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Abstract

Nichols algebras are a fundamental building block of pointed Hopf algebras. Part of the
classification program of finite-dimensional pointed Hopf algebras with the lifting method
of Andruskiewitsch and Schneider [6] is the determination of the liftings, i.e., all possible
deformations of a given Nichols algebra. The classification was carried out in this way in
[11] when the group of group-like elements is abelian and the prime divisors of the order
of the group are > 7. In this case the appearing Nichols algebras are of Cartan type.

Based on recent work of Heckenberger about diagonal Nichols algebras [29, 28, 27] we
compute explicitly the liftings of some Nichols algebras not treated in [11]; namely we lift

• all Nichols algebras with Cartan matrix of type A2 (Theorem 6.3.3),

• some Nichols algebras with Cartan matrix of type B2 (Theorem 6.4.3), and

• some Nichols algebras of two Weyl equivalence classes of non-standard type (Theorem
6.5.3),

giving new classes of finite-dimensional pointed Hopf algebras.
Crucial is the knowledge of a “good” presentation of the Nichols algebra and its lift-

ings: We want to have an explicit description in terms of generators and (non-redundant)
relations, and a basis; this requires new ideas and methods that generalize those in [11].

In this spirit, we describe Hopf algebras generated by skew-primitive elements and an
abelian group with action given via characters (including Nichols algebras and their liftings)
in Theorem 5.4.1. The relations form a Gröbner basis and are given by a combinatorial
property involving the theory of Lyndon words.

Furthermore, in Theorem 7.3.1 we give a necessary and sufficient criterion to check
whether a given set of iterated q-commutators establishes a restricted PBW basis for a
given realization of the relations. Also with the help of this criterion we determine the
redundant relations in the examined Nichols algebras and their liftings.
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Zusammenfassung

Nicholsalgebren sind ein fundamentaler Baustein punktierter Hopfalgebren. Teil des Klas-
sifizierungprogramms endlich-dimensionaler punktierter Hopfalgebren mit der Lifting Me-
thode von Andruskiewitsch und Schneider [6] ist die Bestimmung der Liftings, d.h. aller
möglichen Deformationen einer gegebenen Nicholsalgebra. Die Klassifizierung wurde mit
dieser Methode in [11] durchgeführt, falls die Gruppenelemente eine abelsche Gruppe bilden
und die Primteiler der Gruppenordnung > 7 sind. Die dort auftretenden Nicholsalgebren
sind vom Cartan-Typ.

Basierend auf neueren Arbeiten von Heckenberger über diagonale Nicholsalgebren [29,
28, 27] bestimmen wir explizit die Liftings einiger Nicholsalgebren, welche nicht in [11]
behandelt wurden: Wir liften

• alle Nicholsalgebren mit Cartan Matrix vom Typ A2 (Theorem 6.3.3),

• einige Nicholsalgebren mit Cartan Matrix vom Typ B2 (Theorem 6.4.3) und

• einige Nicholsalgebren aus zwei Weyl-Äquivalenzklassen vom nicht-standard-Typ
(Theorem 6.5.3).

Dies liefert neue Klassen von endlich-dimensionalen punktierten Hopfalgebren.
Es ist entscheidend eine “gute” Beschreibung der Nicholsalgebra und ihrer Liftings

zu besitzen: wir wollen eine explizite Angabe von Erzeugern und (nicht redundanten)
Relationen, desweiteren eine Basis; dazu braucht man neue Ideen und Methoden, die jene
in [11] verallgemeinern.

In diesem Sinne beschreiben wir Hopfalgebren, die von schief-primitiven Elementen und
einer abelschen Gruppe mit einer durch Charaktere gegebenen Wirkung erzeugt sind (diese
Klasse beinhaltet Nicholsalgebren und ihre Liftings), in Theorem 5.4.1. Die Relationen
bilden eine Gröbnerbasis und sind durch eine kombinatorische Eigenschaft gegeben, für
deren Formulierung die Theorie der Lyndonwörter eingeht.

Desweiteren liefern wir mit Theorem 7.3.1 ein notwendiges und hinreichendes Kriterium,
ob eine gegebene Menge von iterierten q-Kommutatoren eine PBW-Basis für eine gegebene
Realisierung der Relationen bildet. Ebenfalls bestimmen wir mit Hilfe dieses Kriteriums
die nicht benötigten Relationen in den untersuchten Nicholsalgebren und deren Liftings.
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Introduction

Hopf algebras and quantum groups. Hopf algebras are named in honor of Heinz Hopf,
who used this algebraic structure in 1941 [33] to solve a problem in the cohomology theory
of group manifolds; see also [5]. The first book on Hopf algebras [51] was published in 1969
and in spite of many interesting results, there were only few people studying this field.
The interest in Hopf algebras grew dramatically when Drinfel’d [20, 21] and Jimbo [35]
introduced the so-called quantum groups Uq(g) in the 80s. These were a totally new class
of non-commutative and non-cocommutative Hopf algebras coming from q-deformations of
universal enveloping algebras U(g) of semi-simple complex Lie algebras g. Later Lusztig
[40, 41] found another important class of finite-dimensional Hopf algebras, the so-called
Frobenius-Lusztig kernels uq(g), also called small quantum groups. Further quantum groups
showed to have connections to knot theory, quantum field theory, non-commutative geom-
etry and representation theory of algebraic groups in characteristic p > 0, only to name a
few.

Classification of Hopf algebras. Finite-dimensional Hopf algebras give rise to finite
tensor categories in the sense of [22] and thus classification results of these should have
applications in conformal field theory [23]. Not only for this reason it is of great inter-
est to classify Hopf algebras. Although there are some results (see [1] for a discussion
of what is known on classification of finite-dimensional Hopf algebras), an answer to this
question in general may be impossible. Therefore one needs to restrict to a subclass of
finite-dimensional Hopf algebras: At the moment the most promissing general method is
the lifting method developed by Andruskiewitsch and Schneider [6] for the classification of
pointed Hopf algebras.

Pointed Hopf algebras. A Hopf algebra is called pointed, if all its simple subcoalgebras
are one-dimensional, or equivalently the coradical equals the group algebra of the group of
group-like elements; see Section 1.3.

Any Hopf algebra generated as an algebra by group-like and skew-primitive elements is
pointed. In particular the above mentioned quantum groups: The cocommutative universal
enveloping algebras U(g) and their non-cocommutative deformations Uq(g) and uq(g) are
all pointed [34, 42].

The converse statement is the following conjecture of Andruskiewitsch and Schneider,
which is proven for a large class in [11], see also [7, 8, 9, 10]:

Conjecture 0.0.1. [8] Any finite-dimensional pointed Hopf algebra over the complex num-
bers is generated by group-like and skew-primitive elements.
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We want to mention that this is long known to be true for cocommutative Hopf alge-
bras, which are pointed if the ground field is algebraically closed: The Cartier-Kostant-
Milnor-Moore theorem of around 1963 states that any cocommutative Hopf algebra over
the complex numbers is a semi-direct product of a universal enveloping algebra and a group
algebra. Further we want to mention the classification results on pointed Hopf algebras of
rank one by Krop and Radford [37] in characteristic zero and by Scherotzke [50] in positive
characteristic. Finally, the conjecture is false if the ground field has positive characterisitc
or the Hopf algebra is infinite-dimensional; see [10, Examples 2.5, 2.6].

The lifting method. Given a finite-dimensional pointed Hopf algebra A with coradical
A0 = k[Γ] and (abelian) group of group-like elements Γ = G(A). Then we can decompose
its associated graded Hopf algebra into a smash product gr(A) ∼= B#k[Γ] where B is a
braided Hopf algebra; see Section 2.6. The subalgebra of B generated by its primitive
elements V := P (B) is a Nichols algebra B(V ), see Section 2.7. Now the classification is
carried out in three steps:

(1) Show that B = B(V ) (this is equivalent to Conjecture 0.0.1).

(2) Determine the structure of B(V ).

(3) Lifting : Determine the liftings of B(V ), i.e., all Hopf algebras A such that gr(A) ∼=
B(V )#k[Γ].

Let us mention briefly some classification results for pointed Hopf algebras of dimension
pn with an odd prime p and 1 ≤ n ≤ 5, obtained in this way: If the dimension is p or p2,
then the Hopf algebra is a group algebra or a Taft Hopf algebra. The cases of dimension
p3 and p4 were treated in [6] and [8], and the classification of dimension p5 follows from
[7] and [24]. Also, the lifting method was used in [25] to classify pointed Hopf algebras of
dimension 25 = 32.

The most impressive result obtained by this method by Andruskiewitsch und Schneider
[11] is the classification of all finite-dimensional pointed Hopf algebras where the prime
divisors of the order of the abelian group Γ are > 7. In this case the diagonal braiding
of V is of Cartan type and the Hopf algebras are generalized versions of small quantum
groups. The classification when the braiding is not of Cartan type or the divisors of the
order of Γ are ≤ 7 is still an open problem. Also the case where Γ is not abelian is widely
open and of different nature, e.g., the defining relations have another form [32, 4].

Concerning (2), Heckenberger recently showed that Nichols algebras of diagonal type
have a close connection to semi-simple Lie algebras, namely he introduces a Weyl groupoid
[28], Weyl equivalence [27] and an arithmetic root system [30, 26] for Nichols algebras.
With the help of these concepts he classifies the diagonal braidings of V such that the
Nichols algebra B(V ) has a finite set of PBW generators [31]. Moreover, he determines
the structure of all rank two Nichols algebras in terms of generators and relations [29].

This is the starting point of our work which addresses to step (3) of the program,
namely the lifting in the cases not treated in [11].
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The main results and organization of this thesis

In Chapters 1 and 2 the basic notions of Hopf algebrs and Nichols algebras are recalled,
taking into account the recent developement of Nichols algebras. Then in Chapter 3 we
develop a general calculus for q-commutators in an arbitrary algebra, which is needed
throughout the thesis; new formulas for q-commutators are found in Proposition 3.2.3.

We recall in Chapter 4 the theory of Lyndon words, super letters and super words;
super letters are iterated q-commutators and super words are products of super letters.
We show that the set of all super words can be seen indeed as a set of words, i.e., as a free
monoid. This is a consequence of Proposition 4.3.2.

In Chapter 5 we give in Theorem 5.4.1 a structural description of Hopf algebras gen-
erated by skew-primitive elements and an abelian group with action given via characters,
in terms of generators and relations, with the help of a result by Kharchenko [36]; he calls
these Hopf algebras character Hopf algebras. As we will see, these relations build up a
Gröbner basis for such Hopf algebras.

Based on the previous chapters we then formulate the two main results of this thesis:

Lifting of Nichols algebras, Chapter 6. We generalize the methods of Andruskiewitsch
and Schneider to compute explicitly the liftings of all Nichols algebras with Cartan ma-
trix of type A2, some with Cartan matrix of type B2 and some with Cartan matrix of
non-standard type; see Theorems 6.3.3, 6.4.3 and 6.5.3. These are a new class of finite-
dimensional pointed Hopf algebras. We explain our method in Section 6.1.

When lifting arbitrary diagonal Nichols algebras, new phenomena occur: In the setting
of [11] there are only three types of defining relations, namely the Serre relations, the linking
relations and the root vector relations. The algebraic structure in the general setting is
more complicated: Firstly, the Serre relations do not play the outstanding role. Other
relations are needed and sometimes the Serre relations are redundant; we give a complete
answer for the Serre relations in Lemma 6.1.3. Secondly, in general the lifted relations
from the Nichols algebra do not remain in the group algebra.

By Theorem 5.4.1 we know the structure of the defining relations. As it turned out,
it is enough to find a counterterm such that the relation is a skew-primitive element, see
Section 6.1. In order to show this, one needs to calculate certain coproducts; for this, new
methods are found in Section 5.5.

Part of the lifting is the knowledge of the dimension resp. a basis and to find the redundant
relations. The here obtained liftings could not be treated by existing basis criterions like
[11, Sect. 4]. For this reason we develop in Chapter 7 a PBW basis criterion which is ap-
plicable for all character Hopf algebras, i.e., generated by skew-primitive elements and an
abelian group with action given via characters (in particular liftings of Nichols algebras),
see Theorem 7.3.1.

A PBW basis criterion for a class of pointed Hopf algebras, Chapter 7. In
the famous Poincaré-Birkhoff-Witt theorem for universal enveloping algebras of finite-
dimensional Lie algebras a class of new bases appeared. Since then many PBW theorems
for more general situations were discovered. We want to name those for quantum groups:
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Lusztig’s axiomatic approach [39, 42] and Ringel’s approach via Hall algebras [48]. Let us
also mention the work of Berger [15], Rosso [49], and Yamane [54].

The very general and for us important work is [36], where a PBW theorem for all of the
above mentioned quantum groups and also Nichols algebras and their liftings is formulated:
Kharchenko shows in [36, Thm. 2] that character Hopf algebras have a PBW basis in special
q-commutators, namely the hard super letters coming from the theory of Lyndon words, see
Chapter 5. Thereby we use the term PBW basis in the sense of Definition 5.1.1. However,
the definition of hard is not constructive (see also [18, 17] for the word problem for Lie
algebras) and in view of treating concrete examples there is a lack of deciding whether a
given set of iterated q-commutators establishes a PBW basis resp. is the set of hard super
letters in the language of [36].

On the other hand the diamond lemma [16] (see also Section 7.6, Theorem 7.6.1) is a
very general method to check whether an associative algebra given in terms of generators
and relations has a certain basis, or equivalently the relations form a Gröbner basis. As
mentioned before, we construct such a Gröbner basis for a character Hopf algebra in
Theorem 5.4.1 and give a necessary and sufficient criterion for a set of super letters being
a PBW basis, see Theorem 7.3.1. The PBW Criterion 7.3.1 is formulated in the languague
of q-commutators. This seems to be the natural setting, since the criterion involves only
q-commutator identities of Proposition 3.2.3; as a side effect we find redundant relations.

The main idea is to combine the diamond lemma with the combinatorial theory of
Lyndon words resp. super letters and the q-commutator calculus of Chapter 3. In order
to apply the diamond lemma we give a general construction to identify a smash product
with a quotient of a free algebra, see Proposition 7.4.5 in Section 7.4 (this presentation fits
perfectly for the implementation in computer algebra programs, see Appendix A).

Further the PBW Criterion 7.3.1 is a generalization of [15] and [11, Sect. 4] in the fol-
lowing sense: In [15] a condition involving the q-Jacoby identity for the generators xi occurs
(it is called “q-Jacobi sum”). However, this condition can be formulated more generally
for iterated q-commutators (not only for xi), so also higher than quadratic relations can
be considered. The intention of [15] was a q-generalization of the classical PBW theorem,
so powers of q-commutators are not covered at all and also his algebras do not contain a
group algebra.

On the other hand, [11, Sect. 4] deals with powers of q-commutators (root vector rela-
tions) and also involves the group algebra. But here it is assumed that the powers of the
commutators lie in the group algebra and fulfill a certain centrality condition. As men-
tioned above these assumptions are in general not preserved; in the PBW Criterion 7.3.1
the centrality condition is replaced by a more general condition involving the restricted
q-Leibniz formula of Proposition 3.2.3.

Finally in Chapters 8 and 9 we apply the PBW Criterion 7.3.1 to classical examples and
the obtained liftings. In this way we find PBW bases and the redundant relations. In
the Appendix we give an example of the program code for the computer algebra system
FELIX [13].
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Chapter 1

Hopf algebras

In this chapter we recall the definitions of the structures which we study in our work. It is
meant for fixing the notations we use. For an introduction see for example [43, 51].

Throughout the thesis let k be a field of char k = p ≥ 0, although much of what we do
is valid over any commutative ring. We denote the multiplicative order of any q ∈ k× by
ordq. All tensor products are assumed to be over k.

1.1 Coalgebras

A coalgebra is the dual version of an associative and unital algebra, namely a vector space
C together with two k-linear maps ∆ : C → C ⊗ C (comultiplication) and ε : C → k
(counit) that satisfy

(∆⊗ id)∆ = (id⊗∆)∆ (coassociativity),

(ε⊗ id)∆ = id = (id⊗ε)∆ (counitality).

A morphism φ : C → D of coalgebras is a k-linear map such that

∆Dφ = (φ⊗ φ)∆C and εDφ = εC .

For calculations we use the following version of the Heyneman-Sweedler notation: For
c ∈ C we write

∆(c) = c(1) ⊗ c(2),

keeping in mind that the right-hand side is in general a sum of simple tensors. Thus the
coassociativity and counitality read

c(1) ⊗ c(2) ⊗ c(3) : = (c(1)(1) ⊗ c(1)(2))⊗ c(2) = c(1) ⊗ (c(2)(1) ⊗ c(2)(2)),

ε(c(1))c(2) = c = c(1)ε(c(2)).

A morphism φ then has to fulfill

∆(φ(c)) = φ(c(1))⊗ φ(c(2)) and ε(φ(c)) = ε(c).

The set
G(C) := {g ∈ C | ∆(g) = g ⊗ g, ε(g) = 1}
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is called the set of group-like elements; this is a linearly independent set. For two g, h ∈
G(C) the set

Pg,h(C) := {x ∈ C | ∆(x) = x⊗ g + h⊗ x}
is called the space of g, h-skew primitive elements; this is a subspace.

A coalgebra is called simple, if it has no nontrivial subcoalgebras. It is said to be
pointed, if every simple subcoalgebra is one-dimensional, i.e., spanned by some g ∈ G(C).
The coradical is the sum of all simple subcoalgebras, and it is denoted by C0.

1.2 Comodules

We also want to give the dual version of a module over an algebra, namely M is called a
(left) comodule over the coalgebra C, if there is a k-linear map δ : M → C ⊗M (coaction)
that satisfies

(∆⊗ id)δ = (id⊗δ)δ (coassociativity),

(ε⊗ id)δ = id (counitality).

A morphism f : M → N of comodules is a k-linear map such that

δNf = (id⊗f)δM (colinearity).

For the coaction we use a version of the Heyneman-Sweedler notation

δ(m) = m(−1) ⊗m(0).

The coassociativity and counitality then read

m(−2) ⊗m(−1) ⊗m(0) : = m(−1)(1) ⊗m(−1)(2) ⊗m(0) = m(−1) ⊗m(0)(−1) ⊗m(0)(0),

ε(m(−1))m(0) = m,

and a colinear map fulfills
δ(f(m)) = m(−1) ⊗ f(m(0)).

1.3 Bialgebras and Hopf algebras

Let (C,∆, ε) be a coalgebra and (A, µ, η) be an algebra, where µ : A ⊗ A → A is the
multiplication map and η : k → A the unit map. The space Homk(C,A) becomes an
algebra with the convolution product

f ? g := µ(f ⊗ g)∆

for all f, g ∈ Homk(C,A), and unit ηε. The tensor product gives a monoidal structure for
algebras and coalgebras: A⊗ A resp. C ⊗ C is again an algebra resp. a coalgebra by

(a⊗ b)(a′ ⊗ b′) := aa′ ⊗ bb′, ∆(c⊗ d) :=
(
c(1) ⊗ d(1)

)
⊗
(
c(2) ⊗ d(2)

)
,

for all a, a′, b, b′ ∈ A and c, d ∈ C. Thus we can define the following: A bialgebra is a
collection (H,µ, η,∆, ε), where



1.4 The smash product 13

• (H,µ, η) is an algebra,

• (H,∆, ε) is a coalgebra,

• ∆ : H → H ⊗H and ε are algebra maps.

A bialgebra H is called a Hopf algebra, if id ∈ Endk(H) is convolution invertible, i.e., there
is a S ∈ Endk(H) (antipode) with id ?S = ηε = S ? id, in Heyneman-Sweedler notation

h(1)S(h(2)) = ε(h)1 = S(h(1))h(2).

A morphism φ : H → K of bialgebras is a morphism of algebras and coalgebras. If the
antipodes exist then SKφ = φSH .

In a bialgebra H, we have 1 ∈ G(H). The elements of P (H) := P1,1(H) are called
primitive elements. We call a bialgebra pointed, if it has the property as a coalgebra.

1.4 The smash product

Let A be an algebra, H a bialgebra and · : H ⊗A→ H, h⊗ a 7→ h · a a k-linear map. One
says that A is a (left) H-module algebra if

• (A, ·) is a left H-module,

• h · (ab) = (h(1) · a)(h(2) · b),

• h · 1A = ε(h)1A,

for all h ∈ H, a, b ∈ A.
Let A be a left H-module algebra. We define the smash product algebra

A#H := A⊗H

as k-spaces with multiplication defined for a, b ∈ A, g, h ∈ H by

(a#g)(b#h) := a(g(1) · b)#g(2)h.

A#H is indeed an associative algebra with identity element 1A#1H . Further H ∼= 1A#H
and A ∼= A#1H , so we may just write ah instead of a#h. In this notation

ha = (h(1) · a)h(2). (1.1)

1.5 Yetter-Drinfel’d modules

Let H be a Hopf algebra. A (left-left) Yetter-Drinfel’d module V over H is a left H-module
and H-comodule with action · and coaction δ fulfilling the compatibility condition for all
h ∈ H and v ∈ V

δ(h · v) = h(1)v(−1)S(h(3))⊗ h(2)v(0).
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We denote the category of Yetter-Drinfel’d modules with linear and colinear maps as
morphisms by H

HYD. There is again a monoidal structure: V ⊗W ∈HH YD for V,W ∈HH YD
by

h · (v ⊗ w) := (h(1) · v)⊗ (h(2) · w), δ(v ⊗ w) := v(−1)w(−1) ⊗ v(0) ⊗ w(0)

for all h ∈ H, v ∈ V and w ∈ W . For any V,W ∈HH YD we define the braiding

cV,W : V ⊗W → W ⊗ V, c(v ⊗ w) := (v(−1) · w)⊗ v(0)

which turns (V, c) with c := cV,V into a braided vector space, i.e., V is a vector space and
c ∈ Autk(V ⊗ V ) satisfies the braid equation

(c⊗ id)(id⊗c)(c⊗ id) = (id⊗c)(c⊗ id)(id⊗c).

We are mainly concerned with the case when H = k[Γ] is the group algebra with abelian
Γ, see Section 2.1.



Chapter 2

Nichols algebras

Braided Hopf algebras, especially Nichols algebras play an important role in the structure
theory of pointed Hopf algebras, as we mentioned in the introduction. See also Section 2.7
and [7, 10]. Nichols algebras were introduced in [44]. They can be seen as generalizations
of the symmetric algebra of a vector space, where the flip map of the tensor product is
replaced by a braiding.

We want to define braided Hopf algebras and Nichols algebras in the context of a
braided category, namely in the category H

HYD in the special case H = k[Γ]. One can give
also a definition in a non-categorical way, which sometimes provides additional information
[3]. For general results about braided Hopf algebras we want to refer to [52]. However,
there are many open problems, especially in the theory of Nichols algebras. Recent results
of Heckenberger connecting Nichols algebras with the theory of semi-simple Lie algebras
are found in [28, 31].

Our main reference is the survey article [10, Sect. 1,2]. In this chapter let Γ be again
an abelian group, but not necessarily finite.

2.1 Yetter-Drinfel’d modules of diagonal type

For a group Γ we denote by Γ̂ the character group of all group homomorphisms from Γ
to the multiplicative group k×. At first we want to recall the notion of a Yetter-Drinfel’d
module over an abelian group Γ, the special case of HHYD in Section 1.5 with H = k[Γ]:

The category Γ
ΓYD of (left-left) Yetter-Drinfel’d modules over the Hopf algebra k[Γ] is

the category of left k[Γ]-modules which are Γ-graded vector spaces V =
⊕

g∈Γ Vg such that
each Vg is stable under the action of Γ, i.e.,

h · v ∈ Vg for all h ∈ Γ, v ∈ Vg.

The Γ-grading is equivalent to a left k[Γ]-comodule structure δ : V → k[Γ]⊗ V : One can
define δ or the other way round Vg by the equivalence δ(v) = g ⊗ v ⇐⇒ v ∈ Vg for all
g ∈ Γ. The morphisms of Γ

ΓYD are the Γ-linear maps f : V → W with f(Vg) ⊂ Wg for all
g ∈ Γ.
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We consider the following monoidal structure on Γ
ΓYD: If V,W ∈ Γ

ΓYD, then also
V ⊗W ∈ Γ

ΓYD by

g · (v ⊗ w) := (g · v)⊗ (g · w) and (V ⊗W )g :=
⊕
hk=g

Vh ⊗Wk

for v ∈ V,w ∈ W and g ∈ Γ. The braiding in Γ
ΓYD is the isomorphism

c = cV,W : V ⊗W → W ⊗ V, c(v ⊗ w) := (g · w)⊗ v

for all v ∈ Vg, g ∈ Γ, w ∈ W . Thus every V ∈ Γ
ΓYD is a braided vector space (V, cV,V ).

We have the following important example:

Definition 2.1.1. Let V ∈ Γ
ΓYD. If there is a basis xi, i ∈ I, of V and gi ∈ Γ, χi ∈ Γ̂ for

all i ∈ I such that
g · xi = χi(g)xi and xi ∈ Vgi ,

then we say V is of diagonal type.

Remark 2.1.2.

1. Let V be a vector space with basis x1, . . . , xθ, and let gi ∈ Γ, χi ∈ Γ̂ for all 1 ≤ i ≤ θ.
Then V ∈ Γ

ΓYD (of diagonal type) by setting

g · xi := χi(g)xi and xi ∈ Vgi .

2. If k is algebraically closed of characteristic 0 and Γ is finite, then all finite-dimensional
V ∈ Γ

ΓYD are of diagonal type.

3. For the braiding we have c(xi ⊗ xj) = χj(gi)xj ⊗ xi for 1 ≤ i, j ≤ θ. Hence the
braiding is determined by the matrix

(qij)1≤i,j≤θ := (χj(gi))1≤i,j≤θ

called the braiding matrix of V .

2.2 Braided Hopf algebras

A collection (B, µ, η) is called an algebra in Γ
ΓYD, if

• (B, µ, η) is an algebra,

• B ∈ Γ
ΓYD,

• µ and η are morphisms of Γ
ΓYD, i.e., Γ-linear and Γ-colinear.

