichment or avoidance of sensory inputs, and manipulations of the synaptic 

activity. Various studies have shown that motor- or memory-training of animals leads to 

an increase of synaptic contacts in the appropriate brain region. For example, Kleim et al. 

reported an increase in synapse density in the motor cortex and cerebellum after rats were 

trained to perform certain movements (Kleim et al., 1998). In another study, rats were 

trained for spatial learning, and a significant increase of spine density in the hippocampus 

was observed (Moser et al., 1994). Changes in spine morphology have been reported to 

be correlated to learning by West and colleagues (Geinisman et al., 2000). Furthermore, 

studies showed that raising animals in a rich sensory environment leads to an increase in 

the number, size and density of synaptic connections whereas depletion of sensory input 

has the opposing effect (Knott et al., 2002; Wallace and Bear, 2004).  

Molecules involved in the regulation of spine formation and morphological changes play an 

important role in synaptic plasticity. However, morphological changes like spine 

formation and synaptogenesis are not the sole basis for plasticity. An additional, crucial 

factor is the regulation of synaptic strength in existing contact. Changes linked to synaptic 

strength can be addressed experimentally with stimulation patterns. Some activity patterns 

produce a long lasting increase in synaptic strength known as ‘long-term-potentiation’ 

(LTP), whereas other patterns lead to a long lasting decrease in synaptic strength, known 

as ‘long-term-depression’ (LTD). The molecular mechanisms underlying these changes 
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are post-translational modifications of existing proteins and, in the case of long-lasting 

effects, changes in gene expression.  

4.5.1 LTP and LTD 

Long-term-potentiation (LTP) of synaptic transmission is considered as a neuronal 

mechanism for information storage. This phenomenon was first described about 40 years 

ago by T. Bliss and colleagues when they discovered that short, high-frequency stimulation 

can enhance synaptic transmission in the hippocampus of rabbits for days or even weeks. 

Since then LTP has been thoroughly studied in the mammalian hippocampus, a region 

where some forms of memory formation take place. Most of the work has been performed 

on the synaptic connections between the presynaptic CA3 pyramidal cells and the 

postsynaptic CA1 cells, the so called Schaffer collateral pathway (Figure 4-5).  

When the Schaffer collaterals are stimulated briefly with high-frequency electrical stimuli, 

the amplitude of the excitatory postsynaptic potential (EPSP) in CA1 neurons increases 

and remains high for a long time period: they exhibit long-term-potentiation. LTP has also 

been shown to occur at other synapses in the hippocampus, like the Mossy fibres and the 

Perforant path, as well as, in other brain regions including the cortex, amygdala, and the 

cerebellum. While synaptic transmission is increased during LTP, synapses are actively 

weakened during LTD, the opposing process of LTP. When Schaffer collaterals are 

stimulated at low-frequency for a longer time (10-15min), the EPSPs at the CA1 synapses 

show depression for several hours, meaning their amplitudes are decreased. Moreover, 

LTD can oppose LTP thus lowering the EPSP size back to unpotentiated levels. 

Conversely, LTP erases the decrease in EPSP size due to LTD (Bredt and Nicoll, 2003).  
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Figure 4-5: Neuronal circuits of the hippocampus (Maciver, 2005). In the hippocampus, most of 
the LTP and LTD studies have been performed at the Schaffer collateral pathway, the synaptic connection 
between CA3 and CA1 region neurons. Projection neurons are drawn in black, interneurons in color. 
Abbreviations: CA1, CA2, CA3 - cornu ammonis region 1,2 or 3 of the hippocampal formation; DG - 
dentate gyrus; STIM - stimulating electrode used to activate excitatory and inhibitory inputs to CA1 
neurons; RECORD - recording electrode to measure pyramidal neuron response to stimulation; a/c - 
association/commissural pathway from septum and contralateral hippocampus; alv - alveus; sc - Schaffer 
collateral pathway from CA3 neurons; mf - mossy fiber pathway from dentate gyrus (DG) granule 
neurons; pp - perforant path axons from entorhinal cortex; fim - fimbria pathway to and from midbrain 
and other regions.  

 

Both LTP and LTD at the CA1 region synapses require NMDA-receptor activation that 

results in the entry of Ca2+-ions into the postsynaptic cell (Malenka, 1994). Ca2+-influx 

leads to the activation of protein kinases, or phosphatases, that act on target molecules to 
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evoke changes in synaptic transmission. Whether Ca2+-influx leads to LTP or LTD 

depends on the amount of Ca2+-ions released into the cell. Small rises of Ca2+ lead to 

depression whereas large increases result in potentiation. The level-dependent effects of 

Ca2+ result from the selective activation of Ca2+-sensitive molecules. LTP is at least 

partially mediated by the activation of Ca2+/calmodulin-dependent kinase (CaMKII) and 

protein kinase C (PKC), whereas LTD results from the activation of protein phosphatases. 

But what actually modulates the size of EPSPs is the amount of active AMPA receptors at 

the postsynaptic membrane that transmit the signal after glutamate-released from the 

presynaptic site. The number of AMPA receptors at the synaptic surface is determined by 

receptor trafficking. AMPA receptors not only traffic continuously between the cell 

surface and intracellular pools, but also between synaptic and extra-synaptic sites 

(Borgdorff and Choquet, 2002; Triller and Choquet, 2005). Several lines of evidence 

indicate that controlling the number of AMPA receptors is a key mechanism during LTP 

and LTD. During LTP induction, the level of surface AMPA receptors rapidly increases 

due to the insertion of new receptors (Lu et al., 2001b; Pickard et al., 2001); conversely, 

AMPA receptors are removed from the synaptic membrane via endocytosis during LTD 

(Carroll et al., 1999; Heynen et al., 2000). In support of these findings, the blockage of 

AMPA-receptor exocytosis was shown to prevent LTP induction whereas the blockage of 

AMPA-receptor endocytosis prevented LTD induction (Bredt and Nicoll, 2003). In recent 

years, a great effort has been made to identify molecules involved in LTP and AMPA-

receptor trafficking. Knockdown experiments have identified several molecules 

apparently involved in LTP and/or LTD induction, but the underlying molecular 

mechanisms remain unknown. Among these candidate molecules are different types of 

Eph receptors and ephrinB ligands (Grunwald et al., 2004). Thus the ablation of ephrinB2 

or ephrinB3 in the nervous system led to severe defects in LTP and LTD in the Schaffer 

collateral pathway. The aim of the second half of this thesis is to elucidate the pathways 

involved in these plasticity defects. 
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4.6 AMPA receptors  

AMPA receptors are a subclass of ionotropic glutamate receptors that mediate fast 

excitatory neuronal transmission in the mammalian central nervous system (CNS). The 

two other members of this group include NMDA receptors, crucial for the induction of 

specific forms of plasticity including LTP and LTD (Bear and Malenka, 1994), and kainate 

receptors that play important roles in the modulation and plasticity of the synaptic 

response (Lerma, 2006) . AMPA receptors are hetero-tetramers composed of different 

combinations of the subunits GluR1, GluR2, GluR3 or GluR4, the most prominent 

subunit being GluR2 (Nakanishi, 1992). Each subunit possesses a large extracellular N-

terminal domain, three membrane-spanning domains (TM1, TM3 and TM4), a hairpin 

that contributes to the pore (M2), and a cytoplasmic C-terminal domain. The four 

subunits have very similar extracellular and transmembrane domains, but differ in their 

cytoplasmic tail which provides the subunit-specific interaction with intracellular proteins. 

The cytoplasmic tails of GluR1 and GluR4, but also a splice variant of subunit GluR2 

(GluR2L), appear to be quite long compared to those of the GluR2 and GluR3 subunit or 

the short splice variant GluR4S. Additionally, posttranscriptional editing and splicing 

increases the variability among the different subunits, modulating their properties from 

phosphorylation levels to physiological functions. For example, the incorporation of 

GluR2 subunits in AMPA receptors makes them impermeable to calcium (Hollmann et 

al., 1991). This calcium impermeability of GluR2 is a consequence of RNA editing at the 

Q/R site in the channel forming hairpin (M2) (Figure 4-6) (Burnashev et al., 1992). The 

genetically encoded uncharged glutamine (Q) is changed to a positively-charged arginine 

(R) that increases the activation energy necessary for calcium to enter the cell. During 

development, unedited GluR2 (Q) subunits are abundant whereas in the adult CNS nearly 

one hundred percent of the GluR2 subunits are edited. Besides, the arginine residue has 

been shown to control channel composition and, in turn, channel conductance. The R-

edited GluR2 is retained unassembled in the endoplasmic reticulum (ER) supporting the 

formation of GluR2 hetereo-tetrameres over homo-tetramers and restricting the 

functionally critical number of R-subunits in AMPA-receptor tetramers (Greger et al., 

2003). Furthermore, each of the AMPA-receptor subunits GluR1–GluR4 exists in two 
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different forms, flip and flop, generated by alternative splicing of a 115 base pair region 

immediately upstream of the fourth transmembrane region (Figure 4-6) (Sommer et al., 

1990; Sommer et al., 1991). The splice variants determine the speed of desensitization 

with the flop form desensitizing much faster than the flip form in response to glutamate. 

The flip form is present in prenatal AMPA receptors, and gives a sustained current in 

response to glutamate activation. 

 

 

Figure 4-6: Structure and composition of the AMPA receptor (Shepherd and Huganir, 2007). 
The individual subunits are composed of four transmembrane domains, a large extracellular N-terminal 
domain and a subunit-specific cytoplasmic C-terminus. Post-translational modifications are indicated: The 
Q/R - RNA-editing controls the heteromeric assembly and conductance, the flip/flop splice variants 
determine the desensitization properties. The channel consists of four subunits, which are usually two 
dimers of a subunit such as GluR1 and -2 or GluR2 and -3. AMPA receptor C-termini differ in their amino 
acid sequence determining their interaction partners. Various phosphorylation sites and binding partners 
are highlighted. Protein abbreviations: AP-2 - adaptor protein-2; CaMKII - calcium/calmodulin-dependent 
protein kinase II; GRIP - glutamate receptor–interacting protein; NSF - N-ethylmaleimide-sensitive fusion 
protein; PICK1 - protein interacting with C kinase 1; PKA - protein kinase A; PKC - protein kinase C; 
SAP97 - synapse-associated protein 97. 
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The subunit composition of AMPA receptors changes during development and upon 

neuronal activity. In the mature hippocampus most AMPA receptors are composed of 

either GluR1-GluR2 or GluR2-GluR3 subunits, whereas GluR4-containing receptors 

occur mainly during early postnatal stages (Wenthold et al., 1996; Zhu et al., 2000). 

Upon neuronal activity and NMDA-receptor activation, GluR1-containing receptors 

(GluR1-GluR2 heteromers) are added to the synaptic surface increasing synaptic 

transmission. In contrast, GluR2 containing receptors, including GluR2-GluR3 

heteromers and GluR2 homomers, cycle continuously between synaptic and non-synaptic 

pools independently of neuronal activity, replacing pre-existing receptors (Figure 4-7) 

(Hayashi et al., 2000; Malinow et al., 2000). The permanent cycle, under basal conditions 

and independent of neuronal activity, allows a fast control of the synaptic receptor 

density. The current model suggests that GluR2-GluR3 receptors preserve the total 

number of AMPA receptors by continuous cycling, whereas the GluR1-GluR2 receptors 

are added to the synapse increasing the total number of receptors in an activity-dependent 

manner (Malinow et al., 2000). Understanding the regulation of AMPA-receptor 

trafficking is therefore of great importance with regards to synaptic plasticity. 

4.6.1 AMPA-receptor trafficking 

A variety of molecules have been found to associate with AMPA receptors thus controlling 

their systematic trafficking (Figure 4-7). Besides controlling trafficking, intracellular 

molecules interact with AMPA receptors to regulate their stabilization and their 

electrophysiological properties. These processes seem to be, to a great extent, controlled 

through interactions between the intracellular carboxy (C)-tails of AMPA receptors and 

the effector proteins. Many of these effector proteins contain PDZ-domains (postsynaptic 

density 95, PSD-95; drosophila discs large, Dlg; zonula occludens-1, ZO-1), which 

interact with the PDZ-binding motif of AMPA receptors located at the C-terminus of the 

subunit, and form a functional scaffolding complex. The GluR1 subunit carries a group I 

PDZ-motif and specifically interacts with the synapse-associated protein 97 (SAP97), a 

member of the membrane-associated guanylate kinase family (MAGUK), or with the 

reversion-induced LIM gene (RIL). SAP97 is essential for the transport of the subunit 
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from the endoplasmic reticulum to the cis golgi and dissociates from the receptor at the 

plasma membrane (Leonard et al., 1998; Sans et al., 2001); RIL might control actin-

dependent AMPA-receptor trafficking (Schulz et al., 2004). Furthermore, GluR1 

interacts with the cytoskeletal protein 4.1N that links AMPA receptors with actin to 

mediate their surface expression (Shen et al., 2000). In contrast, both GluR2 and GluR3 

carry a group II PDZ-motif and interact with glutamate-receptor-interacting protein 

(GRIP1), AMPA-receptor-binding protein (ABP; also known as GRIP2) and protein 

interacting with C kinase 1 (PICK1) (Dong et al., 1997; Xia et al., 1999). Although these 

molecules bind the same site in AMPA receptors, their binding is differently regulated. 

This allows them to function in distinct aspects of AMPA-receptor trafficking, membrane 

insertion or endocytosis, and the stabilization at the synaptic membrane. Disruption of 

GRIP1 and ABP binding to GluR2 leads to accelerated AMPA-receptor endocytosis at 

synapses (Osten et al., 2000) revealing a membrane stabilizing role of these two 

molecules. Phosphorylation of serine 880 (ser880) in GluR2, induced upon receptor 

activation, leads to the dissociation of GRIP1/ABP but allows the binding of PICK1 and 

subsequently its endocytosis (Chung et al., 2000; Matsuda et al., 1999). Regulating the 

endocytosis of AMPA receptors is only one of the multiple roles of PICK1 during receptor 

trafficking. Indeed, PICK1 functions in the removal of AMPA receptor from the synaptic 

surface during LTD, in constitutive trafficking under basal conditions as well as in the 

recycling of internalized receptors (Hanley, 2008; Hanley and Henley, 2005; Kim et al., 

2001).  

Another group of PDZ-domain-containing molecules that bind AMPA receptors are the 

family of transmembrane AMPA receptor regulatory proteins (TARPS) including 

stargazing, γ-3, γ-4 and γ-8. TARPs show discrete and complementary expression 

patterns in both, neurons and glia cells in the brain (Tomita et al., 2003). They facilitate 

the transport of AMPA receptors from the ER to the plasma membrane and control their 

expression at the synapse (Ziff, 2007). Furthermore they assist in the correct folding of 

the receptors, and affect their channel kinetics as well as their rectification properties. 

Through their interaction with PSD-95, they link AMPA receptors to the postsynaptic 
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density which appears to be crucial for the synaptic targeting of AMPA receptors 

(Coleman et al., 2006; Tomita et al., 2005).  

 

 

 

Figure 4-7: Trafficking of synaptic AMPA receptors (adapted from Bred and Nicoll 2003). AMPA 
receptors containing subunits with a long cytoplasmic tail (GluR1, GluR4 or GluR2L) are delivered to the 
synapse upon activity. Some evidence suggests that they are inserted in extra synaptic membrane sites and 
move laterally to the synapse. Proteins thought to be involved in the delivery include CaMKII, PKA, 
SAP97, and TARPs. In contrast, receptors containing only short tails cycle constitutively between the 
synapse and intracellular pools. Proteins like calcineurin, PP1, NSF/AP2, PICK1, and ABP/GRIP regulate 
different steps during constitutive cycling and LTD. Abbr.: CaMKII- calcium/calmodulin kinase II; PKA- 
protein kinase A/cAMP dependent protein kinase; TARPS- transmembrane AMPA receptor regulatory 
proteins; PP1- protein phosphatase 1; NSF- N-ethylmaleimide-sensitive fusion protein; AP2- clathrin 
adaptor protein 2; PICK1- protein interacting with C kinase 1; ABP- AMPA receptor binding protein; 
GRIP- glutamate receptor interacting protein. 

 

Beside PDZ-containing proteins, the cytoplasmic tail of GluR2 interacts with N-

ethylmaleimide-sensitive fusion protein (NSF), an ATPase known to play an essential role 

during membrane fusion (Nishimune et al., 1998). The ATPase action of NSF helps to 

dissociate PICK1 from GluR2 thus facilitating the delivery of AMPA receptors to the cell 

membrane. Furthermore, NSF allows the binding of GRIP1/ABP resulting in the 

membrane stabilization of AMPA receptors. Therefore, NSF is crucial in limiting the 



4 Introduction  

35 

 

endocytosis of AMPA receptors and to maintain constitutive cycling at a constant rate and 

hence to maintain a constant level of receptors at the synaptic membrane (Hanley et al., 

2002).  

4.7 PDZ-proteins  

Originally termed as Disc-large homology regions (DHRs) or GLGF repeats which are 

based on the presence of the Gly-Leu-Gly-Phe sequence motif, these domains are now 

primarily referred to as PDZ-domains. The three letters are an acronym of the first three 

PDZ-containing proteins that were discovered: Postsynaptic density 95 (PSD-95), 

Drosophila septate junction protein Discs-large (Dlg), and tight junction protein Zonula 

occludens-1 (ZO-1). PDZ-domains are found in various signaling proteins throughout a 

diversity of organisms including bacteria, yeast, plants, and animals. Indeed, PDZ-domains 

represent one of the most abundant protein domains within the sequenced genome. Many 

PDZ-containing proteins contain multiple PDZ-domains, often arranged in tandem arrays 

or pairs such as the PDZ1-3 and PDZ4-6 domains of GRIP1. In addition, many of these 

PDZ-proteins hold other known protein interaction domains, a feature that enables them 

to interact with multiple binding partners simultaneously. For example, the superfamiliy 

that includes PSD97/SAP90, Dlg and ZO-1, so called membrane-associated guanylate 

kinases (MAGUKs), comprises one or more PDZ-domains, one SH3 (Src homology 3) 

domain and a catalytically inactive guanylate kinase-like domain. PDZ-proteins broadly 

function as scaffolding molecules which mediate specific protein-protein interactions and 

thereby the assembly of large molecular complexes. Furthermore, they are involved in 

signaling and in specific trafficking of target proteins to subcellular compartments. To a 

great, extent PDZ-containing proteins are found at neuronal synapses where they 

comprise the major part of the postsynaptic density thus playing an important role in the 

organization of receptors and downstream signaling enzymes. 

PDZ-domains comprise 80-90 amino acids and their architecture is very similar from 

domain to domain. They consist of six anti-parallel β-strands and two α-helices. Their 

overall fold approximates a six-strand β-sandwich where the protein binding takes place in 

http://en.wikipedia.org/wiki/Signal_transduction
http://en.wikipedia.org/wiki/Proteins
http://en.wikipedia.org/wiki/Bacteria
http://en.wikipedia.org/wiki/Yeast
http://en.wikipedia.org/wiki/Plants
http://en.wikipedia.org/wiki/Animals
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the groove between β2-strand and the α2-helix (Figure 4-8). They typically bind the C-

terminus of the target protein. The binding specificity of PDZ-domains is determined by 

the interaction of the first amino acid residue of α2-helix and the side chain of the ligand’s 

the residue at position -2, counted backwards from the C-terminus. This interaction 

specificity serves as basis for the classification of PDZ-domains as class I, class II and class 

III PDZ-domains. Besides the residue -2 of the ligand that serves as the major determinant 

for the PDZ-interaction, several studies demonstrated that residues at up to positions -8 

(Niethammer et al., 1998; Songyang et al., 1997), or even at position -11 to -14, within 

the ligand might influence the interaction between ligand and PDZ-domain protein (Cai et 

al., 2002; van Ham and Hendriks, 2003). 

 

 

 

Figure 4-8: Structure of a PDZ-domain. (a) The common structure of a PDZ-domain that comprises 
six anti-parallel β-strands (yellow) and two α-helices (red) which fold in an overall six-stranded β-
sandwich. The peptide binding occurs in a groove between the β2-strand and the α2-helix (dark blue). (b) 
List of different PDZ-proteins classified by their interaction qualities determined by the first residue of the 
α2-helix and the -2 residue of the C-terminal ligand (Hung and Sheng, 2002). 
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Like most protein interactions, the binding between a PDZ-domain protein and its ligand 

is regulated to ensure appropriate function, particularly when the C-terminus of a protein 

is recognized by more than one PDZ-domain protein. One way of controlling these 

interactions is via the phosphorylation of residues within the C-terminal sequence of the 

ligand. For example, the AMPA receptor subunit GluR2 binds to the PDZ-proteins 

GRIP1 and PICK1 both of which are involved, but function differently in AMPA-receptor 

trafficking (see 4.6.1). Here, phosphorylation of ser880 in the C-terminal sequence of 

GluR2 inhibits the binding of GRIP1 but not PICK1 (Chung et al., 2000), which results in 

the internalization of AMPA receptors. Ultimately, PDZ-interactions must be under the 

control of higher-level signals, additionally influenced by tempral or spatial separation of 

otherwise compeeting binding partners. 

Most of the PDZ-domains bind to the C-terminal sequence of their ligand. In cases, where 

interaction occurs with internal peptide sequences, these are thought to assume 

conformations that mimic the C-terminus. Furthermore, PDZ-domains can bind to other 

PDZ-domains to form homo- and hetero-oligomers and even to other distinct protein 

binding motifs including ankyrin repeats, spectrin repeats and LIM domains (Cuppen et 

al., 1998; Maekawa et al., 1999; Xia et al., 1997). 

4.7.1 Glutamate receptor interacting protein (GRIP) 

The multi-PDZ-domain proteins GRIP1 and ABP belong to the family of GRIP proteins 

and comprise six or seven PDZ-domains. GRIP1 occurs in different splice variants 

GRIP1a, GRIP1b (1-7 PDZ domains) and GRIPc (4-7 PDZ-domain). ABP exists in two 

isoforms, one of 130 kDa which also exhibits seven PDZ-domains (ABP-L also termed as 

GRIP2 by Bruckner et al. 1999) and a shorter 98 kDa isoform which contains only six 

PDZ-domains. GRIP proteins were initially identified as proteins that interact with AMPA 

receptors, thus promoting their stabilization at synapses and intracellular compartments. 

Since then, numerous additional molecules that interact with GRIP proteins have been 

identified, supporting its role as multiple adaptor proteins (Figure 4-9).  
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Figure 4-9: GRIP1 interaction scheme. The multi-PDZ-domain protein GRIP1 acts as scaffolding 
molecule. Depending on the subcellular compartment it interacts with various different molecules and 
mediates their interaction, crosstalk and transport. Abbreviations: Fras1- Fraser syndrome 1; GRASP-1, 2, 
3, 4: GRIP associated protein 1-4; NEEP21: neuron-enriched endosomal protein of 21 kD; PICK1- 
protein interacting with C kinase 1; NG2- chondroitin sulphate proteoglycan. 

 

GRIP proteins bind to the GluR2 and GluR3 subunit of AMPA receptors via their fifth 

PDZ-domain and are likely to link other molecules to AMPA receptors via their remaining 

free PDZ-domains. For example, GRIP1 can interact simultaneously with AMPA 

receptors and the motor protein kinesin; the latter binds to the linker sequence of GRIP, 

the region connecting PDZ6 and PDZ7, thus directing AMPA receptors to the dendrites 

(Hoogenraad et al., 2005). Furthermore, GRIP proteins are found to interact with α-

liprin, ephrinB, EphB2 via their PDZ6-domain, to EphA7 via their PDZ4-7-domain 

(Bruckner et al., 1999; Lin et al., 1999; Torres et al., 1998; Wyszynski et al., 2002), and 

to GRIP associated protein 1 (GRASP-1; neuronal RasGEF) as well as to the neuron-

enriched endosomal protein of 21 kD (NEEP21). GRASP-1 regulates neuronal Ras 

signaling and contributes to the regulation of AMPA-receptor distribution by NMDA-

receptor activity (Ye et al., 2000) whereas NEEP21-GRIP1 binding is crucial for GluR2-

AMPA-receptor sorting through endosomes and their recruitment to the plasma 

membrane (Steiner et al., 2005). The binding of PICK1 to GRIP is thought to be the 

initial step in AMPA-receptor endocytosis, where PICK1 substitutes GluR2-bound GRIP. 

Another, neuron-independent function of GRIP1 is its interaction with the extracellular 
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matrix protein Fraser syndrome 1 (Fras1), an interaction which is required for the 

appropriate localization of Fras1 to the basal side of cells (Takamiya et al., 2004). Using a 

yeast-two-hybrid assay, further molecules interacting with GRIP PDZ1-3 were identified, 

such as GRIP associated proteins 2-4, but their functions remain unknown. 

4.8 The Eph receptors and ephrin ligands 

The first Eph receptor was identified in a search for tyrosine kinases expressed by cancer 

cells, and named after a erythropoietin-producing hepatocellular carcinoma cell line from 

which its cDNA was isolated (Hirai et al., 1987). The first ligands for Eph receptors 

(ephrins) where then identified some years later by different research groups (Bartley et 

al., 1994; Beckmann et al., 1994; Cheng and Flanagan, 1994). 

The Eph receptors comprise the largest subfamily of receptor tyrosine kinases and are 

found in various cell types both in developing and mature tissue. Their ligands, the 

ephrins, are membrane bound molecules and signaling therefore occurs when cells come 

in close contact to each other. The Eph/ephrin system is involved in a variety of cellular 

processes including shape regulation, attachment and de-attachment, attraction and 

repulsion, and directed migration. The Eph/ephrins therefore play important roles during 

embryonic development such as in pattern formation and in the morphogenic process that 

govern the nervous and vascular system, whereas in the adult organism they are involved 

in synaptic plasticity and tumorgenesis (Palmer and Klein, 2003).  

Receptor tyrosine kinases (RTKs) are cell surface receptors with an intracellular kinase 

domain that transmits extracellular stimuli, mostly from soluble molecules, to the inside 

of the cell. RTKs are activated by dimerization and directly regulate cell fate, cell growth, 

cell division and survival by influencing nuclear events such as gene transcription. Among 

the RTKs, the Eph/ephrin system has a number of unique features: Their signaling 

appears to directly regulate cytoskeletal changes rather than nuclear events. Additionally, 

their ligands are not soluble but membrane bound thus restricting cell-to-cell 

communication to a short-range. Moreover, the dimerization of the Eph receptors does 
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not suffice for functional signaling, which instead requires the formation of higher order 

clusters. The ephrin ligands have their own signaling potential. Upon receptor-ligand 

engagement signaling occurs in both the receptor- and the opposing ligand-expressing cell 

termed ‘forward’ (receptor-activated) or ‘reverse’ (ligand-activated) signaling respectively 

(Egea and Klein, 2007; Klein, 2004; Kullander and Klein, 2002).  