The tensor product in Γ
ΓYD further allows to define the following: If B is an algebra in

Γ
ΓYD, then also B⊗B := B ⊗B ∈ Γ

ΓYD is an algebra in Γ
ΓYD by defining k-linearly

(a⊗ b)(a′ ⊗ b′) := a(g · a′)⊗ bb′, for all a, a′, b, b′ ∈ B, b ∈ Bg, g ∈ Γ.

Exactly in the same manner a collection (B,∆, ε) is called a coalgebra in Γ
ΓYD, if



2.3 Nichols algebras 17

• (B,∆, ε) is a coalgebra,

• B ∈ Γ
ΓYD,

• ∆ and ε are morphisms of Γ
ΓYD.

A braided bialgebra in Γ
ΓYD is a collection (B, µ, η,∆, ε, S), where

• (B, µ, η) is an algebra in Γ
ΓYD,

• (B,∆, ε) is a coalgebra in Γ
ΓYD,

• ∆ : B → B⊗B and ε are algebra maps.

If further there is an S ∈ Endk(B) with µ(id⊗S)∆ = ηε = µ(S ⊗ id)∆, then B is called a
braided Hopf algebra in Γ

ΓYD.
If the antipode S exists then it is a morphism in Γ

ΓYD [52]. A morphism φ : B → B′ of
braided bialgebras in Γ

ΓYD is a morphism of algebras and coalgebras and also a morphism
in Γ

ΓYD (Γ-linear and Γ-colinear). A braided Hopf algebra B in Γ
ΓYD is called graded, if

there is a grading B = ⊕n≥0B(n) of Yetter-Drinfel’d modules which is a grading of algebras
and coalgebras.

Note that braided bialgebras are generalizations of bialgebras: the basic idea is to
replace the usual flip map τ : V ⊗ V → V ⊗ V , τ(v ⊗ w) = w ⊗ v with the braiding c in
Γ
ΓYD.

Example 2.2.1. Let V be a vector space with basis X. Then the tensor algebra T (V ) ∼=
k〈X〉 is a graded braided Hopf algebra in Γ

ΓYD with structure determined by

g · u : = χu(g)u, u ∈ Vgu , for all g ∈ Γ, u ∈ 〈X〉,
∆(xi) : = xi ⊗ 1 + 1⊗ xi for all 1 ≤ i ≤ θ.

It is N-graded by the length of a word u ∈ 〈X〉.

2.3 Nichols algebras

Let V ∈ Γ
ΓYD. B is called a Nichols algebra of V , if

• B = ⊕n≥0B(n) is a graded braided Hopf algebra in Γ
ΓYD,

• B(0) ∼= k,

• P (B) = B(1) ∼= V ,

• B is generated as an algebra by B(1).

Any two Nichols algebras of V are isomorphic, thus we write B(V ) for “the” Nichols
algebra of V . One can construct the Nichols algebra in the following way: Let I denote
the sum of all ideals of T (V ) that are generated by homogeneous elements of degree ≥ 2
and that are also coideals. Then B(V ) ∼= T (V )/I.
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2.4 Cartan matrices

A matrix (aij)1≤i,j≤θ ∈ Zθ×θ is called a generalized Cartan matrix if for all 1 ≤ i, j ≤ θ

• aii = 2,

• aij ≤ 0 if i 6= j,

• aij = 0⇒ aji = 0.

Let B(V ) be a Nichols algebra of diagonal type, i.e., V is of diagonal type. Recall that
V resp. B(V ) with braiding matrix (qij) is called of Cartan type, if there is a generalized
Cartan matrix (aij) such that

qijqji = q
aij
ii .

Not every Nichols algebra is of Cartan type (see Sections 6.3, 6.4, 6.5), but still we have
the following:

Lemma and Definition 2.4.1. If B(V ) is finite-dimensional, then the matrix (aij) defined
for all 1 ≤ i 6= j ≤ θ by

aii := 2 and aij := −min{r ∈ N | qijqjiqrii = 1 or (r + 1)qii = 0}

is a generalized Cartan matrix fulfilling

qijqji = q
aij
ii or ordqii = 1− aij.

We call (aij) the Cartan matrix associated to B(V ).

Proof. See [28, Sect. 3]: We prove this more generally in the situation when the set
{
r ∈

N | [xrixj] 6= 0 in B(V )
}

is finite for all 1 ≤ i 6= j ≤ θ. It is well-known that if 1 ≤ i 6= j ≤ θ
and r ≥ 1, then in B(V )

[xrixj] = 0 ⇐⇒ (r)!qii
∏

0≤k≤r−1

(1− qijqjiqkii) = 0.

Thus the matrix (aij) is well-defined and it is indeed a generalized Cartan matrix.

2.5 Weyl equivalence

Heckenberger introduced in [27, 28, Sect. 2] the notion of the Weyl groupoid and Weyl
equivalence of Nichols algebras of diagonal type. With the help of these concepts Heck-
enberger classified in a series of articles [30, 26, 31] all braiding matrices (qij) of diagonal
Nichols algebras with a finite set of PBW generators. We are mainly concerned with the
list of rank 2 Nichols algebras given in Table 2.1 from [27, 30, Figure 1], see below.

We want to recall the following: For diagonal B(V ) with braiding matrix (qij) we
associate a generalized Dynkin diagram: this is a graph with θ vertices, where the i-th
vertex is labeled with qii for all 1 ≤ i ≤ θ; further, if qijqji 6= 1, then there is an edge
between the i-th and j-th vertex labeled with qijqji: Thus, if qijqji = 1 resp. qijqji 6= 1,
then we have
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. . . h hqii qjj
. . . resp. . . . h hqii qijqji

qjj
. . .

So two Nichols algebras of the same rank θ with braiding matrix (qij) resp. (q′ij) have the
same generalized Dynkin diagram if and only if they are twist equivalent [10, Def. 3.8], i.e.,
for all 1 ≤ i, j ≤ θ

qii = q′ii and qijqji = q′ijq
′
ji.

Definition 2.5.1. Let 1 ≤ k ≤ θ be fixed and B(V ) finite-dimensional with braiding

matrix (qij) and Cartan matrix (aij). We call (q
(k)
ij ) defined by

q
(k)
ij := qijq

−akj
ik q−akikj q

akiakj
kk

the at the vertex k reflected braiding matrix.

We introduce for i 6= j

pij :=

{
1, if qijqji = q

aij
ii ,

q−1
ii qijqji, if ordqii = 1− aij.

Then by the definition of (aij) in Remark 2.4.1 for 1 ≤ i, j ≤ θ

q
(k)
kk = qkk, q

(k)
kj = q−1

kj q
akj
kk , q

(k)
ik = q−1

ik q
aki
kk ,

q
(k)
ii = p−akiki qii =

{
qii, if qkiqik = qakikk ,

qii(qikqki)
−akiqkk, if ordqkk = 1− aki.

Concerning Dynkin diagrams it is usefull to know the following products for all 1 ≤ i, j ≤ θ,
i, j 6= k:

q
(k)
ki q

(k)
ik = p−2

ki qkiqik, q
(k)
ij q

(k)
ji = p

−akj
ki p−akikj qijqji.

Definition 2.5.2. Two Nichols algebras with braiding matrix (qij) resp. (q′ij) are called
Weyl equivalent, if there are m ≥ 1, 1 ≤ k1, . . . , km ≤ θ such that the generalized Dynkin
diagrams w.r.t. the matrices

(
(. . . (q

(k1)
ij )(k2) . . .)(km)

)
and (q′ij) coincide, i.e., one gets the

Dynkin diagram of (q′ij) by successive reflections of (qij).

Example 2.5.3. The braiding matrix (qij) :=

(
q 1
q−1 −1

)
with q 6= 1 has the generalized

Dynkin diagram e eq q−1 −1 and associated Cartan matrix (aij) =

(
2 −1
−1 2

)
of type A2,

since q12q21 = q−1
11 and ordq22 = 1 − (−1). Then the at the vertex 2 reflected braiding

matrix is (q′ij) := (q
(2)
ij ) =

(
−1 −1
−q −1

)
, since

q
(2)
11 = q11(q12q21)−a21q22 = −1, q

(2)
12 = q−1

12 q
a21
22 = −1,

q
(2)
21 = q−1

21 q
a21
22 = −q, q

(2)
22 = q22 = −1.

Its Dynkin diagram is e e−1 q −1 and the associated Cartan matrix is also of type A2. The

two braiding matrices (qij) and (q′ij) are by definition Weyl equivalent; they are twist
equivalent if and only if q = −1. See also Table 2.1 row 3 if q 6= ±1 and row 2 if q = −1.
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Remark 2.5.4.

1. Both twist equivalence and Weyl equivalence are equivalence relations, and twist
equivalent Nichols algebras are Weyl equivalent.

2. Weyl equivalent Nichols algebras have the same dimension and Gel’fand-Kirillov di-
mension [27, Prop. 1], but can have different associated Cartan matrices. If the whole
Weyl equivalence class has the same Cartan matrix, then the Nichols algebras of this
class are called of standard type [2, 12].

Examples 2.5.5. Let B(V ) be of rank 2. Then two Nichols algebras are Weyl equivalent
if and only if their generalized Dynkin diagrams appear in the same row of Table 2.1 and
can be presented with the same set of fixed parameters [27].

1. B(V ) is of standard type, if and only if it appears in the rows 1–7, 11 or 12 of Table
2.1. The Cartan matrices are

•
(

2 0
0 2

)
of type A1 × A1 of row 1,

•
(

2 −1
−1 2

)
of type A2 of rows 2 and 3,

•
(

2 −2
−1 2

)
of type B2 of rows 4–7, and

•
(

2 −3
−1 2

)
of type G2 of rows 11 and 12.

All Nichols algebras of type A1 × A1, A2 and some of B2 are lifted in Sections 6.2,
6.3, 6.4.

2. In the non-standard Weyl equivalence class of row 8 of Table 2.1 the Cartan matrices

•
(

2 −2
−2 2

)
of e e−ζ−2

−ζ3 −ζ2

,

•
(

2 −2
−1 2

)
of type B2 of e e−ζ−2

ζ−1 −1, e e−ζ2
−ζ −1, and

•
(

2 −3
−1 2

)
of type G2 of e e−ζ3

ζ −1 e e−ζ3
−ζ−1−1

appear. These Nichols algebras are lifted in Section 6.5. The same Cartan matrices
appear in row 9, where we lift the Nichols algebras corresponding to the last two
Dynkin diagrams.
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2.6 Bosonization

Let B be a braided Hopf algebra in Γ
ΓYD. We will use the notation ∆B(x) = x(1) ⊗ x(2)

for x ∈ B to distinguish the comultiplication in the braided Hopf algebra B from the
comultiplication in a usual Hopf algebra. The smash product H = B#k[Γ] is a (usual)
Hopf algebra, the bosonization of B, with structure given by

(x#g)(y#h) := x(g · y)#gh, ∆(x#g) := x(1)#x(2)
(−1)g ⊗ x(2)

(0)#g,

for all x, y ∈ B, g, h ∈ Γ. We then have a Hopf algebra projection

π : B#k[Γ]→ k[Γ], π(x#g) := ε(x)g

on the Hopf subalgebra k[Γ]
ι
↪→ B#k[Γ], ι(g) := 1#g; it is πι = id.

Also the converse is true by a theorem of Radford [45]: Let H be a Hopf algebra with

a Hopf subalgebra k[Γ]
ι
↪→ H (more exactly a Hopf algebra injection) and a Hopf algebra

projection π : H → k[Γ] such that πι = id, then the subalgebra of H of right coinvariants
with respect to π,

B := Hcoπ := {h ∈ H | (id⊗π)∆(h) = h⊗ 1},

is a braided Hopf algebra in Γ
ΓYD in the following way: For any x ∈ B, g ∈ Γ set

δ(x) := π(x(1))⊗ x(2), g · x := ι(g)xι(g−1),

∆B(x) := x(1)ιSHπ(x(2))⊗ x(3).

Then the following map is a Hopf algebra isomorphism

B#k[Γ]→ H, x#g 7→ xι(g), for all x ∈ B, g ∈ Γ.

2.7 Nichols algebras of pointed Hopf algebras

To determine the structure of a given pointed Hopf algebra it is useful to study its associated
Nichols algebra, which is easier (e.g. it is graded):

Let A be a pointed Hopf algebra with abelian group of group-like elements G(A) = Γ
and

k[Γ] = A0 ⊂ A1 ⊂ . . . ⊂ A with A = ∪n≥0An

be its coradical filtration, i.e.,

An := ∆−1(A⊗ An−1 + A0 ⊗ A)

for n ≥ 1; see [43, Sect. 5.2]. Recall that the associated graded algebra

gr(A) := ⊕n≥0An/An−1 with A−1 := 0

is a pointed Hopf algebra [43, Lem. 5.2.8] of same dimension dimkA = dimk gr(A). By
Section 2.6 we can write

gr(A) ∼= B#k[Γ],
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with B := gr(A)coπ, π the projection of gr(A) on A0 = k[Γ]. The subalgebra of B generated
by V := P (B) ∈Γ

ΓYD is the Nichols algebra B(V ) of V [7].
In general one hopes that B = B(V ), because then all finite-dimensional pointed Hopf

algebras A are just the liftings of B(V ), see Chapter 6 and the introduction. Note that
B = B(V ) is equivalent to the Conjecture 0.0.1.
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generalized Dynkin diagrams fixed parameters

1 e eq r q, r ∈ k×

2 e eq q−1 q q ∈ k×\{1}

3 e eq q−1 −1 e e−1 q −1 q ∈ k×\{−1, 1}

4 e eq q−2 q2

q ∈ k×\{−1, 1}

5 e eq q−2 −1 e e−q−1
q2 −1 q ∈ k×\{−1, 1}, ordq 6= 4

6 e eζ q−1 q e eζ ζ−1q ζq−1

ordζ = 3, q ∈ k×\{1, ζ, ζ2}

7 e eζ −ζ −1 e eζ−1
−ζ−1−1 ordζ = 3

8 e e−ζ−2
−ζ3 −ζ2 e e−ζ−2

ζ−1 −1 e e−ζ2
−ζ −1 e e−ζ3

ζ −1 e e−ζ3
−ζ−1−1 ordζ = 12

9 e e−ζ2
ζ −ζ

2 e e−ζ2
ζ3 −1 e e−ζ−1

−ζ3 −1 ordζ = 12

10 e e−ζ ζ−2 ζ3 e eζ3
ζ−1 −1 e e−ζ2

ζ −1 ordζ = 9

11 e eq q−3 q3

q ∈ k×\{−1, 1}, ordq 6= 3

12 e eζ2
ζ ζ−1 e eζ2

−ζ−1−1 e eζ −ζ −1 ordζ = 8

13 e eζ6
−ζ−1−ζ−4 e eζ6

ζ ζ−1 e e−ζ−4
ζ5 −1 e eζ ζ−5 −1 ordζ = 24

14 e eζ ζ2 −1 e e−ζ−2
ζ−2 −1 ordζ = 5

15 e eζ ζ−3 −1 e e−ζ−ζ−3−1 e e−ζ−2
ζ3 −1 e e−ζ−2

−ζ3 −1 ordζ = 20

16 e e−ζ−ζ−3 ζ5 e eζ3
−ζ4−ζ−4 e eζ5

−ζ−2−1 e eζ3
−ζ2 −1 ordζ = 15

17 e e−ζ−ζ−3−1 e e−ζ−2
−ζ3 −1 ordζ = 7

Table 2.1: Weyl equivalence for rank 2 Nichols algebras [27, 30, Figure 1]
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Chapter 3

q-commutator calculus

In this section let A denote an arbitrary algebra over a field k of characteristic char k =
p ≥ 0. The main result of this chapter is Proposition 3.2.3, which states important q-
commutator formulas in an arbitrary algebra.

3.1 q-calculus

For every q ∈ k we define for n ∈ N and 0 ≤ i ≤ n the q-numbers and q-factorials

(n)q := 1 + q + q2 + . . .+ qn−1 =

{
n, if q = 1
qn−1
q−1

, if q 6= 1
and (n)q! := (1)q(2)q . . . (n)q,

and the q-binomial coefficients (
n

i

)
q

:=
(n)q!

(n− i)q!(i)q!
.

Note that the right-handside is well-defined since it is a polynomial over Z evaluated in q.
We denote the multiplicative order of any q ∈ k× by ordq. If q ∈ k× and n > 1, then(

n

i

)
q

= 0 for all 1 ≤ i ≤ n− 1⇐⇒

{
ordq = n, if char k = 0

pkordq = n with k ≥ 0, if char k = p > 0,
(3.1)

see [46, Cor. 2]. Moreover for 1 ≤ i ≤ n there are the q-Pascal identities

qi
(
n

i

)
q

+

(
n

i− 1

)
q

=

(
n

i

)
q

+ qn+1−i
(

n

i− 1

)
q

=

(
n+ 1

i

)
q

, (3.2)

and the q-binomial theorem: For x, y ∈ A and q ∈ k× with yx = qxy we have

(x+ y)n =
n∑
i=0

(
n
i

)
q
xiyn−i. (3.3)

Note that for q = 1 these are the usual notions.
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3.2 q-commutators

Definition 3.2.1. For all a, b ∈ A and q ∈ k we define the q-commutator

[a, b]q := ab− qba.

The q-commutator is bilinear. If q = 1 we get the classical commutator of an algebra.
If A is graded and a, b are homogeneous elements, then there is a natural choice for the q.
We are interested in the following special case:

Example 3.2.2. Let θ ≥ 1, X = {x1, . . . , xθ}, 〈X〉 the free monoid and A = k〈X〉 the

free k-algebra. For an abelian group Γ let Γ̂ be the character group, g1, . . . , gθ ∈ Γ and
χ1, . . . , χθ ∈ Γ̂. If we define the two monoid maps

degΓ : 〈X〉 → Γ, degΓ(xi) := gi and degbΓ : 〈X〉 → Γ̂, degbΓ(xi) := χi,

for all 1 ≤ i ≤ θ, then k〈X〉 is Γ- and Γ̂-graded.

Let a ∈ k〈X〉 be Γ-homogeneous and b ∈ k〈X〉 be Γ̂-homogeneous. We set

ga := degΓ(a), χb := degbΓ(b), and qa,b := χb(ga).

Further we define k-linearly on k〈X〉 the q-commutator

[a, b] := [a, b]qa,b . (3.4)

Note that qa,b is a bicharacter on the homogeneous elements and depends only on the values

qij := χj(gi) with 1 ≤ i, j ≤ θ.

For example [x1, x2] = x1x2 − χ2(g1)x2x1 = x1x2 − q12x2x1. Further if a, b are Zθ-

homogeneous they are both Γ- and Γ̂-homogeneous. In this case we can build iter-
ated q-commutators, like

[
x1, [x1, x2]

]
= x1[x1, x2] − χ1χ2(g1)[x1, x2]x1 = x1[x1, x2] −

q11q12[x1, x2]x1.

Later we will deal with algebras which still are Γ̂-graded, but not Γ-graded such that
Eq. (3.4) is not well-defined. However, the q-commutator calculus, which we next want to
develop, will be a major tool for our calculations such that we need the general definition
with the q as an index.

Proposition 3.2.3. For all a, b, c, ai, bi ∈ A, q, q′, q′′, qi, ζ ∈ k, 1 ≤ i ≤ n and r ≥ 1 we
have:

(1) q-derivation properties:

[a, bc]qq′ = [a, b]qc+ qb[a, c]q′ , [ab, c]qq′ = a[b, c]q′ + q′[a, c]qb,

[a, b1 . . . bn]q1...qn =
n∑
i=1

q1 . . . qi−1b1 . . . bi−1[a, bi]qibi+1 . . . bn,

[a1 . . . an, b]q1...qn =
n∑
i=1

qi+1 . . . qna1 . . . ai−1[ai, b]qiai+1 . . . an.
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(2) q-Jacobi identity:[
[a, b]q′ , c

]
q′′q

=
[
a, [b, c]q

]
q′q′′
− q′b[a, c]q′′ + q[a, c]q′′b.

(3) q-Leibniz formulas:

[a, br]qr =
r−1∑
i=0

qi
(
r
i

)
ζ
bi
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r−i

]
qζr−i−1 ,

[ar, b]qr =
r−1∑
i=0

qi
(
r
i

)
ζ

[
a, . . .

[
a, [a︸ ︷︷ ︸

r−i

, b]q
]
qζ
. . .
]
qζr−i−1a

i.

(4) restricted q-Leibniz formulas: If char k = 0 and ordζ = r, or char k = p > 0 and
pkordζ = r , then

[a, br]qr =
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r

]
qζr−1 ,

[ar, b]qr =
[
a, . . .

[
a, [a︸ ︷︷ ︸

r

, b]q
]
qζ
. . .
]
qζr−1 .

Proof. (1) The first part is a direct calculation, e.g.

[a, bc]qq′ = abc− qq′bca = abc− qbac+ qbac− qq′bca = [a, b]qc+ qb[a, c]q′ .

The second part follows by induction.

(2) Using the k-linearity and (1) we get[
[a, b]q′ , c

]
q′′q

= [ab, c]q′′q − q′[ba, c]q′′q = a[b, c]q + q[a, c]q′′b− q′
(
b[a, c]q′′ + q′′[b, c]qa

)
=
[
a, [b, c]q

]
q′q′′
− q′b[a, c]q′′ + q[a, c]q′′b.

(3) By induction on r: r = 1 is obvious, so let r ≥ 1. Using (1) we get

[a, br+1]qr+1 = [a, brb]qrq = [a, br]qrb+ qrbr[a, b]q.

By induction assumption [a, br]qrb =
∑r−1

i=0 q
i
(
r
i

)
ζ
bi
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r−i

]
qζr−i−1b, where

bi
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r−i

]
qζr−i−1b =

bi
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r+1−i

]
qζr−i

+ qζr−ibi+1
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r−i

]
qζr−i−1 .
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In total we get

[a, br+1]qr+1 =
r∑
i=0

qi
(
r
i

)
ζ
bi
[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r+1−i

]
qζr−i

+
r−1∑
i=0

qi+1
(
r
i

)
ζ
ζr−ibi+1

[
. . .
[
[a, b]q, b

]
qζ
. . . , b︸ ︷︷ ︸

r−i

]
qζr−i−1 .

Shifting the index of the second sum and using Eq. (3.2) for ζ we get the formula. The
second formula is proven in the same way.

(4) Follows from (3) and Eq. (3.1).

Remark 3.2.4.

1. If we are in the situation of Example 3.2.2 and assume that the elements are homo-
geneous, we can replace the arbitrary commutators by Eq. (3.4) and also replace the
general q’s above in the obvious way; e.g., in the first one of (1) set q = qa,b, q

′ = qa,c
and in (3), (4) ζ = qb,b resp. ζ = qa,a.

2. If all q’s are equal to one, we obtain the classical formulas. The name restricted is
chosen, because of the analogous formula in the theory of restricted Lie algebras (also
p-Lie algebras).



Chapter 4

Lyndon words and q-commutators

In this chapter we recall the theory of Lyndon words [38, 47] as far as we are concerned
and then introduce the notion of super letters and super words [36].

We want to emphasize that the set of all super words can be seen indeed as a set of words
(more exactly as a free monoid, see Section 4.5), which is a consequence of Proposition
4.3.2. Moreover, we introduce a well-founded ordering of the super words which makes
way for inductive proofs along this ordering.

4.1 Words and the lexicographical order

Let θ ≥ 1, X = {x1, x2, . . . , xθ} be a finite totally ordered set by x1 < x2 < . . . < xθ,
and 〈X〉 the free monoid; we think of X as an alphabet and of 〈X〉 as the words in that
alphabet including the empty word 1. For a word u = xi1 . . . xin ∈ 〈X〉 we define `(u) := n
and call it the length of u.

The lexicographical order ≤ on 〈X〉 is defined for u, v ∈ 〈X〉 by u < v if and only if
either v begins with u, i.e., v = uv′ for some v′ ∈ 〈X〉\{1}, or if there are w, u′, v′ ∈ 〈X〉,
xi, xj ∈ X such that u = wxiu

′, v = wxjv
′ and i < j. E.g., x1 < x1x2 < x2. This

order < is stable by left, but in general not stable by right multiplication: x1 < x1x2 but
x1x3 > x1x2x3. Still we have:

Lemma 4.1.1. Let v, w ∈ 〈X〉 with v < w. Then:

(1) uv < uw for all u ∈ 〈X〉.

(2) If w does not begin with v, then vu < wu′ for all u, u′ ∈ 〈X〉.

4.2 Lyndon words and the Shirshov decomposition

A word u ∈ 〈X〉 is called a Lyndon word if u 6= 1 and u is smaller than any of its proper
endings, i.e., for all v, w ∈ 〈X〉\{1} such that u = vw we have u < w. We denote by

L := {u ∈ 〈X〉 |u is a Lyndon word}
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the set of all Lyndon words. For example X ⊂ L, but xni /∈ L for all 1 ≤ i ≤ θ and n ≥ 2.
Moreover, if i < j then xni x

m
j ∈ L for n,m ≥ 1, e.g. x1x2, x1x1x2, x1x2x2, x1x1x2x2; also

xi(xixj)
n ∈ L for any n ∈ N, e.g. x1x1x2, x1x1x2x1x2.

For any u ∈ 〈X〉\X we call the decomposition u = vw with v, w ∈ 〈X〉\{1} such
that w is the minimal (with respect to the lexicographical order) ending the Shirshov
decomposition of the word u. We will write in this case

Sh(u) = (v|w).

E.g., Sh(x1x2) = (x1|x2), Sh(x1x1x2x1x2) = (x1x1x2|x1x2), Sh(x1x1x2) 6= (x1x1|x2).
If u ∈ L\X, this is equivalent to w is the longest proper ending of u such that w ∈ L.

Moreover we have another characterization of the Shirshov decomposition of Lyndon words:

Theorem 4.2.1. Let u ∈ 〈X〉\X and u = vw with v, w ∈ 〈X〉. Then the following are
equivalent:

(1) u ∈ L and Sh(u) = (v|w).

(2) v, w ∈ L with v < u < w and either v ∈ X or else if Sh(v) = (v1|v2) then v2 ≥ w.

Proof. This is equivalent to [38, Prop. 5.1.3, 5.1.4]

With this property we see that any Lyndon word is a product of two other Lyndon words
of smaller length. Hence we get every Lyndon word by starting with X and concatenating
inductively each pair of Lyndon words v, w with v < w.

Definition 4.2.2. We call a subset L ⊂ L Shirshov closed if

• X ⊂ L,

• for all u ∈ L with Sh(u) = (v|w) also v, w ∈ L.

For example L is Shirshov closed, and if X = {x1, x2}, then {x1, x1x1x2, x2} is not
Shirshov closed, whereas {x1, x1x2, x1x1x2, x2} is. Later we will need the following:

Lemma 4.2.3. [36, Lem. 4] Let u, v ∈ L and u1, u2 ∈ 〈X〉\{1} such that u = u1u2 and
u2 < v. Then we have

uv < u1v < v and uv < u2v < v.

4.3 Super letters and super words

Let the free algebra k〈X〉 be graded as in Example 3.2.2. For any u ∈ L we define
recursively on `(u) the map

[ . ] : L → k〈X〉, u 7→ [u]. (4.1)

If `(u) = 1, then set [xi] := xi for all 1 ≤ i ≤ θ. Else if `(u) > 1 and Sh(u) = (v|w) we de-
fine [u] :=

[
[v], [w]

]
. This map is well-defined since inductively all [u] are Zθ-homogeneous

such that we can build iterated q-commutators; see Example 3.2.2. The elements [u] ∈
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k〈X〉 with u ∈ L are called super letters. E.g. [x1x1x2x1x2] =
[
[x1x1x2], [x1x2]

]
=[

[x1, [x1, x2]], [x1, x2]
]
.

If L ⊂ L is Shirshov closed then the subset of k〈X〉

[L] :=
{

[u]
∣∣u ∈ L}

is a set of iterated q-commutators. Further [L] =
{

[u]
∣∣u ∈ L} is the set of all super letters

and the map [ . ] : L → [L] is a bijection, which follows from the Lemma 4.3.1 below. Hence
we can define an order ≤ of the super letters [L] by

[u] < [v] :⇔ u < v,

thus [L] is a new alphabet containing the original alphabet X; so the name “letter” makes
sense. Consequently, products of super letters are called super words. We denote

[L](N) :=
{

[u1] . . . [un]
∣∣n ∈ N, ui ∈ L

}
the subset of k〈X〉 of all super words. In order to define a lexicographical order on [L](N),
we need to show that an arbitrary super word has a unique factorization in super letters.
This is not shown in [36].

For any word u = xi1xi2 . . . xin ∈ 〈X〉 we define the reversed word

←−u := xin . . . xi2xi1 .

Clearly,
←−←−u = u and ←−uv = ←−v←−u . Further for any a =

∑
αiui ∈ k〈X〉 we call the lexico-

graphically smallest word of the ui with αi 6= 0 the leading word of a and further define
←−a :=

∑
αi
←−ui .

Lemma 4.3.1. Let u ∈ L\X. Then there exist n ∈ N, ui ∈ 〈X〉, αi ∈ k for all 1 ≤ i ≤ n
and q ∈ k× such that

[u] = u+
n∑
i=0

αiui + q←−u and
←−
[u] =←−u +

n∑
i=0

αi
←−ui + qu.

Moreover, u is the leading word of both [u] and
←−
[u].

Proof. We proceed by induction on `(u). If `(u) = 2, then u = xixj for some 1 ≤ i <
j ≤ θ and [u] = [xixj] = xixj − qijxjxi = u − qij

←−u . Let `(u) > 2, Sh(u) = (v|w) and
[u] = [v][w]− qvw[w][v]. By induction

[v] = v +
∑
i

βivi + q←−v and
←−
[v] =←−v +

∑
i

βi
←−vi + qv, resp.

[w] = w +
∑
j

γiwi + q′←−w and
←−
[w] =←−w +

∑
i

γi
←−wi + q′w

with q, q′ 6= 0 and leading word v resp. w. Hence [v][w] and
←−
[v]
←−
[w] resp. [w][v] and

←−
[w]
←−
[v]

have the leading words vw resp. wv. Since u is Lyndon we get u = vw < wv, thus the

leading word of [u] and
←−
[u] is u and further they are of the claimed form.
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Proposition 4.3.2. Let u1, . . . , un, v1, . . . , vm ∈ L. If [u1][u2] . . . [un] = [v1][v2] . . . [vm],
then m = n and ui = vi for all 1 ≤ i ≤ n.

Proof. Induction on max{m,n}, we may suppose m ≤ n. If n = 1 then also m = 1, hence
[u1] = [v1] and both have the same leading word u1 = v1.

Let n > 1: By Lemma 4.3.1 [u1] . . . [un] = [v1] . . . [vm] has the leading word u1 . . . un =
v1 . . . vm and ←−−

[un] . . .
←−
[u1] =

←−−−−−−−
[u1] . . . [un] =

←−−−−−−−
[v1] . . . [vm] =

←−−
[vm] . . .

←−
[v1]

has the leading word un . . . u1 = vm . . . v1.
If `(u1) ≥ `(v1), then u1 = v1u and u1 = u′v1 for some u, u′ ∈ 〈X〉. If u, u′ 6= 1, we get

the contradiction v1 < v1u = u′v1 < v1, since u1 is Lyndon. Else if `(u1) < `(v1), it is the
same argument using that v1 is Lyndon. Hence u1 = v1 and by induction the statement
follows.

Now the lexicographical order on all super words [L](N), as defined above on regular
words, is well-defined. We denote it also by ≤.

4.4 A well-founded ordering of super words

The length of a super word U = [u1][u2] . . . [un] ∈ [L](N) is defined as `(U) := `(u1u2 . . . un).

Definition 4.4.1. For U, V ∈ [L](N) we define U ≺ V by

• `(U) < `(V ), or

• `(U) = `(V ) and U > V lexicographically in [L](N).

This defines a total ordering of [L](N) with minimal element 1. As X is assumed to be
finite, there are only finitely many super letters of a given length. Hence every nonempty
subset of [L](N) has a minimal element, or equivalently, � fulfills the descending chain
condition: � is well-founded.

4.5 The free monoid 〈XL〉
Let L ⊂ L. We want to stress the two different aspects of a super letter [u] ∈ [L]:

• On the one hand it is by definition a polynomial [u] ∈ k〈X〉.

• On the other hand, as we have seen, it is a letter in the alphabet [L].

To distinguish between these two point of views we define for the latter aspect a new
alphabet corresponding to the set of super letters [L]:

To be technically correct we regard the free monoid 〈1, . . . , θ〉 of the ciphers {1, . . . , θ}
(“telephone numbers” in ciphers 1, . . . , θ), together with the trivial bijective monoid map

ν : 〈x1, . . . , xθ〉 → 〈1, . . . , θ〉, xi 7→ i for all 1 ≤ i ≤ θ.
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Hence we can transfer the lexicographical order to 〈1, . . . , θ〉. The image ν(L) ⊂ 〈1, . . . , θ〉
can be seen as the set of “Lyndon telephone numbers”. We define the set

XL := {xu | u ∈ ν(L)}.

Note that if X ⊂ L (e.g. L ⊂ L is Shirshov closed), then X ⊂ XL. E.g., if X = {x1, x2} ⊂
L = {x1, x1x2, x2} then ν(L) = {1, 12, 2} and X ⊂ XL = {x1, x12, x2}.

Notation 4.5.1. From now on we will not distinguish between L and ν(L) and write for
example xu instead of xν(u) for u ∈ L. In this manner we will also write gν(u), χν(u)

equivalently for gu, χu if u ∈ L, as defined in Example 3.2.2. E.g. g112 = gx1x1x2 =
gx1gx1gx2 = g1g1g2, χ112 = χx1x1x2 = χx1χx1χx2 = χ1χ1χ2.

Notabene, the notation of the xu, like x112, fits perfectly for the implementation in
computer algebra systems like FELIX, see Appendix A.

By Proposition 4.3.2 we have the bijection

ρ : [L](N) → 〈XL〉, ρ
(
[u1] . . . [un]

)
:= xu1 . . . xun . (4.2)

E.g., [x1x2x2][x1x2]
ρ7→ x122x12. Hence we can transfer all orderings to 〈XL〉: For all

U, V ∈ 〈XL〉 we set

`(U) := `(ρ−1(U)),

U < V :⇔ ρ−1(U) < ρ−1(V ),

U ≺ V :⇔ ρ−1(U) ≺ ρ−1(V ).
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Chapter 5

A class of pointed Hopf algebras

In this chapter we deal with a special class of pointed Hopf algebras. Let us recall the
notions and results of [36, Sect. 3]: A Hopf algebra A is called a character Hopf algebra if
it is generated as an algebra by elements a1, . . . , aθ and an abelian group G(A) = Γ of all

group-like elements such that for all 1 ≤ i ≤ θ there are gi ∈ Γ and χi ∈ Γ̂ with

∆(ai) = ai ⊗ 1 + gi ⊗ ai and gai = χi(g)aig.

As mentioned in the introduction this covers a wide class of examples of Hopf algebras.

The aim of this chapter is to construct for any character Hopf algebra A a smash
product k〈X〉#k[Γ] together with an ideal I such that

A ∼= (k〈X〉#k[Γ])/I.

Note that any character Hopf algebra is Γ̂-graded by

A =
⊕
χ∈bΓ

Aχ with Aχ := {a ∈ A | ga = χ(g)ag},

since A is genereated by Γ̂-homogeneous elements, and elements of different Aχ are linearly
independent.

5.1 PBW basis in hard super letters

At first we want to give a formal definition of the term PBW basis of an arbitrary algebra.

Definition 5.1.1. Let A be an algebra, P, S ⊂ A subsets and let Ns ∈ {1, 2, . . . ,∞} for
all s ∈ S. Assume that (S,≤) is totally ordered. If the set of all products

sr11 s
r2
2 . . . srtt g

with t ∈ N, si ∈ S, s1 > . . . > st, 0 < ri < Nsi and g ∈ P , is a basis of A, then we call it a
PBW basis. More simple, we also say S is a PBW basis.
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Let from now on A be again a character Hopf algebra. The algebra map

k〈X〉 → A, xi 7→ ai

allows to identify elements of k〈X〉 with elements of A: By abuse of language we will write

for the image of a ∈ k〈X〉 also a. Further let k〈X〉 be Γ-, Γ̂-graded and qu,v as in Example
3.2.2 with the gi and χi above. Then a super letter [u] ∈ A is called hard if it is not a
linear combination of

• U = [u1] . . . [un] ∈ [L](N) with n ≥ 1, `(U) = `(u), ui > u for all 1 ≤ i ≤ n, and

• V g with V ∈ [L](N), `(V ) < `(u) and g ∈ Γ.

Note that if [u] is hard and Sh(u) = (v|w), then also [v] and [w] are hard; this follows from
[36, Cor. 2]. We may assume that a1, . . . , aθ are hard, otherwise A would be generated by
Γ and a proper subset of a1, . . . , aθ. But this says that the set of all hard super letters is
Shirshov closed.

For any hard [u] we define N ′u ∈ {2, 3, . . . ,∞} as the minimal r ∈ N such that [u]r is
not a linear combination of

• U = [u1] . . . [un] ∈ [L](N) with n ≥ 1, `(U) = r`(u), ui > u for all 1 ≤ i ≤ n, and

• V g with V ∈ [L](N), `(V ) < r`(u) and g ∈ Γ.

Theorem 5.1.2. [36, Thm. 2, Lem. 13] Let A be a character Hopf algebra. Then the set
of all

[u1]r1 [u2]r2 . . . [ut]
rtg

with t ∈ N, [ui] is hard, u1 > . . . > ut, 0 < ri < N ′ui, g ∈ Γ, forms a k-basis of A.
Further, for every hard super letter [u] with N ′u <∞ we have ordqu,u = N ′u if char k = 0

resp. pkordqu,u = N ′u for some k ≥ 0 if char k = p > 0.

We now generally construct a smash product k〈X〉#k[Γ] with an ideal I.

5.2 The smash product k〈X〉#k[Γ]

Let k〈X〉 be Γ- and Γ̂-graded as in Example 3.2.2, and k[Γ] be endowed with the usual
bialgebra structure ∆(g) = g ⊗ g and ε(g) = 1 for all g ∈ Γ. Then we define

g · xi := χi(g)xi, for all 1 ≤ i ≤ θ.

In this case, k〈X〉 is a k[Γ]-module algebra and we calculate gxi = χi(g)xig, gh = hg =
ε(g)hg in k〈X〉#k[Γ]. Thus xi ∈ (k〈X〉#k[Γ])χi and k[Γ] ⊂ (k〈X〉#k[Γ])ε and in this way

k〈X〉#k[Γ] =
⊕
χ∈bΓ

(k〈X〉#k[Γ])χ.

This Γ̂-grading extends the Γ̂-grading of k〈X〉 in Example 3.2.2 to k〈X〉#k[Γ].
Further k〈X〉#k[Γ] is a Hopf algebra with structure determined by

∆(xi) := xi ⊗ 1 + gi ⊗ xi and ∆(g) := g ⊗ g,

for all 1 ≤ i ≤ θ and g ∈ Γ.
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5.3 Ideals associated to Shirshov closed sets

In this subsection we fix a Shirshov closed L ⊂ L. We want to introduce the following
notation for an a ∈ k〈X〉#k[Γ] and W ∈ [L](N): We will write a ≺L W (resp. a �L W ), if
a is a linear combination of

• U ∈ [L](N) with `(U) = `(W ), U > W (resp. U ≥ W ), and

• V g with V ∈ [L](N), g ∈ Γ, `(V ) < `(W ).

Furthermore, we want to distinguish the set of Lyndon words w = uv with u, v ∈ L such
that

u < v, Sh(uv) = (u|v), and uv /∈ L. (5.1)

For example, if L = {x1, x1x1x2, x1x2, x2}, then all uv with u, v ∈ L as in Eq. (5.1) are
x1x1x1x2, x1x1x2x1x2 and x1x2x2, see also Section 9.3.

We set Nu := ∞ or Nu := ordqu,u for all u ∈ L (resp. Nu := pkordqu,u with k ≥ 0
if char k = p > 0). Moreover, let cuv ∈ (k〈X〉#k[Γ])χuv for all u, v ∈ L with Eq. (5.1)

such that cuv ≺L [uv]; and let du ∈ (k〈X〉#k[Γ])χ
Nu
u for all u ∈ L with Nu <∞ such that

du ≺L [u]Nu . Then let I be the ideal of k〈X〉#k[Γ] generated by the following elements:

[uv]− cuv for all u, v ∈ L with Eq. (5.1), (5.2)

[u]Nu − du for all u ∈ L with Nu <∞. (5.3)

Note that the ideal I is Γ̂-homogeneous. Examples of the ideal I for certain L are found
in Chapters 6, 8, and 9.

In the next Lemma we want to define c(u|v) ∈ k〈X〉#k[Γ] for all u, v ∈ L with u < v,
such that

[
[u], [v]

]
= c(u|v) modulo I. In this way we show that the relations of type

Eq. (5.2) with Sh(uv) 6= (u|v) or uv ∈ L are redundant.

Lemma 5.3.1. Let I ′ ⊂ k〈X〉#k[Γ] be the ideal generated by the elements Eq. (5.2). Then
there are c(u|v) ∈ (k〈X〉#k[Γ])χuv for all u, v ∈ L with u < v such that

(1)
[
[u], [v]

]
− c(u|v) ∈ I ′,

(2) c(u|v) �L [uv].

The residue classes of
[u1]r1 [u2]r2 . . . [ut]

rtg

with t ∈ N, ui ∈ L, u1 > . . . > ut, 0 < ri < Nui, g ∈ Γ, k-generate (k〈X〉#k[Γ])/I.

Proof. For all u, v ∈ L with u < v and Sh(uv) = (u|v) we set

c(u|v) :=

{
[uv], if uv ∈ L,
cuv, if uv /∈ L.

We then proceed by induction on `(u): If u ∈ X then Sh(uv) = (u|v) by Theorem 4.2.1 and
by definition the claim is fulfilled. So let `(u) > 1. Again if Sh(uv) = (u|v) then we argue
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as in the induction basis. Conversely, let Sh(uv) 6= (u|v), and further Sh(u) = (u1|u2);
then u2 < v by Theorem 4.2.1 and by Lemma 4.2.3

u1 < u1u2 = u < uv < u2v, and uv < u1v. (5.4)

By induction hypothesis there is a c(u2|v) =
∑
αU +

∑
βV g (we omit the indices to avoid

double indices) of Γ̂-degree χu2v with U = [l1] . . . [ln] ∈ [L](N), `(U) = `(u2v), l1 ≥ u2v,
V ∈ [L](N), `(V ) < `(u2v), g ∈ Γ and

[
[u2], [v]

]
− c(u2|v) ∈ I ′. Then[

[u1], c(u2|v)

]
=
∑

α
[
[u1], U

]
+
∑

β
[
[u1], V g

]
.

Since U is χu2v-homogeneous we can use the q-derivation property of Proposition 3.2.3 for
the term [

[u1], U
]

=
n∑
i=1

qu1,l1...li−1
[l1] . . . [li−1]

[
[u1], [li]

]
[li+1] . . . [ln].

By assumption u2v ≤ l1, hence we deduce uv < l1 and u1 < l1 from Eq. (5.4); because
of the latter inequality, by the induction hypothesis there is a χu1l1-homogeneous c(u1|l1) =∑
α′U ′ +

∑
β′V ′g′ with U ′ ∈ [L](N), `(U ′) = `(u1l1), U ′ ≥ [u1l1], V ′ ∈ [L](N), `(V ′) <

`(u1l1), g′ ∈ Γ and
[
[u1], [l1]

]
− c(u1|l1) ∈ I ′. Since u2v ≤ l1 we have [uv] = [u1u2v] ≤

[u1l1] ≤ U ′. We now define ∂u1(c(u2|v)) k-linearly by

∂u1(U) := c(u1|l1)[l2] . . . [ln] +
n∑
i=2

qu1,l1...li−1
[l1] . . . [li−1]

[
[u1], [li]

]
[li+1] . . . [ln],

∂u1(V g) :=
[
[u1], V

]
qu1,u2vχu1 (g)

g.

Then ∂u1(c(u2|v)) �L [uv] with Γ̂-degree χuv. Moreover
[
[u1],

[
[u2], [v]

]]
− ∂u1(c(u2|v)) ∈ I ′,

since
[
[u1], U

]
− ∂u1(U) ∈ I ′ and ∂u1(V g) =

[
[u1], V g

]
qu1,u2v

.

Finally, because of u1 < u < v there is again by induction assumption a c(u1|v) �L [u1v],
which is χu1v-homogeneous and c(u1|v) −

[
[u1][v]

]
∈ I ′ (moreover, u1v > uv by Eq. (5.4)).

We then define for Sh(uv) 6= (u|v)

c(u|v) := ∂u1(c(u2|v)) + qu2,vc(u1|v)[u2]− qu1,u2 [u2]c(u1|v). (5.5)

We have u2 > u since u is Lyndon and u cannot begin with u2, hence u2 > uv by Lemma
4.1.1. Thus c(u|v) ≺L [uv]. Also degbΓ(c(u|v)) = χuv and by the q-Jacobi identity of Proposi-
tion 3.2.3 we have

[
[u], [v]

]
− c(u|v) ∈ I ′.

For the last assertion it suffices to show that the residue classes of [u1]r1 [u2]r2 . . . [ut]
rtg

k-generate the residue classes of k〈X〉 in (k〈X〉#k[Γ])/I ′: this can be done as in the proof
of [36, Lem. 10] by induction on � using (1),(2).

5.4 Structure of character Hopf algebras

Theorem 5.4.1. If A is a character Hopf algebra, then there is a Shirshov closed L ⊂ L
and an ideal I ⊂ k〈X〉#k[Γ] as in Section 5.3 such that

A ∼= (k〈X〉#k[Γ])/I.
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Proof. Let [L] be the set of hard super letters in A; then L ⊂ L is Shirshov closed as
mentioned above. By Theorem 5.1.2 the elements [u1]r1 [u2]r2 . . . [ut]

rtg with t ∈ N, ui ∈ L,
u1 > . . . > ut, 0 < ri < N ′ui , g ∈ Γ, form a k-basis. We consider the k-linear map

φ : A→ k〈X〉#k[Γ], [u1]r1 . . . [ut]
rtg 7→ [u1]r1 . . . [ut]

rtg,

and define cuv := φ
(
[uv]

)
for all u, v ∈ L with u < v, Sh(uv) = (u|v), uv /∈ L, du := φ

(
[u]Nu

)
for all u ∈ L with Nu := N ′u <∞. Note that these elements are as stated in Lemma 5.3.1
since [uv] is not hard. Then there is the surjective Hopf algebra map

(k〈X〉#k[Γ])/I → A, xi 7→ ai, g 7→ g.

By Lemma 5.3.1 the residue classes of [u1]r1 . . . [ut]
rtg k-generate (k〈X〉#k[Γ])/I; they are

linearly independent because so are their images. Hence the map is an isomorphism.

5.5 Calculation of coproducts

Let in this section char k = 0. For any g ∈ Γ, χ ∈ Γ̂ we set

P χ
g := P χ

g (A) := P1,g(A) ∩ Aχ = {a ∈ A | ∆(a) = a⊗ 1 + g ⊗ a, ga = χ(g)ag}.

Although the following calculations are for k〈X〉#k[Γ], we can use the results in any
character Hopf algebra A by the canonical Hopf algebra map k〈X〉#k[Γ] → A. Assume
again the situation of Example 3.2.2.

Lemma 5.5.1. Let 1 ≤ i < j ≤ θ and r ≥ 1.

(1) If ordqii = N , then xNi ∈ P
χNi
gNi

.

(2) If qijqji = q
−(r−1)
ii and r ≤ ordqii, then [xrixj] ∈ P

χriχj
gri gj

.

(3) If qijqji = q
−(r−1)
jj and r ≤ ordqjj, then [xix

r
j ] ∈ P

χiχ
r
j

gigrj
.

Proof. (1) We have (gi⊗ xi)(xi⊗ 1) = qii(xi⊗ 1)(gi⊗ xi) hence by Eq. (3.3) we obtain the
claim. For (2) and (3) see [7, Lem. A.1].

Next we want to examine certain coproducts in the special case when qii = −1 for a
1 ≤ i ≤ θ. Note that in the following two Lemmata we could write more generally i and j
with 1 ≤ i < j ≤ θ instead of 1 and 2:

Lemma 5.5.2. Let ordq12,12 = N .

(1) If q22 = −1, we have for the quotient (k〈X〉#k[Γ])/(x2
2)

∆
(
[x1x2]N

)
= [x1x2]N ⊗ 1 + gN12 ⊗ [x1x2]N

+ qN−1
2,12 (1− q12q21)[x1(x1x2)N−1]g2 ⊗ x2.
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(2) If q11 = −1, we have for the quotient (k〈X〉#k[Γ])/(x2
1)

∆
(
[x1x2]N

)
= [x1x2]N ⊗ 1 + gN12 ⊗ [x1x2]N

+ qN−1
1,12 (1− q12q21)x1g

N−1
12 g2 ⊗ [(x1x2)N−1x2].

Proof. We calculate directly in k〈X〉#k[Γ]

∆([x1x2]) = [x1x2]⊗ 1 + (1− q12q21)x1g2 ⊗ x2 + g12 ⊗ [x1x2].

For α := (1− q12q21), q := q12,12, U := [x1x2]⊗ 1, V := αx1g2 ⊗ x2 and W := g12 ⊗ [x1x2]
we have WU = qUW and

V U − qUV = αq2,12[x1x1x2]g2 ⊗ x2,

WV − qV W = αq12,1x1g12g2 ⊗ [x1x2x2].

We further set for r ≥ 1

[V ] := V, [V U r] := αqr2,12[x1(x1x2)r]g2 ⊗ x2,

[W ] := W, [W rV ] := αqr1,12x1g
r
12g2 ⊗ [(x1x2)rx2].

(1) We have [x1x2x2] = [x1, x
2
2] = 0 by the restricted q-Leibniz formula and x2

2 = 0.
Hence WU = qUW and WV = qV W . By Eq. (3.3) we have

∆([x1x2]r) = (U + V +W )r = (U + V )r +W r.

We state for r ≥ 1

(U + V )r = U r +
r−1∑
i=0

(
r
i

)
q
U i[V U (r−1)−i],

from where the claim follows. This we prove by induction on r: For r = 1 the claim is
true. By induction assumption

(U + V )r+1 = (U + V )r(U + V )

= U r+1 +
r−1∑
i=0

(
r
i

)
q
U i[V U (r−1)−i]U + U rV +

r−1∑
i=0

(
r
i

)
q
U i[V U (r−1)−i]V,

where the last sum is zero since [V U (r−1)−i]V = . . .⊗ x2
2 = 0 for all 0 ≤ i ≤ r− 1. Further

[V U (r−1)−i]U = αq
(r−1)−i
2,12 [x1(x1x2)(r−1)−i]g2[x1x2]⊗ x2

= αqr−i2,12

(
[x1(x1x2)r−i][x1x2]

+ q1,12q
(r−1)−i[x1x2][x1(x1x2)(r−1)−i]

)
g2 ⊗ x2

= [V U r−i] + qr−iU [V U (r−1)−i].
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Thus (U + V )r+1 =

= U r+1 +
r−1∑
i=0

(
r
i

)
q
U i[V U r−i] + U rV +

r−1∑
i=0

(
r
i

)
q
qr−iU i+1[V U (r−1)−i]

= U r+1 +
r∑
i=0

((
r
i

)
q

+
(
r
i−1

)
q
qr+1−i)U i[V U r−i],

by shifting the index of the second sum. By Eq. (3.2) this is the desired formula.
(2) is proven analogously with the formula (V +W )r = W r +

∑r−1
i=0

(
r
i

)
q
[W (r−1)−iV ]V i.