4.8.1 Classification and structure 

The Eph receptors are divided into two subclasses – A and B – based on their affinities to 

the class of ligands and their degree of sequence similarity. Mammals have nine A-class 

receptors (EphA1-8 and EphA10) and five B-class receptors (EphB1-4 and EphB6). Their 

overall structure is similar but they differ in their amino acid sequences and binding 

affinity to the ephrin ligands: A-class receptors preferentially bind to ephrinA ligands, and 

B-class receptors to ephrinB ligands with only a few exceptions (the receptor EphA4 binds 

to both ephrinA and ephrinB ligands and ephrinA5 was shown to interact with EphA 

receptors as well as with EphB2). The ephrin ligands show striking structural differences 

between the A and the B class: EphrinA ligands (ephrinA1-5) are anchored to the 

membrane via a glycosylphosphatidylinositol (GPI) while the ephrinB ligands (ephrinB1-3) 

span the plasma membrane and possess a short cytoplasmic tail with features supporting 

protein-protein interactions.  

4.8.1.1 Eph receptors 

The Eph receptors, classes A and B, contain a common structure made up of a highly 

conserved globular N-terminal domain (ligand binding domain; LBD) that is necessary and 

sufficient for ligand binding (Labrador et al., 1997), followed by a cysteine-rich region 

which is thought to be involved in oligomerization (Smith et al., 2004), as well as by two 

fibronectin type III repeats. The cytoplasmic part of the Eph receptor contains a 

juxtamembrane domain, a conserved kinase domain, a sterile-α-motif (SAM) domain and 

a PDZ-binding motif (see 4.7) (Figure 4-10).  
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Figure 4-10: The Eph receptors and their ephrin ligands. The Eph receptor family of receptor 
tyrosine kinases and the ephrin ligands are membrane bound molecules interacting upon cell-to-cell 
contact. Upon engagement, bi-directional signaling occurs: so-called forward signaling in the receptor-
expressing cell, and reverse signaling in the ligand-expressing cell. Eph and ephrins are classified into two 
groups, A and B, depending on sequence similarities and binding affinities. EphrinA ligands are membrane 
anchored via a GPI (glycosylphosphatidylinositol) and engage with EphA receptors, ephrinB ligands possess 
a short cytoplasmic domain and bind to EphB receptors. The high affinity interaction between Eph and 
ephrins occurs at the extracellular receptor/ligand binding domain (RBD/LBD). Abbreviations: RBL-
receptor binding domain; LBD-ligand binding domain; SAM- sterile-α-motif; PDZ- postsynaptic density 
95, PSD-95; drosophila discs large, Dlg; zonula occludens-1, ZO-1. 

 

The juxtamembrane region regulates the kinase activity that can be activated by the auto-

phosphorylation of two tyrosines within the juxtamembrane segment. It is thought that in 

the unphosphorylated state, the juxtamembrane adopts a conformation that associates with 

the kinase domain and sterically inhibits the activation segment of the kinase domain 

keeping it in an inactive conformation (Figure 4-11). Upon receptor activation the 

juxtamembrane region gets tyrosine-phosphorylated and dissociates from the kinase 

domain relieving its auto-inhibition and allowing it to assume its active conformation 
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(Wybenga-Groot et al., 2001). A more recent study suggests a dynamic model, where 

fluent, inter-lobal changes in conformation occur after the relief of inhibition rather than a 

switch to a static active conformation of the kinase domain (Wiesner et al., 2006). Once 

active, the kinase can phosphorylate other molecules, including the kinase domains of 

neighbouring Eph receptors, allowing phosphotyrosine-binding adaptor molecules to bind 

and thereby initiate downstream signaling cascades. 

A key signaling cascade downstream of Eph receptors involves cytoskeletal 

rearrangements via signaling through the Rho GTPases RhoA, Cdc42, and Rac. Rho 

GTPases cycle between an active GTP-bound and an inactive GDP-bound conformation 

(Figure 4-4, b). They control cell shape and movement by promoting the formation of 

stress fibres (Rho), lamellipodia (Rac) and filopodia (Cdc42) (Nobes and Hall, 1995). In 

neurons, RhoA-activation inhibits neurite outgrowth, directs growth cone collapse and 

axon retraction, whereas Rac and Cdc42 promote growth cone lamellipodia formation 

and filopodia extensions respectively. Interestingly, Eph receptor subclasses A and B 

activate different Rho GTPases. EphA receptors directly activate RhoA through the 

constitutively bound exchange factor ephexin1 (Eph-interacting exchange protein 1), 

catalysing the replacement of GDP by GTP (Figure 4-11). Yet, in the absence of ephrin 

stimulation this exchange factor is thought to activate multiple Rho family members 

including RhoA, Rac1, and Cdc42 in an appropriate balance thus favouring neurite 

outgrowth. Only if the EphA receptor is activated will ephexin1 phosphorylation occur, 

causing its action to shift towards RhoA, a chain of events which leads to growth cone 

collapse (Wahl et al., 2000). EphB receptors have been shown to interact with intersectin, 

an exchange factor for Cdc42, and kalirin, an exchange factor for Rac, which both regulate 

growth cone dynamics and spine morphogenesis (Figure 4-11) (Irie and Yamaguchi, 2002; 

Murai and Pasquale, 2005; Penzes et al., 2003; Shamah et al., 2001). Furthermore, the 

exchange factor Tiam1 seems to bind to both A and B class Eph receptors and to ephrinB 

ligands and promotes neurite outgrowth (Tanaka et al., 2004). 
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Besides the key signaling cascade via Rho GTPases, Eph receptors have been shown to be 

involved in the regulation of Ras GTPases (H-ras), as well as the integrin-mediated 

adhesion pathways involving FAK and JNK (Murai and Pasquale, 2003). 

 

 

 

Figure 4-11: Eph receptor interaction scheme. In the unengaged receptor the juxtamembrane 
domain is folded and auto-inhibits the kinase domain. In order to promote a signal, Eph receptors and 
ephrin ligands need to form high order cluster assembling signaling molecules and activating the Eph 
receptor kinase. EphB receptors mediate cytoskeletal rearrangements via syndecan2 and the activation of 
small Rho family GTPases Cdc42 and Rac to promote spine morphogenesis and motility. They regulate 
cell adhesion via FAK signaling complexes and bind to GRIP, PICK1 and NMDA receptors modulating 
synapses. EphA receptors mediate repulsive cues by activating RhoA GTPases which leads to growth cone 
collapse, but also transduce attractive cues during axon guidance. 

4.8.1.2 Ephrin ligands 

Among RTK ligands the ephrins are special in the way that they are membrane bound and 

act as receptors themselves by promoting a ‘reverse’ signal into the ligand expressing cell 

upon Eph receptor engagement. Ephrin ligands are divided into two groups: Both groups 

possess an extracellular receptor binding domain (RBD), but ephrinA ligands (ephrinA1-

5) are attached to the plasma membrane via glycosylphosphatidylinositol (GPI) whereas 
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ephrinB ligands (ephrinB1-3) span the membrane and have a short, highly conserved 

cytoplasmic tail. Unlike the Eph receptors, ephrin ligands do not have an intrinsic catalytic 

domain and must therefore transduce their signal with the help of cytoplasmic proteins.  

The cytoplasmic tail of ephrinB ligands contains five conserved tyrosines, that serve as 

potential phosphorylation sites, and a PDZ-binding motif (Figure 4-12, a). EphrinB-

activation leads to the rapid phosphorylation of their cytoplasmic tyrosine residues 

(Bruckner et al., 1997), three of which are characterized as major phosphorylation sites 

(Kalo et al., 2001). The rapid phosphorylation is known to be mediated by Src family 

kinases (SFKs) that become activated and are recruited to ephrin clusters upon Eph 

receptor binding (Palmer et al., 2002). Cytoplasmic proteins can interact with ephrinB 

ligands via SH2 domains that recognize phosphorylated tyrosines. So far, the only SH2-

domain protein that has been found to interact with tyrosine-phosphorylated ephrinB 

molecules is the growth-factor-receptor-bound protein 4 (Grb4). Grb4 is a SH2/SH3 

domain-containing adaptor protein. Its association with activated ephrinBs leads to the 

disassembly of F-actin-containing stress fibers and increased FAK activation (Cowan and 

Henkemeyer, 2001). Similar to forward signaling through Eph receptors, the regulation of 

cytoskeletal rearrangement seems to be one of the major effects of ephrinB-reverse 

signaling. However, the signaling induced by rapid tyrosine phosphorylation is a short-

lived event. With delayed kinetics, the cytoplasmic PDZ-domain-containing protein 

tyrosine phosphatase PTP-BL is recruited to activated ephrinB ligands thereby terminating 

the signal by ligand and SFK dephosphorylation. In contrast, PDZ-interactions were 

shown to persist (Palmer et al., 2002). Based on these findings, a switch-model for 

ephrinB-reverse signaling has been established distinguishing the fast, but short-lived 

phosphotyrosine-dependent signaling from the delayed, but persistent, PDZ-dependent 

signaling (Figure 4-12, (b)). 

The PDZ-binding motif is located at the C-terminal end of ephrinB ligands, where besides 

phosphatases PTP-BL, it is recognized by various other PDZ-domain proteins such as 

GRIP1 and GRIP2, syntenin, PDZ-RGS3 and PICK1. The interaction between ephrinB 

ligands and these proteins has been described but the molecular pathways remain unclear 



4 Introduction  

45 

 

except for those of PDZ-RGS3 and ephrinB. PDZ-RGS3 contains a PDZ-domain and a 

regulator of heteromeric G protein signaling (RGS) domain. The catalytic RGS-domain 

acts as a GTPase-activating protein for G protein-coupled receptors and catalyses the 

hydrolysis of GTP to GDP, thus inactivating the signal. Activation of ephrinB in cerebellar 

granule cells was shown to inhibit G protein-coupled chemokine receptor mediated cell 

migration (Lu et al., 2001a). 

 

Figure 4-12: EphrinB-reverse signaling- the switch model (adapted from Palmer et al 2002). (a) 
The cytoplasmic domain of the three ephrinB ligands shows high sequence similarity. The five conserved 
tyrosines are highlighted in five pink boxes and serve as possible phosphorylation sites; the C-terminal 
PDZ-binding motif (purple box) is recognized by various PDZ-domain proteins. (b) Upon receptor 
engagement, ephrinB ligands are clustered, gathering signaling molecules and recruiting SFK to the 
membrane patches. SFK phosphorylates the ligand on tyrosines, allowing phosphotyrosine-binding 
molecules like Grb4 to bind and promote phosphorylation-dependent signaling. With a short delay, the 
phosphatase PTP-BL is recruited to activated ephrins and terminates phosphotyrosine signaling by 
dephosphorylating ephrin and inactivating SFK. However, still PDZ-binding takes place, including 
interaction with GRIP, PICK1, Syntenin and PDZ-RGS3, switching signaling from phosphotyrosine-
dependent to PDZ-interaction based. 
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Interestingly, not only the cytoplasmic tailed ephrinB ligands but also the GPI anchored 

ephrinA ligands are thought to have their own signaling potential. There is evidence that 

ephrinA signaling participates in cellular functions but the molecular mechanism by which 

the signal is promoted remains unknown. For example, studies on the Eph receptor 

homologue VAB-1 in C. elegans revealed a kinase-independent function for VAB-1 in 

cellular organization that hints at a reverse signaling event via ephrinA ligand homologues 

(Wang et al., 1999). While some Eph receptors seem to inhibit integrin-mediated 

adhesion, ephrinA ligands have been shown to positively regulate cell adhesion and 

morphology via the activation of the SFK Fyn that co-localizes with ephrinA ligands in the 

membrane (Davy et al., 1999; Davy and Robbins, 2000; Huai and Drescher, 2001). 

Moreover, a recent study describes a repulsive function for ephrinA in retinal axons 

during guidance and mapping. Here, the p75 neurotrophin receptor (NTR) serves as a 

signaling partner for ephrinA and ephrin-A-p75 (NTR)-reverse signaling mediates retinal 

axon repulsion (Lim et al., 2008). 

4.8.2 Eph/ephrin interaction 

The interaction of Eph receptors and ephrin ligands has been studied approached by X-ray 

crystallography (Himanen and Nikolov, 2002; Himanen and Nikolov, 2003; Himanen et 

al., 2001). The crystal structure of an EphB2-ephrin-B2-complex revealed a high affinity 

dimerization interface within the receptor and ligand binding domain (RBD, LBD) 

through which Eph receptors bind their ephrin ligands (Figure 4-13). Structurally, this 

binding is mediated by an extended loop of the ephrin ligand that is inserted into a channel 

at the surface of the receptor. The relevance of this interaction interface has been proved 

by studies using peptides that mimic the ephrin loop and successfully inhibit Eph-ephrin 

interactions. To form a cluster, two Eph-ephrin dimers join via a second distinct lower 

affinity interface to form a tetramer, in which each ligand interacts with two receptors and 

each receptor interacts with two ligands (Figure 4-13, a). The Eph and ephrin molecules 

are thought to be precisely positioned in these complexes which allow an aggregation, a 

so-called formation of higher-order clusters, and thus the initiation of bidirectional 

signaling. Indeed, functional Eph-ephrin signaling requires the generation of high-order 
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membrane clusters that assemble downstream signaling molecules. Experimentally, these 

cluster-formations can be induced by the application of soluble Eph- or ephrin-Fc fusion 

proteins (EphX/Fc or ephrinX/Fc; X- any A or B type) that have been pre-clustered with 

anti-Fc antibodies, an extensively used tool in this thesis. In the cell membrane these high 

order complexes, comprised of Eph/ephrins and associated molecules, appear as clusters 

of different shapes and sizes (Figure 4-13, b). The application of single, non-clustered, 

EphX/Fc or ephrinX/Fc molecules in contrast resembles the effect of an antagonist thus 

resulting in a signal blockage.  

 

 

 

Figure 4-13: Eph/ephrin cluster formation. (a) Receptor-ligand interaction interfaces. The X-ray 
crystal structure of complexed EphB2-ephrinB2 interaction domains revealed a 2:2 heterotetramer 
containing two high affinity (Dimerization) and two lower affinity (Tetramerization) receptor-ligand 
interaction sites (Himanen and Nikolov, 2003). (b) A hippocampal neuron in culture shows punctuated 
ephrinB2 clusters all over the dendrites and the cell body. The neuron was stimulated with pre-clustered 
EphB4/Fc fusion protein to induce cluster formation. 

 

Additional interfaces, distinct from the receptor/ligand binding domains, were found to 

promote high oligomerization of the receptors. These include the adjacent cysteine-rich 

domain and the sterile-α-motif (SAM) oligomerization domain located in the Eph 

cytoplasmic region. Furthermore, scaffolding proteins seem to be involved that bind the 

C-terminal PDZ-domain target site present in both Eph receptors and ephrinB ligands. 
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Questions concerning the composition and quality of these clusters, as well as, the number 

of molecules involved remain unanswered. Not much is known about the minimal size of a 

receptor or ligand cluster required for signalling, nor is it known whether the cluster size 

controls alternative signaling pathways. Considering the broad variety of Eph/ephrin-

functions it seems seems reasonable to assume, that the molecular composition of the 

clusters might favor a specific signaling pathway. Another important aspect that remains 

uncertain is to what extent the clusters might contain different receptor or ligand types or 

if heterogenic mixtures occur at all. 

4.8.2.1 Trans and Cis interactions 

In many regions of the developing organism Eph receptors and ephrins show 

complementary expression patterns. Receptor-ligand interaction occurs between 

opposing cells, namely in trans, allowing a crosstalk between migrating cells and the 

surrounding tissues. Given the ability of the Eph/ephrin system to mediate cell adhesion 

and repulsion, attachment and de-attachment, trans-interaction may be a key element in 

cellular compartmentalization, boundary formation and correct cell positioning in the 

tissue. In other cases, Eph receptors and ephrins are found to be co-expressed by the same 

cell, which led to the idea of a possible interaction in cis. The first evidence of cis-

interaction was found in retinal axons, where the responsiveness of EphA-expressing 

axons was affected by ephrinA co-expression. Cis-interaction with co-expressed ephrinA 

reduced the tyrosine phosphorylation levels of EphA and the reaction to in-trans-applied 

ephrinA molecules (Carvalho et al., 2006; Hornberger et al., 1999; Yin et al., 2004). Cis-

interaction might provide the cells with a tool for fine signal-tuning from a decrease in 

responsiveness up to complete inhibition. However, it is currently unknown how cis-

interaction with ephrins reduces Eph receptor signaling. One hypothesis is that cis-

interaction causes steric inhibition or spatial retraction separating Eph receptors from 

downstream signaling molecules. The occurrence of cis-interactions seems to depend on 

the cellular context rather than solely on the co-expression of receptor and ligand. Spinal 

motor axons, for example, co-express EphA4 receptors and ephrinA but they appear to 

accumulate in separate membrane domains and function independently (Marquardt et al., 
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2005). However, proof for a cis-interaction in the B type of Eph receptors and ligands is so 

far missing. 

4.8.2.2 Attraction/repulsion 

Eph receptors and ephrins are known to be involved in opposing events such as 

repulsion/de-attachment and adhesion/attachment. Many factors are thought to regulate 

favor one or the other response cellular context, expression levels of receptor and ligand, 

splice variants and the composition of associated molecules favoring one event or the 

other. Cluster formation and the high-affinity interaction between Eph receptors and 

ephrin ligands on opposing cells can mediate cell adhesion. One mechanism that has been 

described to turn EphA-ephrinA-interaction into repulsion is the proteolytic cleavage of 

ephrinA by an ADAM proteinase. ADAM (a disintegrin and metalloprotease) proteins are 

membrane-anchored metalloproteases that mediate a wide variety of specific proteolytic 

events at the cell surface. The metalloproteinase Kuzbanian (KUZ), the Drosophila 

homolog of ADAM-10, was found to associate with ephrinA2 and to cleave the 

juxtamembrane domain of the ephrin molecule following receptor engagement and cluster 

formation. The cleavage goes hand in hand with a cytoskeletal collapse leading to de-

attachment of the cells (Hattori et al., 2000). A more recent study showed that ADAM10 

constitutively associates with EphA3 and that the formation of a functional 

EphA3/ephrinA5 complex leads to the effective cleavage of ephrin-A5 in trans. This 

mechanism ensures that only Eph bound ephrins are recognized and cleaved (Janes et al., 

2005). A second mechanism to turn interaction into repulsion involves the rapid 

endocytosis of whole Eph/ephrin complexes leading to the retraction of interacting cells 

or neuronal growth cones. For example, the binding of EphB2 to ephrinB1, at the surface 

of opposing cells, has been reported to induce separation of the interacting cells. This 

separation was accompanied by the endocytosis of full-length proteins as complete 

EphB2/ephrinB1 complexes (transendocytosis). Transendocytosis occurred into either 

ligand- or receptor-expressing cells depending on the intracellular domains of the 

molecules. Furthermore, transendocytosis of Eph/ephrin complexes and the subsequent 

cell retraction has been shown to depend on actin polymerization and therefore on Rac 
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signaling (Marston et al., 2003; Zimmer et al., 2003). However the balance between 

reverse, forward and bidirectional endocytosis strongly depends on the cellular context, as 

does the balance between attachment and repulsion during path-finding of cells. 

4.8.3 Eph/ephrin signaling outside the nervous system 

Aside from their function in the various cells of the nervous system, the Eph receptors and 

ephrins are found in cells types of other tissues such as immune cells, bone cells, stem 

cells, epithelial cells and in many types of tumor cells. Here, they play highly diverse roles 

at the level of cell-to-cell communication both during development and in the adult 

organism. These roles include the regulation of cell shape, attachment and de-attachment 

as well as cell attraction and repulsion, and directed cell migration. Hence, the interplay 

of the Eph receptors and ephrins at a cellular level directs the establishment of the 

structure and morphology of these tissues. (Arvanitis and Davy, 2008; Himanen et al., 

2007; Palmer and Klein, 2003; Poliakov et al., 2004) 

4.8.4 Eph/ephrin signaling in the nervous system 

Eph receptors and ephrin ligands were first described as axon guidance molecules 

mediating growth cone repulsion during the development of the central nervous system. 

Their functions include topographic mapping, axon guidance, cell migration and the 

establishment of regional patterns in the developing nervous system. Here they function, 

for example, in hind- and forebrain segmentation, neural crest cell and cerebellar granule 

cell migration, retinal and olfactory sensory axon guidance, thalamocortical projections 

and motor neuron-muscle innervations thus controlling the rhythmic walking. Many Eph 

and ephrin molecules remain abundant in the nervous system beyond the developmental 

stage and function in spine morphogenesis and synaptogenesis, neural-glia communication 

and synaptic plasticity.  

4.8.4.1 Eph/ephrin signaling in spine formation 

The roles of Eph receptors in spine morphogenesis have been studied extensively. In the 

mouse hippocampus, Eph receptors are expressed in distinct regions and here triple 



4 Introduction  

51 

 

EphB1/B2/B3 deficiency leads to neurons with impaired spine formation (Henkemeyer et 

al., 2003). As described in section 4.8.1.1, Eph receptors are involved in the regulation of 

actin dynamics via activation of Rho GTPases including Rho, Cdc42 and Rac1, which are 

required for spine formation. In addition, the molecule syndecan-2, a transmembrane 

heparin sulphate proteoglycan, was found to mediate EphB receptor-induced spine 

formation. EphB receptor activation induces syndecan-2 clustering which in turn 

promotes downstream signaling pathways resulting in cytoskeletal rearrangements (Ethell 

et al., 2001). Not much is known about how ephrin ligands participate in spine formation. 

In the hippocampus, Eph receptors and ephrinB ligands follow different synaptic 

expression patterns and their signaling occurs in a bi-directional fashion. In the synaptic 

connection between the CA3-CA1 region of the hippocampus the ephrinBs are exclusively 

expressed postsynaptically (Figure 4-14).  

One goal of this thesis is to find out whether, similar to Eph receptors, ephrinB ligands are 

involved in spine morphogenesis. 

 

 

 

Figure 4-14: Eph/ephrin expression in the murine hippocampus. Schematic overview of the 
hippocampal pathways: The mossy fiber pathway connects presynaptic dentate gyrus (DG) and 
postsynaptic CA3 region neurons where Eph receptors are found postsynaptically, and ephrinBs are found 
presynaptically. The Schaffer collateral pathway connects presynaptic CA3 neurons and postsynaptic CA1 
neurons. Here ephrinBs are found at the postsynaptic site whereas Eph receptors are expressed both pre 
and postsynaptically. The loss of postsynaptic ephrinB leads to defects in LTD and LTP, the molecular 
mechanism are unknown. 
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4.8.4.2 Eph/ephrin signaling in synapse formation 

A number of studies have investigated of EphB/ephrin trans-interaction in presynaptic 

differentiation the focus however solely addressing Eph receptor mediated forward 

signaling. The first evidence was provided by a study with cultured neurons where 

ephrinB-activated EphB receptors interact with NMDA receptors inducing their cluster 

formation. Subsequently, NMDA-clustering lead to the formation of presynaptic active 

sites (Dalva et al., 2000). Indeed, the activation of EphB2 in cultured cortical neurons 

potentiates the Ca2+-influx through NMDA receptors and enhances Ca2+-dependent gene 

expression that may affect synapse formation, maturation, and plasticity. Eph/ephrin 

interaction might therefore serve as an early initiating step promoting synapse formation 

and maturation (Takasu et al., 2002). The hippocampal neurons of triple EphB1-3 

deficient mice showed not only impaired spine morphogenesis, but also a drastic reduction 

in the number of excitatory glutamatergic synapses and a decreased amount of NMDA and 

AMPA receptor clusters (Henkemeyer et al., 2003). Besides binding to NMDA receptors, 

EphB receptors interact with AMPA receptors via an independent binding domain 

controlling their localization and therefore presynaptic differentiation. Consequently, the 

knockdown of EphB2 in dissociated neurons results in a decrease of functional synaptic 

inputs and presynaptic specializations (Kayser et al., 2006). Recently, Kayser et al. 

provided a link between Eph receptor-induced spine motility and subsequent synapse 

formation. They showed that EphB forward signaling controls dendritic filopodia motility 

and allows pre- and postsynaptic partners to find each other. EphB/ephrin trans-synaptic 

interactions then stabilized nascent synaptic contacts, consequently specifically directing 

the formation of dendritic synapses (Kayser et al., 2008). Even though Eph receptor and 

ephrin ligands are differently expressed in hippocampal synapses, studies only suggest a 

link between reverse signaling and synapse formation without elucidating the underlying 

molecular mechanisms. Studies on the effect of ephrinB3 ligands in synapse number 

determination have been inconsistent. Grunwald et al. did not detect any differences in 

the synaptic structures of the hippocampus of mice lacking ephrinB3 (Grunwald et al., 

2004). In contrast, Rodenas-Ruano et al. studied mice deficient in ephrinB3 and showed 

increased numbers of excitatory synapses in the hippocampal CA1 region, but reverse 
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signaling-independent changes in both pre- and postsynaptic molecules (Rodenas-Ruano et 

al., 2006). Furthermore, Aoto et al. who looked specifically at two different synapse types 

found differences in only one of them: ephrinB3 knock-out mice had reduced numbers of 

shaft synapses in the hippocampus while spine synapses were normal (Aoto and Chen, 

2007).  

4.8.4.3 Eph/ephrin signaling during synaptic plasticity 

By activating cytoskeleton remodelling pathways, the Eph/ephrin system modulates 

synapse formation and spine morphogenesis and thus controls plasticity at a morphological 

level. Ephs and ephrins further regulate synaptic plasticity at the molecular level by 

influencing molecules responsible for synaptic transmission like NMDA or AMPA 

receptors, adaptor proteins or downstream molecules. As mentioned in the previous 

chapter, mice deficient in EphB2 display abnormal NMDA-receptor dependent synaptic 

plasticity, as well as reduced numbers of NMDA and AMPA receptors. In the CA3-CA1 

region of the mouse hippocampus, ephrinB2 and ephrinB3 are solely postsynaptically 

expressed whereas the receptors EphB2 or EphA4 are found both, pre- and 

postsynaptically (Figure 4-14). The ablation of ephrinB2 or ephrinB3 in these neurons leads 

to strong defects in certain forms of plasticity such as LTP and LTD. To a comparable 

extent, the ablation of EphB2 or EphA4, both interaction partners of ephrinB2 and 

ephrinB3, resulted in impaired synaptic plasticity (Grunwald et al., 2004; Grunwald et 

al., 2001). However, the receptor-related defects were shown to be independent of the 

receptor’s cytoplasmic domain and are thus said to be forward-signaling independent. The 

reintroduction of a receptor-GFP-fusion protein, where the cytoplasmic tail of the 

receptor was substituted by GFP, fully restored the deficiency-phenotype of the receptors. 