A direct computation in k〈X〉#k[Γ] shows that

∆([x1x1x2x1x2]) = [x1x1x2x1x2]⊗ 1 + g3
1g

2
2 ⊗ [x1x1x2x1x2]

+ α[x1x1x2]g1g2 ⊗ [x1x2]

+ (1− q12q21)
(
q21q22β[x1x1x1x2] + α[x1x1x2]x1

)
g2 ⊗ x2

+ (1− q12q21)(1− q11q12q21)x2
1g1g

2
2

⊗
(
q11q21(1 + q11 − q3

11q
2
12q

2
21q22)[x1x2x2] + αx2[x1x2]

)
+ q21(1− q12q21)2(1− q11q12q21)(1− q2

11q
2
12q

2
21q22)x3

1g
2
2 ⊗ x2

2

+ x1g
2
1g

2
2 ⊗

(
γ[x1x2]2 + q2

11q21(1− q12q21)[x1x1x2x2]
)
,

with

α := (2)q11q11q12q21q22(1− q11q12q21) + 1− q4
11q

3
12q

3
21q

2
22,

β := 1− q11q12q21 − q2
11q

2
12q

2
21q22,

γ := q2
11q21q12(1− q12q21)(q22 − q11)

+ (2)q11(1− q11q12q21)(1− q3
11q

2
12q

2
21q22).

Lemma 5.5.3. Let q22 = −1. Then

α = (3)q12,12(1− q2
11q12q21),

β = (3)q12,12 ,

γ = (2)q11(3)q12,12(1− q2
11q12q21).

As a consequence we have the following:

(1) If ordq12,12 = 3, then

∆([x1x1x2x1x2]) = [x1x1x2x1x2]⊗ 1 + g3
1g

2
2 ⊗ [x1x1x2x1x2]

+ (1− q12q21)(1− q11q12q21)x2
1g1g

2
2

⊗ q11q21(1 + q11 − q3
11q

2
12q

2
21q22)[x1x2x2]

+ q21(1− q12q21)2(1− q11q12q21)(1− q2
11q

2
12q

2
21q22)x3

1g
2
2 ⊗ x2

2

+ x1g
2
1g

2
2 ⊗ q2

11q21(1− q12q21)[x1x1x2x2].

Hence [x1x1x2x1x2] ∈ P χ3
1χ

2
2

g3
1g

2
2

in the quotient (k〈X〉#k[Γ])/(x2
2).
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(2) If q12q21 = q−2
11 and ordq11 = 3, then

∆([x1x1x2x1x2]) = [x1x1x2x1x2]⊗ 1 + g3
1g

2
2 ⊗ [x1x1x2x1x2]

+ (1− q12q21)q21q22β[x1x1x1x2]g2 ⊗ x2

+ q21(1− q12q21)2(1− q11q12q21)(1− q2
11q

2
12q

2
21q22)x3

1g
2
2 ⊗ x2

2

+ x1g
2
1g

2
2 ⊗ q2

11q21(1− q12q21)[x1x1x2x2].

Hence [x1x1x2x1x2] ∈ P χ3
1χ

2
2

g3
1g

2
2

in the quotients (k〈X〉#k[Γ])/(x2
2, [x1x1x1x2])

or (k〈X〉#k[Γ])/(x3
1, [x1x1x2x2]).

Proof. This is also a straightforward calculation using the following identities: Since q22 =
−1, we have [x1x2x2] = [x1, x

2
2] by the restricted q-Leibniz formula of Proposition 3.2.3,

thus [x1x1x2x2] =
[
x1, [x1x2x2]

]
=
[
x1, [x1, x

2
2]
]
. So we see that both are zero if x2

2 = 0. If
ordq11 = 3 analogously [x1x1x1x2] = [x3

1, x2] = 0 for x3
1 = 0.

We want to state some basic combinatorics on the gi’s and χi’s for later reference:

Lemma 5.5.4. Let 1 ≤ i 6= j ≤ θ, 1 < N := ordqii <∞, and r ∈ Z. Then:

(1) χNi 6= χi.

(2) If qjj 6= 1, then χNi 6= χj or gNi 6= gj.

(3) If χNi = ε, then qNji = 1. Especially, if χ2
i = ε, then qji = ±1.

(4) If qijqji = q
−(r−1)
ii and qjj 6= 1, then χriχj 6= χi.

(5) If qrii 6= 1, then χriχj 6= χj.

(6) If qijqji = q
−(r−1)
ii and χriχj = ε, then(

qii qij
qji qjj

)
=

(
qii q−rii
qii q−rii

)
.

Especially, if qjj = −1, then qrii = −1 and N is even.

Proof. (1) Assume χNi = χi. Hence qN−1
ii = 1, a contradiction.

(2) If χNi = χj and gNi = gj, then 1 = qNii = qij, q
N
ji = qjj, 1 = qNii = qji and qNij = qjj.

Hence qjj = qij = qji = 1.
(3) is clear.
(4) If χriχj = χi, then qr−1

ii qij = 1, qr−1
ji qjj = 1. We deduce qji = qjj = 1.

(5) If χriχj = χj, then qrii = 1.
(6) We have qriiqij = 1, qrjiqjj = 1. Now the assumption implies the claim.



Chapter 6

Lifting

We proceed as in [6, 8]: In this chapter let char k = 0 and A be a finite-dimensional pointed
Hopf algebra with abelian group of group-like elements G(A) = Γ and assume that the
associated graded Hopf algebra with respect to the coradical filtration (see Section 2.7) is

gr(A) ∼= B(V )#k[Γ],

where V is of diagonal type of dimension dimk V = θ with basis x1, x2, . . . , xθ. It is
dimkA = dimk gr(A) = dimk B(V ) · |Γ|. In particular B(V ) is finite-dimensional and we
can associate a Cartan matrix as in Definition 2.4.1.

Definition 6.0.5. In this situation we say thatA is a lifting of the Hopf algebra B(V )#k[Γ],
or simply of the Nichols algebra B(V ).

By [6, Lem. 5.4], we have that

P ε
g = k(1− g) for all g ∈ Γ, and if χ 6= ε, then

P χ
g 6= 0 ⇐⇒ g = gi, χ = χi for some 1 ≤ i ≤ θ.

(6.1)

Thus we can choose ai ∈ P χi
gi

with residue class xi ∈ V#k[Γ] ∼= A1/A0 for 1 ≤ i ≤ θ.

Lemma 6.0.6. Let u, v ∈ L ⊂ L.

(1) (a) If qi,uv 6= 1 for some 1 ≤ i ≤ θ, then χuv 6= ε.
(b) If χuv 6= ε and for all 1 ≤ i ≤ θ there are 1 ≤ j ≤ θ such that qj,uv 6= qji or
quv,j 6= qij, then

P χuv
guv = 0.

(2) Let ordqu,u = Nu <∞.
(a) If qNui,u 6= 1 for some 1 ≤ i ≤ θ, then χNuu 6= ε.

(b) If χNuu 6= ε and for all 1 ≤ i ≤ θ there are 1 ≤ j ≤ θ such that qNuj,u 6= qji or

qNuu,j 6= qij, then

P χNuu

gNuu
= 0.
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Proof. (1a) If χuv = ε, then qi,uv = 1 for all 1 ≤ i ≤ θ.
(1b) Let χuv 6= ε and P χuv

guv 6= 0, then χuv = χi and guv = gi for some i by Eq. (6.1). Hence
qj,uv = qji and quv,j = qij for all 1 ≤ j ≤ θ.
(2a) If χNuu = ε, then qNui,u = 1 for all 1 ≤ i ≤ θ.

(2b) Let χNuu 6= ε and P χNuu

gNuu
6= 0, then χNuu = χi and gNuu = gi for some i. Thus qNuj,u = qji

and qNuu,j = qij for all 1 ≤ j ≤ θ.

This and Eq. (6.1) motivate the following:

Definition 6.0.7. Let L ⊂ L. Then we define coefficients µu ∈ k for all u ∈ L with
Nu <∞, and λuv ∈ k for all u, v ∈ L with Eq. (5.1) by

µu = 0, if gNuu = 1 or χNuu 6= ε,

λuv = 0, if guv = 1 or χuv 6= ε,

and otherwise they can be chosen arbitrarily.

6.1 General lifting procedure

Suppose we know the PBW basis [L] of B(V ), then a lifting A has the same PBW basis
[L]; see [53, Prop. 47]. Hence we know by Theorem 5.4.1 the structure of the ideal I such
that

A ∼= (k〈X〉#k[Γ])/I.

Let us order the relations Eqs. (5.2) and (5.3) of I, namely the two types

[uv]− cuv for u, v ∈ L with Eq. (5.1) and [u]Nu − du for u ∈ L with Nu <∞,

with respect to ≺ by the leading super word [uv] resp. [u]Nu . Yet we don’t know the
cuv, du ∈ k〈X〉#k[Γ] explicitly; our general procedure to compute these elements is the
following, stated inductively on ≺:

• Suppose we know all relations ≺-smaller than [uv] resp. [u]Nu .

• Then we determine a counterterm ruv resp. su ∈ k〈X〉#k[Γ] such that

[uv]− ruv ∈ P χuv
guv resp. [u]Nu − su ∈ P χNuu

gNuu

modulo the relations ≺-smaller than [uv] resp. [u]Nu ; we conjecture that we can do
this in general (see below).
Further if χuv 6= χi or guv 6= gi resp. χNuu 6= χi or gNuu 6= gi for all 1 ≤ i ≤ θ, then by
Eq. (6.1) we get

cuv = ruv + λuv(1− guv) resp. du = su + µu(1− gNuu ). (6.2)
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In order to formulate our conjecture, we define the following ideal: For any super word
U ∈ [L](N) let IU denote the ideal of k〈X〉#k[Γ] generated by the elements

[uv]− cuv for all u, v ∈ L with Eq. (5.1) and [uv] ≺ U,

[u]Nu − du for all u ∈ L with Nu <∞ and [u]Nu ≺ U.

Note that IU ⊂ I. See Appendix A for an example of IU .

Conjecture 6.1.1. For all u, v ∈ L with Eq. (5.1) resp. for all u ∈ L with Nu <∞ there

are ruv ∈ (k〈X〉#k[Γ])χuv resp. su ∈ (k〈X〉#k[Γ])χ
Nu
u with ruv ≺L [u] resp. su ≺L [u]Nu

such that [uv]− ruv resp. [u]Nu − su is skew-primitive modulo the relations ≺-smaller than
[uv] resp. [u]Nu, i.e.,

∆([uv]− ruv)− ([uv]− ruv)⊗ 1−guv ⊗ ([uv]− ruv)
∈ k〈X〉#k[Γ]⊗ I[uv] + I[uv] ⊗ k〈X〉#k[Γ],

∆([u]Nu − su)− ([u]Nu − su)⊗ 1−gNuu ⊗ ([u]Nu − su)
∈ k〈X〉#k[Γ]⊗ I[u]Nu + I[u]Nu ⊗ k〈X〉#k[Γ].

Remark 6.1.2.

1. If the conjecture is true, then one could investigate from the list of braidings in [31]
where a free paramter λuv resp. µu occurs in the lifting, without knowing ruv resp. su
explicitly.

2. To determine the generators of the ideal I explicitly, i.e., to find ruv resp. su, it is
crucial to know which relations of I are redundant. We will detect the redundant
relations with Theorem 7.3.1 in Chapter 9.

3. In general ruv resp. su is not necessarily in k[Γ], like it was the case in [11]; see Lemma
6.1.3 (2b),(3b) below or the liftings in the following sections.

At first we lift the root vector relations of x1, . . . , xθ and the Serre relations in gen-
eral. Note that for these relations our Conjecture 6.1.1 is true. We denote the images of
[xrixj], [xix

r
j ] ∈ k〈X〉 (r ≥ 1) of the algebra map in Section 5.1 by [ariaj], [aia

r
j ]:

Lemma 6.1.3. Let A be a lifting of B(V ) with braiding matrix (qij) and Cartan matrix
(aij). Further let 1 ≤ i < j ≤ θ and Ni := ordqii. We may assume qii 6= 1 for all 1 ≤ i ≤ θ.

(1) We have

aNii = µi(1− gNii ).

Moreover, if qNiji 6= 1, then aNii = 0. Especially, if qii = −1 and qji 6= ±1, then a2
i = 0.

(2) (a) If qijqji = q
aij
ii , Ni > 1− aij, then[

a
1−aij
i aj

]
= λi1−aij j(1− g

1−aij
i gj).
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Moreover, if

(
qii qij
qji qjj

)
6=

(
qii q

−(1−aij)
ii

qii q
−(1−aij)
ii

)
, then [a

1−aij
i aj] = 0; in particular the

latter claim holds if qjj = −1 and q
1−aij
ii 6= −1 (e.g., Ni is odd).

(b) If Ni = 1− aij, then [
aNii aj

]
= µi(1− qNiij )aj.

(3) (a) If qijqji = q
aji
jj , Nj > 1− aji, then[

aia
1−aji
j

]
= λij1−aji (1− gig

1−aji
j ).

Moreover, if

(
qii qij
qji qjj

)
6=

(
q
−(1−aji)
jj qjj

q
−(1−aji)
jj qjj

)
, then [aia

1−aji
j ] = 0; in particular the

latter claim holds if qii = −1 and q
1−aji
jj 6= −1 (e.g., Nj is odd).

(b) If Nj = 1− aji, then [
aia

Nj
j

]
= µj(q

Nj
ji − 1)aig

Nj
j .

Proof. (1) This is a consequence of Lemma 5.5.4(1)-(3) and Eq. (6.1).

(2a) and (3a) follow from Lemma 5.5.4(4)-(6) and Eq. (6.1).

(2b) and (3b) follow from the restricted q-Leibniz formula of Proposition 3.2.3 and (1)
above: For example

[
aia

Nj
j

]
=
[
ai, a

Nj
j

]
q
Nj
ij

=
[
ai, µj(1 − g

Nj
j )
]
q
Nj
ij

= µj

(
(1 − qNjij )ai − (1 − qNjij q

Nj
ji )aig

Nj
j

)
.

Now either µj = 0 or q
Nj
ij = 1 by (1), from where the claim follows.

From now on let θ = 2, i.e., B(V ) is of rank 2.

6.2 Lifting of B(V ) with Cartan matrix A1 × A1

Let B(V ) be a finite-dimensional Nichols algebras with Cartan matrix (aij) =

(
2 0
0 2

)
of

type A1 × A1, i.e., the braiding matrix (qij) fulfills

q12q21 = 1,

since we may suppose that ordqii ≥ 2 [27, Sect. 2], especially qii 6= 1. The Dynkin diagram

is e eq r with q := q11 and r := q22. Then the Nichols algebra is given by

B(V ) = T (V )/
(
[x1x2], xN1

1 , xN2
2

)
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with basis {xr22 x
r1
1 | 0 ≤ ri < Ni} where Ni = ordqii ≥ 2 [30]. It is well-known [6] that any

lifting A is of the form

A ∼= (T (V )#k[Γ])/
(

[x1x2]− λ12(1− g12),

xN1
1 − µ1(1− gN1

1 ),

xN2
2 − µ2(1− gN2

2 )
)

with basis {xr22 x
r1
1 g | 0 ≤ ri < Ni, g ∈ Γ} and dimkA = N1N2 · |Γ|; we prove the statement

for the basis in Section 9.1.

6.3 Lifting of B(V ) with Cartan matrix A2

Let B(V ) be a Nichols algebras with Cartan matrix (aij) =

(
2 −1
−1 2

)
of type A2, i.e.,

the braiding matrix (qij) fulfills

q12q21 = q−1
11 or q11 = −1, and q12q21 = q−1

22 or q22 = −1.

The Nichols algebras are given explicitly in [29]. As mentioned above, it is crucial to know
the redundant relations for the computation of the liftings. Therefore we give the ideals
without redundant relations which are detected by the PBW Criterion 7.3.1:

Proposition 6.3.1 (Nichols algebras with Cartan matrix A2). The finite-dimensional
Nichols algebras B(V ) with Cartan matrix of type A2 are exactly the following:

(1) e eq q−1 q (Cartan type A2). Let q12q21 = q−1
11 = q−1

22 .

(a) If q11 = −1, then
B(V ) = T (V )/

(
x2

1, [x1x2]2, x2
2

)
with basis {xr22 [x1x2]r12xr11 | 0 ≤ r2, r12, r1 < 2} and dimk B(V ) = 23 = 8.
(b) If N := ordq11 ≥ 3, then

B(V ) = T (V )/
(
[x1x1x2], [x1x2x2], xN1 , [x1x2]N , xN2

)
with basis {xr22 [x1x2]r12xr11 | 0 ≤ r2, r12, r1 < N} and dimk B(V ) = N3.

(2) e eq q−1 −1. If q12q21 = q−1
11 , N := ordq11 ≥ 3, q22 = −1, then

B(V ) = T (V )/
(
[x1x1x2], xN1 , x

2
2

)
with basis {xr22 [x1x2]r12xr11 | 0 ≤ r1 < N, 0 ≤ r2, r12 < 2} and dimk B(V ) = 4N .

(3) e e−1 q−1 q . If q11 = −1, q12q21 = q−1
22 , N := ordq22 ≥ 3, then

B(V ) = T (V )/
(
[x1x2x2], x2

1, x
N
2

)
with basis {xr22 [x1x2]r12xr11 | 0 ≤ r2 < N, 0 ≤ r1, r12 < 2} and dimk B(V ) = 4N .
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(4) e e−1 q −1. If q11 = q22 = −1, N := ordq12q21 ≥ 3, then

B(V ) = T (V )/
(
x2

1, [x1x2]N , x2
2

)
with basis {xr22 [x1x2]r12xr11 | 0 ≤ r2, r1 < 2, 0 ≤ r12 < N} and dimk B(V ) = 4N .

We prove this later in Section 9.2.

Remark 6.3.2. The Nichols algebras of Proposition 6.3.1 all have the PBW basis [L] =
{x1, [x1x2], x2}, and (1) resp. (2)-(4) form the standard Weyl equivalence class of row 2
resp. 3 in Table 2.1, where the latter is not of Cartan type. They build up the tree type
T2 of [29].

Theorem 6.3.3 (Liftings of B(V ) with Cartan matrix A2). For any lifting A of B(V ) as
in Proposition 6.3.1, we have

A ∼= (T (V )#k[Γ])/I,

where I is specified as follows:

(1) e eq q−1 q (Cartan type A2). Let q12q21 = q−1
11 = q−1

22 .

(a) If q11 = −1, then I is generated by

x2
1 − µ1(1− g2

1),

[x1x2]2 − 4µ1q21x
2
2 − µ12(1− g2

12),

x2
2 − µ2(1− g2

2).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r2, r12, r1 < 2, g ∈ Γ} and dimkA = 23 · |Γ| = 8 · |Γ|.
(b) If ordq11 = 3, then I is generated by, see [14],

[x1x1x2]− λ112(1− g112),

[x1x2x2]− λ122(1− g122),

x3
1 − µ1(1− g3

1),

[x1x2]3 + (1− q11)q11λ112[x1x2x2]

− µ1(1− q11)3x3
2 − µ12(1− g3

12),

x3
2 − µ2(1− g3

2).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r2, r12, r1 < 3, g ∈ Γ} and dimkA = 33 ·|Γ| = 27·|Γ|.
(c) If N := ordq11 ≥ 4, then I is generated by, see [8],

[x1x1x2],

[x1x2x2],

xN1 − µ1(1− gN1 ),

[x1x2]N − µ1(q11 − 1)Nq
N(N−1)

2
21 xN2 − µ12(1− gN12),

xN2 − µ2(1− gN2 ).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r2, r12, r1 < N, g ∈ Γ} and dimkA = N3 · |Γ|.
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(2) e eq q−1 −1. Let q12q21 = q−1
11 , q22 = −1.

(a) If 4 6= N := ordq11 ≥ 3, then I is generated by

[x1x1x2],

xN1 − µ1(1− gN1 ),

x2
2 − µ2(1− g2

2).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r1 < N, 0 ≤ r2, r12 < 2, g ∈ Γ} and dimkA =
22N · |Γ| = 4N · |Γ|.
(b) If ordq11 = 4, then I is generated by

[x1x1x2]− λ112(1− g112),

x4
1 − µ1(1− g4

1),

x2
2 − µ2(1− g2

2).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r1 < 4, 0 ≤ r2, r12 < 2, g ∈ Γ} and dimkA =
224 · |Γ| = 16 · |Γ|.

(3) e e−1 q−1 q . Let q11 = −1, q12q21 = q−1
22 .

(a) If 4 6= N := ordq22 ≥ 3, then I is generated by

[x1x2x2],

x2
1 − µ1(1− g2

1),

xN2 − µ2(1− gN2 ).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r2 < N, 0 ≤ r1, r12 < 2, g ∈ Γ} and dimkA =
22N · |Γ| = 4N · |Γ|.
(b) If ordq22 = 4, then I is generated by

[x1x2x2]− λ122(1− g122),

x2
1 − µ1(1− g2

1),

x4
2 − µ2(1− g4

2).

A basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r2 < 4, 0 ≤ r1, r12 < 2, g ∈ Γ} and dimkA =
224 · |Γ| = 16 · |Γ|.

(4) e e−1 q −1. Let q11 = q22 = −1 and N := ordq12q21 ≥ 3.

(a) If q12 6= ±1, then I is generated by

x2
1 − µ1(1− g2

1),

[x1x2]N − µ12(1− gN12),

x2
2.
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(b) If q12 = ±1, then I is generated by

x2
1,

[x1x2]N − µ12(1− gN12),

x2
2 − µ2(1− g2

2).

In both cases a basis is {xr22 [x1x2]r12xr11 g | 0 ≤ r2, r1 < 2, 0 ≤ r12 < N, g ∈ Γ} and
dimkA = 22N · |Γ| = 4N · |Γ|.

Proof. At first we show that in each case (T (V )#k[Γ])/I is a pointed Hopf algebra with
coradical k[Γ] and claimed basis and dimension such that gr((T (V )#k[Γ])/I) ∼= B(V )#k[Γ].
Then we show that a lifting A is necessarily of this form.
• (T (V )#k[Γ])/I is a Hopf algebra: We show that in every case I is generated by

skew-primitive elements, thus I is a Hopf ideal. The elements xNii − µi(1 − gNii ) and
[x1x1x2]− λ112(1− g112) are skew-primitive if q12q21 = q−1

11 by Lemma 5.5.1. So we have a
Hopf ideal in (2) and (3).

For the elements [x1x2]N12 − d12 we argue as follows: In (1a) we directly calculate that

[x1x2]2 − 4µ1q21x
2
2 ∈ P

χ2
12

g2
12

. (1b),(1c) is treated in [14, 8].

For (4a): By induction on N (the induction basis N = 2 is Lemma 6.1.3(2b))

[x1(x1x2)N−1] = µ1

(N−2∏
i=0

(1− qi+2
12 qi21)

)
x2[x1x2]N−2.

Further q12,12 = q12q21 is of orderN and q2
21 = 1 (or µ1 = 0), we have qN12q

N−2
21 = (q12q21)r = 1

and thus [x1(x1x2)N−1] = 0. Hence [x1x2]N is skew-primitive by Lemma 5.5.2(1).
(4b) works in a similar way because of q2

12 = 1: Again by induction (the induction basis
N = 2 is Lemma 6.1.3(3b))

[(x1x2)N−1x2] = µ2

(N−2∏
i=0

(1− qi+2
12 qi+2

21 )
)

[x1x2]N−2x1g
2
2,

which is 0 since (q12q21)N = qN12,12 = 1. Now [x1x2]N is skew-primitive by Lemma 5.5.2(2).
•We prove the statement on the basis and dimension of (T (V )#k[Γ])/I later in Section

9.2 with the help of the PBW Criterion 7.3.1.
•The algebra k[Γ] embeds in (T (V )#k[Γ])/I and the coradical of the latter is

((T (V )#k[Γ])/I)0 = k[Γ] [43, Lem. 5.5.1], so (T (V )#k[Γ])/I is pointed.
• We consider the Hopf algebra map

T (V )#k[Γ]→ gr((T (V )#k[Γ])/I)

which maps xi onto the residue class of xi in the homogeneous component of degree 1,
namely ((T (V )#k[Γ])/I)1/k[Γ]. It is surjective, since (T (V )#k[Γ])/I is generated as an
algebra by x1, x2 and Γ. Further it factorizes to

B(V )#k[Γ]
∼→ gr((T (V )#k[Γ])/I).
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This is a direct argument looking at the coradical filtration as in [6, Cor. 5.3]: all equations
of I are of the form [uv] − cuv, [u]Nu − du with cuv, du ∈ k[Γ] = ((T (V )#k[Γ])/I)0, hence
[uv] = 0, [u]Nu = 0 in gr((T (V )#k[Γ])/I). The latter surjective Hopf algebra map must
be an isomorphism because the dimensions coincide.
• The other way round, let A be a lifting of B(V ) with ai ∈ P χi

gi
as in the beginning of

this chapter. We consider the Hopf algebra map

T (V )#k[Γ]→ A

which takes xi to ai and g to g. It is surjective since A is generated by a1, a2 and Γ [6,
Lem. 2.2]. We have to check whether this map factorizes to

(T (V )#k[Γ])/I
∼→ A.

Then we are done since the dimension implies that this is an isomorphism.
But this means we have to check that the relations of I hold in A: By Lemma 6.1.3

the relations concerning the elements aNii , [a1a1a2] and [a1a2a2] are of the right form. We
are left to check those for [a1a2]N12 , which appear in (1) and (4):

In (1a) we have [a1a2]2 − 4µ1q21a
2
2 ∈ P

χ2
12

g2
12

like before. Now since q2
1,12 = q2

12 6= −1 = q11

or q2
12,2 = q2

12 6= q12, and q2
1,12 = q2

12 6= q12 or q2
12,2 = q2

12 6= −1 = q22 (otherwise we get
the contradiction q12 = 1 and q2

12 = −1), we have [a1a2]2 = 4µ1q21a
2
2 + µ12(1 − g2

12) by
Lemma 6.0.6(2). (1b),(1c) work in the same way; see [14, 8]. For (4): As shown before

[a1a2]N ∈ P χN12

gN12
. Again we deduce from Lemma 6.0.6(2) that [a1a2]N = µ12(1− gN12).