These results suggest the contribution of a signaling pathway downstream of ephrinB 

ligands in the regulation of long-term plasticity, but the molecular mechanism remains 

unclear. Since the amount of active AMPA receptors at the synapse determines its synaptic 

strength, a key feature of synaptic plasticity is the regulation of AMPA-receptor 

trafficking.  
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The second part of this thesis addresses the question of whether ephrinB ligands might be 

involved in the regulation of AMPA-receptor trafficking, explaining their impact on 

synaptic plasticity. 



5 Results 

5.1 Grb4 and GIT1 transduce ephrinB reverse signals 
modulating spine morphogenesis and synapse formation 

Spine morphogenesis and synapse formation are known to be important processes both in 

the developing brain, when neuronal circuits are established, and in the mature brain 

during synaptic plasticity. These processes involve rearrangements of the cytoskeleton 

governed by various signaling pathways (Geinisman, 2000; Yuste and Bonhoeffer, 2001). 

Eph-receptor forward signaling has been shown to be required for spine morphogenesis 

and to act upstream of cytoskeleton remodeling events (Ethell et al., 2001; Henkemeyer 

et al., 2003; Penzes et al., 2003). In the hippocampus, Eph receptors and ephrinB ligands 

follow different synaptic expression patterns and their signaling occurs in a bi-directional 

fashion. For example, in the CA3-CA1 region, ephrinBs are exclusively expressed 

postsynaptically and their signaling is required for long-term plasticity (Grunwald et al., 

2004). Therefore, similar to Eph receptors, ephrinB ligands might be involved in changes 

in spine morphology. The aim of this study was to investigate the impact of ephrinB-

reverse signaling in spine formation and to uncover the signaling pathway acting 

downstream of ephrinB. 

The first part of the result section will deal with my contribution to the study entitled: 

“Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and 

synapse formation” (Nature Neuroscience 2007, Vol. 10 pages 301-10). This involved 

mainly measurments of spine morphology and synaptogenesis in cell cultures treated with 

agonists and interference molecules of ephrin signaling. The accompanying molecular 

biological and biochemical experiments were mainly performed by I. Segura and S. 

Weinges. Interaction and interference experiments (Weinges, 2006).  

5.1.1 EphrinB-reverse signaling promotes spine morphogenesis 

Synaptic contacts are stabilized by the formation of mature spines. During the process of 

spine maturation, filopodia-like dendritic protrusions acquire a typical mushroom-like 
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shape with bulbous heads and short dendritic shafts. Eph receptor signaling has been 

shown to be involved in spine morphogenesis since hippocampal neurons from EphB-

receptor deficient mice fail to form dendritic spines (Henkemeyer et al., 2003). EphrinB 

ligands are found in postsynaptic compartments and are known to interact with 

postsynaptic proteins. In fact, they are the active signaling partners in the postsynaptic 

CA1 region. Therefore, we wanted to determine whether ephrinB ligands could modulate 

spine morphology. To test this, we stimulated cultured hippocampal neurons (14DIV) for 

8 hours with pre-clustered EphB2-Fc or Fc (control). To visualize the protrusions, the 

neurons were transfected with yellow fluorescent protein (YFP) two days prior to the 

experiment. Spine maturation was assayed by measuring spine length, the number of 

spines with heads and the spine-head area (Figure 5-1). Combining all assigned criteria, 

neurons showed an increased number of mature spines with short shafts and spine heads 

following EphB2-Fc stimulation (Figure 5-1, a). The mean protrusion length was 

decreased from 1.74 µm ± 0.03 (control) to 1.10 µm ± 0.02 (EphB2-Fc) in ephrinB 

activated neurons (Figure 5-1, a). Moreover, 60.1 % ± 4.1 of the protrusions were 

shorter than 1 µm in EphB2-Fc treated neurons compared to 28.3 % ±3.5 in control 

neurons (Fc). Additionally, the formation of spine heads was considered to be an 

indication of maturity (Figure 5-1, b lower panel). Here, EphB2-Fc-stimulated neurons 

were found to have more mature spines (85 % ± 1.5 spines with heads) compared to 

control cells (Fc) (45.3 % ± 2.7). Moreover, the average size of the heads was 

significantly larger in ephrinB-activated neurons with 0.66 µm2 ± 0.01 spine-head area 

compared to 0.37 µm2 ± 0.01 in control cells (Figure 5-1, c). Taken together, these 

results clearly demonstrate a positive impact of ephrinB reverse signaling in spine 

maturation. Indeed, EphB2-Fc-application resulted in a reduction of long filopodia-like 

protrusions leading to an increased number of mature spines with characteristically short 

dendritic shafts and bulbous-shaped heads. 
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Figure 5-1: EphrinB signaling promotes spine morphogenesis. (a) Rat hippocampal neurons 
transfected with YFP (12DIV) and stimulated after two days with pre-clustered EphB2-Fc or Fc (control) 
for 8 hours. The length of dendritic protrusions (n>500) was quantified (right panels). Group A represents 
spines and group B represents dendritic filopodia based on the length. Scale bar, 2 µm. (b) Statistical 
analysis of spine morphogenesis in hippocampal neurons stimulated with pre-clustered Fc or EphB2-Fc. 
The spine morphogenesis was assayed by analysis of protrusion length (upper panel) and by percentage of 
mature mushroom-like spines relative to total number of protrusions (lower panel). (c) Quantification of 
spine-head area in hippocampal neurons stimulated with pre-clustered Fc or EphB2-Fc. (SEM, * P<0.05; 
** P<0.005; *** P<0.0005). 

5.1.2 Interference with ephrinB-reverse signaling impairs spine 
formation 

In the previous experiment we showed that activation of ephrinB-reverse signaling 

promoted spine maturation in cultured hippocampal neurons. To confirm this, we 

inhibited ephrinB signaling by over-expressing a truncated form of ephrinB and measured 

the resulting effects on spine maturation. Hippocampal neurons were transfected with an 

ephrinB1 mutant (ephrinB1ΔC) that lacks the intracellular domain and is therefore 
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incapable of signaling. This mutant is predicted to compete with endogenous ephrinB 

molecules for Eph-receptor binding, thus diminishing the signal.  

Young hippocampal neurons (7DIV) were transfected with YFP alone to visualize the 

outlines of the neurons, or together with ephrinB1ΔC-CFP. We then analyzed these 

neurons for the morphology of dendritic protrusions four days after transfection. The 

ephrinB1ΔC expressing neurons showed remarkably more filopodia-like protrusions (>2 

µm) than the YFP expressing control cells (Figure 5-2, a). Consequently, the amount of 

mature spines (protrusions < 2 µm) in these neurons was less frequent compared to those 

present in the control neurons (YFP) (Figure 5-2, a+b). Taken together, the mean 

protrusion length of 1.91 µm ± 0.29 seen in control cells was increased to 2.55 µm ± 

0.03 in cells with impaired ephrinB signaling.  

 

 

 

Figure 5-2: Interference with ephrinB-reverse signaling impairs spine maturation. (a) 
Hippocampal neurons (7DIV) were transfected with YFP or YFP plus ephrinB1ΔC-CFP and analyzed for 
the morphology of dendritic protrusions four days later. Scale bars: 10 µm whole neurons, 1µm 
enlargements. (b) Quantifications of the protrusion length from neurons represented in a (n >500). YFP 
transfected cells (upper panel), double transfected with YFP and ephrinB1ΔC-CFP (lower panel). 
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Spine formation in cultured hippocampal neurons occurs after 11-14 DIV depending on 

cell density. We repeated the interference experiment with older neurons to confirm the 

relevance of ephrinB-reverse signaling on spine maturation. Neurons were transfected 

with YFP alone or together with ephrinB1ΔC-CFP at day 11 in culture and analyzed the 

morphology of dendritic protrusions three days later. The same effect that was seen in 

young neurons was also observed in older neurons (14DIV) expressing the truncated 

version of ephrinB1. Quantifications revealed a clear shift of the distribution of spines 

from mature spines towards more filopodia-like protrusions (Figure 5-3). 

 

 

 

Figure 5-3: Truncated ephrinB1 impaired spine formation in older neurons (14DIV). (a) 
Hippocampal neurons transfected (11DIV) with YFP (control) to visualize the outline of the cell. 
Protrusions were analyzed three days after transfection. Protrusion length of control neurons was 
quantified and pictured as frequency per length unit. (b) Hippocampal neuron double transfected with YFP 
and ephrinB1ΔC-CFP analyzed and quantified as in (a). 

 

5.1.2.1 EphrinB reverse signaling acts independent of EphB receptor 
forward signaling in spine maturation 

Previous studies have shown that EphB receptor signaling promotes spine maturation and 

that interference with forward signaling alters the spine morphology of cultured neurons 
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(Henkemeyer et al., 2003). Therefore, we next wanted to prove that the effect seen 

following the transfection of ephrinB1ΔC was specific for reverse signaling and not due to 

the interference with forward signaling in those neurons. In order to promote a signal, 

ephrinB ligands and Eph receptors need to form high-order clusters which assemble signal 

transducing molecules. Here, we made use of this fact and applied unclustered, single, 

soluble ephrinB2-Fc molecules to the cells to occupy and, therefore, block EphB receptors 

from signaling. 

Hippocampal neurons transfected with YFP at 7DIV were treated seven days after 

transfection (14DIV) for 8 hours with Fc (control), or unclustered ephrinB2-Fc to block 

Eph receptor forward signaling, or with unclustered ephrinB2-Fc and clustered EphB2-Fc 

to activate ephrinB reverse signaling. As expected, Eph receptor blockage (un-eB2) 

resulted in an increase of filopodia-like protrusions and a reduction of mature spines 

compared to control cells (Figure 5-4, a+b, g-f). Instead, while Eph receptor signaling 

was blocked by unclustered ephrinB-Fc molecules, the simultaneous activation of ephrinB 

reverse signaling with pre-clustered EphB2-Fc evoked a significant increase in spine 

maturation, pictured and quantified in Figure 5-4, c+g-f. Additionally, to show the 

independence of forward signaling from impaired reverse signaling, hippocampal neurons 

were transfected with the mutant ephrinB1ΔC-CFP + YFP and stimulated with pre-

clustered Fc (control), EphB2-Fc or ephrinB2-Fc. Consistent with the previous 

observations, expression of truncated ephrinB1 impaired spine maturation thus leading to 

an increase of filopodia-like protrusions compared to control cells (Figure 5-4, d, g-f). As 

expected, activating reverse signaling with EphB2-Fc did not rescue the phenotype 

(Figure 5-4, e, g-f). However, despite impaired reverse signaling, the activation of EphB 

receptor forward signaling via pre-clustered ephrinB2-Fc molecules led to enhanced spine 

maturation in these neurons. Taken together, these results suggest that ephrinB reverse 

signaling leads to spine maturation independently of EphB forward signaling. Therefore, 

the impaired spine maturation seen in neurons, which over-express the signaling mutant 

ephrinB1ΔC, is not likely to be caused by EphB receptor dysfunction.  
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Figure 5-4: EphrinB-reverse signaling acts independent of forward signaling in spine 
maturation. (a-f) Hippocampal neurons were transfected with YFP alone or together with ephrinB1ΔC-
CFP at 7DIV. The neurons were stimulated 7 days after transfection with pre-clustered Fc (a, d), 
unclustered ephrinB2-Fc (b+c), or pre-clustered ephrinB2-Fc (f) or EphB2-Fc (c+e) and analyzed for the 
morphology of dendritic spines. Scale bars 1 µm. (a-i) Quantification and statistical analysis of protrusion 
length and number of spine heads under the given conditions (n>500). (SEM, * P<0.05; ** P<0.005, *** 
P<0.0005). 
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In these experiments, the proportion of filopodia-like structures in neurons (14DIV) 

expressing ephrinB1ΔC was increased to 52.9 % ± 1.4 compared to 34.8 % ± 5.3 in YFP 

transfected control cells (Figure 5-4, g). The average protrusion length grew from 1.76 

µm ± 0.10 to 2.26 µm ± 0.03 and the percentage of mature spines with heads decreased 

from 70.2 % ± 6.6 to 40.5 % ± 3.1 (Figure 5-4, h+i). These results suggested that 

ephrinB-reverse signaling promotes spine maturation and is necessary for proper spine 

development. 

5.1.3 Spine morphogenesis downstream of ephrinB mediated via Grb4 
and GIT1 

Spine morphogenesis and spine formation are known to require local Rac activity, 

resulting from the assembly of a Rac-activating complex, consisting of the G-protein 

coupled receptor kinase-interacting protein 1 (GIT1) and the exchange factor for Rac, β-

Pix (Zhang et al., 2003). Downstream of Rac, the p21-activated kinase and myosinII 

regulatory light chain promote spine formation (Zhang et al., 2005). Using various 

biochemical and molecular biological approaches, we have shown ephrinB ligands to be 

upstream of the Rac pathway, thus regulating the recruitment of involved signaling 

molecules to the synaptic membrane.  

In particular, we found that Grb4, an adaptor protein containing SH2 and SH3 domains, 

and a known transducer of ephrinB reverse signals (Cowan and Henkemeyer, 2001), binds 

and recruits GIT1 to synapses upon ephrinB ligand activation Eph receptors. Furthermore, 

we identified a phosphorylation site (tyrosine392) in the synaptic localization domain 

(SLD) of GIT1 which is involved in the regulated binding of GIT1 to the SH2 domain of 

Grb4, and showed that the phosphorylation occurs upon ephrinB activation (Weinges, 

2006). 
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Figure 5-5: Our model of ephrinB-reverse signaling pathway during spine formation. 
EphrinB ligands are located at the synaptic membrane and are activated by opposed Eph receptors during 
synaptic contacting. Upon receptor binding ephrinB ligands form clusters assembling activated Src family 
kinases (SFK). Src phosphorylates GIT1 on tyrosine 392 located in the SLD (synaptic localization domain) 
and now allows Grb4 to bind. Grb4 in turn interacts with membrane anchored ephrinB via its SH3 domain 
and localizes the Rac signaling complex, composed of GIT1 and βPix (exchange factor for Rac) to the 
synaptic compartment.  

5.1.3.1 Disruption of ephrinB signaling through Grb4-SH2 domain and an 
ephrinB peptide (p313-335) 

To determine whether the ephrinB-Grb4-GIT1 pathway plays a physiological role in spine 

morphogenesis, we interfered with this pathway in two separate experiments. First, we 

over-expressed the SH2 domain of Grb4 (Grb4-SH2) in hippocampal neurons to interfere 

with the endogenous binding of GIT1 to Grb4. As a second approach, we transfected 

neurons with a short ephrinB peptide (p313-335), which is known to contain the amino 

acid sequence essential for interaction with Grb4 (Cowan and Henkemeyer, 2001). The 

relevance of GIT1 in spine maturation had already been shown via over-expression of 

GIT1-SLD, the recognition site for Grb4, which resulted in a severe increase of long, thin, 

filopodia-like protrusions on dendrites (Zhang et al., 2003). 
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Figure 5-6: Disruption of ephrinB signaling through Grb4-SH2 and ephrinB peptide (p313-
335). (a-c) Hippocampal neurons were transfected with YFP, Grb4-SH2 YFP or p313-335 YFP at 11DIV 
and analyzed for protrusion morphology three days later. Quantification of protrusion lengths of neurons 
expressing each of the constructs (n>500) are pictured in the lower panels. Scale bar 1µm. (d-f) Statistical 
analysis of protrusion length and frequency of mature spines (spines with heads) comparing YFP, Grb4-
SH2 YFP and p313-335 YFP expressing neurons. (SEM, * P<0.05; ** P<0.005; *** P<0.0005). 

We transfected hippocampal neurons (11DIV) with either YFP (control), Grb4-SH2 YFP, 

or p313-335 YFP and analyzed the morphology of dendritic protrusion after three days. 

The expression of both molecules led to an increase of long, thin protrusions resembling 

the described GIT1-SLD phenotype (Figure 5-6, a-c). The average protrusion length was 

increased from 1.47 µm ± 0.09 in control cells (YFP) to 2.27 µm ± 0.09 in Grb4-SH2 

YFP and to 2.26 µm ± 0.01 in p313-335 YFP transfected neurons (Figure 5-6, d). The 

percentage of filopodia-like protrusions was significantly increased from 21.6 % ± 4.0 in 

control cells (YFP) to 47.3 % ± 6.0 in Grb4-SH2 YFP and to 56.7 % ± 5.3 in p313-335 

YFP expressing cells (Figure 5-6, e). Conversely, the proportion of mature spines with 

heads was reduced from 59.8 % ± 5.2 in control neurons (YFP) to 38.3 % ± 2.6 in Grb4-
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SH2 YFP and to 37.3 % ± 3.6 in p313-335 YFP transfected neurons (Figure 5-6, f). 

These results clearly demonstrate the relevance of the ephrinB-Grb4-GIT1 signaling 

pathway in spine maturation of cultured hippocampal neurons. 

5.1.3.2 Disruption of ephrinB signaling through specific ephrinB mutants 

Given that Grb4 and GIT1 are essential for proper spine formation, we next confirmed 

the requirement for ephrinB reverse signaling acting upstream of Grb4 and GIT1. We 

expressed two different ephrinB mutants, one lacking the Grb4-binding sequence 

(ephrinB1Δ313-335 CFP) and the other deficient in phosphotyrosine signaling (ephrinB1-

6F CFP), in which all cytoplasmic tyrosines were replaced by phenylalanine. 

Hippocampal neurons 11DIV were transfected with CFP or ephrinB1Δ313-335 CFP or 

ephrinB1 6F CFP and analyzed for spine morphogenesis three days later. Both mutants led 

to a severe increase of filopodia-like dendritic protrusions (Figure 5-7, a-c). The average 

protrusion length increased from 1.78 µm ± 0.08 in control cells (CFP) to 2.67 µm ± 

0.09 in ephrinB1Δ313-335 CFP, and to 2.92 µm ± 0.10 in ephrinB1 6F CFP expressing 

neurons (Figure 5-7, d). The percentage of long filopodia was increased from 35.13 % ± 

4.03 in control neurons (CFP) to 76.25 % ±1.08 or 76.04 % ± 3.80 respectively in 

ephrinB1Δ313-335 CFP or ephrinB1 6F CFP transfected neurons. Moreover, most of the 

protrusions in both ephrinB1-mutant expressing cells were devoid of spine heads, a 

criterion used for the identification of mature spines. 

Taken together, these results demonstrate that the recruitment of GIT1 and Grb4 to 

synapses following ephrinB activation is essential for correct spine morphogenesis. 
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Figure 5-7 : Disruption of ephrinB signaling through ephrinB1Δ313-335 and ephrinB1 6F. 
(a-c) Hippocampal neurons were transfected with CFP, ephrinB1Δ313-335 CFP or ephrinB1 6F CFP at 
11DIV and analyzed for protrusion morphology three days later. Quantification of protrusion lengths of 
neurons under each transfection condition (n>500) are pictured in the lower panels. Scale bar 1µm. (d-f) 
Statistical analysis of protrusion length and frequency of mature spines (spines with heads) comparing CFP, 
ephrinB1Δ313-335 CFP and ephrinB1 6F CFP expressing neurons. (SEM, * P<0.05; ** P<0.005; *** 
P<0.0005). 

 

5.1.3.3 Disruption of ephrinB signaling via Grb4 and GIT1 impairs synapse 
formation 

Spine maturation during development and synaptic remodelling occur when synaptic 

contacts are stabilized. In cultured hippocampal neurons, spine morphogenesis goes hand-

in-hand with the establishment of synaptic contacts and consequent synapse formation. 

Interruption of ephrinB-Grb4-GIT1 signaling resulted in impaired spine maturation and 

led to an increase in immature filopodia-like dendritic protrusions. Therefore, we wanted 

to investigate whether synapse formation was affected in neurons expressing the signaling 
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inhibitors Grb4-SH2 and p313-335. We transfected hippocampal neurons at day 11 in 

culture with YFP only, Grb4-SH2 YFP, or p313-335 YFP and monitored synaptic markers 

three days after transfection. We used two different markers (PSD-95 as a postsynaptic 

molecule and synapsin1 as a presynaptic molecule) to detect synapses using 

immunofluorescence. Synapse density was determined by counting the numbers of PSD-

95 or synapsin1 positive clusters along different dendrite stretches for each condition. The 

numbers were normalized to a dendrite stretch of 100 µm. The neurons expressing Grb4-

SH2 or p313-335 showed a significant reduction in the number of clusters of both synaptic 

makers indicating a severe impairment in synapse maturation.  

 

 

 

Figure 5-8: Disruption of ephrinB-Grb4-GIT1 pathway affects synapse formation. (a+b) 
Hippocampal neurons (11DIV) were transfected with YFP (control) or with Grb4-SH2 YFP or p313-335 
YFP to interfere with downstream ephrinB signaling. Three days after transfection the neurons were 
analyzed for synapse formation via immunofluorescence using antibodies against the synaptic markers PSD-
95 (red) or synapsin1 (red). Scale bars 1 µm. (c) Quantification of synapse density per dendrite stretch for 
each transfection condition counting numbers of PSD-95 or Synapsin1 positive puncta. (SEM, *** P< 
0.0005). 

Taken together, ephrinB-reverse signaling via the recruitment of Grb4 and GIT1 is 

important not only for proper spine formation but is also necessary for neurons to make 

and stabilize synaptic contacts. 
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5.2 Serine phosphorylation of ephrinB2 regulates trafficking 
of synaptic AMPA receptors 

Previous studies have shown that ephrinB2 molecules play an important role in 

hippocampal plasticity (Grunwald et al., 2004). Indeed, mice lacking ephrinB2 have 

strong defects in Schaffer collateral long term potentiation (LTP) and long term 

depression (LTD), but the underlying molecular mechanisms are unknown. The results 

presented in the previous section point to a signaling complex containing Grb4 and GIT1 

that is involved in the regulation of spine formation by ephrinB ligand signaling (Segura et 

al., 2007). In addition to synapse morphology, ephrinB ligands might regulate other 

processes associated with synaptic plasticity. Since the number of active AMPA receptors 

at the postsynaptic site determines the strength and responsiveness of the synaptic contact, 

AMPA-receptor trafficking is a key process involved in LTP and LTD. LTP is known to be 

controlled by the incorporation of additional AMPA receptors into the active synapse, 

whereas, during LTD, AMPA receptors are removed from the postsynaptic sites by 

endocytosis (Beattie et al., 2000; Bredt and Nicoll, 2003; Hayashi et al., 2000; Lee et al., 

2002; Plant et al., 2006; Shi et al., 2001). In the following study we investigated whether 

the plasticity defects seen in ephrinB2 conditional knockouts are due to mis-regulation of 

AMPA-receptor trafficking. 

5.2.1 EphrinB2 reverse signaling regulates AMPA-receptor trafficking 

Two different approaches were used to study AMPA-receptor trafficking and to show the 

influence of ephrinB2 reverse signaling on this process.We used the biochemical technique 

of surface biotinylation to detect changes in the number of receptors present at the cell 

surface. A complementary immunofluorescence method we call “antibody feeding assay” 

was used to track receptor molecules moving in and out of the plasma membrane. 
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5.2.1.1 EphrinB2 reverse signaling prevents endocytosis of GluR2 in 293 
GluR2 cells 

In our biochemical experiments, 293 HEK cells stably expressing the GluR2 subunit of the 

AMPA receptor were transfected with ephrinB2 YFP and AMPA-receptor trafficking 

under various stimulation conditions was analyzed using surface biotinylation (7 Material 

and Methods). Cells plated in 10 cm culture dishes were starved for 24 hours after 

transfection and treated with a thiol-cleavable amine-reactive biotin to mark all proteins 

currently at the cell surface. Afterwards, the biotin-labelled cells were stimulated with 

pre-clustered EphB4-Fc or Fc (control) for 30 minutes and/or with 100 µM AMPA for 5 

minutes and their lysates analyzed for GluR2 internalization in Western blots (Figure 

5-9). 

Stimulation with AMPA resulted in a robust internalization of GluR2 indicated by a strong 

signal on the Western blot (Figure 5-9). In contrast, simultaneous activation of ephrinB2 

by EphB4-Fc, the ephrinB2 specific receptor, completely inhibited AMPA-induced GluR2 

internalization. EphB4-Fc stimulation alone slightly reduced the level of AMPA-receptor 

endocytosis compared to the control condition (Fc). 

 

 

Figure 5-9: EphrinB2 activation inhibits AMPA-receptor internalization in 293 GluR2 cells. 
Surface biotinylation assay using 293 HEK GluR2 cells transfected with ephrinB2 YFP and stimulated as 
indicated. The cells were incubated with biotin to label cell surface proteins. After stimulation, the 
remaining surface biotin was removed and the internalized biotin-marked molecules precipitated from the 
cell lysates with straptavidin beads. AMPA-receptor internalization was analyzed by Western blot using 
anti-GluR2 antibodies. The strength of the signal correlates to the amount of internalized AMPA 
receptors. 
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5.2.1.2 EphrinB2 reverse signaling blocks AMPA-receptor endocytosis in 
cultured hippocampal neurons 

We next investigated the influence of ephrinB2 on AMPA receptors in a more 

physiological system using primary hippocampal neurons. First, in analogy to the 293 cell-

experiment, we analyzed AMPA-receptor internalization as before by surface biotinylation 

(Figure 5-10, a). Hippocampal neurons isolated from E19 rats and cultivated for 14-18 

DIV were stimulated with pre-clustered EphB4-Fc or Fc for 1 hour and 100 µM AMPA 

was added for the last 10 minutes. As expected, AMPA stimulation resulted in an 

increased level of AMPA-receptor internalization (GluR2) when compared to the control 

condition (Fc). Again, in a manner similar to that observed in 293 GluR2 cells, 

simultaneous activation of ephrinB2 reverse signaling resulted in a strong inhibition of the 

AMPA-induced AMPA-receptor endocytosis. Quantifications of four independent 

experiments revealed this inhibition to be highly significant.  

The inhibitory effect of ephrinB2 was additionally analyzed using an ‘antibody feeding 

assay’ (Lin et al., 2000; Man et al., 2000). Here, a specific primary antibody (anti-GluR2 

or GluR1) was applied to the cells to mark the surface pool of AMPA receptors. 