Remark 6.3.4. The Conjecture 6.1.1 is true in the situation of Theorem 6.3.3: the ruv of
the non-redundant relations [uv]− cuv are 0 (r112 = r122 = 0 if the Serre relations are not
redundant) and s12 ∈ k[Γ] in (1), otherwise su = 0 if [u]Nu − du is not redundant.

6.4 Lifting of B(V ) with Cartan matrix B2

In this section we lift some of the Nichols algebras of standard type with associated Cartan
matrix B2 (in the next Section also of non-standard type B2). At first we recall the Nichols
algebras (see [29]), but again we give the ideals without redundant relations:

Proposition 6.4.1 (Nichols algebras with Cartan matrixB2). The following finite-dimensional
Nichols algebras B(V ) of standard type with braiding matrix (qij) and Cartan matrix of
type B2 are represented as follows:

(1) e eq q−2 q2

(Cartan type B2). Let q12q21 = q−2
11 = q−1

22 and N := ordq11.

(a) If N = 3, then

B(V ) = T (V )/
(
[x1x2x2], x3

1, [x1x1x2]3, [x1x2]3, x3
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12, r112, r2 < 3

}
and dimk B(V ) =

34 = 81.
(b) If N = 4, then

B(V ) = T (V )/
(
[x1x1x1x2], x4

1, [x1x1x2]2, [x1x2]4, x2
2

)
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with basis
{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12 < 4, 0 ≤ r2, r112 < 2

}
and

dimk B(V ) = 22 · 42 = 64.
(c) If N ≥ 5 is odd, then

B(V ) = T (V )/
(
[x1x1x1x2], [x1x2x2], xN1 , [x1x1x2]N , [x1x2]N , xN2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12, r112, r2 < N

}
and dimk B(V ) =

N4.
(d) If N ≥ 6 is even, then

B(V ) = T (V )/
(
[x1x1x1x2], [x1x2x2], xN1 , [x1x1x2]

N
2 , [x1x2]N , x

N
2

2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12 < N, 0 ≤ r2, r112 < N

2

}
and

dimk B(V ) = N4

4
.

(2) e eq q−2 −1, e e−q−1
q2 −1. Let q12q21 = q−2

11 , q22 = −1 and N := ordq11.

(a) If N = 3, then

B(V ) = T (V )/
(
[x1x1x2x1x2], x3

1, [x1x2]6, x2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1 < 3, 0 ≤ r12 < 6, 0 ≤ r2, r112 < 2

}
and dimk B(V ) = 72.
(b) If N ≥ 5 (N = 4 is (1b)), then for N ′ := ord(−q−1

11 )

B(V ) = T (V )/
(
[x1x1x1x2], xN1 , [x1x2]N

′
, x2

2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1 < N, 0 ≤ r12 < N ′, 0 ≤ r2, r112 < 2

}
and dimk B(V ) = 4NN ′.

(3) e eζ q−1 q , e eζ ζ−1q ζq
−1

. Let ordq11 = 3, q12q21 = q−1
22 and N := ordq22.

(a) If N = 2, then

B(V ) = T (V )/
(
[x1x1x2x1x2], x3

1, [x1x1x2]6, x2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12 < 3, 0 ≤ r2 < 2, 0 ≤ r112 < 6

}
and dimk B(V ) = 108.

(b) If N ≥ 4 (N = 3 is (1) or Proposition 6.3.1(1)), then for N ′ := ordq11q
−1
22

B(V ) = T (V )/
(
[x1x2x2], x3

1, [x1x1x2]N
′
, xN2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12 < 3, 0 ≤ r2 < N, 0 ≤ r112 < N ′

}
and dimk B(V ) = 9NN ′.

(4) e eζ −ζ −1, e eζ−1
−ζ−1−1. Let ordq11 = 3, q12q21 = −q11, q22 = −1, then

B(V ) = T (V )/
(
[x1x1x2x1x2], x3

1, x
2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r12 < 3, 0 ≤ r2, r112 < 2

}
and

dimkA = 36.
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We prove this later in Section 9.3 with help of the PBW Criterion 7.3.1.

Remark 6.4.2. The Nichols algebras of Proposition 6.4.1 all have the PBW basis [L] =
{x2, [x1x2], [x1x1x2], x1}, and (1)-(4) form the standard Weyl equivalence classes of row 4-7
in Table 2.1, where the rows 5-7 are not of Cartan type. They build up the tree type T3 of
[29].

Theorem 6.4.3 (Liftings of B(V ) with Cartan matrix B2). For any lifting A of B(V ) as
in Proposition 6.4.1, we have

A ∼= (T (V )#k[Γ])/I,

where I is specified as follows:

(1) e eq q−2 q2

(Cartan type B2). Let q12q21 = q−2
11 = q−1

22 .

(a) If ordq11 = 4 and q12 6= ±1, then I is generated by

[x1x1x1x2],

x4
1 − µ1(1− g4

1),

[x1x1x2]2,

[x1x2]4 − µ12(1− g4
12),

x2
2.

(b) If ordq11 = 4 and q12 = ±1, then I is generated by

[x1x1x1x2],

x4
1 − µ1(1− g4

1),

[x1x1x2]2 − 8q11µ1x
2
2 − µ112(1− g2

112),

[x1x2]4 − 16µ1x
4
2 + 4µ112q11x

2
2 − µ12(1− g4

12),

x2
2 − µ2(1− g2

2).

In both (a) and (b) a basis is{
xr22 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1, r12 < 4, 0 ≤ r2, r112 < 2, g ∈ Γ

}
and dimkA = 2242 · |Γ| = 128 · |Γ|.

(2) e eq q−2 −1, e e−q−1
q2 −1. Let q12q21 = q−2

11 , q22 = −1.

(a) If ordq11 = 3 and q12 6= ±1, then I is generated by

[x1x1x2x1x2],

x3
1 − µ1(1− g3

1),

[x1x2]6 − µ12(1− g6
12),

x2
2.
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(b) If ordq11 = 3 and q12 = −1, then I is generated by

[x1x1x2x1x2],

x3
1,

[x1x2]6 − µ12(1− g6
12),

x2
2 − µ2(1− g2

2).

(c) If ordq11 = 3 and q12 = 1, then I is generated by

[x1x1x2x1x2] + 3µ1(1− q11)x2
2 − λ11212(1− g11212),

x3
1 − µ1(1− g3

1),

[x1x2]6 − s12 − µ12(1− g6
12),

x2
2 − µ2(1− g2

2),

where

s12 := −3µ2

{
(λ11212(1− q11) + 9µ1µ2q11)[x1x2]2x1g

2
2

− q11(λ11212(1− q11) + 9µ1µ2q11)[x1x2][x1x1x2]g2
2

+ (λ2
11212q

2
11 + 3µ1µ2λ11212(1− q2

11)− 9µ2
1µ

2
2)g6

1g
6
2

+ 3µ1µ2(λ11212(1− q2
11)− 3µ1µ2)g3

1g
6
2

+ λ11212(3µ1µ2(q11 − 1) + λ11212)g3
1g

4
2

− 9µ2
1µ

2
2g

6
2

+ 3µ1µ2(λ11212(q11 − 1)− 9µ1µ2q11)g4
2

+ q11(λ2
11212 − 6µ1µ2λ11212(1− q11)− 27µ2

1µ
2
2q11)g2

2

}
.

In (a),(b),(c) a basis is{
xr22 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1 < 3, 0 ≤ r12 < 6, 0 ≤ r2, r112 < 2, g ∈ Γ

}
and dimkA = 72 · |Γ|.
(d) Let N := ordq11 > 4 (N = 4 is (1)), and q12 6= ±1. Denote

N ′ := ord(−q−1
11 ) =


2N, if N odd,

N/2, if N even and N/2 odd,

N, if N,N/2 even.

Then I is generated by

[x1x1x1x2],

xN1 − µ1(1− gN1 ),

[x1x2]N
′ − µ12(1− gN ′12 ),

x2
2.
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A basis is

{
xr22 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1 < N, 0 ≤ r12 < N ′, 0 ≤ r2, r112 < 2, g ∈ Γ

}

and dimkA = 4NN ′ · |Γ|.

(3) e eζ q−1 q , e eζ ζ−1q ζq
−1

. Let ordq11 = 3, q12q21 = q−1
22 .

(a) If q22 = −1 and q12 6= ±1, then I is generated by

[x1x1x2x1x2],

x3
1 − µ1(1− g3

1),

[x1x1x2]6 − µ112(1− g6
112)

x2
2.

(b) If q22 = −1 and q12 = 1, then I is generated by

[x1x1x2x1x2],

x3
1,

[x1x1x2]6 − µ112(1− g6
112)

x2
2 − µ2(1− g2

2).

(c) If q22 = −1 and q12 = −1, then I is generated by

[x1x1x2x1x2] + 4µ2x
3
1g

2
2 − λ11212(1− g3

1g
2
2),

x3
1 − µ1(1− g3

1),

[x1x1x2]6 − s112 − µ112(1− g6
112)

x2
2 − µ2(1− g2

2),
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where

s112 := −2µ1

{
2(−λ11212 + 4µ1µ2)q11(1− q11)x2[x1x1x2]3g3

1g
2
2

+ 2(λ11212 − 4µ1µ2)q11(1− q11)[x1x2]2[x1x1x2]2g3
1g

2
2

+ 2(λ2
11212 − 8µ1µ2λ11212 + 16µ2

1µ
2
2)q11(1− q11)[x1x2][x1x1x2]g6

1g
4
2

+ 8µ1µ2(λ11212 − 4µ1µ2)q11(1− q11)[x1x2][x1x1x2]g3
1g

4
2

+ 2λ11212(−λ11212 + 4µ1µ2)q11(1− q11)[x1x2][x1x1x2]g3
1g

2
2

+ 2(−λ3
11212 + 6µ1µ2λ

2
11212 − 16µ2

1µ
2
2λ11212 + 16µ3

1µ
3
2)g12

1 g
6
2

+ (−λ3
11212 + 12µ1µ2λ

2
11212 − 48µ2

1µ
2
2λ11212 + 64µ3

1µ
3
2)q11(1− q11)g9

1g
6
2

+ 10µ1µ2(−λ2
11212 + 8µ1µ2λ11212 − 16µ2

1µ
2
2)g6

1g
6
2

+ 2(λ3
11212 − 7µ1µ2λ

2
11212 + 8µ2

1µ
2
2λ11212 + 16µ3

1µ
3
2)g6

1g
4
2

+ 16µ2
1µ

2
2(λ11212 − 4µ1µ2)q11(1− q11)g3

1g
6
2

+ 8µ1µ2λ11212(−λ11212 + 4µ1µ2)q11(1− q11)g3
1g

4
2

+ 32µ3
1µ

3
2g

6
2

+ λ2
11212(λ11212 − 4µ1µ2)q11(1− q11)g3

1g
2
2

+ 32µ2
1µ

2
2(−λ11212 + µ1µ2)g4

2

+ 4µ1µ2(3λ2
11212 − 8µ1µ2λ11212 + 8µ2

1µ
2
2)g2

2

}

In (a),(b),(c) a basis is{
xr22 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1, r12 < 3, 0 ≤ r2 < 2, 0 ≤ r112 < 6, g ∈ Γ

}
and dimkA = 108 · |Γ|.

(4) e eζ −ζ −1, e eζ−1
−ζ−1−1. Let ordq11 = 3, q12q21 = −q11 of order 6, q22 = −1.

(a) If q12 6= ±1, then I is generated by

[x1x1x2x1x2],

x3
1 − µ1(1− g3

1),

x2
2.

(b) If q12 = 1, then I is generated by

[x1x1x2x1x2],

x3
1,

x2
2 − µ2(1− g2

2).

(c) If q12 = −1, then I is generated by

[x1x1x2x1x2]− µ2(1 + q11)x3
1g

2
2 − λ11212(1− g11212),

x3
1 − µ1(1− g3

1),

x2
2 − µ2(1− g2

2).
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A basis in (a),(b),(c) is{
xr22 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1, r12 < 3, 0 ≤ r2, r112 < 2, g ∈ Γ

}
and dimkA = 36 · |Γ|.

Proof. We proceed as in the proof of Theorem 6.3.3.
• (T (V )#k[Γ])/I is a Hopf algebra, since I is generated by skew-primitive elements:

Again the elements xNii − µi(1− g
Ni
i ) and [x1x1x1x2]− λ1112(1− g1112) are skew-primitive

if q12q21 = q−2
11 by Lemma 5.5.1.

(1a) By Lemma 5.5.2(1) [x1x2]4 ∈ P χ4
12

g4
12

and hence also [x1x2]4− µ12(1− g4
12) ∈ P χ4

12

g4
12

. A

direct computation yields [x1x1x2]2 ∈ P χ2
112

g2
112

.

(1b) Again direct computation shows that [x1x1x2]2 − 8q11µ1x
2
2 − µ112(1 − g2

112) and
[x1x2]4 − 16µ1x

4
2 + 4µ112q11x

2
2 − µ12(1 − g4

12) are skew primitive; we used the computer
algebra system FELIX, see Appendix A.

(2a) We have [x1x1x2x1x2] ∈ P χ11212
g11212

by Lemma 5.5.3(2). Further [x1x2]6 ∈ P
χ6

12

g6
12

by

Lemma 5.5.2(1).
(2b) Again [x1x1x2x1x2] ∈ P χ11212

g11212
by Lemma 5.5.3(2) and a direct computation yields

[x1x2]6 − µ12(1− g6
12) ∈ P χ6

12

g6
12

.

(2c) Using FELIX we get that all elements are skew-primitive; see Appendix A.
(2d) This is again Lemma 5.5.2(1).
(3a) and (3b): [x1x1x2x1x2] ∈ P χ11212

g11212
by Lemma 5.5.3(1). Straightforward calculation

shows that [x1x1x2]6 − µ112(1− g6
112) ∈ P χ6

112

g6
112

; here again we used FELIX.

(3c) is computed using FELIX.
(4a) and (4b): [x1x1x2x1x2] ∈ P χ11212

g11212
by Lemma 5.5.3(1).

(4c) Looking at the coproduct computed in Lemma 5.5.3(1) we deduce that the element
[x1x1x2x1x2]−µ2(1 + q11)x3

1g
2
2 and hence [x1x1x2x1x2]−µ2(1 + q11)x3

1g
2
2−λ11212(1− g11212)

is skew-primitive.
•We prove the statement on the basis and dimension of (T (V )#k[Γ])/I later in Section

9.3 with the help of the PBW Criterion 7.3.1.
• (T (V )#k[Γ])/I is pointed by the same argument as in the proof of Theorem 6.3.3.
• The surjective Hopf algebra map as given in the proof of Theorem 6.3.3

T (V )#k[Γ]→ gr((T (V )#k[Γ])/I)

factorizes to an isomorphism B(V )#k[Γ]
∼→ gr((T (V )#k[Γ])/I) : Again we look at the

coradical filtration. All equations of I are of the form [uv]−cuv, [u]Nu−du with cuv resp. du
of lower degree in gr((T (V )#k[Γ])/I), hence [uv] = 0, [u]Nu = 0 in gr((T (V )#k[Γ])/I).
• Like before, for a lifting A we have to check whether the surjective Hopf algebra map

T (V )#k[Γ]→ A

which takes xi to ai and g to g factorizes to

(T (V )#k[Γ])/I
∼→ A.
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By Lemma 6.1.3 the relations concerning the elements aNii and [a1a1a1a2] are of the
right form. We deduce from Lemma 6.0.6 that the relations also hold in A: this is just
combinatorics on the braiding matrices which we want to demonstrate for the following.

(1a) We have χ2
112 6= ε by Lemma 6.0.6(2a), since q2

1,112 = q2
12 6= 1. Further P

χ2
112

g2
112

= 0

by Lemma 6.0.6(2b): Suppose q4
21q

2
22 = q21, q4

12q
2
22 = q12, then q3

21 = q3
12 = 1, which

contradicts q12q21 = q−2
11 = −1; also if q4

11q
2
12 = q12, q4

11q
2
21 = q21, then q12 = q21 = 1, again a

contradiction to q12q21 = q−2
11 = −1. Hence [a1a1a2]2 = 0. The other cases work in exactly

the same manner.

Remark 6.4.4. The Conjecture 6.1.1 is true in the above cases. Further note that in (2c)
s12 /∈ k[Γ] and in (3c) s112 /∈ k[Γ].

Further we want to note the cases not treated in the theorem above:

1. The case (1) when 5 6= N := ordq11 ≥ 3 is odd is treated in [14], and the case N = 5
in [19].

2. There is no general method for (1) in the case N := ordq11 ≥ 6 is even. Here
ordq22 = ordq2

11 = N
2

.

3. There is no general method for (2d) in the case q12 = ±1.

4. There is no general method for (3) in the case N := ordq22 ≥ 4. The case N = 3 is
(1) of the theorem above or (1) of Theorem 6.3.3.

6.5 Lifting of B(V ) of non-standard type

In this section we want to lift some of the Nichols algebras of the Weyl equivalence classes
of rows 8 and 9 of Table 2.1 which are not of standard type, namely for ordζ = 12 we lift

e e−ζ−2
−ζ3 −ζ2

, e e−ζ−2
ζ−1 −1, e e−ζ2

−ζ −1, e e−ζ3
ζ −1, e e−ζ3

−ζ−1−1

of row 8, and

e e−ζ2
ζ3 −1, e e−ζ−1

−ζ3 −1

of row 9. Again, at first we give a nice presentation of the ideal cancelling the redundant
relations of the ideals given in [29]:

Proposition 6.5.1 (Nichols algebras of rows 8 and 9). The following finite-dimensional
Nichols algebras B(V ) with braiding matrix (qij) of rows 8 and 9 of Table 2.1 are repre-
sented as follows: Let ζ ∈ k×, ordζ = 12.

(1) e e−ζ−2
−ζ3 −ζ2

. Let q11 = −ζ−2, q12q21 = −ζ3, q22 = −ζ2, then

B(V ) = T (V )/
(
[x1x1x2x2]− 1

2
q11q12(q12q21 − q11)(1− q12q21)[x1x2]2, x3

1, x
3
2

)
with basis

{
xr22 [x1x2x2]r122 [x1x2]r12 [x1x1x2]r112xr11 | 0 ≤ r1, r2 < 3, 0 ≤ r112, r122 <

2, 0 ≤ r12 < 4
}

and dimk B(V ) = 144.
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(2) e e−ζ−2
ζ−1 −1, e e−ζ2

−ζ −1. Let q11 = −ζ2, q12q21 = −ζ, q22 = −1, or q11 = −ζ−2,

q12q21 = ζ−1, q22 = −1, then

B(V ) = T (V )/
(
[x1x1x2x1x2x1x2], x3

1, x
2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2x1x2]r11212 [x1x1x2]r112xr11 | 0 ≤ r1, r112 < 3, 0 ≤ r2, r11212 <

2, 0 ≤ r12 < 4
}

and dimk B(V ) = 144.

(3) e e−ζ3
ζ −1, e e−ζ3

−ζ−1−1. Let q11 = −ζ3, q12q21 = ζ, q22 = −1, or q11 = −ζ3, q12q21 =

−ζ−1, q22 = −1, then

B(V ) = T (V )/
(
[x1x1x2x1x2], x4

1, x
2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112 [x1x1x1x2]r1112xr11 | 0 ≤ r1 < 4, 0 ≤ r12, r112 <

3, 0 ≤ r2, r1112 < 2} and dimk B(V ) = 144.

(4) e e−ζ2
ζ3 −1. Let q11 = −ζ2, q12q21 = ζ3, q22 = −1, then

B(V ) = T (V )/
(
[x1x1x2x1x2x1x2], x3

1, [x1x2]12, x2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2x1x2]r11212 [x1x1x2]r112xr11 | 0 ≤ r1, r112 < 3, 0 ≤ r2, r11212 <

2, 0 ≤ r12 < 12
}

and dimk B(V ) = 432.

(5) e e−ζ−1
−ζ3 −1. Let q11 = −ζ−1, q12q21 = −ζ3, q22 = −1, then

B(V ) = T (V )/
(
[x1x1x1x1x2], [x1x1x2x1x2], x12

1 , x
2
2

)
with basis

{
xr22 [x1x2]r12 [x1x1x2]r112 [x1x1x1x2]r1112xr11 | 0 ≤ r1 < 12, 0 ≤ r12, r112 <

3, 0 ≤ r2, r1112 < 2
}

and dimk B(V ) = 432.

We prove this in Sections 9.4, 9.5, 9.6 with the PBW Criterion 7.3.1.

Remark 6.5.2. The Nichols algebras of Proposition 6.5.1 have different PBW bases, also
if they are in the same Weyl equivalence class. They build up the tree types T4, T5 and T7

of [29].

Theorem 6.5.3 (Liftings of B(V ) of rows 8 and 9). For any lifting A of B(V ) as in
Proposition 6.5.1, we have

A ∼= (T (V )#k[Γ])/I,

where I is specified as follows: Let ζ ∈ k×, ordζ = 12.

(1) e e−ζ−2
−ζ3 −ζ2

. Let q11 = −ζ−2, q12q21 = −ζ3, q22 = −ζ2.

(a) If q3
12 6= 1, then I is generated by

[x1x1x2x2]− 1

2
q11q12(q12q21 − q11)(1− q12q21)[x1x2]2,

x3
1 − µ1(1− g3

1),

x3
2.
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(b) If q3
12 = 1, then I is generated by

[x1x1x2x2]− 1

2
q11q12(q12q21 − q11)(1− q12q21)[x1x2]2,

x3
1,

x3
2 − µ2(1− g3

2).

In (a),(b) a basis is{
xr22 [x1x2x2]r122 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1, r2 < 3,

0 ≤ r112, r122 < 2, 0 ≤ r12 < 4, g ∈ Γ
}

and dimkA = 144 · |Γ|.

(2) e e−ζ−2
ζ−1 −1, e e−ζ2

−ζ −1. Let q11 = −ζ2, q12q21 = −ζ, q22 = −1, or q11 = −ζ−2,

q12q21 = ζ−1, q22 = −1.
(a) If q12 6= ±1, then I is generated by

[x1x1x2x1x2x1x2],

x3
1 − µ1(1− g3

1),

x2
2.

(b) If q12 = ±1, then I is generated by

[x1x1x2x1x2x1x2] + µ2q12(q11q12q21 + q12q21 − 1)[x1x1x2]x2
1g

2
2,

x3
1,

x2
2 − µ2(1− g2

2).

In (a),(b) a basis is{
xr22 [x1x2]r12 [x1x1x2x1x2]r11212 [x1x1x2]r112xr11 g | 0 ≤ r1, r112 < 3,

0 ≤ r2, r11212 < 2, 0 ≤ r12 < 4, g ∈ Γ
}

and dimkA = 144 · |Γ|.

(3) e e−ζ3
ζ −1, e e−ζ3

−ζ−1−1. Let q11 = −ζ3, q12q21 = ζ, q22 = −1, or q11 = −ζ3, q12q21 =

−ζ−1, q22 = −1 .
(a) If q12 6= ±1, then I is generated by

[x1x1x2x1x2],

x4
1 − µ1(1− g3

1),

x2
2.

(b) If q12 = ±1, then I is generated by

[x1x1x2x1x2]− µ2q12(q11 + 2q2
12q

2
21 − q12q21)x3

1g
2
2,

x4
1,

x2
2 − µ2(1− g2

2).
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In (a),(b) a basis is{
xr22 [x1x2]r12 [x1x1x2]r112 [x1x1x1x2]r1112xr11 g | 0 ≤ r1 < 4,

0 ≤ r12, r112 < 3, 0 ≤ r2, r1112 < 2, g ∈ Γ}

and dimkA = 144 · |Γ|.

(4) e e−ζ2
ζ3 −1. Let q11 = −ζ2, q12q21 = ζ3, q22 = −1.

(a) If q12 6= ±1, then I is generated by

[x1x1x2x1x2x1x2],

x3
1 − µ1(1− g3

1),

[x1x2]12 − µ12(1− g12
12),

x2
2.

A basis is{
xr22 [x1x2]r12 [x1x1x2x1x2]r11212 [x1x1x2]r112xr11 g | 0 ≤ r1, r112 < 3,

0 ≤ r2, r11212 < 2, 0 ≤ r12 < 12, g ∈ Γ
}

and dimkA = 432 · |Γ|.
(b) (incomplete) q12 = ±1, then I is generated by

[x1x1x2x1x2x1x2] + q122µ2(q12q21 + 1)[x1x1x2]x2
1g

2
2,

x3
1,

[x1x2]12 − d12,

x2
2 − µ2(1− g2

1).

(5) e e−ζ−1
−ζ3 −1. Let q11 = −ζ−1, q12q21 = −ζ3, q22 = −1.

(a) If q12 6= ±1, then I is generated by

[x1x1x1x1x2],

[x1x1x2x1x2],

x12
1 − µ1(1− g12

1 ),

x2
2.

(b) If q12 = ±1, then I is generated by:

[x1x1x1x1x2],

[x1x1x2x1x2] + 2µ2q12x
3
1g

2
2,

x12
1 − µ1(1− g12

1 ),

x2
2 − µ2(1− g2

2).
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In (a),(b) a basis is{
xr22 [x1x2]r12 [x1x1x2]r112 [x1x1x1x2]r1112xr11 g | 0 ≤ r1 < 12,

0 ≤ r12, r112 < 3, 0 ≤ r2, r1112 < 2, g ∈ Γ
}

and dimkA = 432 · |Γ|.

Proof. We argue exactly as in the proofs of Theorem 6.3.3 and 6.4.3.
• (T (V )#k[Γ])/I is a Hopf algebra, since I is generated by skew-primitive elements: The

elements xNii −µi(1−g
Ni
i ) and [x1x1x1x1x2]−λ11112(1−g11112) are skew-primitive if q12q21 =

q−2
11 by Lemma 5.5.1. For the elements [x1x1x2x1x2]− c11212 and [x1x1x2x1x2x1x2]− c1121212

we use Lemma 5.5.3 and for [x1x2]N12 − d12 Lemma 5.5.2(1). Further in (1) [x1x1x2x2] −
1
2
q11q12(q12q21 − q11)(1− q12q21)[x1x2]2 is skew-primitive by a straightforward calculation.
• The statement on the basis and dimension of (T (V )#k[Γ])/I is proved in Sections

9.4, 9.5, 9.6 with the help of the PBW Criterion 7.3.1.
• (T (V )#k[Γ])/I is pointed and gr((T (V )#k[Γ])/I) ∼= B(V )#k[Γ] by the same argu-

ments as in the proofs of Theorems 6.3.3 and 6.4.3.
• Also in the same way, the surjective Hopf algebra map T (V )#k[Γ]→ A factorizes to

an isomorphism
(T (V )#k[Γ])/I

∼→ A

by Lemma 6.1.3 and 6.0.6, doing the combinatorics on the braiding matrices.

Remark 6.5.4. The Conjecture 6.1.1 is true in the above cases. Further note that in (1)
r1122 /∈ k[Γ] (as well as r1122 6= 0 in B(V )), in (2b) r1121212 /∈ k[Γ], in (3b) r11212 /∈ k[Γ], in
(4b) r1121212 /∈ k[Γ] and in (5b) r11212 /∈ k[Γ].



Chapter 7

A PBW basis criterion

In this chapter we want to state a PBW basis criterion which is applicable for any char-
acter Hopf algebra. It can be adapted to other more general situations with an arbitrary
bialgebra H instead of k[Γ], but then the conditions may become more technical.

At first we need to define several algebraic objects for the formulation of the PBW
Criterion 7.3.1. The main idea is, not to work in the free algebra k〈X〉 but in the free
algebra k〈XL〉 where 〈XL〉 is the free monoid of Section 4.5. In this way a super letter [u]
corresponds to a letter/variable xu, making way for applying the diamond lemma to the
(super) letters.

7.1 The free algebra k〈XL〉 and k〈XL〉#k[Γ]

Let L ⊂ L be Shirshov closed. In Section 4.5 we associated to a super letter [u] ∈ [L] a
new variable xu ∈ XL, where XL contains X. Hence the free algebra k〈XL〉 also contains
k〈X〉.

We define the action of Γ on k〈XL〉 and q-commutators by

g · xu := χu(g)xu for all g ∈ Γ, u ∈ L,
[xu, xv] := xuxv − qu,vxvxu for all u, v ∈ L.

In this way k〈XL〉 becomes a k[Γ]-module algebra and we calculate

gxu = χu(g)xug

in the smash product k〈XL〉#k[Γ].

7.2 The subspace I≺U ⊂ k〈XL〉#k[Γ]

Via ρ of Eq. (4.2) we now define elements cρ(u|v), d
ρ
u ∈ k〈XL〉#k[Γ] which correspond to

c(u|v), du ∈ k〈X〉#k[Γ]: For all u, v ∈ L with Eq. (5.1) resp. u ∈ L with Nu <∞ we write
cuv =

∑
αU +

∑
βV g ≺L [uv] resp. du =

∑
α′U ′+

∑
β′V ′g′ ≺L [u]Nu , with α, α′, β, β′ ∈ k
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and U,U ′, V, V ′ ∈ [L](N) (such decompositions may not be unique; we just fix one). Then
we define in k〈XL〉#k[Γ]

cρuv :=
∑

αρ(U) +
∑

βρ(V )g resp. dρu :=
∑

α′ρ(U ′) +
∑

β′ρ(V ′)g′.

If Sh(uv) = (u|v) we set

cρ(u|v) :=

{
xuv, if uv ∈ L,
cρuv, if uv /∈ L.

Else if Sh(uv) 6= (u|v) let Sh(u) = (u1|u2). Then we define inductively on the length of
`(u)

cρ(u|v) := ∂ρu1
(cρ(u2|v)) + qu2,vc

ρ
(u1|v)xu2 − qu1,u2xu2c

ρ
(u1|v), (7.1)

where ∂ρu1
is defined k-linearly by

∂ρu1
(xl1 . . . xln) := cρ(u1|l1)xl2 . . . xln +

n∑
i=2

qu1,l1...li−1
xl1 . . . xli−1

[
xu1 , xli

]
xli+1

. . . xln ,

∂ρu1
(ρ(V )g) :=

[
xu1 , ρ(V )

]
qu1,u2vχu1 (g)

g,

if the c(u2|v) is a linear combination of [l1] . . . [ln], V g as in the proof of Lemma 5.3.1. Note
that all the combinatorial properties of Lemma 5.3.1 are transferred to the just defined
elements.

For any U ∈ 〈XL〉 let I≺U denote the subspace of k〈XL〉#k[Γ] spanned by the elements

V g
(
[xu, xv]− cρ(u|v)

)
Wh for all u, v ∈ L, u < v,

V ′g′
(
xNuu − dρu

)
W ′h′ for all u ∈ L,Nu <∞

with V, V ′,W,W ′ ∈ 〈XL〉, g, g′, h, h′ ∈ Γ such that

V xuxvW ≺ U and V ′xNuu W ′ ≺ U.

Finally we want to define the following elements of k〈XL〉#k[Γ] for u, v, w ∈ L, u <
v < w, resp. u ∈ L, Nu <∞, u ≤ v, resp. v < u:

J(u < v < w) := [cρ(u|v), xw]quv,w − [xu, c
ρ
(v|w)]qu,vw

+ qu,vxv[xu, xw]− qv,w[xu, xw]xv,

L(u, u < v) :=
[
xu, . . . [xu︸ ︷︷ ︸

Nu−1

, cρ(u|v)]qu,uqu,v . . .
]
qNu−1
u,u qu,v

− [dρu, xv]qNuu,v ,

L(u, u ≤ v) :=

{
L(u, u < v), if u < v,

L(u) := −[dρu, xu]1, if u = v,

L(u, v < u) :=
[
. . . [cρ(v|u), xu]qv,uqu,u . . . , xu︸ ︷︷ ︸

Nu−1

]
qv,uq

Nu−1
u,u
− [xv, d

ρ
u]qNuv,u .
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Remark 7.2.1. Note that

J(u < v < w) ∈
(
[xu, xv]− cρ(u|v), [xv, xw]− cρ(v|w)

)
by the q-Jacobi identity of Proposition 3.2.3, and

L(u, u ≤ v) ∈
(
[xu, xv]− cρ(u|v), x

Nu
u − dρu

)
, L(u, v < u) ∈

(
[xv, xu]− cρ(v|u), x

Nu
u − dρu

)
by the restricted q-Leibniz formula of Proposition 3.2.3.

7.3 The PBW criterion

Theorem 7.3.1. Let L ⊂ L be Shirshov closed and I be an ideal of k〈X〉#k[Γ] as in
Section 5.3. Then the following assertions are equivalent:

(1) The residue classes of [u1]r1 [u2]r2 . . . [ut]
rtg with t ∈ N, ui ∈ L, u1 > . . . > ut,

0 < ri < Nui, g ∈ Γ, form a k-basis of the quotient algebra (k〈X〉#k[Γ])/I.

(2) The algebra k〈XL〉#k[Γ] respects the following conditions:
(a) q-Jacobi condition: ∀ u, v, w ∈ L, u < v < w:

J(u < v < w) ∈ I≺xuxvxw .

(b) restricted q-Leibniz conditions: ∀ u, v ∈ L with Nu <∞, u ≤ v resp. v < u:

(i) L(u, u ≤ v) ∈ I≺xNuu xv
, resp.

(ii) L(u, v < u) ∈ I≺xvxNuu ,

(2’) The algebra k〈XL〉#k[Γ] respects the following conditions:
(a) Condition (2a) only for uv /∈ L or Sh(uv) 6= (u|v).
(b) (i) Condition (2bi) only for u = v and u < v where v 6= uv′ for all v′ ∈ L.

(ii) Condition (2bii) only for v < u where v 6= v′u for all v′ ∈ L.

We need to formulate several statements over the next sections. Afterwards the proof
of Theorem 7.3.1 will be carried out in Section 7.7.

7.4 (k〈X〉#H)/I as a quotient of a free algebra

In order to make the diamond lemma applicable for (k〈X〉#H)/I, also not just for the
regular letters X but for some super letters [L], we will define a quotient of a certain free
algebra, which is the special case in Section 7.5 of the following general construction:

In this section let X,S be arbitrary sets such that X ⊂ S, and H be a bialgebra with
k-basis G. Then

k〈X〉 ⊂ k〈S〉 and H = spankG ⊂ k〈G〉,
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if we view the set G as variables. Further we set 〈S,G〉 := 〈S ∪G〉 where we may assume
that the union is disjoint. By omitting ⊗

k〈X〉 ⊗H = spank{ug |u ∈ 〈X〉, g ∈ G} ⊂ k〈S,G〉

Now let k〈X〉 be a H-module algebra. Next we define the ideals corresponding to
the extension of the variable set X to S, and to the smash product structure and the
multiplication of H, and study their properties afterwards.

Definition 7.4.1. (1) Let A be an algebra, B ⊂ A a subset. Then let (B)A denote the
ideal generated by the set B.

(2) Let fs ∈ k〈X〉 for all s ∈ S. Further let 1H ∈ G and fgh := gh ∈ H = spankG for
all g, h ∈ G. We then define the ideals

IS := (s− fs | s ∈ S)k〈S,G〉,

IG :=
(
gs− (g(1) · fs)g(2), gh− fgh, 1H − 1 | g, h ∈ G, s ∈ S

)
k〈S,G〉,

where 1 is the empty word in k〈S,G〉.

Remark 7.4.2. We may assume that 1H ∈ G, if H 6= 0: Suppose 1H /∈ G and write 1H
as a linear combination of G. Suppose all coefficients are 0, then 1H = 0H hence H = 0;
a contradiction. So there is a g with non-zero coefficient and we can exchange this g with
1H .

Example 7.4.3. Let H = k[Γ] be the group algebra with the usual bialgebra structure
∆(g) = g ⊗ g and ε(g) = 1. Here G = Γ, fgh ∈ Γ is just the product in the group, and

IΓ =
(
gs− (g · fs)g, gh− fgh, 1Γ − 1 | g, h ∈ Γ, s ∈ S

)
.

Lemma 7.4.4. For any g ∈ Γ we have

g(k〈S,G〉) ⊂ spank{ug |u ∈ 〈X〉, g ∈ G}+ IG.

Proof. Let a1 . . . an ∈ 〈S,G〉. We proceed by induction on n. If n = 1 then either a1 ∈ S
or a1 ∈ G. Then either ga1 ∈ (g(1) · fa1)g(2) + IG ⊂ spank{ug |u ∈ 〈X〉, g ∈ G} + IG
or ga1 ∈ fga1 + IG ⊂ spank{ug |u ∈ 〈X〉, g ∈ G} + IG. If n > 1, then let us consider
ga1a2 . . . an. Again either a1 ∈ S or a1 ∈ G and we argue for ga1 as in the induction basis;
then by using the induction hypothesis we achieve the desired form.

Proposition 7.4.5. Assume the above situation. Then

k〈X〉#H ∼= k〈S,G〉/(IS+IG),

and for any ideal I of k〈X〉#H also IS+IG+I is an ideal of k〈S,G〉 such that

(k〈X〉#H)/I ∼= k〈S,G〉/(IS+IG+I).

Further we have the following special cases:

H ∼= k : k〈X〉 ∼= k〈S〉/IS, k〈X〉/I ∼= k〈S〉/(IS+I). (7.2)

S = X : k〈X〉#H ∼= k〈X,G〉/IG, (k〈X〉#H)/I ∼= k〈X,G〉/(IG+I). (7.3)
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Proof. (1) The algebra map

k〈S,G〉 → k〈X〉#H, s 7→ fs#1H , g 7→ 1k〈X〉#g

is surjective and contains IS+IG in its kernel; this is a direct calculation using the definitions.
Hence we have a surjective algebra map on the quotient

k〈S,G〉/(IS+IG) −→ k〈X〉#H. (7.4)

In order to see that this map is bijective, we verify that a basis is mapped to a basis.
(a) The residue classes of the elements of {ug |u ∈ 〈X〉, g ∈ G} k-generate k〈S,G〉/(IS+

IG): Let A ∈ 〈S,G〉. Then either A ∈ 〈S〉 or it contains an element of G. In the first case
A ∈ k〈X〉+ IS by definition of IS, and then A ∈ k〈X〉1H + IS + IG since 1H − 1 ∈ IΓ. In the
other case let A = A1gA2 with A1 ∈ 〈S〉, g ∈ G, A2 ∈ 〈S,G〉. We argue for A1 like before,
and gA2 ∈ spank{ug |u ∈ 〈X〉, g ∈ G}+ IG by Lemma 7.4.4.

(b) The residue classes of {ug |u ∈ 〈X〉, g ∈ G} are mapped by Eq. (7.4) to the k-basis
〈X〉#G of the right-hand side. Hence the residue classes are linearly independent, thus
form a basis of k〈S,G〉/(IS+IG).

(2) IS + IΓ + I is an ideal: Let A ∈ 〈S,G〉 and a ∈ I ⊂ spank{ug |u ∈ 〈X〉, g ∈ G}.
Then by (1a) above A ∈ spank{ug |u ∈ 〈X〉, g ∈ G} + IS + IG, and since I is an ideal of
k〈X〉#H, we have Aa, aA ∈ IS + IG + I by the isomorphism Eq. (7.4).

Using the isomorphism theorem and part (1) we get

k〈S,G〉/(IS + IG + I) ∼=
(
k〈S,G〉/(IS + IG)

)/(
(IS + IG + I)/(IS + IG)

) ∼= (k〈X〉#H)/I,

where the last ∼= holds since (IS + IG + I)/(IS + IG) is mapped to I by the isomorphism
Eq. (7.4).

(3) The special cases follow from the facts that IS = 0 if S = X, and if H ∼= k then
G = {1H}. Hence IG = (1H − 1) and k〈X〉 ∼= k〈X〉#k ∼= k〈S, {1H}〉/(IS + (1H − 1)) ∼=
k〈S〉/IS.

Proposition 7.4.5 has various applications for constructing isomorphisms, including clas-
sical Examples and Ore extensions:

Example 7.4.6 (Quantum plane). For 0 6= q ∈ k let Q(q) := k〈x, g | gx = qxg〉. For
X = {x, g}, I = (gx − qxg), S = {x, g0, g1 = g, g2, g3, . . .} and IS = (gi − gi | i ≥ 0) by
Eq. (7.2)

Q(q) ∼= k〈x, gi; i ≥ 0 | gx = qxg, gi = gi; i ≥ 0〉.
Now let X = S = {x}, G = {g0, g1 = g, g2, g3, . . .}, the monoid Γ = 〈gi; i ≥ 0 | gi =
gi〉 ∼= 〈g〉 and H = k[Γ] ∼= k[g] as in Example 7.4.3. If we define the H-action on k[x] by
g ·x := qx, then IG =

(
gix− qixgi, gigj−gi+j, g0−1 | i, j ≥ 0

)
=
(
gx− qxg, gi = gi | i ≥ 0

)
;

the last = is an easy inductive argument. By Eq. (7.3) and the latter isomorphism

Q(q) ∼= k[x]#k[g].

Example 7.4.7 (Weyl algebra). Let W := k〈y, x |xy = 1 + yx〉. In a similar way as in
Example 7.4.6 we construct

W ∼= k[y]#k[x],

if we set ∆(x) := x⊗ 1 + 1⊗ x, ε(x) := 0 and the action x · y := 1.
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Example 7.4.8 (Taft algebra). Let 0 6= q ∈ k with ordq = N > 1 and TN(q) :=
k〈x, g | gx = qxg, gN = 1, xN = 0〉. We take X = {x, g}, S = {x, g0, g1 = g, g2, . . . , gN−1}
and I = (gx− qxg, gN − 1, xN − 0). Then by Eq. (7.2)

TN(q) ∼= k〈x, gi; 0 ≤ i < N | gx = qxg, gN = 1, xN = 0,

gi = gi; 0 ≤ i < N〉

Next let X = S = {x}, G = {g0, g1 = g, g2, . . . , gN−1}, the group Γ = 〈gi; i ≥ 0 | gi =
gi, gN − 1〉 ∼= 〈g | gN = 1〉 and H = k[Γ] ∼= k[g | gN = 1] as in Example 7.4.3. Further let
the H-action on k[x] be as in Example 7.4.6, and I = (xN). Then as in Example 7.4.6 by
Eq. (7.3)

TN(q) ∼=
(
k[x]#k[g|gN = 1]

)
/(xN).

7.5 The case S = XL and H = k[Γ]

We now return to the situation of Section 5 and rewrite Proposition 7.4.5:

Corollary 7.5.1. Let L ⊂ L be Shirshov closed and

IL :=
(
xu − [xv, xw] | u ∈ L, Sh(u) = (v|w)

)
k〈XL,Γ〉

I ′Γ :=
(
gxu − χu(g)xug, gh− fgh, 1Γ − 1 | g, h ∈ Γ, u ∈ L

)
k〈XL,Γ〉

.

Then for any ideal I of k〈X〉#k[Γ] also IL+I ′Γ+I is an ideal of k〈XL,Γ〉 such that

(k〈X〉#k[Γ])/I ∼= k〈XL,Γ〉/(IL+I ′Γ+I).

Further we have the analog special cases of Proposition 7.4.5.

Proof. We apply Proposition 7.4.5 to the case S = XL, H = k[Γ], fxu = [u] for all u ∈ L.
Then IXL =

(
xu − [u] | u ∈ L

)
k〈XL,Γ〉

and IΓ is as in Example 7.4.3. We are left to prove

IL+I ′Γ+I = IXL+IΓ+I, which follows from the Lemma below.

Lemma 7.5.2. We have

(1) [u] ∈ xu + IL for all u ∈ L; hence IXL = IL.

(2) IΓ ⊂ I ′Γ + IL

Proof. (2) follows from (1), which we prove by induction on `(u): For `(u) = 1 there is
nothing to show. Let `(u) > 1 and Sh(u) = (v|w). Then by the induction assumption we
have

[u] = [v][w]− qv,w[w][v] ∈ (xv + IL)(xw + IL)− qvw(xw + IL)(xv + IL)

⊂ [xv, xw] + IL = xu − (xu − [xv, xw]︸ ︷︷ ︸
∈IL

) + IL = xu + IL.
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Example 7.5.3. Let X = {x1, x2} ⊂ L = {x1, x1x2, x2}. Then IL =
(
x12 − [x1, x2]

)
and

by Corollary 7.5.1

k〈x1, x2〉 ∼= k
〈
x1, x12, x2

∣∣ x12 = [x1, x2]
〉
,

k〈x1, x2〉#k[Γ] ∼= k〈x1, x12, x2,Γ | x12 = [x1, x2],

gxu = χu(g)xug, gh = fgh, 1Γ − 1;∀u ∈ L, g, h ∈ Γ〉.

For more Examples see Chapters 8 and 9.

7.6 Bergman’s diamond lemma

Following Bergman [16], let Y be a set, k〈Y 〉 the free k-algebra and Σ an index set. We
fix a subset R = {(Wσ, fσ) |σ ∈ Σ} ⊂ 〈Y 〉 × k〈Y 〉, and define the ideal

IR := (Wσ − fσ |σ ∈ Σ)k〈Y 〉.

An overlap of R is a triple (A,B,C) such that there are σ, τ ∈ Σ and A,B,C ∈ 〈Y 〉\{1}
with Wσ = AB and Wτ = BC. In the same way an inclusion of R is a triple (A,B,C)
such that there are σ 6= τ ∈ Σ and A,B,C ∈ 〈Y 〉 with Wσ = B and Wτ = ABC.

Let �� be a with R compatible well-founded monoid partial ordering of the free monoid
〈Y 〉, i.e.:

• (〈Y 〉,��) is a partial ordered set.

• B ≺� B′ ⇒ ABC ≺� AB′C for all A,B,B′, C ∈ 〈Y 〉.

• Each non-empty subset of 〈Y 〉 has a minimal element w.r.t. ��.

• fσ is a linear combination of monomials ≺� Wσ for all σ ∈ Σ; in this case we write
fσ ≺� Wσ.

For any A ∈ 〈Y 〉 let I≺�A denote the subspace of k〈Y 〉 spanned by all elements B(Wσ−
fσ)C with B,C ∈ 〈Y 〉 such that BWσC ≺� A. The next theorem is a short version of the
diamond lemma:

Theorem 7.6.1. [16, Thm 1.2] Let R = {(Wσ, fσ) |σ ∈ Σ} ⊂ 〈Y 〉×k〈Y 〉 and �� be a with
R compatible well-founded monoid partial ordering on 〈Y 〉. Then the following conditions
are equivalent:

(1) (a) fσC − Afτ ∈ I≺�ABC for all overlaps (A,B,C).

(b) AfσC − fτ ∈ I≺�ABC for all inclusions (A,B,C).

(2) The residue classes of the elements of 〈Y 〉 which do not contain any Wσ with σ ∈ Σ
as a subword form a k-basis of k〈Y 〉/IR.
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We now define the ordering for our situation, where L ⊂ L is Shirshov closed and
Y = XL ∪Γ: Let πL : 〈XL,Γ〉 → 〈XL〉 be the monoid map with xu 7→ xu and g 7→ 1 for all
u ∈ L, g ∈ Γ (πL deletes all g in a word of 〈XL,Γ〉).

Moreover, for a A ∈ 〈XL,Γ〉 let nΓ(A) denote the number of letters g ∈ Γ in the word
A and t(A) the nΓ(A)-tuple of non-negative integers

(number of letters after the last g ∈ Γ in A, . . . ,

. . . , number of letters after the first g ∈ Γ in A) ∈ NnΓ(A).

Definition 7.6.2. For A,B ∈ 〈XL,Γ〉 we define A ≺� B by

• πL(A) ≺ πL(B), or

• πL(A) = πL(B) and nΓ(A) < nΓ(B), or

• πL(A) = πL(B), nΓ(A) = nΓ(B) and t(A) < t(B) under the lexicographical order of
NnΓ(A), i.e., t(A) 6= t(B), and the first non-zero term of t(B)− t(A) is positive.

�� is a well-founded monoid partial ordering of 〈XL,Γ〉, which is straightforward to
verify, and will be compatible with the later regarded R.

Note that we have the following correspondence between ≺ of Section 4.4 and ≺�, which
follows from the definitions: For any U, V ∈ [L](N), g, h ∈ Γ we have ρ(U)g, ρ(V )h ∈ 〈XL〉Γ
and

U ≺ V ⇐⇒ ρ(U)g ≺� ρ(V )h. (7.5)

7.7 Proof of Theorem 7.3.1

Again suppose the assumptions of Theorem 7.3.1. By Corollary 7.5.1

(k〈X〉#k[Γ])/I ∼= k〈XL,Γ〉/(IL + I ′Γ + I),

thus (k〈X〉#k[Γ])/I has the basis

[u1]r1 [u2]r2 . . . [ut]
rtg

if and only if k〈XL,Γ〉/(IL + I ′Γ + I) has the basis

xr1u1
xr2u2

. . . xrtutg

(t ∈ N, ui ∈ L, u1 > . . . > ut, 0 < ri < Nu, g ∈ Γ). The latter we can reformulate
equivalently in terms of the Diamond Lemma 7.6.1:
• We define R as the set of the elements

(1Γ, 1), (7.6)

(gh, fgh), for all g, h ∈ Γ, (7.7)(
gxu, χu(g)xug

)
, for all g ∈ Γ, u ∈ L, (7.8)(

xuxv, c
ρ
(u|v) + qu,vxvxu

)
, for all u, v ∈ L with u < v, (7.9)(

xNuu , dρu
)
, for all u ∈ L with Nu <∞, (7.10)
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where we again see cρ(u|v), d
ρ
u ∈ k〈XL〉 ⊗ k[Γ] ⊂ spank{Ug | U ∈ 〈XL〉, g ∈ Γ} ⊂ k〈XL,Γ〉.

Then the residue classes of cρ(u|v), d
ρ
u modulo IL + I ′Γ correspond to c(u|v) and du by the

isomorphism of Corollary 7.5.1, and we have IR = IL+I ′Γ+I.
• Note that ≺� is compatible with R: In Eq. (7.6) resp. (7.7) we have 1 ≺� 1Γ

resp. fgh ≺� gh since nΓ(1) = 0 < 1 = nΓ(1Γ) resp. nΓ(fgh) = 1 < 2 = nΓ(gh) (fgh ∈ Γ).
Eq. (7.8): t(xug) = (0) < (1) = t(gxu), hence xug ≺� gxu. Moreover, by Lemma 5.3.1 we
have cρ(u|v) + qu,vxvxu ≺� xuxv, and dρu ≺� xNuu by assumption.
• By the Diamond Lemma 7.6.1 we have to consider all possible overlaps and inclusions

of R. The only inclusions happen with Eq. (7.6), namely (1, 1Γ, h), (g, 1Γ, 1), (1, 1Γ, xu).
But they all fulfill the condition (1b) of the Diamond Lemma 7.6.1: for example h−f1Γh =
h− h = 0 ∈ I≺�1Γh, and xu − χu(1Γ)xu1Γ = xu(1Γ − 1) ∈ I≺�1Γxu .