Thereafter, the cells were stimulated to allow receptor internalization followed by 

fixation with PFA. AMPA-receptors retained on the cell surface were labelled with a 

green-tagged secondary antibody. Following permeabilization, a red-tagged secondary 

antibody was used to mark receptors internalized during the experiment. Representative 

images of each condition are shown in Figure 5-10, b.  
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Figure 5-10: EphrinB2 inhibits AMPA-receptor internalization in hippocampal neurons. (a) 
AMPA-receptor internalization (GluR2) in hippocampal neurons 21DIV under the indicated stimulation 
conditions analyzed using surface biotinylation assay (left panel) as in Figure 5-9. N-cadherin levels (N-
Cad) were unaffected. Quantification of four independent experiments (right panel) indicated as fold 
increase compared to Fc (control) (SEM, ** P < 0.005). (b) AMPA-receptor internalization under various 
stimulation conditions (B4: pre-clustered EphB4-Fc; CNQX: specific AMPA-receptor antagonist) 
visualized using the ‘antibody feeding assay’. Neurons 15-21 DIV were labeled with primary antibodies 
(anti-GluR2), stimulated, fixed and incubated with a first secondary antibody (green), recognizing surface 
retained receptors. A second secondary antibody (red) was applied after permeabilization to mark 
internalized receptors. Scale bar, 5 µm. (c) Quantification of AMPA-receptor internalization based on 
fluorescence intensities, shown as the percentage of internalized GluR2 (red) versus total GluR2 (red + 
green). The conditions analyzed are those illustrated in b. (SEM, *** P < 0.0005). (d) AMPA-receptor 
internalization monitored as trafficking of GluR1 and visualized using the ‘antibody feeding assay’ as in b. 
Scale bar, 5 µm. (e) Quantification of GluR1 internalization as in c. Conditions analyzed are represented in 
d (SEM, *** P < 0.0001). 



 Results 5 

72 

 

The internalization levels were quantified as percentage of internalized GluR2 versus total 

GluR2 (Figure 5-10, c). In control conditions, the basal level of AMPA-receptor 

internalization was 20.7 % ± 1.6 (green fluorescence signal Figure 5-10, b). Stimulation 

with 100 µM AMPA led to a strong AMPA-receptor internalization of 65.7 % ± 1.9 seen 

as an intense red signal (internalized GluR2) and a weak green signal (remnant surface 

receptors). Simultaneous ephrinB2 activation by pre-clustered EphB4-Fc significantly 

blocked AMPA-evoked internalization (36.8 % ± 3.3), to an extent comparable to that of 

a competitive antagonist of AMPA receptors (34.6 % ± 2.7), namely 6-cyano-7-

nitoquinoxaline-2, 3-dione (CNQX). 

AMPA receptors at active synapses are heteromers mainly composed of GluR1 and GluR2 

subunits. We therefore confirmed our observations using antibodies against GluR1 

(Figure 5-10, d+e). EphrinB2 activation resulted in a significant inhibition of AMPA-

induced GluR1 endocytosis (40.0 % ± 2.2 compared to solely AMPA stimulation 55.1 % 

± 2.4).  

5.2.1.3 EphrinB2 inhibits also the AMPA-receptor endocytosis following 
NMDA stimulation 

AMPA-receptor internalization is known to be induced in two different manners, first, by 

its direct activation through the specific agonist AMPA, and second indirectly via NMDA-

receptor activation. The latter has been shown to be important for the expression of long-

term depression (LTD) triggered by NMDA-receptor activation (Beattie et al., 2000). 

Therefore, we next tested whether ephrinB2 ligands would also inhibit AMPA-receptor 

endocytosis in neurons stimulated with NMDA. In these experiments, cultured 

hippocampal neurons were treated with pre-clustered EphB4-Fc or Fc for 1 hour while 50 

µM NMDA was added shortly for 2 minutes (10 minutes before the reaction was 

stopped). AMPA receptor endocytosis was visualized by the antibody feeding assay 

method, as illustrated in Figure 5-11, a, and quantified as percentage of internalized 

GluR2 versus total GluR2 (Figure 5-11, b). The basal level of AMPA-receptor 

endocytosis of 29.8 % ± 2.2 was increased after NMDA application (51.8 % ± 1.6) and 

was efficiently blocked by ephrinB2 activation (33.1 % ± 1.8).  
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Figure 5-11: EphrinB2 blocks NMDA-induced AMPA-receptor endocytosis. Hippocampal 
neurons (15-18DIV) stimulated as indicated and analyzed for AMPA-receptor (GluR2) internalization 
using the ‘antibody feeding assay’ as in Figure 5-9. (a) Neurons were incubated with Fc alone or with 50 
µM NMDA for 2 minutes together with pre-clustered EphB4-Fc or Fc (control). Surface retained 
receptors appear in green, internalized in red puncta. Scale bar, 5 µm. (b) Quantification of AMPA-
receptor internalization based on fluorescence intensities as in Figure 5-10 b. The conditions analyzed are 
those illustrated in b (SEM, *** P < 0.0001).  

Taken together, these results suggest that ephrinB2 reverse signaling regulates AMPA-

receptor trafficking by stabilizing the receptors at the cell membrane. Moreover, ephrinB2 

reverse signaling was also seen to inhibit NMDA-induced AMPA-receptor internalization 

suggesting a broader role for ephrinBs in the regulation of glutamate-receptor trafficking. 

5.2.2 Lack of ephrinB2 leads to enhanced AMPA-receptor 
internalization and reduced synaptic transmission 

We next addressed how AMPA-receptor trafficking is regulated in neurons that lack 

ephrinB2. The genomic ablation of ephrinB2 results in embryonic lethality (E11) due to a 

severe developmental defect in the vasculature (Adams et al., 2001; Wang et al., 1998). 

Therefore, to analyze AMPA-receptor endocytosis, we made use of a previously generated 

conditional ephrinB2 knockout mouse (ephrinB2lox/lox) crossed to a Nestin-Cre line that 

specifically deletes ephrinB2 from the nervous system (Grunwald et al., 2004). 
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5.2.2.1 EphrinB2 protein is absent in Nestin-Cre+ ephrinB2lox/lox mice 

First, we confirmed the successful ablation of the ephrinB2 protein in the nervous system 

of conditional ephrinB2 knockout Nestin-Cre+ animals (eB2KO) by various methods 

(Figure 5-12). Cortices from E17 eB2KO or control litter mates were homogenised and 

analyzed by Western blot as total lysates, or after a specific EphB4-Fc-pulldown that 

enriches the ephrinB2 protein (Figure 5-12, a+b). Neither the total lysates nor the 

specific pulldown showed a detectable level of ephrinB2 protein in these animals.  

 

Figure 5-12: EphrinB2 protein is absent in eB2KO neurons. (a) Total cortex lysates (TL) of E17 
embryos analyzed by Western blot using anti-ephrinB2 (R&D) antibodies. (b) EphrinB2 specific pulldown 
(EphB4-Fc) showed complete absence of ephrinB2 protein E17 cortex lysates of eB2KO mice in Western 
blot. (c) Primary hippocampal neurons 17DIV isolated from eB2KO or control litter mates stimulated 
with pre-clustered EphB4-Fc to induce ephrinB2 clusters. Cluster formation was visualized using anti-hFc 
cy2 antibodies. Scale bar, 5 µm. 

Additionally, we analyzed primary hippocampal neurons of eB2KO and control 

littermates for ephrinB2-expression. Neurons (17DIV) were stimulated with pre-

clustered EphB4-Fc or Fc (control) for 20 minutes and ephrinB2 clusters were visualized 
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by indirect detection of EphB4-Fc using anti-hFc-cy2 antibodies. While control cells 

showed punctuated, positive signals, typical for ephrinB2 surface clusters, the eB2KO 

neurons were completely devoid of any signal (Figure 5-12, c). 

5.2.2.2 eB2KO mouse neurons show enhanced constitutive AMPA-receptor 
internalization 

After verifying the absence of the ephrinB2 protein we analyzed the levels of AMPA-

receptor internalization in hippocampal neurons from eB2KO and control litter mates. 

Hippocampal neurons isolated from E17 eB2KO mice and control littermates were 

cultured for 15-17 days and the levels of AMPA-receptor endocytosis were determined by 

the antibody feeding assay method as in Figure 5-10 , a+b.  

 

 

 

Figure 5-13: EphrinB2 KO neurons show increased AMPA-receptor internalization. (a) 
Hippocampal neurons from eB2KO and control litter mates cultured for 16DIV and analyzed for AMPA-
receptor endocytosis by the antibody feeding assay under the indicated conditions as in Figure 5-10, b. 
Scale bars, 20 µm whole neurons, 5 µm enlargements. (b) Quantification of AMPA-receptor 
internalization pictured as percentage of internalized GluR2 versus total GluR2 under the conditions 
presented in a (SEM, *** P < 0.0001). (c) Total level of GluR2 was not affected in eB2KO neurons 
analyzed in Western blot using anti-GluR2 and anti-tubulin (control) antibodies. 
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Under control condition (Fc), eB2KO neurons already showed an increased level of 

AMPA-receptor internalization (55.4 % ± 1.7) compared to control cells (30.3 % ± 1.4). 

As expected, simultaneous stimulation with pre-clustered EphB4-Fc and 100 µM AMPA 

did not inhibit AMPA-induced receptor internalization since ephrinB2 is not present in 

these neurons. The lack of ephrinB2 protein resulted in a destabilization of AMPA 

receptors at the cell surface but had no effect on the total levels of GluR2 ( 

Figure 5-13, c). When total lysates of cultured hippocampal neurons (17DIV) from 

eB2KO mice and control litter mates were analyzed by Western blot, the levels of GluR2, 

in relation to tubulin, were unchanged. Thus, ephrinB2 regulates AMPA-receptor 

trafficking by influencing the levels of receptors at the surface. 

5.2.2.3 eB2KO neurons show reduced synaptic transmission 

The endocytosis rate and, consequently the actual surface presence of AMPA receptors, 

turned out to be affected in eB2KO neurons. Since the amount of AMPA receptors at 

synaptic sites influences synaptic transmission, we next investigated the 

electrophysiological properties of these eB2KO neurons. We recorded miniature 

excitatory postsynaptic currents (mEPSCs) that are caused by the spontaneous release of 

single presynaptic vesicles. The amplitude of the mEPSCs correlates with the number of 

synaptic AMPA receptors and can be used as a read-out for synaptic transmission 

properties. The electrophysiological analysis of mEPSCs in cultured eB2KO, and control 

litter mate neurons, was performed by Matthias Traut (MPI of Neurobiology, AG Stein). 

The eB2KO cells showed smaller mEPSCs and their mean amplitude was significantly 

reduced from 19.3 pA ± 1.1 in control neurons to 16.6 pA ± 0.6 in eB2KO neurons 

(Figure 5-14, a+b). Even though the synaptic transmission was reduced in KO neurons, 

the number of synapses, determined by the number of PSD-95 (post-synaptic marker) and 

synapsin1 (pre-synaptic marker) positive puncta per 100 µm-dendrite stretch, remained 

equal (Figure 5-14, c). Thus the lack of ephrinB2 in these neurons leads to increased 

AMPA-receptor endocytosis resulting in a decreased number of AMPA receptors at the 

synapse at a given time point. 
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Figure 5-14: eB2KO neurons show reduced synaptic transmission. (a) Cumulative probability 
histogram of mEPSC amplitudes of control (blue) and eB2KO (red) hippocampal neurons (Kolmogorov-
Smirnov test, P < 0.05, 80 events per cell, control n=10 cells, eB2KO n=13 cells). (b) Mean of mEPSC 
amplitudes in control and eB2KO hippocampal neurons (SEM, * P < 0.05). (c) Number of synapses in 
cultured hippocampal neurons of eB2KO and control litter mates. Quantified were numbers of PSD-95 
positive or synapsin1 positive clusters per 100 µm-dendrite stretches. (d) Stimulation with 10 mM KCl 
induces ephrinB2-cluster formation in hippocampal neurons. Surface clusters visualized via indirect 
detection with EphB4-Fc and anti-hFc antibodies. Scale bars, 20 µm whole neurons, 5 µm enlargements. 
(e) Quantification of ephrinB2 clusters after KCl stimulation pictured as number of clusters per 100 µm-
dendrite stretch (SEM, *** P < 0.00001). 

 

5.2.2.4 Hyperpolarization leads to ephrinB2 cluster formation 

The synaptic strength depends on the number of AMPA receptors at the synaptic surface. 

Insertion of additional AMPA receptors or endocytosis, respectively, is regulated by 

activity and assures the plasticity of synaptic contacts. Since ephrinB2 activation seemed to 



 Results 5 

78 

 

stabilize AMPA receptors at the cell surface, we wanted to determine whether ephrinB2 

clustering and reverse signaling could be influenced by neuronal activity. Therefore, we 

induced a change of the membrane potential in cultured hippocampal neurons by applying 

a hyperpolarizing 10 mM KCl solution for 10 minutes and examined the induction of 

ephrinB2 clusters. EphrinB2-cluster formation was visualized via indirect detection 

through EphB4-Fc and anti-hFc cy2 antibodies and was quantified as number of clusters 

per 100 µm-dendrite stretch (Figure 5-14, c). The hyperpolarization resulted in a 

significant increased number of ephrinB2 clusters from 52.8 ± 2.6 at control neurons to 

77.6 ± 2.6 after KCl-stimulation. 

5.2.3 GRIP molecules link ephrinB ligands to AMPA receptors 

In the previous section we showed that ephrinB2 ligands regulate AMPA-receptor 

trafficking by stabilizing the receptors at the cell surface. We next investigated the 

molecular mechanism of this effect. A candidate for the linker between ephrinB2 ligands 

and AMPA receptors is the group of glutamate-receptor-interacting proteins 

(GRIP1/ABP), known to bind to both AMPA receptors (Dong et al., 1997) and ephrinB 

ligands (Bruckner et al., 1999; Torres et al., 1998). Indeed, the association of GluR2 with 

ABP and/or GRIP was shown to be essential for maintaining the synaptic surface 

accumulation of AMPA receptors, possibly by limiting their endocytotic rate (Osten et al., 

2000). First, we investigated the presence of a triple interaction between GRIP, ephrinB2 

and AMPA receptors in neuronal tissue. We immunoprecipitated ephrinB from mouse 

brain (P20) and analyzed the samples by Western blot using different specific antibodies 

(Figure 5-15, a). Both GRIP1 and GluR2 were found to co-immunoprecipitate with 

ephrinB (left panel), whereas MAP2 (microtubule-associated protein 2), which is highly 

abundant in total lysates of neurons and thus serves as negative control, did not appear in 

the ephrinB-immunoprecipitates (right panel). 
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Figure 5-15: EphrinB2, GRIP and GluR2 interact in neuronal tissue. (a) Immunoprecipitaion of 
ephrinB from mouse brain (P20) analyzed by Western blot showed co-precipitation of GluR2 and GRIP1 
(left panel) but not microtubule-associated protein 2 (MAP2) (right panel). (b) EphrinB2, GRIP1 and 
GluR2 co-localize in cultured hippocampal neurons (21DIV), partially GluR2-ephrinB clusters overlap 
with postsynaptic markers (PSD-95). EphrinB2 cluster formation was induced by EphB4-Fc stimulation 
and visualized using anti-hFc cy2 antibodies. Arrowheads indicate triple co-localizations of ephrinB2, 
GluR2 and GRIP or PSD-95. (c) Unlike GRIP1 PICK1, a known AMPA receptor interactor, does not co-
localize with surface clusters of ephrinB2 in hippocampal neurons (21DIV). Cluster formations visualized 
as in b. Arrowheads indicate co-localization of GRIP and ephrinB2. Scale bar, 5 µm. 
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To determine the cellular compartment in which this triple interaction occurs, we 

analyzed cultured hippocampal neurons (21DIV) by immunofluorescence using antibodies 

against GRIP1, PSD-95, GluR2 and hFc (Figure 5-15, b). Neurons were stimulated with 

pre-clustered EphB4-Fc for 20 minutes and ephrinB2 clusters were visualized with anti-

hFc cy2 antibodies. Surface ephrinB2 was found to co-localize nicely with GluR2 and 

GRIP1 (indicated with arrowheads in the left panels) (Figure 5-15, b). Additionally, 

GluR2 and ephrinB2 showed co-localization with the postsynaptic maker PSD-95 

(arrowheads, right panels), suggesting that this co-localization occurs, partially, at 

postsynaptic sites.  

Besides GRIP1, another protein that is known to be involved in AMPA-receptor 

trafficking was considered as a candidate for the linker between GluR2 and ephrinB2. 

PICK1 was shown to bind to both GluR2 (Xia et al., 1999) and, by in vitro interaction 

studies, to ephrinB (Torres et al., 1998). Consistent with this, we were were able to co-

immunoprecipitate PICK1 with ephrinB from the mouse brain (data not shown). 

However, immunofluorescence studies of cultured neurons revealed no co-localization of 

PICK1 with surface ephrinB2 clusters (Figure 5-15, c) but only with intracellular pools of 

ephrinB2. Thus, if the ephrinB2-PICK1 interaction plays a role in AMPA-receptor 

internalization, it is likely to be at a later stage and might be only related to the 

internalized pools of AMPA receptors. 

5.2.4 GRIP molecules are required for ephrinB ligand-mediated 
AMPA-receptor stabilization 

GRIP1 co-localizes together with GluR2 and ephrinB2 in hippocampal neurons. A further 

question that needed to be addressed was whether this interaction was important for 

ephrinB2 mediated AMPA-receptor stabilization at the cell surface  

5.2.4.1 Interference of GRIP binding to ephrinB2 by a GRIP-peptide (PDZ6) 

GRIP proteins are PDZ-domain-containing proteins which bind via their PDZ6-domain to 

ephrinBs (Bruckner et al., 1999; Torres et al., 1998) and via their PDZ4 and PDZ5-

domains to AMPA receptors (Dong et al., 1997). Here, we performed an interference 
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approach by over-expressing the PDZ6-domain of GRIP in hippocampal neurons. This 

PDZ-domain acts as a dominant negative molecule binding to ephrinBs and thereby 

preventing endogenous GRIP1 to bind (Figure 5-16, a+b).  

 

 

 

Figure 5-16: Interference with GRIP-ephrinB2 interaction impairs AMPA-receptor 
stabilization. (a) Hippocampal neurons transfected with the dominant negative molecule GRIP1-PDZ6-
CFP were assayed for AMPA-receptor internalization by the antibody feeding assay. Neurons were 
stimulated as indicated with pre-clustered Fc (control) or EphB4-Fc alone or together with 100 µM 
AMPA. Internalized receptors appear in red, surface remaining receptors in green. Scale bars, 20 µm 
whole neurons, 5 µm enlargements. (b) Quantification of AMPA-receptor internalization pictured as 
percentage of internalized GluR2 versus total GluR2 in transfected neurons and control cells under the 
conditions presented in a. (SEM, *** P < 0.0001). (c) Over-expression of GRIP1-PDZ7-CFP in 
hippocampal neurons did not affect AMPA-receptor internalization when assayed under the conditions as 
in (a). (d) Quantification of GluR2 internalization of PDZ7 transfected neurons and control cells as in b. 
Scale bars, 20 µm whole neurons, 5 µm enlargements. (SEM, *** P < 0.0001). 
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Hippocampal neurons were transfected with PDZ6-CFP at 11 days in culture and analyzed 

2-4 days later by the aforementioned antibody feeding assay. Under control conditions 

(Fc) transfected neurons already showed a slight increase in AMPA-receptor 

internalization compared to untransfected control cells (33.1 % ± 1.8 internalization in 

GRIP1 PDZ6 transfected neurons compared to 19.5 % ± 1.3 in control transfected 

neurons). AMPA-receptor endocytosis was successfully induced by 100 µM AMPA in 

both the PDZ6 over-expressing and control cells. Importantly, AMPA-induced receptor 

endocytosis was no longer inhibited by ephrinB2 activation with pre-clustered EphB4-Fc 

in the PDZ6-expressing cells. Therefore, interfering with the binding of GRIP1 to 

ephrinB2 seemed to disrupt AMPA-receptor stabilization via ephrinB2.  

To verify, whether the effect seen in PDZ6-over-expressing neurons was specific, we 

transfected neurons with a different PDZ-domain of GRIP (PDZ7), unable to bind to 

ephrinB2, and determined AMPA-receptor endocytosis in these neurons (Figure 5-16, 

c+d). The analysis of PDZ7-CFP expressing cells revealed no differences in AMPA-

receptor internalization compared to control cells. The same levels of AMPA-receptor 

endocytosis were observed under control conditions (Fc) (33.8 % ± 1 transfected 

compared to 34.3 % ± 1.2 untransfected neurons) and ephrinB2 activation successfully 

inhibited AMPA-induced receptor internalization in control and PDZ7-expressing cells 

(32.5 % ± 1.2 to 32.6 % ± 1.4 respectively). 

5.2.4.2 Interference of GRIP binding to ephrinB2 by ephrinB2-peptide  

A second way to interfere with GRIP binding to ephrinB2 is to over-express an ephrinB2 

peptide that contains the GRIP-binding sequence. The sequence of the last 22 amino acids 

of ephrinB2 was cloned into a CFP-N-terminal-fusion plasmid to generate B2-pepWT 

CFP. Hippocampal neurons (11DIV) were transfected with B2-pepWT CFP and analyzed 

for AMPA-receptor internalization by the antibody feeding assay method 2-4 days later. 

This treatment increased AMPA-receptor internalization even without AMPA stimulation 

(45.7 % ± 1.9 compared to to 23.2 % ± 1.3 in the untransfected controls) (Figure 5-17). 

AMPA treatment resulted in an increase of AMPA-receptor endocytosis in both 

transfected (56.2 % ± 2.0) and untransfected neurons (56.3 % ± 2.0). Simultaneous 
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activation of ephrinB2 effectively blocked AMPA-induced receptor endocytosis in control 

cells (29.5 % ± 1.6). In B2-pepWT CFP-expressing neurons a smaller reduction (45.7 % 

± 2.1) was observed. Most probably the peptide was not able to completely inhibit 

endogenous ephrinB2-GRIP interaction. 

 

 

 

Figure 5-17: Interference with GRIP-ephrinB2 interaction with an ephrinB2 peptide. (a) 
Hippocampal neurons transfected with the ephrinB2 peptide B2-pepWT CFP were assayed for AMPA-
receptor internalization by the antibody feeding assay. Neurons were stimulated as indicated with pre-
clustered Fc (control) or EphB4-Fc alone or together with 100 µM AMPA. Internalized receptors appear 
in red, surface remaining receptors in green. (b) Quantification of AMPA receptor internalization as in 
Figure 5-16 (SEM, *** P < 0.0001). 

 

5.2.4.3 EphrinB2 activation decreased GluR2 phosphorylation levels 

The binding of GRIP to AMPA receptors is known to be regulated by the phosphorylation 

of Serine880 (ser880) in GluR2. GRIP1 stabilizes AMPA receptors at membranes while 

binding to the unphosphorylated GluR2 subunit (Matsuda et al., 1999). Upon receptor 

activation, the GluR2 subunit is phosphorylated at ser880. This event leads to the 

dissociation of GRIP1 and enables PICK1 to bind to GluR2 thus initiating AMPA-receptor 

internalization (Chung et al., 2000). Furthermore, binding of GRIP to GluR2 has been 



 Results 5 

84 

 

shown to inhibit ser880 phosphorylation (Fu et al., 2003). Since ephrinB2 seemed to 

stabilize AMPA receptors at the surface via GRIP1, we wondered whether eprhinB2 

activation might have a direct effect on the serine-phosphorylation status of GluR2. 

Therefore, we stimulated cultured hippocampal neurons (18DIV) with pre-clustered Fc 

(control), EphB4-Fc alone, or EphB4-Fc together with AMPA and assayed levels of ser880 

phosphorylation by Western blot with a phosphorylation-specific antibody. As expected, 

AMPA-receptor activation with 100 µM AMPA led to high levels of ser880 

phosphorylation of the GluR2 subunit. Importantly, co-stimulation together with EphB4-

Fc inhibited AMPA-induced serine-phosphorylation, supporting our model that ephrinB2 

stabilizes AMPA receptors at the membrane via GRIP1.  

 

 

 

Figure 5-18: EphrinB2 inhibits activation induced ser880 phosphorylation in GluR2. (a) 
Hippocampal neurons (20DIV) were stimulated as indicated with pre-clustered Fc, EphB4-Fc alone or 
together with 100 µM AMPA, immunoprecipitated (IP) for GluR2 and analyzed by Western blot for 
phospho-ser880 GluR2 and total GluR2. (b) Lack of ephrinB2 increased phospho-ser880 GluR2 levels in 
cultured hippocampal neurons. eB2KO and control litter mate neurons were cultured for 16 days and 
analyzed for levels of ser880-phosphorylation by immunoprecipitation of GluR2 and analysis by Western 
blot. 
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5.2.5 GRIP binding to ephrinB ligands is regulated by activation 
through EphB receptors 

Like GRIP binding to GluR2, the association of GRIP with ephrinB also appears to be 

regulated. The following experiments were performed by Manuel Zimmer (MPI of 

Neurobiology, AG Klein) and are described in his thesis. Since they are part of our 

collaborative publication I will briefly describe them in the following section 

NIH3T3 cells stably expressing myc-tagged GRIP and HA-tagged ephrinB were stimulated 

with pre-clustered Fc (control) or EphB2-Fc and the lysates were immunoprecipitated for 

ephrinB using anti-HA antibodies. Only upon activation with the receptor (EphB2-Fc) was 

GRIP seen to bind and co-immunoprecipitate with ephrinB-HA (Figure 5-19, a). The 

intracellular tail of the ephrinB ligand is responsible for the receptor-induced interaction 

with GRIP. No interaction was seen in stable clones (NIH3T3) expressing a truncated 

form of ephrinB lacking the intracellular part (eBΔC). 

 

 

 

Figure 5-19: GRIP binding to ephrinB regulated by receptor binding. (a) GRIP binding to 
ephrinB ligands is induced by stimulation with EphB receptors. Stable cell lines co-expressing a myc-tagged 
version of GRIP (myc-GRIP) and an HA-tagged version of wild-type or C-terminally truncated ephrinB 
were generated from NIH3T3 cells. Lysates from these cells were immunoprecipitated with anti-HA 
antibodies and analyzed by Western Blot using anti-HA and anti-myc antibodies. Immunoprecipitation 
with anti-myc antibodies showed same levels of GRIP expression in both cell lines (right panel). (b) 
EphB2-Fc, GRIP and ephrinB interact in a ternary complex. NIH3T3 cells stably expressing HA-ephrinB 
and myc-GRIP were stimulated with Fc, EphB2-Fc or clustered EphB2-Fc (EphB2-Fc+anti-Fc). Lysates 
were used for ProteinG affinity purification. 
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Additionally, GRIP, ephrinB and EphB2 interact in a ternary complex. When NIH3T3 

cells, stably expressing ephrinB-HA and GRIP-myc, were stimulated with pre-clustered 

EphB2-Fc, ephrinB and GRIP were found in precipitates from ephrinB-specific pull-down 

experiments (Figure 5-19, b) 

5.2.6 Serine phosphorylation in ephrinB ligands regulates PDZ-
interactions 

The following experiments were performed by Amparo Acker-Palmer (Figure 5-20, 

Figure 5-21, d), and in collaboration with Manuel Zimmer and Elsa Martinez (Figure 

5-21, a+b). 

In the course of a different study concerning the tyrosine phosphorylation of ephrinB 

ligands (Palmer et al., 2002), Acker-Palmer observed that ephrinB ligands were also 

phosphorylated on serine residues. Further analysis using an in vitro kinase assay (Figure 

5-20, b) revealed serine-9 as the major phosphorylation site. Tyrosine dependent signaling 

was shown to be independent of serine phosphorylation. A line of NIH3T3 cells was 

dervied which stably express a mutant ephrinB1 (HA-eB S-9>A) where serine-9 was 

changed to alanine and, therefore, silenced for phosphorylation. Upon receptor activation 

(pre-clustered EphB2-Fc) the recruitment of tyrosine kinase Src, as well as the membrane 

cluster formation in these cells was unaffected (A. Acker-Palmer, data not shown). 

Furthermore, when the stable clones were stimulated with EphB2-Fc no differences in 

tyrosine-phosphorylation levels were observed compared to clones expressing the wild 

type version of ephrinB (HA-eB) (Figure 5-20, c).  
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Figure 5-20: EphrinB is phosphorylated in serine residues. (a) The scheme of the intracellular 
part of ephrinB ligands shows five conserved tyrosine residues (red), two conserved serine residues (green 
boxes) and one c-terminal PDZ-binding motif (purple box). (b) In vitro kinase assay using total lysates of 
EphB2 activated NIH3T3 cells and the cytoplasmic domain of ephrinB1 fused to GST (GST-cytoB1) or the 
mutants GST-cytoB1 S-9>A and GST-cytoB1 S-26>A as a substrate showed Serine-9 as the major 
phosphorylation site. (c) Serine phosphorylation does not affect tyrosine signaling. NIH3T3 cells stably 
expressing ephrinB-HA wildtype or ephrinB S-9>A-HA mutant were stimulated with pre-clustered Fc or 
EphB2-Fc and assayed for tyrosine phosphorylation levels by immunoprecipitation with anti- HA 
antibodies and by Western blot using anti-tyrosine antibodies (4G10).  

 

5.2.6.1 Serine-9 regulates the binding to GRIP 

The major phosphorylation site in ephrinB ligands, namely serine-9, is found in close 

proximity to the C-terminal PDZ-binding motif. It has been postulated that residues up to 

11-14 amino acids upstream of this motif may influence the binding capabilities of PDZ-

target sites (Cai et al., 2002; van Ham and Hendriks, 2003). GRIP1 binding to GluR2 has 

been shown to be regulated by serine phosphorylation. Therefore, we wanted to 

determine whether serine-phosphorylation in ephrinB ligands might regulate its PDZ-

binding properties. 
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NIH3T3 cells stably expressing myc-GRIP together with either HA-eB, HA-eB S-9>A, or 

HA-eB S-9>E (the latter mimics serine phosphorylation) were stimulated with pre-

clustered Fc (control) or EphB2-Fc for 10 minutes and the lysates immunoprecipitated for 

ephrinB (Figure 5-21, a). Western blot analysis revealed the ephrinB S-9>A mutant to be 

incapable of interacting with GRIP, whereas the ephrinB S-9>E mutant was found to bind 

GRIP constitutively. The levels of GRIP protein were equal in all cell lines (small panels).  

5.2.6.2 Tyrosine phosphorylation is not required for GRIP binding 

GRIP binding to ephrinB seemed to be solely dependent on the phosphorylation of serine-

9. A possible phosphotyrosine dependence of this interaction was excluded after 

performing in vitro and in vivo interaction studies. Here, NIH3T3 cells, stably expressing 

myc-GRIP and either HA-eB or HA-eB 6F>Y, in which tyrosine residues are mutated to 

phenylalanine and silenced for phosphorylation, were treated as described in 5.2.6.1. 

Western blot analysis revealed that the binding of GRIP to HA-eB 6Y>F was not affected 

(Figure 5-21, b). We next confirmed that the regulation of GRIP binding to ephrinB does 

not depend on tyrosine-phosphorylation in vivo. To do so, we analyzed brain lysates from 

knock-in mice in which the cDNA encoding ephrinB2, either wild type (ephrinB2-WT) or 

mutated on its tyrosine residues (ephrinB2-5Y), was inserted into the ephrinB2 gene locus 

(Makinen et al., 2005). Immunoprecipitation from brain lysates of these mice showed that 

both the ephrinB2-5Y and the ephrinB2-WT proteins equally associate with GRIP in vivo 

(Figure 5-21, c). Moreover, EphB-induced ephrinB tyrosine phosphorylation in cells has 

been shown to be transient and decreases progressively after removal of the stimulating 

factor EphB2-Fc (Amparo Acker-Palmer, 2002). However, this de-phosphorylation of 

ephrinB ligands did not affect the binding of GRIP (Figure 5-21, d). Taken together, these 

results indicate that PDZ-interaction is not affected by tyrosine phosphorylation but, 

interestingly, is exclusively regulated by the newly characterized serine phosphorylation of 

ephrinB ligands.  
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Figure 5-21: Serine-9 phosphorylation regulated GRIP binding. (a) Lysates from NIH3T3 cells 
stably expressing myc-GRIP and HA-ephrinB (HA-eB) or the mutants HA-ephrinB S-9>A (HA-eB S-9>A) 
and HA-ephrinB S-9>E (HA-eB S-9>E) were stimulated with Fc or EphB2-Fc and analyzed by 
immunoprecipitation (IP) with anti-HA antibodies and by Western Blot with anti-myc and anti-HA 
antibodies. IP with anti-myc antibodies showed same levels of GRIP expression in all cell lines. (b-d) 
Tyrosine phosphorylation of ephrinB ligands does not regulate GRIP binding in vitro and in vivo. Lysates 
from NIH3T3 cells stably expressing HA-ephrinB (HA-eB) or the mutant HA-ephrinB 6Y>F (HA-eB 
6Y>F) together with myc-GRIP were immunoprecipitated with anti-HA antibodies and analyzed by 
Western Blot with anti-myc and anti-HA antibodies (b). Brain lysates from ephrinB2-5Y knock-in mice 
and their control littermates were used for EphB4-Fc pulldowns and analyzed by Western Blot using anti-
ephrinB2 and anti-GRIP1 antibodies (c). NIH3T3 cells stably expressing HA-ephrinB (HA-eB) and myc-
GRIP were stimulated with pre-clustered EphB2-Fc for 10 minutes and lysed after the indicated time 
points analyzed by anti-HA immunoprecipitation and by Western blot using anti-myc and anti-tyrosine 
antibodies (d). 
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5.2.7 Serine phosphorylation of ephrinB ligands regulates AMPA-
receptor internalization 

In the previous sections we showed that GRIP1, GluR2 and ephrinB2 interact in neurons. 

In fact, the binding of GRIP1 to ephrinB2 is required for ephrinB2 mediated AMPA-

receptor stabilization since over-expression of GRIP1-PDZ6 domain interfered with this 

function. In addition, we demonstrated that the binding of GRIP to ephrinB is regulated 

upon receptor binding and we mapped the site of regulation to a serine residue located in 

proximity to the PDZ-binding motif of ephrinB. To confirm the importance of ephrinB2 

and particularly the role of its serine phosphorylation in AMPA-receptor endocytosis, we 

performed a rescue experiment. EphrinB2 KO neurons, which show constitutive 

internalization of AMPA receptors, were transfected with ephrinB2, ephrinB2 S-9>A or 

ephrinB2 S-9>E and assayed for the rescue of this phenotype. 

5.2.7.1 EphrinB2 constructs are functional 

For the rescue experiment two mutant constructs (ephrinB2 S-9>A and ephrinB S-9>E) 

were generated from wild type ephrinB2-CFP by site directed mutagenesis PCR (Material 

and Methods 7). Prior to the actual experiment the different constructs were tested for 

proper surface expression and cluster formation abilities. Neurons (17DIV) were 

transfected with the three different ephrinB2 plasmids and stimulated with pre-clustered 

EphB4-Fc to induce surface clusters. All constructs were appropriately expressed in 

neurons and they all showed the typical ephrinB cluster formation after EphB4-Fc 

application (Figure 5-22). 
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Figure 5-22: EphrinB2 constructs are functional. Hippocampal neurons transfected with ephrinB2-
CFP, ephrinB2 S>A-CFP or ephrinB2 S>E-CFP were stimulated with pre-clustered EphB4-Fc or Fc 
(control) and assayed for surface cluster formation. EphrinB2 surface clusters were visualized by detection 
of surface bound EphB4-Fc with anti-hFc cy2 antibodies.  

 

5.2.7.2 EphrinB wild type, but not the serine mutant rescues the eB2KO 
phenotype 

Hippocampal neurons isolated from conditional eB2KO mice showed increased levels of 

AMPA-receptor internalization under basal conditions. These neurons were transfected 

with ephrinB2-CFP, ephrinB2 S>A-CFP or ephrinB2 S>E-CFP and analyzed for AMPA-

receptor endocytosis after five days of expression. The cells were stimulated with pre-

clustered EphB4-Fc for 1 hour to activate the reintroduced ephrinB prior to performing 

the antibody feeding assay. Neurons expressing the wild type version of ephrinB2 

(ephrinB2-CFP) showed a significant decrease in AMPA-receptor internalization (34.5% 

± 4.3) compared to untransfected control cells (60.0 % ± 4.7) (Figure 5-23, a+b; left 

panel). When ephrinB2 mutated at serine-9 to alanine was introduced to the eB2KO 

neurons, the internalization rate of transfected and non-transfected cells (52.0 % ± 3.1 

and 49.1 ± 3.3 respectively) was uneffected (Figure 5-23, a+b; middle panel). 
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Conversely, the mutant ephrinB2 S>E that binds GRIP1 constitutively rescued the KO 

phenotype. (Figure 5-23, a+b; right panel).  

Taken together, reintroduction of the ephrinB2 wild type protein to ephrinB2-KO 

neurons rescued their phenotype (high levels of AMPA-receptor endocytosis), highlighting 

the importance of ephrinB2 in the regulation of AMPA-receptor trafficking. However, the 

phosphorylation mutant ephrinB2 S>A, which is incapable of binding to GRIP1, did not 

lead to rescue underscoring the relevance of GRIP1-ephrinB2 interaction in stabilizing 

AMPA receptors at the cell surface. 

In summary, we describe a novel regulatory mechanism involving the serine 

phosphorylation of ephrinB ligands. Our findings open a new research perspective which 

will help to broaden our understanding of how serine phosphorylation contributes to the 

different functions of Eph and ephrins. 
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Figure 5-23: EphrinB2 serine-9 phosphorylation required for AMPA-receptor stabilization. 
(a) Rescue experiment using hippocampal neurons from eB2KO mice that showed constitutive AMPA-
receptor internalization. Cells transfected with ephrinB2 -CFP (eB2 -CFP), ephrinB2 S>A-CFP (eB2 S-
9>A-CFP) or ephrinB2 S>E-CFP (eB2 S-9>E-CFP) were stimulated with pre-clustered EphB4-Fc and 
analyzed for AMPA-receptor trafficking by the antibody feeding assay. Surface remaining receptors were 
labelled in green, internalized GluR2 in red. Scale bars, 20 µm whole neurons, 5 µm enlargements. (b) 
Quantification of AMPA-receptor internalization in eB2 -CFP-transfected neurons (left panel), eB2 S-
9>A-CFP-transfected neurons (middle panel) and eB2 S-9>E-CFP-transfected neurons (right panel) 
versus untransfected neurons shown representatively in a. Quantification pictured as percentage of 
internalized GluR2 versus total GluR2 in transfected neurons and control cells (SEM, *** P < 0.0001).



 

 



6 Discussion 

6.1 Grb4 and GIT1 transduce ephrinB reverse signals 
modulating spine morphogenesis and synapse formation 

6.1.1 EphrinB ligands induce spine morphogenesis 

EphB receptor forward signaling is known to be involved in spine maturation and 

synaptogenesis.. Hippocampal neurons of triple EphB1-3 receptor knockout mice showed 

reduced numbers of mature spines and synapses (Henkemeyer et al., 2003). Furthermore, 

the activation of EphB receptor forward signaling by application of soluble ephrinB ligand 

molecules induced spine maturation in cultured neurons (Henkemeyer et al., 2003; 

Segura et al., 2007). In vivo, Eph-receptor forward signaling, dependent on GRIP1 

interactions, has been shown to be essential for the mossy fiber pathway plasticity where 

ephrinB ligands expressed at the presynaptic dentate gyrus neurons stimulate EphB 

receptors at the postsynaptic CA3 region (Contractor et al., 2002). In the Schaffer 

collateral pathway only ephrin B ligands are expressed at the postsynaptic CA1 region and 

therefore reverse signaling has been postulated to control this form of plasticity 

(Grunwald et al., 2004). The molecular pathways of ephrinB-reverse signaling involved in 

Schaffer collateral plasticity were until now unknown. We now show that ephrinB-reverse 

signaling can modulate spine morphogenesis and elucidate the molecular pathway that 

governs this function. 

We cultured hippocampal neurons for 14 days, during which most of the neurons in 

culture develop a mature dendritic tree with a mix of spine- and filopodia-like 

protrusions, as well as functional synaptic contacts expressing AMPA receptors at their 

surface. These neurons highly express ephrinB ligands, which we showed were enriched in 

postsynaptic fractions of brains, and co-localized with postsynaptic markers in these 

cultured neurons. Stimulation of the neurons with recombinant clustered EphB2-Fc 

fusion-proteins resulted in a reduction of long, filopodia-like protrusions and led to an 

increased number of mature spines with characteristically short dendritic shafts and 
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bulbous shaped heads. More importantly, the increased spine maturation induced by 

ephrinB activation did not require Eph receptor signaling since neurons with blocked 

receptor signaling were still able to develop mature spines. Eph receptors and ephrinB 

ligands seem to have independent roles in spine maturation since the induction of Eph 

receptor mediated spine maturation occurred despite the inhibition of reverse signaling by 

over-expression of a dominant negative ephrinB molecule (ephrinB∆C- lacking the 

intracellular domain). Therefore, it is evident that ephrinB ligands have their own 

signaling role in the complex network that governs spine maturation and synapse 

formation. 

In cultured hippocampal neurons, the contribution of ephrinBs is decisive, and over-

expression of the dominant negative ephrinB∆C resulted in severely impaired spine 

maturation. These neurons appeared to have increased filopodia-like protrusions 

compared to control cells, giving them a ‘hairy’ phenotype. In adult mice, no obvious 

spine morphogenesis phenotype of mice lacking ephrinB3 or ephrinB2 has been reported 

in the literature. This could be explained by a possible redundancy and compensation 

among the three ephrinB molecules. Impaired ephrinB-reverse signaling shifted the 

distribution of dendritic protrusions from mature to more immature filopodia-like spines 

and, as a result, a reduced number of mature synaptic contacts was apparent. This 

observation is in line with the idea that synaptic contacts are stabilized and mature upon 

the formation of dendritic spines. Opinions differ on the importance of ephrinB3 or 

ephrinB2 in the adult central nervous system. Knockout mutants show contradictory 

results range from “no difference” to an increase in the total number or even a decrease of 

a certain synapse type such as shaft synapses (Aoto and Chen, 2007; Grunwald et al., 

2004; Rodenas-Ruano et al., 2006). The reasons for these differences could lie in the 

genetic background of the mice or in the degree to which other ephrinB ligands 

compensate for the missing ephrinB ligand. Nevertheless, the effect of ephrinB-reverse 

signaling we observed in isolated neurons maturing in culture was striking. In vivo, spine 

morphology defects will most likely only appear to be striking in triple ephrinB1-B3 

knockouts. 
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Even though our results were obtained in young developing neurons, the pathway we 

elucidated downstream of ephrinB ligands could possibly remain relevant throughout the 

life time of a neuron. EphrinB expression remains relatively constant during adulthood 

and could therefore quite possibly function in regulating spine morphogenesis and synapse 

formation in mature animals. Spine dynamics, including spine formation, stabilization 

and/or removal, is one of the key components during plasticity and serves as a basis for 

learning and memory. Similarly to their role during developmental spine morphogenesis, 

the ephrinB ligands could well mediate spine formation and stabilization underlying adult 

synaptic plasticity. 

The bi-directional ephrin/Eph signaling system appears to be used differently depending 

on the synapses involved (Grunwald et al., 2004). In vivo, at the mossy fiber-CA3 

synapse, ephrinB3 is exclusively expressed by presynaptic dentate gyrus cells while the 

EphB2 receptor is expressed by both presynaptic dentate gyrus and postsynaptic CA3 

neurons. At this synapse, EphB2 receptors interact specifically with postsynaptic proteins 

(NMDA receptors) to regulate LTP and, moreover, act as receptors for presynaptic-

ephrinB-ligand-induced NMDA-independent forms of plasticity. At the synapse between 

CA3 and CA1 neurons, ephrinBs are mainly localized postsynaptically in CA1 neurons, 

while the relevant Eph receptors are expressed by both pre- and postsynaptic neurons. 

Here, the role of Eph receptors and ephrinB ligands at the synapse is still very poorly 

understood. For example, given that a postsynaptic neuron simultaneously expresses Eph 

receptors and ephrin B ligands, it is possible that its receptors could act in cis to activate 

the ligands. So far, however, this has not been studied. The Eph/ephrin system is not the 

only one which is acting both pre- and postsynaptically. Other bi-directional signaling 

systems, such as transmembrane semaphorins, have also been shown to function both pre- 

and postsynaptically during synaptogenesis. It is important to emphasize that the pathway 

described in this thesis could well act downstream of ephrinB ligands at pre and 

postsynaptic sites, since the cultures we used express these ligands both pre- and 

postsynaptically. 
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6.1.2 Grb4 and GIT1 transduce ephrinB reverse signals 

In this study we have dissected the signaling pathway downstream of ephrinB ligands that 

stimulates spine maturation. Spine formation and morphogenesis were previously shown 

to require local Rac activity, produced by the assembly of a signaling complex including 

G-protein coupled receptor kinase-interacting protein 1 (GIT1) and the exchange factor 

for Rac, β-Pix. Downstream of Rac a signaling pathway including p21-activated kinase and 

myosinII regulatory light chain (MLC) was shown to be essential for synapse formation 

(Zhang et al., 2003; Zhang et al., 2005). Interestingly, the molecule recruiting this 

signaling module to synapses remained so far unknown. We have now shown that ephrinB 

ligands recruit the GIT1-βPIX-Rac complex, via the adaptor protein Grb4, to the synaptic 

membrane thereby initiating spine formation. In cultured hippocampal neurons this can be 

induced by activation of ephrinB ligands with soluble EphB2-Fc receptor fusion proteins. 

Under physiological conditions, this would mean that a positive signal from an opposing 

cell, achieved by cell-to-cell contact exposing Eph receptors to ephrinB ligands, is able to 

induce spine morphogenesis, contact stabilization and consequently synapse maturation. 

Similar processes are known to be triggered by other membrane-bound molecules such as 

cadherins, protocadherins, synCAM and neuroligin-neurexins.  

We verified the relevance of the GIT1-βPIX-Rac signaling pathway during ephrinB-evoked 

spine formation by inhibiting it with dominant negative effectors at various levels. We used 

the ephrinB peptide (p313-335) that binds to Grb4 and prevents its binding to endogenous 

ephrinB, therefore disrupting the recruitment of Grb4-GIT1-βPIX-Rac to the synaptic 

membrane. We also interfered with the binding of Grb4 to GIT1 by over-expressing the 

SLD domain of Grb4. Both interference experiments resulted in a complete impairment of 

ephrinB-evoked spine morphogenesis; the neurons showed a strong ‘hairy’ phenotype and 

a reduced number of synaptic contacts. The latter result is in accordance with an 

observation described by Zhang et al. (2003), who found a strong increase of filopodia-like 

protrusions when the SLD domain of Grb4 was introduced into cultured hippocampal 

neurons (Zhang et al., 2003). Additionally, and to verify the requirement of ephrinB 

ligands immediately upstream of the Grb4-GIT1-βPIX-Rac complex, we over-expressed 
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ephrinB signaling mutants (ephrinB∆313-335 – lacking the Grb4 binding site, and 

eprhinB1-6F – tyrosine phosphorylation mutant). These complementary experiments 

resulted in the same phenotype disturbing the proper formation and maturation of spines. 

Therefore, we suggest that Grb4 serves as the bridging molecule between ephrinB ligands 

and GIT1 thus recruiting the Rac-activation complex to synapses.  

 

 

Figure 6-1: Our model of ephrinB-reverse signaling pathway during spine formation. 
EphrinB ligands are located at the synaptic membrane and are activated by opposed Eph receptors during 
synaptic contacting. Upon receptor binding ephrinB ligands form clusters assembling activated Src family 
kinases (SFK). Src phosphorylates GIT1 on tyrosine 392 located in the SLD (synaptic localization domain) 
and now allows Grb4 to bind. Grb4 in turn interacts with membrane anchored ephrinB via its SH3 domain 
and localizes the Rac signaling complex, composed of GIT1 and βPix (exchange factor for Rac) to the 
synaptic compartment.  

In conclusion, for the first time, we have shown an important role for ephrinB-reverse 

signaling in spine formation and have mapped out the ephrinB-reverse signaling pathway 

involved in this process, thus shedding light onto the molecular mechanisms that might 

govern ephrinB-reverse signaling function in important processes involving spine 

morphogenesis such as synaptic plasticity (Segura et al., 2007). 
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6.2 Serine phosphorylation of ephrinB2 regulates trafficking 
of synaptic AMPA receptors 

EphrinB ligands are known as multifunctional molecules highly expressed on neuronal 

cells such as hippocampal neurons. The results discussed in section 6.1 point to a signaling 

complex containing Grb4 and GIT1 that is involved in the regulation of spine formation by 

ephrinB ligand signaling (Segura et al., 2007). In addition to changes in synapse 

morphology, ephrinB ligands might be regulating other important processes associated 

with synaptic plasticity. One factor crucial for synaptic plasticity is the number of active 

AMPA receptors at the synaptic surface. Long-term synaptic changes, such as LTP and 

LTD, require that AMPA receptors traffic to or away from the synapse. In recent years, 

great efforts have been made to identify molecules involved in LTP induction and AMPA 

receptor trafficking. The ablation of ephrinB ligands in mice leads to pronounced defects 

in both hippocampal LTD and LTP, and impaired AMPA-receptor trafficking could 

explain the plasticity defects seen in these animals. We now provide provide evidence that 

ephrinB2 ligands are involved in the stabilization of AMPA receptors at the cell surface of 

neurons contributing to the regulation of AMPA-receptor trafficking. Furthermore, this 

role seems to be specific to ephrinB2 and, therefore, cannot be compensated for by other 

ephrinB ligand family members.  

We used two different expression systems (293GluR2 cells and primary hippocampal 

neurons), and two different approaches (biotinylation and immunofluorescence assays) to 

verify the impact of ephrinB2 molecules on AMPA-receptor internalization. In every assay 

used, ephrinB2 activation led to a robust inhibition of AMPA-induced AMPA-receptor 

internalization to an extent comparable to that of the AMPA receptor antagonist CNQX. 

Basic levels of AMPA-receptor internalization under non-stimulated conditions (Fc-

fragment) as well as the levels induced by AMPA stimulation were consistent with 

previous findings (Lin et al., 2000). Basic trafficking levels arise from AMPA receptors 

that exchange continuously between their surface and intracellular pools, as well as 

between synaptic and extra-synaptic sites. This allows rapid modulation of synaptic 
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receptor-density independent of neuronal activity. In our assays, EphB4 stimulation alone 

did not lead to a significant change in the basic levels of AMPA-receptor trafficking, a 

phenomenon which is most probably due to insufficient sensitivity of our assay. We 

observed a large increase of AMPA-receptor internalization in neurons lacking ephrinB2 

ligands (eB2KO neurons) which strongly supports the role of ephrinB2 in stabilizing 

AMPA receptors. As expected, EphB4 stimulation of these neurons did not lead to the 

inhibition of AMPA-induced AMPA-receptor internalization observed in wild type 

neurons since they lack ephrinB2, the specific ligand for EphB4 receptors. The re-

introduction of functional ephrinB2 molecules into the eB2KO neurons largely restored 

the inhibition of AMPA receptor internalization in neurons stimulated with EphB4. 

In the hippocampus most AMPA receptors are composed of either GluR1-GluR2 or 

Glur2-GluR3 subunits; GluR2 homomers are rare. We observed an inhibitory effect of 

ephrinB2 on both GluR1 and GluR2-subunit internalization. This suggests a more general 

role for ephrinB2 ligands in AMPA-receptor stabilization. GluR1-containing receptors are 

predominantly situated at synapses, whereas GluR2 containing receptors (GluR2-GluR3 

heteromers and GluR2 homomers) cycle continuously between synaptic and non-synaptic 

pools, thus preserving the total number of AMPA receptors. In accordance with this, our 

immunofluorescence assays showed that AMPA receptors (GluR2) co-localized with 

ephrinB2 patches both at synaptic and extrasynaptic. It is likely that ephrinB2 molecules 

function to stabilize AMPA receptors at both of these areas of the plasma membrane. 

EphrinB2 molecules are then thought to keep AMPA receptors ready to be fused to 

synaptic sites if required, thereby replacing other receptors and maintaining the total 

number of AMPA receptors at the surface.  

The ablation of ephrinB2 in cultured neurons lacking ephrinB2 (eB2KO) resulted in a 

small, but significant, decrease in the amplitude of mEPSCs (mini excitatory postsynaptic 

currents) compared to wild type neurons. Nevertheless, we did not observe any 

differences in the number of synaptic contacts between eB2KO and wild type neurons in 

culture, quantified as numbers of PSD-95 and synapsin positive puncta per dendrite 

stretch. The mean amplitude of mEPSCs is a read-out for the transmission properties of 
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the analyzed synaptic contacts, namely the synaptic strength, which correlates with the 

amount of active AMPA receptors at the synaptic membrane. Thus, the decreased mEPSPs 

in the eB2KO neurons indicate that these neurons have trouble gaining or retaining AMPA 

receptors at the synaptic membrane. However, the decrease is smaller than one might 

expect from the the striking differences observed in the AMPA receptor surface trafficking 

assays.. There are many possible explanations for these results. The increased 

internalization rate observed in the eB2KO neurons might possibly be compensated by a 

more rapid recycling of the AMPA receptors. A snap-shot of the synaptic membrane 

would then only reveal a minor difference. The antibody feeding assay used in this study 

takes such a ‘snap-shot’, marking surface AMPA receptors at a certain time point and 

consequently monitoring the trafficking of these very same receptors. This assay does not 

allow any conclusions to be drawn about the recycling rate of AMPA receptors, or those 

freshly exocytosed to replace internalized receptors. Most probably, the differences would 

become more profound only when the system is challenged. Indeed, when Grunwald et 

al. investigated the defects of eB2KO mice during defects during LTP and LTD induction, 

they did not observe differences in the basal synaptic transmission when performing 

baseline recordings from hippocampal slices from these mice (Grunwald et al., 2004). 

Most probably, chemical LTP-induction in the isolated neurons could be an approach to 

reveal more manifest differences. 