So we are left to check the conditon (1a) for all overlaps: (g, h, k) with g, h, k ∈ Γ fulfills
it by the associativity of Γ; for (g, h, xu) we have

fghxu − χu(h)gxuh = χu(gh)xufgh − χu(h)χu(g)xugh = 0,

calculating modulo I≺�ghxu and using χu(fgh) = χu(gh) since fgh ∈ Γ. The next overlap is
(g, xu, xv) where u < v: Calculating modulo I≺�gxuxv we get

χu(g)xugxv − g
(
cρ(u|v) + qu,vxvxu

)
= χu(g)χv(g)xuxvg − χuv(g)

(
cρ(u|v) + qu,vxvxu

)
g

= χuv(g)
(
xuxv −

(
cρ(u|v) + qu,vxvxu

))
g = 0,

since c(u|v) ∈ (k〈X〉#k[Γ])χuv and xuxvg ≺� gxuxv. For the overlap (g, xu, x
Nu−1
u ) we obtain

modulo I≺�gxNuu

χu(g)xugx
Nu−1
u − gdρu = χu(g)Nu

(
xNuu − dρu

)
g = 0,

because du ∈ (k〈X〉#k[Γ])χ
Nu
u and xNuu ϑg ≺� ϑgxNuu . The remaining overlaps are those

with Eqs. (7.9) and (7.10); for these we formulate the following Lemmata:

Lemma 7.7.1. The overlap (xu, xv, xw), u < v < w, fulfills condition 7.6.1(1a), i.e.,
a :=

(
cρ(u|v) + qu,vxvxu

)
xw − xu

(
cρ(v|w) + qv,wxwxv

)
∈ I≺�xuxvxw , if and only if J(u < v <

w) ∈ I≺�xuxvxw .

Proof. We calculate in k〈XL,Γ〉

J(u < v < w) = cρ(u|v)xw − quv,wxwc
ρ
(u|v) −

(
xuc

ρ
(v|w) − qu,vwc

ρ
(v|w)xu

)
+ qu,vxv

(
xuxw − qu,wxwxu

)
− qv,w

(
xuxw − qu,wxwxu

)
xv,

a = cρ(u|v)xw + qu,vxvxuxw − xucρ(v|w) − qv,wxuxwxv,

and show that the difference is zero modulo I≺�xuxvxw :

J(u < v < w)− a = quv,wxw
(
xuxv − cρ(u|v)

)
+ qu,vw

(
cρ(v|w) − xvxw

)
xu

= quv,wxw
(
qu,vxvxu

)
− qu,vw

(
qv,wxwxv

)
xu = 0.

since xwxuxv, xvxwxu ≺� xuxvxw.
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Lemma 7.7.2. The overlaps
(
xNu−1
u , xu, xv

)
resp.

(
xu, xv, x

Nv−1
v

)
fulfill condition 7.6.1(1a),

i.e., dρuxv − xNu−1
u

(
cρ(u|v) + qu,vxvxu

)
∈ I≺�xNuu xv

resp.
(
cρ(u|v) + quvxvxu

)
xNv−1
v − xud

ρ
v ∈

I≺�xuxNvv if and only if L(u, u < v) ∈ I≺�xNuu xv
resp. L(u, u > v) ∈ I≺�xvxNuu .

Proof. We prove it for
(
xNu−1
u , xu, xv

)
; the other overlap is proved analogously. We set

r := Nu− 1, then ord qu,u = r+ 1. Using the q-Leibniz formula of Proposition 3.2.3 we get

xru
(
cρ(u|v) + qu,vxvxu

)
− dρuxv =

=
[
xru, c

ρ
(u|v)

]
qru,uqu,v

+ qru,uqu,vc
ρ
(u|v)x

r
u

+ qu,v
[
xru, xv

]
qru,v

xu + qr+1
u,v xvx

r+1
u − dρuxv

=
r∑
i=0

qiu,uq
i
u,v

(
r
i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i

, cρ(u|v)]qu,uqu,v . . .
]
qr−iu,u qu,v

xiu

+
r−1∑
i=0

qi+1
u,v

(
r
i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i

, xv]qu,v . . .
]
qr−i−1
u,u qu,v

xi+1
u + qr+1

u,v xvx
r+1
u − dρuxv.

Because of xr−iu xvx
i+1
u ≺� xr+1

u xv for all 0 ≤ i ≤ r, this is modulo I≺�xr+1
u xv

equal to

r∑
i=0

qiu,uq
i
u,v

(
r
i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i

, cρ(u|v)]qu,uqu,v . . .
]
qr−iu,u qu,v

xiu

+
r−1∑
i=0

qi+1
u,v

(
r
i

)
qu,u

[
xu, . . . [xu︸ ︷︷ ︸

r−i−1

, cρ(u|v)]qu,uqu,v . . .
]
qr−i−1
u,u qu,v

xi+1
u −

[
dρu, xv

]
qr+1
u,v
.

Now shifting the index of the second sum, we obtain[
xu, . . . [xu︸ ︷︷ ︸

r

, cρ(u|v)]qu,uqu,v . . .
]
qru,uqu,v

−
[
dρu, xv

]
qr+1
u,v

+
r∑
i=1

qiu,v

(
qiu,u
(
r
i

)
qu,u

+
(
r
i−1

)
qu,u

)[
xu, . . . [xu︸ ︷︷ ︸

r−i

, cρ(u|v)]qu,uqu,v . . .
]
qr−iu,u qu,v

xiu.

Finally we obtain the claim, since qiu,u
(
r
i

)
qu,u

+
(
r
i−1

)
qu,u

=
(
r+1
i

)
qu,u

= 0 for all 1 ≤ i ≤ r,

by Eq. (3.2) and ord qu,u = r + 1.

Lemma 7.7.3. The overlaps
(
xNu−iu , xiu, x

Nu−i
u

)
fulfill condition 7.6.1(1a) for all 1 ≤ i <

Nu, if and only if the overlap
(
xNu−1
u , xu, x

Nu−1
u

)
fulfills condition 7.6.1(1a), if and only if

L(u) ∈ I≺�xNu+1
u

.

Proof. This is evident.

• Finally the assertions of the last three Lemmata are equivalent to (2) of the Theorem
7.3.1, which follows from the following Lemma:
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Lemma 7.7.4. Let a ∈ k〈X〉#k[Γ] and W ∈ [L](N) such that a ≺L W . Further let
aρ ∈ k〈XL〉#k[Γ] ⊂ k〈XL,Γ〉 as defined in Section 7.2. Then aρ ∈ I≺�ρ(W ) in k〈XL,Γ〉 if
and only if aρ ∈ I≺ρ(W ) in k〈XL〉#k[Γ].

Proof. By definition aρ is a linear combination of U ∈ 〈XL〉 with `(U) = `(W ), U > ρ(W ),
and V g, V ∈ 〈XL〉, g ∈ Γ with `(V ) < `(W ). Note that the only elements Γ in aρ occur in
monomials V g with `(V ) < `(W ). Thus the only relations Eqs. (7.6),(7.7),(7.8) of I ′Γ which
apply to aρ are already contained in I≺�W since V g ≺� W , hence: aρ ∈ I≺�ρ(W ) in k〈XL,Γ〉
⇔ aρ ∈ I≺�ρ(W ) + I ′Γ in k〈XL,Γ〉 ⇔ aρ ∈ I≺ρ(W ) in k〈XL〉#k[Γ], the latter equivalence by
the isomorphism k〈XL〉#k[Γ] ∼= k〈XL,Γ〉/I ′Γ of Eq. (7.3) applied for X = XL.

•We are left to prove the equivalence of (2) to its weaker version (2’) of Theorem 7.3.1:
For (2’a) we show that if uv ∈ L and Sh(uv) = (u|v), then conditon (2a) is already fulfilled:
By definition cρ(u|v) = xuv and[

cρ(u|v), xw
]
quv,w

=
[
xuv, xw

]
= cρ(uv|w)

modulo I≺xuxvxw . Now certainly Sh(uvw) 6= (uv|w), thus

cρ(uv|w) = ∂ρu(cρ(v|w)) + qv,wc
ρ
(u|w)xv − qu,vxvc

ρ
(u|w)

by Eq. (7.1). Hence in this case the q-Jacobi condition is fulfilled by the q-derivation
formula of Proposition 3.2.3.

For (2’b) of Theorem 7.3.1 it is enough to show the following: Let condition (2bi) hold
for u = v, i.e., [xu, d

ρ
u]1 ∈ I≺xNu+1

u
. Then, if condition (2bi) holds for some u < v with

Nu <∞, then (2bi) also holds for u < uv (whenever uv ∈ L). Analogously, if (2bii) holds
for v < u with Nu <∞, then also (2bii) holds for vu < u (whenever vu ∈ L).

Note that if u < v, then uv < v: Either v does not begin with u, then uv < v by
Lemma 4.1.1; or let v = uw for some w ∈ 〈X〉. Then u < v = uw < w since v ∈ L. Hence
uv = uuw < uw = v.

We will prove the first part (2’bi), (2’bii) is the same argument. But before we formulate
the following

Lemma 7.7.5. Let a ∈ k〈XL〉#k[Γ], A,W ∈ 〈XL〉 such that a �L A ≺ W . Then a ∈ I≺W
if and only if a ∈ I�A.

Proof. Clearly I�A ⊂ I≺W , since A ≺ W . So denote by {(Wσ, fσ) | σ ∈ Σ} the set of
Eqs. (7.9) and (7.10) with fσ ≺L Wσ, and let a ∈ I≺W , i.e., a is a linear combination of
Ug(Wσ−fσ)V h with U, V ∈ 〈XL〉 such that UWσV ≺ W . Denote by E the ≺-biggest word
of all UWσV with non-zero coefficient. E � A contradicts the assumption a �L A ≺ W .
Hence E � A and therefore f ∈ I�A.

Suppose (2bi) for u < v with Nu <∞ and uv ∈ L, i.e.,[
xu, . . . [xu︸ ︷︷ ︸

Nu−1

, xuv]qu,uqu,v . . .
]
qNu−1
u,u qu,v

− [dρu, xv]qNuu,v ∈ I≺xNuu xv

⇔
[
xu, . . . [xu︸ ︷︷ ︸

Nu−2

, cρ(u|uv)]q2
u,uqu,v

. . .
]
qNu−1
u,u qu,v

− [dρu, xv]qNuu,v ∈ I�xNu−1
u xwUxv

,
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for some w ∈ L with w > u and U ∈ 〈XL〉 such that `(U) + `(w) = `(u). Here we
used the relation [xu, xuv]qu,uv − cρ(u|uv), and Lemma 7.7.5 since the above polynomial is

� xNu−1
u xwUxv (by assumption c(u|uv) �L [uuv], du ≺L [u]Nu). Hence the condition (2bi)

for u < uv reads[
xu, . . . [xu︸ ︷︷ ︸

Nu−1

, cρ(u|uv)]q2
u,uqu,v

. . .
]
qNuu,uqu,v

− [dρu, xuv]qNuu,uqNuu,v ∈ I≺xNuu xuv

⇔
[
xu, [d

ρ
u, xv]qNuu,v

]
qNuu,uqu,v

− [dρu, xuv]qNuu,uqNuu,v ∈ I≺xNuu xuv
,

since xuI�xNu−1
u xwUxv

, I�xNu−1
u xwUxv

xu ⊂ I≺xNuu xuv
(w > u and w cannot begin with u since

`(w) ≤ `(u), hence w > uv by Lemma 4.1.1). By the q-Jacobi identity[
xu, [d

ρ
u, xv]qNuu,v

]
qNuu,uqu,v

=
[
[xu, d

ρ
u]qNuu,u , xv

]
qNu+1
u,v

+ qNuu,ud
ρ
u[xu, xv]− qNuu,v [xu, xv]dρu

=
[
[xu, d

ρ
u]1, xv

]
qNu+1
u,v

+ [dρu, xuv]qNuu,v = [dρu, xuv]qNuu,v .

For the last two “=” we used qNuu,u = 1, the relation [xu, xv] − xuv and [xu, d
ρ
u]1 ∈ I≺xNu+1

u

(We can use this condition: Note that [xu, d
ρ
u]1 � xNuu xw′U

′ for some w′ ∈ L, w′ > u,
U ′ ∈ 〈XL〉, `(U ′) + `(w′) = `(u), hence [xu, d

ρ
u]1 ∈ I�xNuu xw′U

′ by Lemma 7.7.5. Therefore

xvI�xNuu xw′U
′ , I�xNuu xw′U

′xv ⊂ I≺xNuu xuv
, like before).



Chapter 8

PBW basis in rank one

Let V be a 1-dimensional vector space with basis x1 and ordq11 = N ≤ ∞. Since T (V ) ∼=
k[x1] we have L = {x1}. We give the condition when

(T (V )#k[Γ])/
(
xN1 − d1

)
has the PBW basis {x1}. By the PBW Criterion 7.3.1 the only condition is

[dρ1, x1]1 ∈ I≺xN+1
1

in k[x1]#k[Γ]. This clearly is fulfilled if d1 = 0 and we get directly the following examples:

Example 8.0.6 (Nichols algebra A1). The set {xr1 | 0 ≤ r < N} is a basis of

B(V ) = T (V )/
(
xN1
)
,

the Nichols algebra of Cartan type A1.

Example 8.0.7 (Taft algebra). The set {xr1g | 0 ≤ r < N, g ∈ ZN} is a basis of

TN(q11) ∼= (T (V )#k[ZN ])/(xN1 ),

see Example 7.4.8.

Example 8.0.8 (Liftings A1). The set {xr1g | 0 ≤ r < N, g ∈ Γ} is a basis of

(T (V )#k[Γ])/
(
xN1 − µ1(1− gN1 )

)
,

which are the liftings of B(V ) of Cartan type A1.

Proof. It is d1 ∈ (k〈X〉#k[Γ])χ
N
1 by Definition 6.0.7 of µ1. Further[

µ1(1− gN1 ), x1

]
1

= µ1

[
1, x1

]
1
− µ1

[
gN1 , x1

]
1

= −µ1(qN11 − 1)x1g
N
1 = 0,

since ordq11 = N .
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Chapter 9

PBW basis in rank two and
redundant relations

Let V be a 2-dimensional vector space with basis x1, x2, hence T (V ) ∼= k〈x1, x2〉. In this
chapter we apply the PBW Criterion 7.3.1 to verify for certain L ⊂ L that the algebra

(T (V )#k[Γ])/I,

with I as in Section 5.3, has the PBW basis [L]. In particular, we examine the Nichols
algebras and their liftings of Chapter 6. Moreover, we will see how to find the redundant
relations, and in addition, we will treat some classical examples.

9.1 PBW basis for L = {x1 < x2}
This is the easiest case and covers the Cartan Type A1 × A1, see Section 6.2, as well as
many other examples. We are interested when [L] builds up a PBW Basis of

(T (V )#k[Γ])/
(
[x1x2]− c12, x

N1
1 − d1, x

N2
2 − d2

)
,

with N1 = ordq11, N2 = ordq22 ∈ {2, 3, . . . ,∞}. If N1 = N2 = ∞, then by the PBW
Criterion 7.3.1 there is no condition in k〈x1, x2〉#k[Γ] such that we can choose c12 arbitrarily
with c12 ≺L [x1x2] and degbΓ(c12) = χ1χ2:

Example 9.1.1 (Quantum Plane). See also Example 7.4.6.

Q(q12) ∼= T (V )/([x1x2])

has the basis {xr22 x
r1
1 | r2, r1 ≥ 0} since c12 = 0; of course this can be seen in Example 7.4.6

directly via the decomposition into a smash product.

Example 9.1.2 (Nichols algebra A1×A1). In the case q12q21 = 1, the latter example is the
infinite dimensional Nichols algebra of Cartan Type A1×A1 with basis {xr22 x

r1
1 | r2, r1 ≥ 0}.

Example 9.1.3 (Weyl algebra). If q12 = 1, then

W ∼= T (V )/([x1x2]− 1),

see Example 7.4.7. This relation is Γ̂-homogeneous if χ1χ2 = ε, e.g., take Γ = {1}. Then
W has the basis {xr22 x

r1
1 | r2, r1 ≥ 0}; again this can be seen directly in Example 7.4.7.
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If ordq11 = N1 <∞ or ordq22 = N2 <∞, then by the PBW Criterion 7.3.1 we have to
check [

dρ1, x1

]
1
∈ I≺xN1+1

1
, or

[
dρ2, x2

]
1
∈ I≺xN2+1

2
, and (9.1)[

x1, . . .
[
x1︸ ︷︷ ︸

N1−1

, cρ12

]
q11q12

. . .
]
q
N1−1
11 q12

−
[
dρ1, x2

]
q
N1
12
∈ I≺xN1

1 x2
, or (9.2)

[
. . .
[
cρ12, x2

]
q12q22

. . . , x2︸ ︷︷ ︸
N2−1

]
q12q

N2−1
22
−
[
x1, d

ρ
2

]
q
N2
12
∈ I≺x1x

N2
2
. (9.3)

This is the case when d1 = d2 = c12 = 0:

Example 9.1.4 (Nichols algebra A1 × A1). The set {xr22 x
r1
1 | 0 ≤ ri < Ni} is a basis of

T (V )/
(
[x1x2], xN1

1 , xN2
2

)
.

This includes the finite-dimensional Nichols algebra of Cartan type A1×A1, where q12q21 =
1.

Example 9.1.5 (Liftings A1 × A1). Let q12q21 = 1. Then {xr22 x
r1
1 g | 0 ≤ ri < Ni, g ∈ Γ}

is a basis of

(T (V )#k[Γ])/
(
[x1x2]− λ12(1− g12), xN1

1 − µ1(1− gN1
1 ), xN2

2 − µ2(1− gN2
2 )
)
,

which are the liftings of the Nichols algebras of Cartan type A1 × A1.

Proof. By definition of λ12, µ1, µ2 the elements have the required Γ̂-degree. As in Example
8.0.8 we show conditions Eq. (9.1).

Eq. (9.2): We have χ1χ2 = ε if λ12 6= 0, hence q11q12 = 1 and then q11 = q11q12q21 = q21,
since q12q21 = 1. Using these equations we calculate[
x1, . . .

[
x1︸ ︷︷ ︸

N1−1

, λ12(1 − g1g2)
]
q11q12

. . .
]
q
N1−1
11 q12

= −λ12(1 − q2
11) . . . (1 − qN1

11 )xN1−1
1 g1g2 = 0.

Further χNii = ε if µ1 6= 0, thus qN1
21 = 1; by taking q12q21 = 1 to the N1-th power, we

deduce qN1
12 = 1. Then [

µ1(1− gN1
1 ), x2

]
q
N1
12

= µ1(1− qN1
12 )x2 = 0.

The remaining condition Eq. (9.3) works in a similar way.

Finally we want to mention that there are also many other non-graded quotient algebras
for which our PBW Basis Criterion 7.3.1 works. Direct computation gives

Example 9.1.6. For q12 = 1 and q22 = −1 the set {xr22 x
r1
1 | 0 ≤ r2 < 2, 0 ≤ r1 < N1} is a

basis of
T (V )/

(
[x1x2], xN1

1 − x2, x
2
2 − 1

)
.
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9.2 PBW basis for L = {x1 < x1x2 < x2}
We now examine the case when [L] is a PBW Basis of (T (V )#k[Γ])/I, where I is generated
by the following elements

[x1x1x2]− c112, xN1
1 − d1,

[x1x2x2]− c122, [x1x2]N12 − d12,

xN2
2 − d2,

with ordq11 = N1, ordq12,12 = N12, ordq22 = N2 ∈ {2, 3, . . . ,∞}. We have in k〈x1, x12, x2〉#k[Γ]
the elements

cρ(1|12) = cρ112, cρ(1|2) = x12, cρ(12|2) = cρ122.

At first we want to study the conditions in general. By Theorem 7.3.1(2’) we have to check
the following: The only Jacobi condition is for 1 < 12 < 2, namely[

cρ112, x2

]
q112,2

−
[
x1, c

ρ
122

]
q1,122

+ (q1,12 − q12,2)x2
12 ∈ I≺x1x12x2 . (9.4)

There are the following restricted q-Leibniz conditions: If N1 <∞, then we have to check
Eqs. (9.1) and (9.2) for 1 < 2; note that we can omit the restricted Leibniz condition for
1 < 12 in (2’) of Theorem 7.3.1. In the same way if N2 <∞, then there are the conditions
Eqs. (9.1) and (9.3) for 1 < 2; we can omit the condition for 12 < 2. Further Eq. (9.2)
resp. (9.3) is equivalent to[

x1, . . . [x1︸ ︷︷ ︸
N1−2

, cρ112]q2
11q12

. . .
]
q
N1−1
11 q12

− [dρ1, x2]
q
N1
12
∈ I≺xN1

1 x2
, (9.5)

[
. . . [cρ122, x2]q12q2

22
. . . , x2︸ ︷︷ ︸

N2−2

]
q12q

N2−1
22
− [x1, d

ρ
2]
q
N2
12
∈ I≺x1x

N2
2
. (9.6)

In the case N1 = 2 resp. N2 = 2 then condition Eq. (9.5) resp. (9.6) is

cρ112 − [dρ1, x2]q2
12
∈ I≺x2

1x2
resp. cρ122 − [x1, d

ρ
2]q2

12
∈ I≺x1x2

2
.

Here we see with Corollary 7.5.1 that by the restricted q-Leibniz formula [x1x1x2]− c112 ∈
(x2

1−d1) resp. [x1x2x2]−c122 ∈ (x2
2−d2), hence these two relations are redundant. Suppose

[d1, x2]q2
12
≺L [x1x1x2] resp. [x1, d2]q2

12
≺L [x1x2x2]. Thus if we define

cρ112 := [dρ1, x2]q2
12

resp. cρ122 := [x1, d
ρ
2]q2

12
, (9.7)

then condition Eq. (9.5) resp. (9.6) is fulfilled.
Finally, if N12 <∞, then there are the conditions [

dρ12, x12

]
1
∈ I≺xN12+1

12
,[

. . . [cρ112, x12]q1,12q12,12 . . . , x12︸ ︷︷ ︸
N12−1

]
q1,12q

N12−1
12,12

− [x1, d
ρ
12]

q
N12
1,12
∈ I≺x1x

N12
12
,

[
x12, . . . [x12︸ ︷︷ ︸

N12−1

, cρ122]q12,12q12,2 . . .
]
q
N12−1
12,12 q12,2

− [dρ12, x2]
q
N12
12,2
∈ I≺xN12

12 x2
.

(9.8)
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Now we want to take a closer look at Eq. (9.4). Essentially, there are two cases: If
q11 = q22 we set q := q112,2 = q1,122 and then Eq. (9.4) reads[

cρ112, x2

]
q
−
[
x1, c

ρ
122

]
q
∈ I≺x1x12x2 . (9.9)

Certainly this happens when c112 = c122 = 0, and in the case N1 = N12 = N2 = ∞ we
have:

Example 9.2.1 (Nichols algebra A2). If q11 = q22 then

T (V )/
(
[x1x1x2], [x1x2x2]

)
has basis {xr22 [x1x2]r12xr11 | r2, r12, r1 ≥ 0}. This includes also the infinite dimensional
Nichols algebra of Cartan type A2, where q12q21 = q−1

11 = q−1
22 .

Else if q11 6= q22. Suppose N12 = ordq12,12 = 2, then we define

d12 := −(q1,12 − q12,2)−1
([
c112, x2

]
q1,2q12,2

−
[
x1, c122

]
q1,122

)
.

It is [x1x2]2− d12 ∈
(
[x1x1x2]− c112, [x1x2x2]− c122

)
by the q-Jacobi identity, see Eq. (9.4)

and Corollary 7.5.1, i.e., this relation is redundant. Further d12 ∈ (k〈X〉#k[Γ]))χ
2
12 . Let us

assume that d12 ≺L [x1x2]2, e.g., c122, c112 are linear combinations of monomials of length
< 3. Then for

dρ12 := −(q1,12 − q12,2)−1
([
cρ112, x2

]
q1,2q12,2

−
[
x1, c

ρ
122

]
q1,122

)
(9.10)

condition Eq. (9.4) is fulfilled. If c122 = c112 = 0 then also d12 = 0 and we have:

Example 9.2.2. If q11 6= q22 and q12,12 = −1, then

T (V )/
(
[x1x1x2], [x1x2x2]

)
has basis {xr22 [x1x2]r12xr11 | r2, r1 ≥ 0, 0 ≤ r12 < 2}.

Now we want to proof that the ideal given for the Nichols algebras in Proposition 6.3.1
and their liftings in Theorem 6.3.3 admit a PBW basis [L]. We could prove Proposition
6.3.1 directly very easily since all cuv = du = 0, but instead we prove the more general
statement for the liftings.

Proposition 9.2.3. The liftings (T (V )#k[Γ])/I of Theorem 6.3.3 have the PBW basis
{x2, [x1x2], x1} as claimed in this theorem.

Proof. Note that all defined ideals are Γ̂-homogeneous by the definition of the coefficients.
The conditions Eq. (9.1) are exactly as in Example 8.0.8.

The numeration refers to the one in Theorem 6.3.3:
(1a) We have N1 = N2 = N12 = 2. Since dρ1 = µ1(1 − g2

1) we have by the argument
preceding Eq. (9.7), that necessarily

c112 = [µ1(1− g2
1), x2]q2

12
and c122 = [x1, µ2(1− g2

2)]q2
12
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and the conditions Eqs. (9.5) and (9.6) are fulfilled. Note that c112 = µ1(1 − q2
12)x2 = 0:

either µ1 = 0 or else µ1 6= 0, but then χ2
1 = ε and q2

21 = 1. By squaring the assumption
q12q21 = −1, we obtain q2

12 = 1. In the same way c122 = 0.
Then the conditions Eq. (9.8) are[

4µ1q21x
2
2 + µ12(1− g2

12), x12

]
1
∈ I≺x3

12

[0, x12]q1,12q12,12 − [x1, 4µ1q21x
2
2 + µ12(1− g2

12)]q2
1,12
∈ I≺x1x2

12
,

[x12, 0]q12,12q12,2 − [4µ1q21x
2
2 + µ12(1− g2

12), x2]q2
12,2
∈ I≺x2

12x2
.