A second possible explanation for the relatively small decrease in mEPSP-amplitude in 

eB2KO mice is that the stabilizing effects of ephrinB2 ligands might apply predominantly 

to AMPA receptors at extrasynaptic sites, which would not affect basal synaptic 

transmission. Lateral fusion of AMPA receptors from extra synaptic sites may be 

important during LTP induction (Borgdorff and Choquet, 2002). Destabilization of 

extrasynapic receptors has its strongest effects during LTP induction, when a stable supply 

of AMPA receptors is required. Challenging the system by evoking LTP may provide the 

best measure of the importance of ephrinB2-mediated AMPA receptor stabilization. 

However, the effect might be similar to that seen in the GluR1 knockouts (Zamanillo et 

al., 1999), or the transmembrane AMPA receptor regulatory protein (TARP) γ-8 
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knockouts (Rouach et al., 2005). Both knockouts show a significant decrease in 

extrasynaptic receptors but modest if any changes in synaptic AMPA receptors despite 

impaired LTP. Similarly, destabilized extrasynaptic AMPA receptors would also explain 

the strong defects observed in the LTP in ephrinB2 knockouts. 

AMPA-receptor internalization can be induced in two different ways, either directly 

through receptor activation with the specific agonist AMPA, or indirectly through the 

activation of NMDA receptors. At synapses of the CA1 region, LTP and LTD both require 

NMDA-receptor activation that results in the entry of Ca2+-ions into the postsynaptic cell 

thus inducing Ca2+-dependent signaling cascades. We were able to show that ephrinB2 

ligands stabilize AMPA receptors during both NMDA-induced and AMPA-induced 

AMPA-receptor internalization. This observation indicates a broader role for ephrinB2 in 

AMPA-receptor stabilization. Apart from the observation that ephrinB2 regulates the 

trafficking of GluR1 and GluR2 subunits, and that GluR1/2 receptors are increasingly 

added to the synapse in an activity-dependent manner, ephrinB2 has also been shown to 

stabilize AMPA receptors upon NMDA activation. These observations strongly favour a 

role for ephrinB2 in the regulation of AMPA-receptor trafficking during LTP. Moreover, 

we showed that neuronal activity was able to increase the number of ephrinB2 clusters, 

thus activating ephrinB2 ligands. During the depolarization of cultured neurons with KCl, 

which mimics neuronal activity, we observed that the number of ephrinB2 clusters per 

dendrite stretch increased, suggesting that ephrinB2 ligands are required to modulate the 

synaptic strength during neuronal activity and plasticity.  

6.2.1 GRIP as the bridging molecule 

During this study we were able to identify the molecular mechanism for the stabilization 

of AMPA receptors by ephrinB2 ligands. This mechanism involves GRIP proteins as 

bridging molecules, which bind to ephrinB ligands via their PDZ6 domain and to AMPA 

receptors via PDZ4 and PDZ5. We propose that the binding of GRIP1 to both ephrinB2 

ligands and AMPA receptors prevents PKC from phosphorylating AMPA receptors on 

serine 880 (ser880) thereby preventing their internalization.  
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Consistent with the idea that GRIP1 could link ephrinB2 and AMPA receptors, we were 

able to show the triple interaction of ephrinB2, GRIP and AMPA receptors in 

immunoprecipitation assays and immunofluorescence co-localization studies. We 

interfered with GRIP binding to ephrinB2 ligands by over-expressing either the ephrinB2-

binding site of GRIP (GRIP-PDZ6), or the GRIP-interaction sequence of ephrinB2 as 

dominant negative molecules. Both inhibitors significantly decreased the stabilizing effect 

of ephrinB2 on AMPA-induced AMPA-receptor internalization. In both cases, inhibition 

with partner-specific sequences led to the same result. Additionally, the over-expression 

of a different PDZ-domain of GRIP, namely PDZ7, which does not bind to ephrinB2 

ligands, had no effects on the AMPA receptor stabilization.  

It is known that GRIP binds to GluR2 un-phosphorylated in ser880 thereby stabilizing 

AMPA receptors at the membrane. The phosphorylation of ser880 leads to the 

dissociation of GRIP and, subsequently, to the internalization of AMPA receptors. In 

agreement with these findings we observed a reduction in the phosphorylation of ser880 

in neurons in which AMPA-induced AMPA-receptor internalization was inhibited by 

ephrinB2 activation when compared to solely AMPA-stimulated neurons. In addition, 

eB2KO neurons, with increased levels of constitutive AMPA-receptor internalization, 

showed higher ser880-phosphorylation levels compared to wild type neurons under the 

same culture conditions. In summary, these data suggest that GRIP is the bridging 

molecule between AMPA receptors and ephrinB2 ligands. EphrinB2 activation stabilizes 

the binding of GRIP to GluR2 and most probably sterically inhibits the access of PKC to 

GluR2 and subsequently its phosphorylation on ser880 (Figure 6-2).  
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Figure 6-2: EphrinB2-AMPAR-GRIP interaction model. Activated, serine-phosphorylated 
ephrinB2 ligands stabilize the binding of GRIP to AMPA-receptor subunit GluR2. The phosphorylation of 
GluR2 at ser880 is inhibited, probably due to steric inhibition of PKC, and subsequently its internalization. 
AMPAR- AMPA receptor; PKC- Protein kinase C; ser-9- serine residue at position -9; P- Phosphorylation 
site. 

6.2.2 PICK1 as a ephrin-AMPA receptor linker 

Although we favor GRIP as bridging molecule between AMPA receptors and ephrinB2 

ligands, we also analyzed PICK1 (Protein Interacting with C-Kinase 1) as an alternative 

bridging molecule. PICK1 is a 55 kDa, cytosolic protein with a single PDZ- and BAR-

domain (Bin/amphiphysin/Rvs). Similarly to GRIP, PICK1 is known to play a role in 

AMPA-receptor trafficking and was shown to bind to both AMPA receptors and ephrinB 

ligands (Torres et al., 1998; Xia et al., 1999). We were able to confirm the interaction of 

PICK1, GluR2 and ephrinB2 by co-immunoprecipitations from mouse brain lysates, using 

antibodies against each of these three molecules. The co-immunoprecipitations showed 

that all three molecules interact with each other, but these interactions could occur in a 

pair-wise manner and, therefore, not necessarily, imply a triple interaction. Indeed, we 

did not find the triple co-localization of GluR2, PICK1 and ephrinB2 at the surface of 

cultured neurons, where the stabilization of AMPA receptors observed in our assays 
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should occur. Thus, we cannot exclude the existence of such a ‘triple’ interaction which 

might appear at a site distinct from the plasma membrane, possibly at a different stage 

during AMPA-receptor trafficking. Furthermore, PICK1 is thought to be involved in the 

endocytosis of AMPA receptors rather than in its surface expression. The BAR-domain of 

PICK1 contains a cluster of positively charged residues that mediate the interaction with 

negatively charged phospholipids in the membrane. BAR-domains are thought to either 

recognize sites of possible membrane deepening, or even, actively bend the membrane for 

subsequent invagination therefore facilitating endocytosis (Peter et al., 2004). In 

summary, PICK1 might be involved in the later stages of AMPA-receptor internalization 

but was excluded as a candidate molecule for the stabilization induced by ephrinB2. 

6.2.3 GRIP binding to ephrinB regulated via serine phosphorylation 

We not only provide evidence that ephrinB2 ligands regulate the internalization of AMPA 

receptors via GRIP, but, in addition, we reveal the regulatory mechanism of the GRIP-

ephrinB interaction. The AMPA-receptor stabilization, observed in our assays, occurred 

following the activation of ephrinB2 ligands by its receptor. Using a cellular expression 

system, we found, in a similar manner, that the binding of GRIP to ephrinB is regulated 

via the engagement with its receptor and depends on the cytoplasmic tail of ephrinBs. 

Furthermore, using this system, we were able to show that serine -9 (ser-9) localized in 

the C-terminus of ephrinBs regulates the binding of GRIP. Once this serine is 

phosphorylated GRIP is able to bind. In a second round of peptide-interference 

experiments, we expressed both the WT ephrinB peptide and a phosphorylation-silenced 

mutant ephrinB peptide (B2 pep S>A CFP; data not shown), which should not sequester 

endogenous GRIP. As expected, B2 pep S>A CFP failed to interfere with the stabilizing 

effect of ephrinB2 ligands on AMPA receptors. To conclude, we performed a rescue 

experiment confirming that the binding of GRIP to ephrinB, via phosphorylated ser-9, is 

required for the stabilizing function of ephrinB2 on AMPA receptors. The reintroduction 

of the ephrinB2 into eB2KO neurons as well as the gain of function mutant ephrinB2 S>E 

(mimicking serine phosphorylation), successfully rescued the knockout phenotype 

whereas the loss of function mutant ephrinB2 S>A failed to do so. 
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The finding that serine phosphorylation regulates PDZ-interactions is novel for ephrinB 

ligands but and has been described for other PDZ-binding partners. A prominent example 

is the GRIP-GluR2 interaction that is regulated by the phosphorylation of ser880 in the 

GluR2 subunit of AMPA receptors. It is arguable, that the ser880 is located immediately 

at the PDZ-binding motif of GluR2 whereas the ser-9 of the ephrinB ligands is five 

positions upstream. How could the serine residue then influence the PDZ-binding of 

ephrinB ligands? It has been reported for other molecules that residues up to 11-14 

positions upstream of the binding motif may influence the binding capabilities of PDZ-

target sites (Cai et al., 2002; van Ham and Hendriks, 2003). Furthermore, serine 

phosphorylation seems to play a prominent role in signaling during plasticity. The serine 

kinase PKC is highly activated during LTP induction, phosphorylating many effector 

molecules involved in plasticity. It is tempting to speculate that PKC contributes to the 

serine phosphorylation of ephrinB ligands which in turn mediates the AMPA-receptor 

stabilization at the surface. 

6.2.4 Serine phosphorylation of ephrinB ligands 

Our finding that serine phosphorylation regulates the binding of a PDZ protein provides a 

new insight into ephrinB-reverse signaling. We found that GRIP binding to ephrinB 

ligands was independent of tyrosine phosphorylation in vivo and in vitro and therefore 

suggest that tyrosine/serine phosphorylations are two independent events regulating 

different aspects of ephrinB-reverse signaling. Src family kinases were shown to 

phosphorylate ephrinB tyrosine residues, but we can only speculate about the identity of 

the serine kinase for ephrinB ligands. PKC is a promising candidate, as it is located to 

synapses and is involved in serine phosphorylation events during LTP/LTD, e.g. 

phosphorylation of ser880 of GluR2. A future challenge will be to identify the serine 

kinase that phosphorylates ephrinB ligands. Besides the search for such a kinase, it would 

be interesting to further elucidate the role of serine phosphorylation in ephrinB signaling. 

It is likely that, besides GRIP, other PDZ-binding partners of ephrinB ligands might be 

regulated by serine phosphorylation. Furthermore, serine phosphorylation might play an 

important role in other functions of ephrinB ligands beyond that of AMPA-receptor 



 Discussion 6 

108 

 

trafficking. Moreover, ephrinBs are expressed in various other tissues outside the nervous 

system and it would be interesting to look at the function of serine phosphorylation in 

non-neuronal cells. A mouse model would, therefore, provide an excellent tool to study 

the relevance of ephrinB serine phosphorylation in detail.  

6.2.5 How does ephrinB2 exert its function during synaptic plasticity?  

Looking at the synapse, the Eph receptors located at the presynaptic side could possibly 

provide a trans-synaptic signal to the ephrinB molecules to strengthen the synaptic 

contact, thus stabilizing AMPA receptors at the surface. Indeed, structural studies 

estimated that the distance between two cell membranes, that still allows Eph receptor-

ephrin ligand engagement, is about the size of the synaptic cleft (Himanen et al., 2007). 

The absence of a presynaptic receptor would then result in a lack of ephrinB2 activation 

and consequently lead to the impairment of AMPA-receptor stabilization. This might, in 

part, explain the plasticity defects observed in the synaptic connection of the hippocampal 

CA3-CA1 region (Schaffer collateral pathway) of mice lacking EphA4 or EphB2 receptors. 

These mice showed impaired LTP and LTD but the defects turned out to be independent 

of the receptor’s kinase activity. GFP fusion proteins rescued the plasticity phenotype and 

gave hints to the involvement of ephrinB ligands in plasticity.  

Stabilization of AMPA receptors is required during LTP when the number of receptors is 

increased through the insertion of additional receptors. Increased neuronal activity leads 

to the potentiation of synaptic contacts and therefore ephrinB2 activation would be 

activity dependent. We show that ephrinB2 cluster formation can be induced by 

membrane depolarization, as occurs during neuronal activity. It would be tempting to 

speculate that Eph receptors, also show activity-dependent clustering, thus enabling the 

engagement of opposing ephrinB ligands. Interestingly, in the Schaffer collateral pathway, 

the Eph receptors are expressed both pre and postsynaptically. A potential cis-interaction 

between postsynaptic receptors and ligands might as well contribute to the regulation of 

AMPA-receptor trafficking and, quite possibly, even counteract the interaction in trans. 

Cis-interactions of EphA and ephrinA ligands have been shown to inhibit classical trans-
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interactions in axon guidance (Hornberger et al., 1999; Marquardt et al., 2005). 

However, proof of a cis-interaction in the B type of Eph receptors and ligands is so far 

missing. 

As mentioned above, ephrinB2 mediated AMPA-receptor stabilization might preferably 

concern extrasynaptic AMPA receptors. But just how does AMPA-receptor stabilization 

occur at extrasynaptic site, and where does the Eph receptor input come from in that case? 

It might be possible that adjacent glia cells, which are found to surround, stabilize and 

support synaptic contacts and spines, provide Eph-receptor input to extrasynaptic 

ephrinBs. Astrocytes are found to express various Eph-receptor and ephrin-ligand types 

and several studies have reported their impact not only in modulating synaptic plasticity, 

but also in regulating the clearance of neurotransmitters from the synaptic cleft, in 

releasing factors such as ATP which modulate presynaptic function, and even in releasing 

neurotransmitters themselves (Nestor et al., 2007; Vernadakis, 1996).  

6.2.6 Concluding remarks 

Here we have elucidated different roles of ephrinB ligands during synaptic plasticity 

involving both morphological changes and the regulation of synaptic transmission. We 

describe their impact in spine morphogenesis and synapse formation, as well as their role 

in the regulation of synaptic strength by controlling AMPA receptor trafficking. We 

furthermore report a novel regulatory mechanism involving the serine phosphorylation of 

ephrinB ligands. These findings open a new research perspective which will help to 

broaden our understanding of how serine phosphorylation contributes to the different 

functions of Eph and ephrins. 
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7 Material and methods 

7.1 Material 

7.1.1 Chemicals, Reagents, Commercial Kits & Enzymes 
Table 7-1: Chemicals, reagents, commercial kits& enzymes 

Chemicals  Ordering information Supplier 

(S)-α-Amino-3-hydroxy-5-methylisoxazole-4-
propionic acid (AMPA) 

#A0326-5MG Sigma 

1-α-D-Arabinofuranosylcytosine (AraC) #251010 Calbiochem 

30 % (w/v) Acryamide/Bis solution 29:1 (3.3 % C)  #161-0157 BioRad 

6-Cyano-7-nitroquinoxaline-2,3-dione (CNQX) #0190 Tocris 

Agarose, high #01280 Biomol 

Ammonium persulfate (APS) # 161-0700 BioRad 

BES #B-6420 Sigma 

BioRad DC Protein Assay  #500-116 BioRad 

Blotting grade milk powder #T145.2 Roth 

Borax #B-3545-500G Sigma 

Boric acid #203667 Merck 

Bovine albumin powder #7906 Sigma 

Complete EDTA-free, proteinase inhibitor cocktail 
tablets 

#1873580 Roche 

DL-2-Amino-5-phosphonopentanoic acid (APV) # A5282-10MG Sigma 

DMSO #41641 Fluka 

DNA ladder GeneRuler Ladder mix  #SM0331 Fermentas 

ECL Western blot detection reagent # RPN2134 GE Healthcare  

EZ-Link Sulfo-NHS-SS-Biotin #21331 Pierce 

Gel Extraction Kit #28704 Qiagen 

HNO3 (Salpetersäure) 65% #84381-1L Sigma 

Human IgG Fc-fragment #009-000-008 Dianova (Jackson) 

Immobilized NeutrAvidinTM #29200 Pierce 

Iodoacetamide #I1149-5G Sigma 

Mouse EphB2/Fc chimera #467-B2-200 R&D 
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Mouse EphB4/Fc chimera #446-B4-200 R&D 

Mouse ephrinB1 #473-EB-200 R&D 

Natural mouse laminin  #23017015 Invitrogen 

N-Methyl-D-Aspartic acid (NMDA) #M3262-100MG Sigma 

Normal donkey serum  #017-00-121 Dianova (Jackson) 

Normal goat serum  #005-000-121 Dianova (Jackson) 

NucleoSpin Extract II #740609.250 Macherey & Nagel 

OrangeG #O-1625  Sigma 

PCR Purification Kit #28104 Qiagen 

PFA (Paraformaldehyd) #1.04005.1000 VWR 

Pfu Ultra DNA polymerase #600380 Stratagene 

Poly-D-Lysine hydrobromide #P7886-1G Sigma 

Ponceau S solution #33427 Serva 

Precision plus protein standard #161-0373 Bio-Rad 

ProLong Antifade Kit #P7481 Invitrogen 

Protein A sepharose CL-4B #17-0780-01 GE Healthcare 

Protein G sepharose 4 fast flow #17-0618-01 GE Healthcare 

QIAGEN Plasmid Maxi Kit #12162 Qiagen 

QIAGEN Plasmid Mini Kit #12125 Qiagen 

Restriction enzymes All from NEB New England Biolabs 

Sodium Fluoride (NaF) #S-1501-100G Sigma 

Sodium ortho vanadate (NO3VO4) #S-6508 Sigma 

Sodium Pyrophosphate (NaPP) #221368-100G Sigma 

Sucrose #5737 Merck 

T4 DNA ligase #M0202L New England Biolabs 

Taq DNA polymerase  #M0267L New England Biolabs 

TEMED #161-0801 Bio-Rad 

TritonX (TX)-100 solution #37238 Serva 

Tween 20 (Polyoxyethylene sorbitan monolaurate) #P5927-500ML Sigma 

β-Mercaptoethanol #M-7522 Sigma 
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7.1.2 Antibodies 
Tabelle 7-2: Primary Antibodies 

Primary Antibodies   

Anti-ephrinB1 (C-18) , rabbit #SC-910 Santa Cruz 

Anti-ephrinB2, goat #AF496 R&D Systems 

Anti-Flag M2, mouse #F3165-2MG Sigma 

Anti-GFP JL8, mouse #632381 Clontech 

Anti-GFP, rabbit #RDI-GRNFP-4ABR Fitzgerald 

Anti-GIT1, GIT2, rabbit DU139, DU137 Premont et al 1998, 

Bagrodia et al 1999 

Anti-GIT1, goat #sc-9657 Santa Cruz 

Anti-GluR1, rabbit extracell. #PC246 Calbiochem 

Anti-GluR2, mouse extracell. #MAB397 Upstate 

Anti-GluR2, rabbit #AB1768-25UG Upstate 

Anti-Grb4, rabbit #07-100 Upstate 

Anti-GRIP1 CT, rabbit #06-986 Upstate 

Anti-GRIP1, mouse #611319 Becton Dickinson 

Anti-HA, clone 12CA5, mouse #1583816 Roche 

Anti-Homer, rat #AB5875 Chemicon 

Anti-MAP2, mouse #MAB3418 Chemicon 

Anti-N-Cadherin, mouse #610921 Becton Dickinson 

Anti-NR1, mouse #114-001 Synaptic Systems 

Anti-Phospho-Tryrosine clone 4G10, mouse  #05-321 Upstate 

Anti-Phosph-Serine 880 GluR2, rabbit #07-294 Upstate 

Anti-PICK1 (H-100), rabbit IP #SC-11410 Santa Cruz 
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Anti-PICK1 (N-18), goat WB #SC-9539 Santa Cruz 

Anti-PICK1, rabbit #AB3420 Abcam 

Anti-PRK2 clone 22, mouse #610794  BD Bioscience 

Anti-PSD-95, mouse #P246-100UL Sigma 

Anti-Synapsin1, mouse #106-001 Synaptic Systems 

Anti-Synaptophysin1, rabbit #101002 Synaptic Systems 

Anti-Transferrin receptor, mouse #A11130 Molecular Probes 

Anti-V5, mouse #R960-25 Invitrogen 

Anti-βPIX, rabbit DU248 Premont et al 1998, 

Bagrodia et al 1999 

 

Tabelle 7-3: Secondary Antibodies 

Secondary Antibodies   

Donkey anti-mouse minx AMCA #715-155-150 Dianova (Jackson) 

Donkey anti-mouse minx cy2 #715-225-151 Dianova (Jackson) 

Donkey anti-mouse minx cy3 #715-165-151 Dianova (Jackson) 

Donkey anti-rabbit minx AMCA #711-155-152 Dianova (Jackson) 

Donkey anti-rabbit minx cy2 #711-225-152 Dianova (Jackson) 

Donkey anti-rabbit minx cy3 #711-165-152 Dianova (Jackson) 

Goat anti-human IgG Fc-fragment #109-005-098 Dianova (Jackson) 

Goat anti-mouse Alexa488 #A11029 Invitrogen 

Goat anti-mouse FITC #81-6511 Invitrogen (Zymed) 

Goat anti-mouse HRP #115-035-146 Dianova (Jackson) 

Goat anti-rabbit HRP #111-035-003 Dianova (Jackson) 
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7.1.3 Consumable Material 
Tabelle 7-4: Consumable Material 

Material Type Supplier 

96well PCR plate #AB-0900 ABgene 

Combitips plus 2ml, 5ml, 10ml Eppendorf 

Cover slips 12/13mm Ø #01-115-30 Marienfeld 

CryoTubes, Nunc #343958 1.5ml Nunc 

Extra thick blot paper Protean XL size #1703969 BioRad 

Faltenfilter Ø 240mm # 10311651 Schleicher & Schuell 

Filtered pipette tips 10µl, 20μl, 200μl, 

1000μl 

G. Kisker 

Gel-saver tips 0.5-10 µl #GS1025 G. Kisker 

Gene Pulser® Cuvette (0.2 cm) #165-2086 BioRad 

Hyperfilm ECL 8x10in #28-9068-39 GE Healthcare 

Latex gloves, powder-free Size S6-7 Semperguard 

Multiwell cell culture plates, Costar 24 well Corning 

Nitril gloves, powder-free Size S6-7 Semperguard 

Parafilm® “M”laboratory film Pechiney plastic packaging 

Pastuer pipettes, glass #150.01 Poulten & Graf 

Pipette tips  10µl, 20μl, 200μl, 

1000μl 

Peske 

Plastic pipettes, Cellstar 5ml, 10ml, 50ml Greiner 

Plastic pipettes, Falcon 1ml, 2ml, 5ml, 10ml, 

25ml, 50ml 

Becton Dickinson 

Polypropylene round bottom tube, Falcon 14ml, 5ml Becton Dickinson 
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Polystyrene, Polypropylene conical tube, 

Falcon 

15ml, 50ml Becton Dickinson 

Protean extra thick blot paper #1703969 BioRad 

Reaction tube, safelock 1.5ml, 2ml Eppendorf 

Steritop, bottle top filter 250ml, 500ml (0.22 

µm) 

Millipore 

Storage box 50 slides #N953.1 Roth 

Strips of 8 domed caps #AB-0602 ABgene 

Syringe 5ml, 10ml, 50ml Becton Dickinson 

Syringe driven filter unit, Millex®GV 0.22µm, 0.45μm Millipore 

Tissue culture plastic dishes, Falcon 10 cm Ø, 6cm Ø Becton Dickinson 

Tissue culture plastic dishes, NunclonTM 10 cm Ø, 6cm Ø Nunc 

Whatman Protran nitrocellulose transfer 

membrane 

#10401196 Schleicher& Schuell 

 

7.1.4 Equipment 
Tabelle 7-5: Equipment 

Equipment Model Supplier 

+ 4ºC fridge Premium Liebherr 

-20 ºC freezer Liebherr comfort GS-5203 Liebherr 

-80 ºC freezer Ultra low freezer U57085 Labotech 

Balance XT2220M-DR Precisa 

Burner Fireboy eco Integra Biosciences 

Cell culture Hood HERAsafe Kendro 

Centrifuge  Sorvall RC 5Bplus  Kendro 



7 Material and methods  

117 

 

Centrifuge Varifuge 3.0R Kendro 

Centrifuge Centrifuge 5810 Eppendorf 

Centrifuge micro Table centrifuge Roth 

Centrifuge table Centrifuge 5415D Eppendorf 

Centrifuge table, refridg. Centrifuge 5415R Eppendorf 

CO2 incubator HERAcell 240 Kendro 

Digital camera SpotRT Diagnostic Instruments 

Electrophoresis chamber Small, medium, big homemade 

Electrophoresis Power supply EPS 601, EPS 301 Amersham  

Epifluorescence microscope Zeiss Axioplan Zeiss 

Fine balance XT2220A-FR Precisa 

Gel documentation system Herolab E.A.S.Y RH 429K Herolab 

Glas homogenizer #S1149 B. Braun, Melsungen AG 

Heating block DRI-Block DB2D & 2A Techne 

Hemacytometer Neubauer improved (depth 

0.100mm, 0.0025mm2) 

Brand 

Incubator shaker Unitron-Pro Infors 

Laminar flow hood HERAguard Kendro 

Magnetic stirrer with heating Heat-stir CB162 Stuart 

Magnetic stirring bar 50x8mm, 30x8mm Brand 

Microwave Severin 700 Severin 

Multi channel pipette 0.5-10µl, research Eppendorf 

Multi channel pipette 20-200µl, Transferpette-8 Brand 

Multi pipette Multipipette ®plus Eppendorf 
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Oven Heraeus 0-250 ◦C Thermo Fisher 

PCR machine PTC-225 peltier thermal cycler MJ research 

pH meter Inolab, pH level 1 WTW 

Pipette boy Pipetteboy acu Integra Biosciences 

Pipettes P2, P20, P200, P1000 Gilson 

Rotator NeoLab rotator 2-1175 NeoLab 

Rotor GSA rotor & type 3 Sorvall 

Sequencer ABI Prism 377 DNA sequencer Applied Biosystems 

Shaker  homemade 

Small microscope Leica DM IL HC Fluo Leica 

Spectrometer Ultrospec 3000 Amersham 

TECAN reader GENious Tecan  

Thermo mixer Thermomixer compact & comfort Eppendorf 

Vacuum system VACUSAFE comfort Integra Biosciences 

Vortex Top-Mix 11118 Fisher Scientific 

Water bath Type 3043 Koettermann 

Water bath Type 1083 GFL 

Water purification system Milli-Q Biocel A10 Millipore 

Western Blot analysis   

Semidry blotting apparatus Trans-blot SD cell BioRad 

BioRad gel system Mini PROTEAN® 3 cell BioRad 

Dissection tools:   

Spring scissors strait #15003-08 Fine Science Tools 

Tissue scissors strait #14028-10 Fine Science Tools 
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Biology tip Dumostar 5 #11295-10 Fine Science Tools 

Forceps narrow pattern #11002-13 Fine Science Tools 

Dissection microscope Olympus SZX9 Olympus 

 

7.1.5 Oligonucleotides 
Tabelle 7-6: Oligonucleotides 

Cre1 5‘-GCC TGC ATT ACC GGT CGA TGC AAC 

GA-3’ 

Genotyping 

Cre2 5‘-GTG GCA GAT GGC GCG GCA ACA CCA 

TT-3‘ 

Genotyping 

B2Cs1 5‘-CTT CAG CAA TAT ACA CAG GAT G-3’ Genotyping 

B2Cas1 5‘-TGC TTG ATT GAA ACG AAG CCC GA-3‘ Genotyping 

Ephrinb2YFPS-9>A_for 5‘-GCC CCC ACA GGC TCC TGC CAA CAT 

TC-3’ 

Mutagenesis 

Ephrinb2YFPS-9>A_rev 5‘-GAA TGT TGG CAG GAG CCT GTG GGG 

GC-3‘ 

Mutagenesis 

Ephrinb2YFPS-9>E_for 5‘-GCC CCC ACA GGA ACC TGC CAA CAT 

TC-3’ 

Mutagenesis 

Ephrinb2YFPS-9>E_rev 5‘-GAA TGT TGG CAG GCT TCT GTG GGG 

GC-3‘ 

Mutagenesis 

CMV_sense-II (pExFP, pcDNA3) 5’-CCA TCC GCA CAT GCC ACC CTC C-3’ Sequencing 

pAdlox_afterMCS_rev (pExFP) 5‘-GGT TCA GGG GGA GGT GTG GG-3‘  

b2 tm_for 5‘-AAG TCC CTT TGT GAA GCC-3‘ Sequencing 

b2 ecto_f 5‘-CCC GGA AGC TTG GGG GTC GCT-3‘ Sequencing 

b2 ecto_r 5‘-GAA TAA GGC CAC TTC GGA TCC CAG 

GAG ATT-3‘ 

Sequencing 
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pECFP-N1_clontech 5‘-CGT CGC CGT CCA GCT CGA CCA G-3‘ Sequencing 

pECFP-C1_clontech 5‘-CAT GGT CCT GCT GGA GTT CGT G-3‘ Sequencing 

PDZ7-hind3_for 5‘-GCA GAT ATC AAA GCT TTG TAC AAA-

3’ 

Cloning  

PDZ7-kpn1_rev 5‘-CCA CTT TGT ACA AGG TAC CTG GGT 

G-3’ 

Cloning  

eph-PDZ_WT-for P5‘-TCG AGT GCA GGA GAT GCC CCC ACA 

GAG TCC TGC CAA CAT TTA CTA CAA 

GGT CTG AG-3‘ 

Cloning 

eph-PDZ_WT-rev P5‘-AAT TCT CAG ACC TTG TAG TAA ATG 

TTG GCA GGA CTC TGT GGG GGC ATC 

TCC TGC AC-3‘ 

Cloning 

eph-PDZ_SA-for P5‘-TCG AGT GCA GGA GAT GCC CCC ACA 

GGC TCC TGC CAA CAT TTA CTA CAA 

GGT CTG AG-3‘ 

Cloning 

eph-PDZ_SA-rev P5‘-AAT TCT CAG ACC TTG TAG TAA ATG 

TTG GCA GGA GCC TGT GGG GGC ATC 

TCC TGC AC-3‘ 

Cloning 

eph-PDZ_SE-for P5‘-TCG AGT GCA GGA GAT GCC CCC ACA 

GGA TCC TGC CAA CAT TTA CTA CAA 

GGT CTG AG-3‘ 

Cloning 

eph-PDZ_SE-rev P5‘-AAT TCT CAG ACC TTG TAG TAA ATG 

TTG GCA GGT TCC TGT GGG GGC ATC 

TCC TGC AC-3‘ 

Cloning 
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7.1.6 Plasmids 
pECFP and pEYFP 

The pExFP-N1 and pExFP-C1 plasmids from Clontech are used as backbone for all the following 

ExFP fusion protein constructs. 

 

GIT1, Grb4 and ephrinB1 peptide constructs 

The expression constructs encoding full-length rat GIT1-Flag and GIT2-Flag, kindly provided by 

R.T. Premont (Premont et al., 1998). GIT1∆SLD-Flag, GIT1-Y392F, SLD-YFP and SLD-CFP 

and SLD-V5 (GIT1-SLD encoding region 375–596) were generated by Stefan Weinges as 

described (Segura et al., 2007; Weinges, 2006). 

The expression constructs Grb4-YFP, Grb4 SH2-YFP or Grb4 SH3-YFP, and the ephrinB1 

peptide YFP-p-313–335 (22 AA long, CPHYEKVSGDYGHPVYIVQEMP) were generated by 

Stefan Weinges as described (Segura et al., 2007; Weinges, 2006). 

 

HA-ephrinB1, HA-ephrinB1-ΔC and HA-ephrinB1-6F 

Expression constructs of HA-ephrinB1, HA-ephrinB1-∆C and HA-ephrinB1-6F were generated 

by subcloning from pJP104, pJP105 (Bruckner et al., 1999) and pKB21, respectively, into 

pcDNA3.1/Hygro using EcoRI and XhoI restriction sites. 

 

EphrinB1ΔC-ECFP and EphrinB2-EYFP/ECFP 

The ephrinB1ΔC-ECFP,the ephrinB2-EYFP and ephrinB2-ECFP plasmids were provided by 

Jenny Lauterbach (pJK32, pJK36-pJK38)(Lauterbach and Klein, 2006). 

 

EphrinB2S>A YFP/CFP  

The ephrinB2S>AYFP or ephrinbBS>ACFP plasmid were generated from the plasmids 

ephrinB2YFP/CFP by site directed mutagenesis PCR (Stratagen) using the primers Ephrinb2YFPS-
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9>A_for and Ephrinb2YFPS-9>A_rev. The correct sequence was confirmed by sequencing using the 

primers CMV_sense-II, b2 tm_for, b2 ecto_f and b2 ecto_r. 

 

EphrinB2 S>E YFP/CFP 

The ephrinB S>EYFP or ephrinB S>ECFP plasmid was generated as described for the 

ephrinB2S>AYFP/CFP using the primers Ephrinb2YFPS-9>E_for and Ephrinb2YFPS-9>E_rev. 

 

Myc-GRIP and GRIP1-PDZ6 constructs 

The myc-GRIP1 (Bruckner et al., 1999) and the GRIP1-PDZ6 (pJP127) (Bruckner et al., 1999) 

constructs were provided by the Lab of R. Klein. 

 

GRIP1-PDZ6 CFP 

The GRIP1-PDZ6 CFP construct was generated by subcloning the GRIP1-PDZ6 insert of a 

pGADGH vector (pJP127)(Bruckner et al., 1999) into the pECFP-C1 vector using EcoRI and 

XhoI restriction enzymes. The correct sequence was confirmed by sequencing using the primer 

pECFP-C1_clontech. 

 

GRIP1-PDZ7 CFP 

The GRIP1-PDZ7 CFP construct was generated by cloning the PCR product of the GRIP1 

sequence 988-1112 from myc-GRIP1 (Bruckner et al., 1999) using the primers PDZ7-hind3_for 

and PDZ7-kpn1_rev with flanking HindIII and KpnI restriction sites into pECFP-C1 (Clontech). 

The correct sequence was confirmed by sequencing using primer pECFP-C1_clontech. 

 

B2-peptideWT-CFP, B2-peptideSA-CFP and B2-peptideSE-CFP 

To generate the B2-peptideWT, SA or SE CFP constructs, oligonucleotides containing the 

sequence of sense and antisense strands of the last 48pb (16 amino acids) of ephrinB2, ephrinB2SA 

or ephrinB2SE, with flanking HindII or KpnI restriction sites, were allowed to anneal and form 
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double stranded DNA inserts. The inserts were cloned into pECFP-C1 using HindII and KpnI 

restriction sites. Correctness of the sequence was confirmed by sequencing using the primer 

pECFP-C1_clontech.  

 

Expression of all constructs was tested in Hela cells and checked by immunoblotting. 

7.1.7 Cell lines and bacteria 
Bacteria 

Strain genotype 

TOP10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80 lacZ ΔM15 ΔlacX74 recA1 

araΔ139 Δ(ara-leu7697) galU galK rpsL (Strr) endA1 nupG 

DH5α 
supE44 ΔlacU169 (Φ80 lacZ ΔM15) hsdR17 recA1 endA1 

gyrA96 thi-1 relA1 

 

Cell lines 

Line Origin Culture medium 

HeLa Human cervix carcinoma cells DMEM, FBS 

HeLa b1 HeLa stably expressing 

ephrinB1 

DMEM, FBS, Geneticin 

293 HEK Human embryonic kidney 

cells 

DMEM, FBS 

293 GluR2 HEK HEK stably expressing GluR2 DMEM, FBS, Geneticin 

 

7.1.8 Primary cells and tissue 
Primary cells and animal tissues were obtained from BL/6 mice or Wistar rats (Harlan). EphrinB2 

knockout neurons and control cells were isolated from conditional ephrinB2lox/lox knockout mice 
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(Grunwald et al., 2004) crossed with Nestin Cre+ or Nestin Cre-. These mice express cre-

recombinase under the Nestin-promotor which specifically deletes ephrinB2 in the central 

nervous system. 

7.1.9 Media and standard solutions 
Dulbecco’s phosphate-buffered saline (D-PBS) 

137 mM NaCl   —› NaCl 8g 

2.7 mM KCl      —› KCl 0.2 g 

8 mM Na2HPO4 —› Na2HPO4 1.15 g 

1.5 mM KH2PO4 —› KH2PO4 0.24 g 

Dissolve ingredients in 800 ml of sterile water. Adjust solution to pH 7.4 with HCl, fill up to 1l 

total volume and sterilize by autoclaving. Store at room temperature (RT). 

 

10x D-PBS 

137 mM NaCl   —› NaCl 80g 

2.7 mM KCl      —› KCl 2 g 

8 mM Na2HPO4 —› Na2HPO4 11.5 g 

1.5 mM KH2PO4 —› KH2PO4 2.4 g 

Dissolve ingredients in 800 ml of sterile water. Adjust solution to pH 7.4 with HCl, fill up to 1l 

total volume and sterilize by autoclaving. Store at RT. 

 

0.5 M EDTA, pH 8.0 

Disodium EDTA∙2H2O   —›  186.1 g 

Dissolve disodium EDTA in 800 ml of sterile water. Adjust solution to pH 7.4 with HCl, fill up 

to 1l total volume and sterilize by autoclaving. Store at RT. 
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1M Tris-HCl, pH 7.4 or 8.0 

Tris base   —›  121.1 g 

pH 7.4  —› HCl 70 ml 

pH 8.0 —› HCl 42 ml 

Dissolve Tris base in 800 ml of sterile water. Adjust solution to the desired pH with concentrated 

HCl, fill up to 1l total volume. Sterilize by autoclaving and store at RT. 

 

Tris-EDTA (TE) buffer, pH 8.0 

10 mM Tris-HCl     

1 mM EDTA    

Adjust to pH 8.0 by adding concentrated HCl and fill up to 1l volume. Sterilize by autoclaving 

and store at RT. 

 

50x Tris-acetate-EDTA (TAE) electrophoresis buffer 

Tris base   —›  242 g 

Glacial acetic acid  —›  57.1 ml 

0.5 M EDTA (pH 8.0) —›  100 ml 

Add distilled water to 1l total volume, the pH should be ~8.3. Store at RT. Dilute stock solution 

with distilled water to prepare both agarose gels and the electrophoresis buffer. 
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6x Agarose gel-loading buffer 

50% Glycerol (v/v) —› 87% Glycerol 57 ml 

1x TAE buffer  —› 50x TAE buffer 2 ml 

0.2% Orange G (w/v) —› Orange G 0.2 g 

Add distilled water to 100 ml total volume and store at RT. 

 

4% Paraformaldehyde (PFA) 

PFA (w/v)  40 g 

10x D-PDS 100 ml 

10N NaOH 100 µl 

Heat 800 ml of sterile water in the water bath to approximately 70ºC, add PFA powder and stir 

thoroughly. Add NaOH to completely dissolve the PFA and let it cool down to RT. Add 100 ml 

10x D-PBS and fill up to 1l total volume with water. Adjust the pH to 7-7.3, filter solution using 

Whatman paper and store at -20ºC in aliquots of adequate volume. Use a freshly thawed aliquot 

each time. 

 

7.1.9.1 Media for bacterial culture 

Luria-Bertani (LB) medium 

Bacto-Tryptone  10 g 

Bacto-Yeast extract 5 g 

NaCl 5 g 

Dissolve in 1l sterile water and adjust pH to 7.5. Sterilize by autoclaving and store at RT. 
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LB plates 

LB medium 1 l 

Bacto-Agar 15 g 

Autoclave, pour into petri-dishes and store at 4ºC. 

 

Antibiotics 1000x stock solution 

Ampicillin 100 mg/ml 

Kanamycin monosulfate 50 mg/ml 

 

7.1.9.2 Media and supplements for cell culture 

DMEM-FBS growth medium 

DMEM (Invitrogen, #61965-059) 500 ml 

FBS, heat inactivated (Invitrogen, #10270-106) 50 ml 

Penicillin/Streptomycin (5000U/ml, 100µg/ml) (Invitrogen 

#15070-063) 

5 ml 

200 mM L-Glutamine (100x) (Invitrogen #25030-024) 5 ml 

100 mM Sodium pyruvate (100x) (Invitrogen #11360-039) 5 ml 

Store at 4 ºC. 

 

DMEM-FBS starving medium 

Same composition as DMEM growth medium, but with 0.5% FBS instead of 10%. 
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293 GluR2 and HeLa b1 growth medium 

DMEM-FBS medium 1 l 

Geneticin (Invitrogen, # 10131-027) 4 ml 

Store at 4ºC. 

 

293 GluR2 and HeLa b1 starving medium 

Same composition as 293 GluR2 growth medium, but with 0.5% FBS instead of 10%. 

 

7.1.9.3 Media and supplements for primary cell culture 

Borate buffer 

Boric acid 1.55 g 

Borax 2.375 g 

Dissolve in 500 ml distilled water, adjust to pH 8.5 and store at 4ºC. For coating of plates and 

cover slips, dissolve Poly-D-Lysine (10 mg/ml) in borate buffer and sterilize by filtration. 

 

Neurobasal medium (NB) 

Neurobasal medium (Invitrogen, #21103-049) 500 ml 

B27supplement (Invitrogen, #17504-044) 10 ml 

L-Glutamine, stable 200mM (PAA, #M11-004)  1.25 ml 

Store at 4ºC. For low density and mouse hippocampal neuron cultures add 10% conditioned 

neurobasal medium. 
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Conditioned neurobasal medium (CM) 

The supernatant of old cultures (10-17DIV) is sterilized by passing through a 0.22 µm-pore sized 

filter and stored at 4ºC. 

Serum medium (SM) 

DMEM 100 ml 

FBS, heat inactivated (Invitrogen, #F-7524) 10 ml 

Sterilize by passing through a 0.22 µm-pore sized filter and store at 4ºC. FBS is kept in aliquots of 

10 ml at -20ºC. 

 

Dissection medium 

HBSS (Invitrogen, #24020-091) 500 ml 

Penicillin/Streptomycin (Invitrogen, #15070-063) 5 ml 

1M Hepes (Invitrogen, #15630-056) 3.5 ml 

L-Glutamine 200mM (PAA, #M11-004) 5 ml 

Store at 4ºC and keep on ice during dissection. 

 

Artificial cerebrospinal fluid (ACSF) 

124 mM  NaCl 

5 mM KCl 

1.25 mM NaH2PO4 

2 mM MgSO4 

10 mM Glucose 

Dissolve in distilled H2O, gas with 5 % CO2 / 95 % O2, add 2 mM CaCl2 after 5 minutes and 

finally 26 mM NaHCO3 after 10 minutes. 
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7.1.9.4 Media and solutions for cell transfection 

CaCl2 

1 M CaCl2 CaCl2·2H2O 2.94 g 

2.5 M CaCl2 CaCl2·6H2O 11 g 

Add 20 ml distilled water, sterilize by passing through a 0.22 µm pore-sized filter and store 1 ml 

aliquots at -20ºC. 

 

2x BES-buffered saline (BBS) 

50 mM BES —›BES 1.07 g 

280 mM NaCl —›NaCl 1.6 g 

1.5 mM Na2HPO4·2H2O —› Na2HPO4·2H2O 0.027 g 

Dissolve in 80 ml of distilled water, adjust the pH with NaOH to 6.96- 7.26 (depending on the 

size and preparation of the plasmid DNA) and fill up to 100 ml total volume. Sterilize by passing 

through a 0.22 µm filter and store aliquots at -20ºC. 

 

Washing buffer for hippocampal neurons (HBSS pH 7.3) 

 mM M (g/mol) 2l (g) 

NaCl 135 58.44 15.78 

KCl 4 74.55 0.6 

Na2HPO4 (2xH2O) 1 141.96 (177.99) 0.28 (0.355) 

CaCl2 x 2H2O 2 147.02 0.59 

MgCl2 x 6H2O 1 203.3 0.41 

HEPES 20 238.31 9.53 

d-Glucose 10 180.16 3.6 
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d-Glucose x 1H2O 10 198.17 3.96 

Dissolve all ingredients in 1.8 l distilled water, adjust pH to 7.3 and fill up to 2 l total volume. 

 

7.1.10 Solutions and buffers for Western Blot analysis 
6x sample buffer for reducing and non-reducing conditions 

12% SDS —› SDS 3.6 g 

300 mM Tris-HCl, pH 6.8 —› 1.5 mM Tris 6 ml 

600 mM DTT —› DTT 2.77 g 

0.6% Bromphenol blue —› Bromphenol blue 0.18 g 

60% Glycerol —› 99% Glycerol 18 ml 

Add distilled water to 30 ml, store aliquots at -20ºC. For reducing conditions add 50 µl β-

mercaptoethanol to 1 ml of 4x sample buffer, or 25 µl to 1 ml of 2x sample buffer. 

 

LBA Lysis buffer 

50 mM Tris-HCl, pH 7.5 —› 1M Tris, pH 7.5 25 ml 

150 mM NaCl —› 5 M NaCl 15 ml 

0.5-1% Triton X (TX)-100 —› TX-100 2.5-5 ml 

Add distilled water to 500ml and store at 4ºC. 

Add fresh to 50 ml: 

1 mM Sodium ortho vanadate (Na3VO4) —› 100 mM Na3VO4 500 µl 

10 mM NaPPi —› NaPPi 0.225 g 

20 mM NaF —› NaF 0.042 g 

Proteinase inhibitor cocktail tablet —› 1 tablet in 500 µl H2O 500 µl 
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HNTG buffer 

20 mM  HEPES (pH 7.5) 

150 mM NaCl 

10 % Glycerol 

0.1 % Triton-X100 

Dissolve all ingredients in distilled water, adjust pH to 7.5 and keep buffer at 4ºC. Add 1 mM 

Na3VO4 and 1 % complete inhibitor cocktail (Roche) freshly right before use. 

 

Laemmli separating gel 

Concentration 6% 7.5% 9% 10% 

30% (w/v) Acrylamid/bisacrylamid 2 ml 2.5 ml 3 ml 3.3 ml 

1.5 M Tris-HCl pH 8.8, 0.4% SDS 2.6 ml 2.6 ml 2.6 ml 2.6 ml 

H2O 5.35 ml 4.85 ml 4.4 ml 4.05 ml 

10% APS 50 µl 50 µl 50 µl 50 µl 

TEMED 5 µl 5 µl 5 µl 5 µl 

Always prepare fresh, add APS and TEMED just before pouring the gel. Load distilled water on 

top to smoothen the edge of the polymerizing gel. 
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Laemmli stacking gel, 10 ml 

30% (w/v) Acryl amid/bisacrylamid 1.3 ml 

0.5 M Tris-HCl pH 6.8, 0.4% SDS 2.6 ml 

H2O 6.1 ml 

10% APS  100 µl 

TEMED 10 µl 

Always prepare fresh, add APS and TEMED just before pouring the gel. 

 

5x Laemmli electrophoresis buffer 

Tris base 154.5 g 

Glycerin 721 g 

SDS 50 g 

Add distilled water to 10 l total volume, store at RT. 

 

10x Transfer buffer 

Tris base 60.5 g 

Glycin 281.5 g 

SDS 25 g 

Add distilled water to 2.5l total volume, store at RT. Add 20% methanol to the 1x transfer buffer 

right before use. 
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TBS or PBS-Tween (TBS-T, PBS-T) 

1x D-TBS or PBS 

0.1% Tween®20 

Store at RT. 

 

Blocking solution 

Depending on the requirements of the primary antibody use TBS/PBS-T, PBS or TBS with 3-5% 

milk powder (Roth) or 3-5% BSA (Sigma). Prepare fresh, storage at 4 ºC o/n possible. 

 

Sodium phosphate buffer, pH 7.2 

1 M Na2HPO4 68.4 ml 

1 M NaH2PO4 31.6 ml 

2% SDS  

Add water to 1 l total volume and store at RT. 

 

Stripping buffer 

5 mM Sodium phosphate buffer, pH 7-7.4 

2 mM β-Mercaptoethanol 

25 SDS 

Store at RT. Add β-Mercaptoethanol right before use. 
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7.2 Methods 

7.2.1 Molecular Biology 

7.2.1.1 Genomic DNA extraction and genotyping polymerase chain 
reactions (PCR) 

DNA preparation 

The DNA for genotyping was prepared from mouse tails of about 0.1-0.5 cm length. The tails 

were boiled at 95ºC in 100 µl 50 mM NaOH for 45 min using the PCR machine and thoroughly 

vortexed afterwards. If necessary, this step was repeated until the tails were properly dissolved. 

To neutralize the lysates, 10 µl of 1.5 M Tris pH 8.3 was added, mixed by vortexing and 

centrifuged down for 30’’. 2 µl of the samples was used for genotyping. 

 

Genotyping PCR 

The mice were checked for the presence of homozygous ephrinb2lox alleles and the presence of 

Cre recombinase under the Nestin-promoter. 

PCR- master mix for 50 µl reaction volume (always include a positive and a negative control for 

the Cre-PCR) 

Tabelle 7-7: PCR master mix 

Genotype Cre B2lox 

dNTPs (25 mM each) 0.4 µl 0.4 µl 

10x Taq pol buffer (NEB) 5 µl 5 µl 

Primer 1 (100 mM) 0.5 µl Cre1 0.5 µl B2cs1 

Primer 2 (100 mM) 0.5 µl Cre2 0.5 µl B2cas1 

Taq Polymerase (NEB) 0.25 µl 0.5 µl 

Distilled H2O 41.35 µl 41.1 µl 

 



 Material and methods 7 

136 

 

The DNA samples (2 µl) were placed into 96well PCR reaction tubes, the master mixed was 

prepared and added, and the tubes were placed into the PCR machine to run the appropriate 

program: 

B2lox PCR program 

Tabelle 7-8: B2lox genotyping PCR program 

Segment Cycles Temperature Time 

1 1 94ºC 1 min 

2 35 94ºC 45 sec 

  62ºC 45 sec 

  72ºC 45 sec 

3 1 72ºC 5 min 

4 1 10ºC forever 

 

Cre PCR program (Optimized) 

Tabelle 7-9: Cre-Genotyping PCR program  

Segment Cycles Temperature Time 

1 1 94ºC 3 min (2min) 

2 35 94ºC 1 min (40 sec) 

  67ºC 1 min (30 sec) 

  72ºC 1 min (40 sec) 

3 1 72ºC 5 min 

4 1 10ºC forever 
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7.2.1.2 Plasmid DNA preparation 

Plasmid DNA was prepared from small-scale (2ml, miniprep) or from large-scale (200 ml, 

maxiprep) bacterial cultures. These cultures were grown in LB medium containing 100 µg/ml of 

selective antibiotics (ampicillin or kanamycin) at 37ºC over night (o/n) from either a single 

colony of transformed bacteria picked from an agar plate or from a glycerol stock. Bacteria were 

harvested by centrifugation at 4000 rpm for 10 min (miniculture) or 20 min (maxiculture) at 4ºC 

and the plasmid DNA purification was carried out using the QIAGEN® DNA purification 

Maxi/Mini Kit following the protocol described in the QIAGEN handbook including the steps of 

cell lysis, binding of the plasmid to the column, washing, elution and precipitation of the plasmid 

DNA (maxiprep). The precipitated DNA was dissolved in distilled water and the DNA 

concentration determined using a UV spectrometer at 260 nm. (formula dsDNA: ODx 50x 

dilution factor=X µg/ml DNA) 

 

7.2.1.3 Enzymatic treatment of DNA 

DNA cleavage 

The recommended reaction volume for digestions is 50 µl. 0.5-2 µg DNA was incubated with 

10U (1 µl) restriction enzyme in the appropriate buffer (1x), with 100 µg/ml BSA if required, for 

1-2 hours at 37ºC. The reaction was stopped by heat-inactivation of the enzyme at 65ºC for 20 

min. Successful digestion was checked by running 10 µl of the sample in a separating agarose gel. 

All enzymes used are purchased from New England Biolabs, for maximal success read the 

enzymes information provided by the company. 

 

DNA-fragment dephosphorylation  

The treatment of DNA or RNA with antarctic phosphatase results in a removal of the 5’ 

phosphoryl termini, which is required by ligases. It prevents target vectors from self-ligation and 

is therefore useful to decrease vector background in cloning strategies. The usual reaction volume 

was 50 µl including 1 µl enzyme and the digested sample in 1x antarctic phosphatase buffer. The 

reaction takes place at 37ºC, the recommended time is 30 min followed by heat inactivation for 5 

min at 65ºC. 
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Ligation of DNA fragments and target vectors  

The enzyme T4 ligase catalyses the formation of a phosphodiester bond between 5’ phosphate and 

3’ hydroxyl termini in double stranded DNA or RNA and is therefore used to join DNA 

fragments, inserts, into open vectors. In a 20 µl volume, cleaved vector ( app. 0.1 µg) and DNA 

inserts of a 1:5 ratio, 1 µl of T4 ligase in 1x T4 ligase buffer was incubated o/n at 16ºC or 2 hours 

at RT, followed by heat inactivation of the enzyme at 65ºC for 10min and subsequent 

transformation of bacteria. 

 

7.2.1.4 Transformation of competent Bacteria 

For each transformation, 50 µl of competent bacteria (TOP10) were gently thaw on ice and 

placed into the upper corner of a Gene pulser® cuvette. There they were mixed with 1-2 µl 

ligation product and keep on ice until the electroporation with Gene pulser apparatus (BioRad) 

(50 µF, 1.8 kV and 200 Ω). To set the electro pulse, bacteria were transferred to the bottom of 

the cuvette by softly knocking the cuvette onto the table (bubbles should be avoided), and the 

cuvette placed into the electroporation chamber and pulsed once. Quickly after the pulse, 0.5 ml 

of RT LB medium was added, the bacterial suspension was transferred to a fresh sterile Eppendorf 

tube using a fire-sterilized Pasteur pipette and placed into a shaker (250 rpm) at 37ºC for 60 min. 

The transformed bacteria were then plated onto an LB agar plate containing the appropriate 

selective antibiotic and incubated at 37ºC o/n. 

 

7.2.1.5 Gel electrophoresis 

To separate different sized DNA fragments or/and to determine their length and amount, DNA 

samples were run on agarose gels of 1-2% and separated by electrophoresis. High agarose 

(Biomol) was dissolved in 1x TAE buffer by microwaving, mixed with 1 µl/100 ml ethidium 

bromide to visualize the DNA, poured into an electrophoresis gel chamber and cooled to RT 

while polymerizing. DNA samples were mixed with loading buffer (6:1) loaded into the gel 

pockets and separated for approximately 30-45 min at 100-200V depending on the gel size. A 

picture of the gel was taken in the transilluminator on UV light. For preparative gels, the DNA 
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band of interest was excised from the agarose gel using a clean, sharp blade and purified as 

described below. 

 

7.2.1.6 DNA purification 

From agarose gels 

After excising the DNA band of interest from an agarose gel, the DNA fragments were purified 

using the Qiagen Gel Extraction Kit (#28704) following the enclosed Qiagen protocol. 

 

From enzymatic reactions 

After enzymatic reactions, e. g. PCRs, DNA fragment were cleaned from salts, enzymes, and 

remnant nucleotides using either the PCR Purification Kit (Qiagen, #28104) or the NucleoSpin 

ExtractII (Macherey&Nagel, #740609.250), following the enclosed protocol of the provider. 

 

7.2.1.7 Mutagenesis PCR (plasmids) 

All mutagenesis PCRs were done using the Site-directed Mutagenesis Kit (Stratagene) according 

to the protocol provided by Stratagene. The appropriate base pair changes and reading frame of 

the product were confirmed by sequencing (ABI Prism 377 DNA sequencer). The PCR program 

used was the following: 

Tabelle 7-10: Mutagenesis PCR 

Segment Cycles Temperature Time 

1 1 95ºC 2’ 

2 5 95ºC 1’ 

  55ºC 1’ 

  72ºC 12’ (or 2x kb of the plasmid) 

3 25 95ºC 1’ 
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  65ºC 1’ 

  72ºC 12’+10’’ 

4 1 72ºC 5’ 

5 1 10ºC o/n 

 

7.2.2 Cell culture 

7.2.2.1 Mammalian cell lines 

Propagation  

293 HEK or 293 GluR2 HEK cells were cultivated in DMEM growth medium at 37ºC and 5% 

CO2 below total confluency. For splitting, the cells were washed with PBS, treated with 

trypsin/EDTA (Invitrigen, #25300-054) at 37ºC until the cells started to detach from the culture 

dish, and collected in the appropriate volume of growth medium. The cells were then distributed 

in the desired dilution onto fresh culture plates with pre-warmed medium. 

 

Freezing and thawing 

Cells were harvested using trypsin as described above, collected by centrifugation at 800 rpm for 

5 min and re-suspended in FBS with 5% DMSO and distributed into cryo-tubes of 1 ml volume, 

which were immediately after placed into a freezing box to allow slow freezing at -80ºC. For long 

term storage, frozen cells are kept in liquid nitrogen. To thaw frozen cells, the cryo-tube was 

quickly placed into a 37ºC water bath and 10 ml of pre-warmed growth medium was added as 

soon as its content was thawed. The cells were collected by centrifugation at 800 rpm for 5 min, 

re-suspended and seeded onto culture plates with pre-warmed growth medium. 

 



7 Material and methods  

141 

 

7.2.2.2 Cultivation of primary hippocampal neurons 

Coverslip (CVS) treatment 

CVS were treated with nitric acid (Fluka) in a glass beaker at RT over night. The next day, the 

CVS were washed 3-4 times with H2O, left with changes of fresh H2O on a rocker 4 times for 30 

minutes to briefly remove the acid and spread separately on Whatmann paper to dry. Dry CVS 

were baked to sterilize in the oven at 165ºC. 

 

Coating of the CVS 

The CVS were placed into 24-well plates (Costar) and coated with 1 mg/ml poly-D-lysine 

(Sigma,#P7886-1G) in Borate-Buffer (400 μl/well), which had been sterilize by passing through 

a 0.22 µm pore size filter after poly-D-lysine dissolvment, at 37ºC for minimum 5 hours. Then 

the CVS were washed 3x with distilled sterile H2O, left in the hood to dry and coated with 

5μg/ml laminin in PBS (400μl/well) for minimum 2 hours at 37ºC. Excessive laminin was 

washed off 3x with PBS, the wells were filled with 400 μl NB medium and placed into the 

incubator for pH and temperature equilibration. 

 

Isolation of hippocampal neurons (adapted from Jenny Lauterbach ) 

4 ml of serum medium (SM) and Neurobasal medium (NB) each was filled in dishes and placed 

into the incubator; trypsin was put into the water bath to warm up. The embryos of pregnant 

E18-19 rats or E17 mice were taken, the heads were cut off and collected in a 35mmØ dish filled 

with chilled dissection medium (DM). Carefully the skulls were opened, the brains removed and 

transfered into a fresh dish of 35mmØ filled with chilled DM. The two cortices halves of each 

brain were then separated from the brain steam, the meninges were removed and the hippocampi 

were cut out of each cortex half. The hippocampi were collected in a 15 ml tube on ice filled with 

10 ml DM. When all hippocampi were isolated, the DM was carefully replaced by 1-2 ml 

prewarmed tryspin and the tube placed into the water bath for 20 min at 37ºC. Meanwhile, a 

Pasteur pipette was flamed to decrease the diameter of the tip. The trypsin was removed after 20 

min and the hippocampi washed 3x with prewarmed SM to stop the reaction. The tissue was 

homogenized in 1.5 ml SM using the fire-polished Pasteur pipette by pipetting up and down 20-
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30 times, it was carefully avoided to make bubbles (neurons do not like oxygen). Cells were 

collected by centrifugation for 5 min at 650 rpm, the supernatant removed and the cells 

resuspended in warm NB medium using the fire-polished Pasteur pipette. Cell number was 

determined using a Neubauer counting chamber, thereafter the cells were plated on the CVS in 

24-well plates with prewarmed medium at desired density. Low density cultures require 15-

25.000 cells/well (24 well plate), high density up to 70.000 cells per well. 

 

7.2.2.3 Transfection of cell lines and primary hippocampal neurons 

CaPO4 -transfection (general protocol)  

24 hour prior transfection cells were splitted to achieve the appropriate density (20-40% 

confluence) and incubated with growth medium. 

Mix for one 10 cm Ø dish: 

9 ml fresh growth medium + 1000μl Transfection Mix containing: 

 450 μl  H2O – DNA (10-20µg) 

 50 μl  2.5 M CaCl2 

 500 μl  2x BBS (pH 6.96-7.10) 

First, the water was mixed with the DNA in an Eppendorf tube, then 50 µl CaCl2 was added and 

finally the BBS. The transfection mix was vortexed shortly and incubated for 15 minutes at RT. 

The cells were washed with PBS and covered with 9 ml fresh warmed growth medium. The 

transfection solution was added to the plate by dropping it slowly into the medium. The cells 

were incubated with the transfection solution for 8 hours, washed briefly with PBS (CaMg) and 

covered with 10 ml fresh growth medium. 24 hours before performing stimulation assays, the 

cells were starved by exchanging growth against starving medium. 

 

CaPO4 -transfection primary hippocampal neurons 

Mix for 4 wells (24-well plate):  
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900μl fresh NB medium + 100μl Transfection Mix containing 

 37.5 μl  H2O – DNA (4-7μg) 

 12.5 μl  1M CaCl2 

 50 μl  BBS (pH 7.26) 

NB medium (900µl per 4 wells) with freshly added B27 was placed into the incubator to warm 

for at least 30 minutes. Meanwhile, the transfection mix for 4 wells each was prepared in a fresh 

sterile Eppendorf tube by adding first the H2O, then the CaCl2 and the DNA. 900 µl warm NB 

medium was transferred into a 5 ml polypropylene round bottom tube (Falcon, #352052) and 

vortexed. Then 50 µl BBS was added to the first Eppendorf tube and the complete transfection 

mix added into the NB medium while vortexing by dropping it in slowly. The culture medium on 

the cells was quickly replaced with 250 µl of the fresh mixed transfection solution per well (100µl 

transfection mix + 900 µl NB medium), the old culture medium was kept in a separate tube. 

Always 4 wells were done at a time, these steps were repeated until each well had received 

transfection solution, and then the plate was put back into the incubator. If needed and to exclude 

contamination the collected, old culture medium might be sterile filtered by passing through a 45 

µm pore filter with a syringe and was kept in the incubator to later replace the transfection 

solution. Meanwhile, the washing solution (HBSS pH 7.3) was warmed in the water bath at 37ºC. 

After approximately 2 hours, when small precipitates had formed, the wells were washed 2x with 

pre-warmed washing solution (HBSS pH 7.3) and the old culture medium ( 300 µl per well) was 

placed back on to the cells. The cells were assayed 2-5 days after transfection. 

 

7.2.3 Biochemistry 

7.2.3.1 Cell stimulation  

EphB and ephrin stimulation 

For stimulation, recombinant EphB-Fc, ephrinB-Fc, or Fc (Biochemistry: 1 µg/ml (cells) or 4 

µg/ml (neurons); Immunocytochemistry: 4 µg/ml) were preclustered with goat anti-human IgG 

antibodies (1/10) for 1 hour at RT. Cells were washed once with warmed PBS (CaMg) and 

stimulated in culture medium (3ml for 10 cmØ, 300µl per 24-well plate well) for 10-60 minutes, 
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depending on the assay conditions. For inhibition of SFKs, the specific inhibitor PP2 was dissolved 

in DMSO and added to the plates (20µM) 15 minutes prior EphB stimulation. 

 

AMPA stimulation 

AMPA (Sigma) was dissolved in artificial cerebrospinal fluid (ACSF) and kept at -80ºC in aliquots 

of 100 mM (1000x). Cells were stimulated in culture medium with 100µM AMPA for 10 minutes 

at 37ºC. In case of double stimulation with EphB4, AMPA was added in for the last 10 minutes of 

stimulation. 

 

NMDA stimulation 

NMDA (Sigma) was dissolved in ACSF and kept in aliquots of 50 mM at -80ºC. Cells were 

stimulated by adding 50 µM NMDA for 2 minutes to the culture medium, and leaving the 

reaction proceed for additional 10 minutes. In case of double stimulation with EphB4, NMDA 

was added in for 2 minutes during the last 10 minutes of the stimulation. 

 

KCl stimulation 

For the KCl stimulation, neurons were treated for 10 minutes with 10 mM KCl in NB medium 

and assayed for activity-induced ephrinB2 cluster formation. EphrinB2 clusters were visualized 

indirectly by the binding of soluble EphB4-Fc to surface ephrinB2 and subsequent detection using 

goat anti- human IgG-cy2 antibodies. 

 

7.2.3.2 Cell or tissue lysis and protein concentration measurements 

Cell and tissue lysis 

Cells or tissues, that were assayed by immunoprecipitaion or/and immunoblotting, were lysed in 

chilled lysis buffer (containing freshly added vanadate, NaF, NaPPi and kinase inhibitor 

cocktail(Roche) ). Cells were placed on an ice tray, washed once with cold PBS and collected 

from the culture dish in the appropriate volume of lysis buffer (e. g. 500 µl/ 10 cm Ø dish) using 
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cell scrapers (Sarsted). Tissue was homogenized in chilled lysis buffer using a glass homogenizer 

(B. Braun, Melsungen AG). Lysates were collected in tubes on ice and fixed on a spinning wheel 

at 4ºC for minimum 10 minutes to let the lysis proceed. Thereafter, the lysates were cleared from 

cell debris by centrifugation at 4ºC (10 minutes for cell lysates, 45 minutes for homogenized 

tissue) and the protein content was determined. 

 

Protein concentration measurement 

To determine the protein concentration of different lysates, the BioRad DC Protein Assay kit was 

used. Different BSA concentrations in the range of 0-10 mg/ml (0, 1, 2, 5, 10) served as standard 

and were assayed at the same time with 2-5 µl of the samples in doublets. The amount of protein 

of each sample was determined and equal amounts were used for immunoprecipitation and 

pulldown experiments. 

 

7.2.3.3 Immunoprecipitation and pulldown experiments 

Immunoprecipitation 

The agarose beads for immunopreciptiation were kept in suspension (1:1) in PBS with 50% 

ethanol to avoid contamination. 10 µl of the beads per sample (20 µl of the beads-PBS suspension) 

were placed into an Eppendorf tube, washed with PBS by centrifugation 3 times at 2.8 rpm for 

2.5 minutes and left with approximately 100 µl PBS to dissolve the primary antibody in. First, the 

beads were incubated with the antibody for 40-60 minutes at RT on a rotating wheel, then loaded 

with the samples of equal protein content and placed in a spinning wheel at 4ºC. After 2 hours, 

the beads were washed 3 times by centrifugation (3.0 rpm, 3 minutes) with chilled lysis buffer 

containing vanadate to remove any unbound proteins. After the last wash the liquid was removed 

completely using extra thin gel saver tips (Kisker), 25 µl 2x sample buffer per tube was added and 

mixed in briefly by vortexing. The samples were boiled at 95ºC for 5 minutes, run on SDS gels to 

separate the precipitated proteins, and analyzed by immunoblotting. 
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Table 7-11: Agarose beads and antibody specificity 

Product Specificity 

Protein A-Agarose 
mouse IgG2a, IgG2b& IgA, rabbit polyclonal, human IgG1, IgG2 &IgG4 

antibodies 

Protein G PLUS-Agarose  
mouse IgG1, IgG2a, IgG2b& IgG3, rat IgG1, IgG2a, IgG2b& IgG2c, rabbit 

and goat polyclonal, human IgG1, IgG2 , IgG3&IgG4 antibodies 

Protein A/G PLUS All of the above antibodies 

Protein L-Agarose Mouse, rat, human IgG 

Glutathione-Agarose GST fusion proteins 

 

Pulldown experiments 

EphrinB molecules (~47 kDa) run at the height of the antibodie’s heavy chain in reducing gels and 

the signal is hidden by non-specific antibody interaction. Therefore, to specifically identify 

ephrinB molecules, the use of non-reducing SDS-PAGE gels is required. Alternatively, pulldowns 

that are based on the highly specific ligand-receptor-interaction provide a powerful tool to isolate 

and to study ephrinB molecules and their interaction partners. To pulldown ephrinB molecules 

from cell or tissue lysates, the extracellular part of Eph receptors fused to Fc portions of human 

antibodies (EphB2-Fc) is used (Cowan and Henkemeyer, 2001). 

10 µl of G-sepharose beads (20 µl suspension) per sample were taken, washed 3 times with PBS 

by centrifugation at 2.8 rpm 2.5 minutes, loaded with 5 µg EphB-Fc or Fc (control for unspecific 

binding) together with the lysates and incubated over night at 4ºC on a rotating wheel. (If 

necessary and to minimize unspecific binding to the beads, lysates can be pre-cleaned by 

incubation with only beads for 30 minutes at 4ºC. The supernatant is then loaded to fresh beads 

with EphB-Fc or Fc). The beads were washed 3 times with chilled HNPG buffer by centrifugation 

at 3.0 rpm for 3 minutes, the liquid was removed completely using gel saver tips (Kisker) and 25 

µl sample buffer was added. The samples were boiled at 95ºC for 5 minutes and then separated on 

SDS page gels. 
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7.2.3.4 Immunoblotting 

For immunoblotting, protein samples in loading buffer were boiled at 95ºC for minutes, and 

separated by 6 %, 7.5 %, 9 % or 10 % SDS page. The separated proteins were transferred using 

semi-dry blotting chambers (Bio-Rad) in transfer buffer (20% methanol) to a nitrocellulose 

membrane. If an unstained marker was used, the membrane was incubated in Ponceau S for a few 

minutes until the maker was visible and drawn over by pencil. The membranes were blocked in 

blocking solution appropriate for the primary antibody used (3-5% milk in PBS, PBS-T or TBS, or 

3-5% BSA in PBS or TBS) for 45 minutes at RT, incubated with the primary antibody in blocking 

solution for 1 hour at RT, washed 3 times 10 minutes with PBS-T and finally incubated with the 

secondary antibody in blocking solution (anti-rabbit, anti-mouse or anti-goat HRP). The 

membranes were washed again 3 times for 10 minutes (if no special treatment necessary) and the 

signal was visualized using chemiluminescent reagent ECL (Amersham) and captured on films 

taking different exposure times. 

 

7.2.3.5 Immunocytochemistry 

After transfection and stimulation, cells and neurons grown on cover slips were fixed with 4 % 

paraformaldehyde (PFA), 4 % sucrose in PBS for 12 minutes on an ice tray (4ºC). The cells were 

rinsed twice with PBS and incubated with 50 mM NH4Cl in PBS for 10 minutes at 4ºC to remove 

excessive PFA. The NH4Cl was rinsed off twice with cold PBS before the cells were 

permeabelized for 5 minutes with ice cold 0.1 % Triton X-100 in PBS. After washing the cells 3 

times for 5 minutes with PBS, the cells were blocked for 30 minutes at RT in blocking solution (2 

% bovine serum albumin, 4 % donkey and/or 4 % goat serum (Jackson ImmunoResearch)), and 

thereafter incubated with primary antibodies for 60-90 minutes at RT, or over night at 4ºC. The 

samples were washed thoroughly with PBS 3 times 5 minutes and incubated with secondary 

antibodies for 60 minutes at RT protected from light. Finally, the cover slips were washed 3 times 

for 5 minutes with PBS, once with H2O by dipping them into a water filled dish, and mounted on 

slides using the Gel/Mount anti-fading medium (Biomeda corp.). Images were acquired using a 

digital camera (SpotRT; Diagnostic Instruments) attached to an epifluorescence microscope 

(Zeiss). 
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7.2.3.6 Internalization assays 

Biotinylation assay 

The biotinylation assay was performed as described (Chung et al., 2000; Lin et al., 2000; Man et 

al., 2000) with some modifications. Live hippocampal neurons 15-20 DIV or cells were incubated 

with 1 mg/ml or 300 µg/ml EZ-link NHS-SS-biotin (Pierce) in D-PBS buffer with Ca2+Mg2+ for 

3 min at 37°C, washed with D-PBS buffer with Ca2+Mg2+and optionally the remaining reactive 

biotin was quenched by incubating the cells with 200 mM glycine in PBS at 4ºC for 20 minutes. 

After surface biotinylation, the cells were stimulated in culture medium with human Fc or EphB4-

Fc (1 µg/ml cells or 4 µg/ml neurons) for 1 hour (neurons) or 30 minutes (cells); 100 µM 

AMPA was added in for the last 10 minutes. The reaction was stopped by cooling the cells to 4°C 

on an ice tray. The remaining surface biotin of non-internalized molecules was eliminated by 

washing the cells with 150 mM of glutathione (Sigma) in 150 mM NaCl for 10 minutes at 4°C. 

The glutathione was then neutralized by 50 mM iodoacetamide (Sigma) in D-PBS buffer with 

Ca2+Mg2+. The cells were lysed in LBA lysis buffer, centrifuged at 13.0 rpm for 10 minutes at 4ºC 

and the supernatants with equal amounts of total protein were incubated with streptavidin beads, 

100 µl/sample, over night at 4°C to capture internalized biotinylated proteins. The following 

day, the samples were washed 3 times with LBA buffer by centrifugation at 3 rpm for 3 minutes 

each at 4ºC, the liquid was removed completely using gel saver tips (Kisker), and 25 µl sample 

buffer was added. The samples were boiled at 95ºC for 5 minutes, separated on SDS page gels and 

analyzed by immunoblotting with the appropriate antibodies. 

 

Antibody feeding assay 

The antibody feeding assay was performed as described (Lin et al., 2000; Man et al., 2000) with 

some modifications. Hippocampal neurons from E19 rat or E17 mouse embryos were isolated and 

plated on coated coverslips Ø13 mm in 24-well plates. Briefly, hippocampal neurons 15-21DIV 

were blocked at 37ºC for 10 minutes in blocking solution, incubated with the primary antibody 

anti-GluR2 (AA 175-430; 1:500) (Chemicon) or GluR1( AA 271-285; 1:50) (Calbiochem) for 18 

minutes at 37ºC, and washed with warm D-PBS + Ca2+Mg2+. The antibody-labeled cells were 

then stimulated with human Fc or EphB4-Fc (1 µg/ml) in 300 µl NB medium at 37°C for 1 hour; 

100 µM AMPA was added in the last 10 minutes. For NMDA stimulation 50 µM NMDA was 
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added to the cells for 2 minutes. The cells were fixed as described under the point 

immunocytochemistry, and incubated with Alexa Fluor 488- or Cy2- conjugated secondary 

antibodies for 2 hours at RT protected from light to detect pre-labeled surface remained 

receptors. After washing 3 times 5 minutes with PBS, the neurons were permeabelized for 4 

minutes with ice cold 0.1% Triton X-100 in PBS, blocked again for 30 minutes and finally 

incubated with Cy3-conjugated secondary antibodies to visualize pre-labeled internalized 

receptors. For the rescue experiments, hippocampal neurons isolated from NestinCre+ 

ephrinB2lox/lox were transfected with CFP-ephrinB2 WT, CFP-ephrinB2 S-9>A or CFP-ephrinB2 

S-9>E 5 days before performing the antibody feeding assay. For interference experiments 

hippocampal, neurons 15-17DIV were transfected 2-4 days prior performing the antibody feeding 

assay with GRIP1-PDZ6-CFP or GRIP1-PDZ7-CFP or the ephrinB peptide constructs ephb2-

peptideWT, SA or SE CFP. All neurons transfected with CFP-constructs were incubated 

additionally with anti-GFP antibodies (RDI) after permeabilization to strengthen the CFP signal. 

Consequently, these neurons were treated in the last step with AMCA-conjugated and Cy3-

conjugated secondary antibodies. Images were acquired using a digital camera (SpotRT; 

Diagnostic Instruments) attached to an epifluorescence microscope (Zeiss). 

7.2.4 Postsynaptic density fractionation 
PSD fractions were prepared by Stefan Weinges (Weinges, 2006) as described (Cho et al., 1992) 

7.2.5 Tandem affinity purification (TAP) and mass spectrometry 
Grb4-CTAP (C-terminal fusion) was generated as described in Stefan Weinges thesis 

(Bouwmeester et al., 2004; Weinges, 2006). TAP purification, protein digestion, mass 

spectrometry and protein identification were done as described in Stefan Weinges thesis 

(Angrand, 2006; Weinges, 2006). 

7.2.6 Electrophysiology-patch-clamp recordings  
Miniature excitatory postsynaptic currents (mEPSC) were recorded from dissociated hippocampal 

neurons (15 -19 DIV) at room temperature (20-22°C). The recording chamber was continuously 

perfused with carbogenated artificial cerebro-spinal fluid (ACSF) that contained (in mM): 119 

NaCl; 2.5 KCl; 1.3 MgSO4; 2.5 CaCl2; 1 NaH2PO4; 26.2 NaHCO3 and 11.1 D-glucose 

supplemented with 100 µM picrotoxin (PTX), 100 µM D(-)-2-Amino-5-phosphonovaleric acid 
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(APV) and 200 nM tetrodotoxin (TTX). Membrane currents were recorded at a holding potential 

of -70 mV using a MultiClamp 700B amplifier (Molecular Devices). Patch pipettes (WPI) with a 

resistance of 3.5-5 MΩ were filled with an internal solution containing (in mM): 150 CsGluc; 10 

HEPES; 2 MgATP; 0.2 EGTA; 5 QX314; 8 NaCl, 290 mosm, pH 7.2. Signals were filtered at 2 

kHz and digitized at 5 kHz via a Digidata 1440A digitizer (Axon Instruments, Molecular Devices). 

Data were collected using Clampex 10.1 and analyzed with Clampfit 10.1 software (Axon 

Instruments, Molecular Devices). Only cells with a series resistance lower than 25 MΩ and a 

noise level lower than 10 pA were analyzed. 80 events per cell were recorded. Cells with very 

high mEPSC frequencies were excluded. Statistical analysis was performed with Prism (Version 

5.00, GraphPad).  

 

7.2.7 Data analysis 

Immunofluorescence 

Images were acquired using a digital camera (SpotRT; Diagnostic Instruments) attached to an 

epifluorescence microscope (Zeiss) equipped with a 40x and a 63X objective (Plan-Apochromat; 

Zeiss). All quantitative measurements were performed using MetaMorph software (Molecular 

Devices). 

Quantification of AMPA-receptor internalization was based on fluorescence intensities. The 

percentage of internalized GluR2 or GluR1 (red fluorescence intensity) versus total GluR2 or 

GluR1 (red + green fluorescence intensity) was calculated for dendrite stretches of 100-200 µm 

imaged on at least 10 different transfected or treated neurons (n= 50-100). Student’s t tests were 

used to assess statistical significance of the quantifications (Microsoft Excel). 

For the quantification of spine length, spine head area and protrusion number, approximately 100 

dendrites from independent transfections were selected randomly. For each construct the number 

of protrusions on dendrite stretches of proximal 50 µm, and the area of the spines heads were 

quantified. The protrusion length was determined by measuring the distance between the tip and 

the base (n>500 protrusions). Groups of protrusions were compared using t-test (Microsoft 

Exel). 
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Synapse formation and number of mature synapses was analyzed by counting the number of 

clusters positive for the pre-synaptic protein synapsin1, or the post-synaptic marker PSD-95 along 

dendrite stretches of approximately 100 µm.  

Spine morphogenesis was assayed by analyzing protrusion length and percentage of mature 

mushroom-like spines relative to total number of protrusions. 

 

Electrophysiology 

Data were collected using Clampex 10.1 and analyzed with Clampfit 10.1 software (Axon 

Instruments, Molecular Devices). Only cells with a series resistance lower than 25 MΩ and a 

noise level lower than 10 pA were analyzed. 80 events per cell were recorded. Cells with very 

high mEPSC frequencies were excluded. Statistical analysis was performed with Prism (Version 

5.00, GraphPad). 
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