Again, if µ1 6= 0, then q2
12 = q2

21 = 1, hence q2
1,12 = 1 and q2

2,12 = 1. If µ12 6= 0, then χ2
12 = ε

and q2
1,12 = 1; in this case also q2

12 = q2
21 = 1. Thus modulo I≺x3

12
we have[

4µ1q21x
2
2 + µ12(1− g2

12), x12

]
1

= 4µ1q21

[
x2

2, x12

]
1
− µ12(q2

12,12 − 1)x12g
2
12

= 4µ1µ2q21

[
1− g2

2, x12

]
1

= −4µ1µ2q21(q2
2,12 − 1)x12g

2
2 = 0.

Further modulo I≺x1x2
12

we get

[x1, 4µ1q21x
2
2 + µ12(1− g2

12)]1 = 4µ1q21[x1, x
2
2]1 + µ12[x1, 1− g2

12]1

= 4µ1q21c
ρ
122 − µ12(1− q2

12,1)x1g
2
12 = 0,

which means that the second condition is fulfilled. The third one of Eq. (9.8) works
analogously.

The last condition is Eq. (9.4), or equivalently condition Eq. (9.9) since q11 = q22:[
0, x2

]
q
−
[
x1, 0

]
q

= 0 ∈ I≺x1x12x2 .

(1b) Either λ112 = λ122 = 0, or χ112 = ε and/or χ122 = ε, from where we conclude
q := q11 = q12 = q21 = q22. We start with Eq. (9.4): Since q3 = 1 we have[

λ112(1− g112), x2

]
1
−
[
x1, λ122(1− g122)

]
1

= 0.

We continue with Eq. (9.5): Either µ1 = 0 or χ3
1 = ε, hence q3

21 = 1 and then also
q3

12 = (q12q21)3 = q−3
11 = 1. Then[

x1, λ112(1− g112)
]

1
− [µ1(1− g3

1), x2]1 = 0.

Next, Eq. (9.6): In the same way, µ2 6= 0 or q3
21 = q3

12 = 1. Then[
λ122(1− g122), x2

]
1
− [x1, µ2(1− g3

2)]1 = 0.

For Eq. (9.8) we have q3
1,12 = 1 if µ12 6= 0. Thus q3

12 = 1, moreover q3
21 = (q12q21)3 = q−3

11 = 1.
Hence modulo I≺x1x3

12
we have[

[λ112(1− g112), x12]q1,12q12,12 , x12

]
q1,12q2

12,12

−
[
x1,−(1− q11)q11λ112λ122(1− g122) + µ1(1− q11)3x3

2 + µ12(1− g3
12)
]
q3
1,12

= 0,
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since each summand is zero. Further a straightforward calculation shows[
x12, [x12, λ122(1− g122)]q12,12q12,2

]
q2
12,12q12,2

−
[
−(1− q11)q11λ112λ122(1− g122) + µ1(1− q11)3x3

2 + µ12(1− g3
12), x2

]
q2
12,2

= 0.

Finally, an easy calculation shows that[
−(1− q11)q11λ112λ122(1− g122) + µ1(1− q11)3x3

2 + µ12(1− g3
12), x12

]
1

= 0

modulo I≺x4
12

, again by definition of the coefficients.
(1c) is a generalization of (1a) (and (1b) if λ112 = λ122 = 0) and works completely in

the same way (only the Serre-relations [x1x1x2] = [x1x2x2] = 0 are not redundant, as they
are (1a)). We leave this to the reader.

(2a) We leave this to the reader and prove the little more complicated (2b): Since we
have N2 = 2, as in (1a) we deduce from Eq. (9.7), that

c122 = [x1, µ2(1− g2
2)]q2

12
= µ2(q2

21 − 1)x1g
2
2

and the condition Eq. (9.6) is fulfilled.
If λ112 6= 0 then q11 = q21 of order 4, q12 = q22 = −1; if µ1 6= 0 then q4

12 = 1. Then
Eq. (9.5) is fulfilled:[

x1, [x1, λ112(1− g112)]1
]
q11
− [µ1(1− g4

1), x2]1 = 0,

since both summands are zero.
It is q11 6= q22, ordq12,12 = 2 and cρ112 resp. cρ122 are linear combinations of monomials of

length 0 resp. 1. By the discussion before Eq. (9.10), we see that [x1x2]2−d12 is redundant
and for

dρ12 := −(q1,12 − q12,2)−1
([
λ112(1− g112), x2

]
−1
−
[
x1, µ2(q2

21 − 1)x1g
2
2

]
q11

)
= −q−1

12 (q11 + 1)−1
(
λ1122x2 − µ2 (q2

21 − 1)(1− q11q
2
21)︸ ︷︷ ︸

=:q

x2
1g

2
2

)
the condition Eq. (9.4) is fulfilled. We are left to show the conditions Eq. (9.8)

[
dρ12, x12

]
1
∈

I≺x3
12
,[

cρ112, x12

]
q112,12

−
[
x1, d

ρ
12

]
q2
1,12
∈ I≺x1x2

12
and

[
x12, c

ρ
122

]
q12,122

−
[
dρ12, x2

]
q2
12,2
∈ I≺x2

12x2
.

We calculate the first one: Modulo I≺x3
12

we get[
dρ12, x12

]
1

= −q−1
12 (q11 + 1)−1

(
−λ1122

[
x12, x2

]
1︸ ︷︷ ︸

=cρ122

−µ2q
[
x2

1g
2
2, x12

]
1︸ ︷︷ ︸

=q2
21[x2

1,x12]
q21,12

g2
2

)
.

Now by the q-derivation property [x2
1, x12]q2

1,12
= x1c

ρ
112 + q1,12c

ρ
112x1 = λ112(1 − q11)x1.

Because of the coefficient λ112 the two summands in the parentheses have the coefficient
±4λ112µ2, hence cancel.
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(3) works exactly as (2).
(4a) Since we have N1 = N2 = 2, as in (1a) we deduce from Eq. (9.7), that

c112 = [µ1(1− g2
1), x2]q2

12
= µ1(1− q2

12)x2 and c122 = [x1, 0]q2
12

= 0

and the conditions Eqs. (9.5) and (9.6) are fulfilled.
For the second condition of Eq. (9.8) one can easily show by induction[

. . . [cρ112, x12]q1,12q12,12 . . . , x12︸ ︷︷ ︸
N−1

]
q1,12q

N−1
12,12

= µ1(1− q2
12)
[
. . . [x2, x12]q11q2

12q21
. . . , x12︸ ︷︷ ︸

N−1

]
q11qN12q

N−1
21

= µ1

N−1∏
i=0

(1− qi+2
12 qi21)x2x

N−1
12 = 0.

The last equation holds since for i = N − 2 we have 1 − qN12q
N−2
21 = 0: if µ1 6= 0 then

q2
21 = 1 and (q12q21)N = qN12,12 = 1. Further also [x1, d

ρ
12]qN1,12

= [x1, µ12(1 − gN12)]1 =

−µ12(1 − qN12,1)x1g
N
12 = 0, since either µ12 = 0 or qN12 = qN21 = (−1)N such that qN12,1 =

(−1)N(−1)N = 1. This proves the second condition of Eq. (9.8). The third of Eq. (9.8) is
easy since c122 = 0, and the first of Eq. (9.8) is a direct computation.

Finally, Eq. (9.4) is Eq. (9.9), since q11 = q22:[
µ1(1− q2

12)x2, x2

]
q112,2

−
[
x1, 0

]
q1,122

= 0

because of the relation x2
2 = 0.

(4b) works analogously to (4a). Note that here c112 = 0 and c122 = [x1, µ2(1− g2
2)]1 =

µ2(q2
21 − 1)x1g

2
2.

9.3 PBW basis for L = {x1 < x1x1x2 < x1x2 < x2}
This PBW basis [L] occurs in the Nichols algebras of Proposition 6.4.1 and their liftings of
Theorem 6.4.3. Generally, we list the conditions when [L] is a PBW Basis of (T (V )#k[Γ])/I
where I is generated by

[x1x1x1x2]− c1112, xN1
1 − d1,

[x1x1x2x1x2]− c11212, [x1x1x2]N112 − d112,

[x1x2x2]− c122, [x1x2]N12 − d12,

xN2
2 − d2.

In k〈x1, x112, x12, x2〉#k[Γ] we have the following cρ(u|v) ordered by `(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(12|2) = cρ122, cρ(112|12) = cρ11212,

cρ(1|12) = x112, cρ(1|112) = cρ1112,
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and for Sh(1122) 6= (112|2) by Eq. (7.1)

cρ(112|2) = ∂ρ1(cρ(12|2)) + q12,2c
ρ
(1|2)x12 − q1,12x12c

ρ
(1|2),

= ∂ρ1(cρ122) + (q12,2 − q1,12)x2
12.

We have for 1 < 112 < 2, 1 < 112 < 12 and 112 < 12 < 2 the following q-Jacobi conditions
(note that we can leave out 1 < 12 < 2):[

cρ1112, x2

]
q1112,2

−
[
x1, c

ρ
(112|2)

]
q1,1122

+ q1,112x112[x1, x2]− q112,2[x1, x2]x112 ∈ I≺x1x112x2

⇔
[
cρ1112, x2

]
q1112,2

−
[
x1, ∂

ρ
1(cρ122)

]
q1,1122

− (q12,2 − q1,12)cρ11212 − (q12,2 − q1,12)q1,12(q12,12 + 1)x12x112

+ q1,112c
ρ
11212 + q112,2(q1,112q112,1 − 1)x12x112 ∈ I≺x1x112x2

⇔
[
cρ1112, x2

]
q1112,2

−
[
x1, ∂

ρ
1(cρ122)

]
q1,1122

+ q12(q2
11 − q22 + q11)︸ ︷︷ ︸

=:q

cρ11212

+ q2
12(q22(q4

11q12q21 − 1)− q11(q22 − q11)(q12,12 + 1))︸ ︷︷ ︸
=:q′

x12x112 ∈ I≺x1x112x2

(9.11)

If q 6= 0, we see that [x1x1x2x1x2]−c11212 ∈
(
[x1x1x1x2]−c1112, [x1x2x2]−c122

)
is redundant

with
c11212 = −q−1

([
c1112, x2

]
q1112,2

−
[
x1, ∂1(c122)

]
q1,1122

+ q′[x1x2][x1x1x2]
)

by Corollary 7.5.1 and the q-Jacobi identity of Proposition 3.2.3. We have degbΓ(c11212) =
χ11212; suppose that c11212 ≺L [x1x1x2x1x2] (e.g. c1112 resp. c122 are linear combinations of
monomials of length < 4 resp. < 3) then condition Eq. (9.11) is fulfilled for

cρ11212 := −q−1
([
cρ1112, x2

]
q1112,2

−
[
x1, ∂

ρ
1(cρ122)

]
q1,1122

+ q′x12x112

)
.

There are three cases, where the coefficients q, q′ are of a better form for our setting: Since

q = q12

(
(3)q11 − (2)q22

)
, q′ = q12

(
q(1 + q2

11q12q21q22)− q11q12(2)q22

)
,

we have

q = q12q11 6= 0, q′ = −q12q
2
11q(1− q2

11q12q21), if q2
11 = q22,

q = q12(3)q11 , q′ = q12q(1− q2
11q12q21), if q22 = −1,

q = −q12(2)q22 , q′ = −q12q(1 + q11 + q2
11q12q21q22), if ordq11 = 3.

The second q-Jacobi condition for 1 < 112 < 12 reads[
cρ1112, x12

]
q1112,12

−
[
x1, c

ρ
11212

]
q1,11212

+ q1,112x112[x1, x12]− q112,12[x1, x12]x112 ∈ I≺x1x112x12

⇔
[
cρ1112, x12

]
q1112,12

−
[
x1, c

ρ
11212

]
q1,11212

+ q2
11q12(1− q12q21q22)︸ ︷︷ ︸

=:q′′

x2
112 ∈ I≺x1x112x12

(9.12)
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If q′′ 6= 0 then we see that [x1x1x2]2 − d112 ∈
(
[x1x1x1x2] − c11212, [x1x1x2x1x2] − c11212

)
is redundant with d112 = −q′′−1

([
c1112, [x1x2]

]
q1112,12

−
[
x1, c11212

]
q1,11212

)
by Corollary 7.5.1

and the q-Jacobi identity of Proposition 3.2.3. It is degbΓ(d112) = χ2
112; suppose that

d112 ≺L [x1x1x2]2 then condition Eq. (9.13) is fulfilled for

dρ112 := −q′′−1
([
cρ1112, x12

]
q1112,12

−
[
x1, c

ρ
11212

]
q1,11212

)
If further ordq112,112 = 2 then we have to consider the restricted q-Leibniz conditions for
dρ112 (see below).

The last q-Jacobi condition for 112 < 12 < 2 is[
cρ11212, x2

]
q11212,2

−
[
x112, c

ρ
122

]
q112,122

+ q112,12x12[x112, x2]− q12,2[x112, x2]x12 ∈ I≺x112x12x2

⇔
[
cρ11212, x2

]
q11212,2

−
[
x112, c

ρ
122

]
q112,122

+ q112,12x12∂
ρ
1(cρ122)− q12,2∂

ρ
1(cρ122)x12

+ q2
12q22(q22 − q11)(q2

11q12q21 − 1)︸ ︷︷ ︸
=:q′′′

x3
12 ∈ I≺x112x12x2

(9.13)

If q′′′ 6= 0 then we see that [x1x2]3 − d12 ∈
(
[x1x1x2x1x2]− c11212, [x1x2x2]− c122

)
is redun-

dant with d12 := −q′′′−1
([
c11212, x2

]
q11212,2

−
[
[x1x1x2], c122

]
q112,122

+ q112,12[x1x2]∂1(c122) −
q12,2∂1(c122)[x1x2]

)
by Corollary 7.5.1 and the q-Jacobi identity of Proposition 3.2.3. It is

degbΓ(d12) = χ3
12; suppose that d12 ≺L [x1x1]3 (e.g., c11212 resp. c122 are linear combinations

of monomials of length < 5 resp. < 3) then condition Eq. (9.13) is fulfilled for

dρ12 : = −q′′−1
([
cρ11212, x2

]
q11212,2

−
[
x112, c

ρ
122

]
q112,122

+ q112,12x12∂
ρ
1(cρ122)− q12,2∂

ρ
1(cρ122)x12

)
If further ordq12,12 = 3 then we have to consider the q-Leibniz conditions for dρ12 (see below).

There are the following restricted q-Leibniz conditions: If N1 < ∞, then
[
dρ1, x1

]
1
∈

I≺xN1+1
1

and for 1 < 2 (we can omit 1 < 12, 1 < 112)[
x1, . . . [x1︸ ︷︷ ︸

N1−3

, cρ1112]q3
11q12

. . .
]
q
N1−1
11 q12

− [dρ1, x2]
q
N1
12
∈ I≺xN1

1 x2
. (9.14)

If N2 <∞, then
[
dρ2, x2

]
1
∈ I≺xN2+1

2
and for 1 < 2 (we can omit 12 < 2, 112 < 2)[

. . . [cρ122 x2]q12q2
22
. . . , x2︸ ︷︷ ︸

N2−2

]
q12q

N2−1
22
− [x1, d

ρ
2]
q
N2
12
∈ I≺x1x

N2
2
. (9.15)

If N12 <∞, then
[
dρ12, x12

]
1
∈ I≺xN12+1

12
and for 1 < 12, 12 < 2 (we can omit 112 < 12)[

. . . [cρ112, x12]q1,12q12,12 . . . , x12︸ ︷︷ ︸
N12−1

]
q1,12q

N12−1
12,12

− [x1, d
ρ
12]

q
N12
1,12
∈ I≺x1x

N12
12
,

[
x12, . . . [x12︸ ︷︷ ︸

N12−1

, cρ122]q12,12q12,2 . . .
]
q
N12−1
12,12 q12,2

− [dρ12, x2]
q
N12
12,2
∈ I≺xN12

12 x2
.

(9.16)
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If N112 <∞, then
[
dρ112, x112

]
1
∈ I≺xN112+1

112
and for 1 < 112, 112 < 12, 112 < 2[

. . . [cρ1112, x112]q1,112q112,112 . . . , x112︸ ︷︷ ︸
N112−1

]
q1,112q

N112−1
112,112

− [x1, d
ρ
112]

q
N112
1,112
∈ I≺x1x

N112
112[

x112, . . . [x112︸ ︷︷ ︸
N112−1

, cρ11212]q112,112q112,12 . . .
]
q
N112−1
112,112 q112,12

− [dρ112, x12]
q
N112
112,12

∈ I≺xN112
112 x12[

x112, . . . [x112︸ ︷︷ ︸
N112−1

, cρ(112|2)]q112,112q112,2 . . .
]
q
N112−1
112,112 q112,2

− [dρ112, x2]
q
N112
112,2
∈ I≺xN112

112 x2

(9.17)

Now we see that the ideals of the Nichols algebras of Proposition 6.4.1 are of the given
form. It is again easy to check that they have the PBW basis {x1, [x1x1x2], [x1x2], x2},
since all cρuv = 0 and dρu = 0.

The proof that the liftings of Theorem 6.4.3 have the PBW basis {x1, [x1x1x2], [x1x2], x2}
consists in plugging the cρuv and dρu in the conditions above, like it was done before in Propo-
sition 9.2.3. We leave this to the reader.

9.4 PBW basis for L = {x1 < x1x1x2 < x1x2 < x1x2x2 <

x2}
This PBW basis [L] appears in the Nichols algebras of Proposition 6.5.1(1) and their liftings
of Theorem 6.5.3(1). More generally, we ask for the conditions when [L] is a PBW Basis
of (T (V )#k[Γ])/I where I is generated by

[x1x1x1x2]− c1112, xN1
1 − d1,

[x1x1x2x2]− c1122, [x1x1x2]N112 − d112,

[x1x1x2x1x2]− c11212, [x1x2]N12 − d12,

[x1x2x1x2x2]− c12122, [x1x2x2]N122 − d122,

[x1x2x2x2]− c1222, xN2
2 − d2.

In k〈x1, x112, x12, x122, x2〉#k[Γ] we have the following cρ(u|v) ordered by `(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(1|112) = cρ1112, cρ(112|12) = cρ11212,

cρ(1|12) = x112, cρ(1|122) = cρ1122, cρ(12|122) = cρ12122,

cρ(12|2) = x122, cρ(122|2) = cρ1222,

and for Sh(1122) 6= (112|2) and Sh(112122) 6= (112|122) by Eq. (7.1)

cρ(112|2) = ∂ρ1(cρ(12|2)) + q12,2c
ρ
(1|2)x12 − q1,12x12c

ρ
(1|2)

= cρ1122 + (q12,2 − q1,12)x2
12,

cρ(112|122) = ∂ρ1(cρ12122) + q12,122c
ρ
1122x12 − q1,12x12c

ρ
1122.



9.5 PBW basis for L = {x1 < x1x1x2 < x1x1x2x1x2 < x1x2 < x2} 87

We have to check the q-Jacobi conditions for 1 < 112 < 2 (like Eq. (9.11)), 1 < 112 < 12
(like Eq. (9.12)), 1 < 112 < 122, 1 < 122 < 2, 112 < 12 < 2 (like Eq. (9.13)), 112 < 12 <
122, 112 < 122 < 2, 12 < 122 < 2 (note that we can omit 1 < 12 < 2, 1 < 12 < 122). The
restricted q-Leibniz conditions are treated like before (note that we can leave out those for
1 < 112, 1 < 12, 1 < 122 if N1 < ∞, 112 < 12, 12 < 122 if N12 < ∞, 112 < 2, 12 < 2,
122 < 2 if N2 <∞).

Both types of conditions detect many redundant relations like before. The proof that
the given ideals of the Nichols algebras of Proposition 6.5.1 and their liftings of Theorem
6.5.3 admit the PBW basis {x1, [x1x1x2], [x1x2], [x1x2x2], x2} is again a straightforward but
rather expansive calculation.

9.5 PBW basis for L = {x1 < x1x1x2 < x1x1x2x1x2 <

x1x2 < x2}
This PBW basis [L] shows up in the Nichols algebras of Proposition 6.5.1(2) and (4) and
their liftings of Theorem 6.5.3(2) and (4). More generally, we examine when [L] is a PBW
Basis of (T (V )#k[Γ])/I where I is generated by

[x1x1x1x2]− c1112, xN1
1 − d1,

[x1x1x1x2x1x2]− c111212, [x1x1x2]N112 − d112,

[x1x1x2x1x1x2x1x2]− c11211212, [x1x1x2x1x2]N11212 − d11212,

[x1x1x2x1x2x1x2]− c1121212, [x1x2]N12 − d12,

[x1x2x2]− c122, xN2
2 − d2.

In k〈x1, x112, x11212, x12, x2〉#k[Γ] we have the following cρ(u|v) ordered by `(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(1|112) = cρ1112, cρ(11212|12) = cρ1121212,

cρ(1|12) = x112, cρ(112|12) = x11212, cρ(112|11212) = cρ11211212,

cρ(12|2) = cρ122, cρ(1|11212) = cρ111212,

and for Sh(1122) 6= (112|2) and Sh(112122) 6= (11212|2) by Eq. (7.1)

cρ(112|2) = ∂ρ1(cρ(12|2)) + q12,2c
ρ
(1|2)x12 − q1,12x12c

ρ
(1|2)

= cρ1122 + (q12,2 − q1,12)x2
12,

cρ(11212|2) = ∂ρ112(cρ122) + q12,2c
ρ
(112|2)x12 − q112,12x12c

ρ
(112|2)

= ∂ρ112(cρ122) + q12,2c
ρ
1122x12 − q112,12x12c

ρ
1122

+ (q12,2 − q112,12)(q12,2 − q1,12)x3
12.

Again we have to consider all q-Jacobi conditions and restricted q-Leibniz conditions, from
where we detect again many redundant relations. Like before, we omit the proof for the
examples in Proposition 6.5.1(2) and (4) resp. Theorem 6.5.3(2) and (4), where we just
have to put the given cρuv and dρu in the conditions.
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9.6 PBW basis for L = {x1 < x1x1x1x2 < x1x1x2 < x1x2 <

x2}
The Nichols algebras of Proposition 6.5.1(3) and (5) and their liftings of Theorem 6.5.3(3)
and (5) have this PBW basis [L]. We study the situation, when [L] is a PBW Basis of
(T (V )#k[Γ])/I where I is generated by

[x1x1x1x1x2]− c11112, xN1
1 − d1,

[x1x1x1x2x1x1x2]− c1112112, [x1x1x1x2]N1112 − d1112,

[x1x1x2x1x2]− c11212, [x1x1x2]N112 − d112,

[x1x2x2]− c122, [x1x2]N12 − d12,

xN2
2 − d2.

In k〈x1, x112, x11212, x12, x2〉#k[Γ] we have the following cρ(u|v) ordered by `(uv), u, v ∈ L: If

Sh(uv) = (u|v) then

cρ(1|2) = x12, cρ(1|112) = x1112, cρ(1112|112) = cρ1121212,

cρ(1|12) = x112, cρ(112|12) = cρ11212,

cρ(12|2) = cρ122, cρ(1|1112) = cρ11112,

and for Sh(1122) 6= (112|2), Sh(11122) 6= (1112|2) and Sh(111212) 6= (1112|12) by Eq. (7.1)

cρ(112|2) = ∂ρ1(cρ(12|2)) + q12,2c
ρ
(1|2)x12 − q1,12x12c

ρ
(1|2)

= ∂ρ1(cρ122) + (q12,2 − q1,12)x2
12,

cρ(1112|2) = ∂ρ1(cρ(112|2)) + q112,2c
ρ
(1|2)x112 − q1,112x112c

ρ
(1|2),

= ∂ρ1(∂ρ1(cρ122)) + (q12,2 − q1,12)(x112x12 + q1,12x12[x1, x12])

+ q112,2x12x112 − q1,112x112x12,

= ∂ρ1(∂ρ1(cρ122)) + q12(q22 − q11 − q2
11)x112x12

+ q2
12(q11(q22 − q11) + q22)x12x112,

cρ(1112|12) = ∂ρ1(cρ11212) + (q112,2 − q1,112)x2
112.

Note that for the fifth equation we used the relation [x1, x12]− x112.
The assertion concerning the PBW basis and the redundant relations of Proposition

6.5.1(3) and (5) and Theorem 6.5.3(3) and (5) are again straightforward to verify.



Appendix A

Program for FELIX

A.1 Example

As an example we give the source code, which we used for the computation of the lifting
of Theorem 6.4.3 (2c), namely we show the following in the spirit of Section 6.1:

Let ordq11 = 3, q12 = 1, q12q21 = q−2
11 and q22 = −1, then we demonstrate how we

compute s12 ∈ k〈X〉#k[Γ] such that

[x1x2]6 − s12 ∈ P
χ6

12

g6
12

modulo the ideal I[x1x2]6 generated by

[x1x1x2x1x2] + 3µ1(1− q11)x2
2 − λ11212(1− g11212),

x3
1 − µ1(1− g3

1),

x2
2 − µ2(1− g2

2).

At first we calculate ∆([x1x2]6) modulo I[x1x2]6 and from the output we take the term
occuring with ⊗1, namely

s12 := −3µ2

{
(λ11212(1− q11) + 9µ1µ2q11)[x1x2]2x1g

2
2

− q11(λ11212(1− q11) + 9µ1µ2q11)[x1x2][x1x1x2]g2
2

+ (λ2
11212q

2
11 + 3µ1µ2λ11212(1− q2

11)− 9µ2
1µ

2
2)g6

1g
6
2

+ 3µ1µ2(λ11212(1− q2
11)− 3µ1µ2)g3

1g
6
2

+ λ11212(3µ1µ2(q11 − 1) + λ11212)g3
1g

4
2

− 9µ2
1µ

2
2g

6
2

+ 3µ1µ2(λ11212(q11 − 1)− 9µ1µ2q11)g4
2

+ q11(λ2
11212 − 6µ1µ2λ11212(1− q11)− 27µ2

1µ
2
2q11)g2

2

}
.

In the next step we add the relation [x1x2]6 − s12 − µ12(1 − g6
12) to I[x1x2]6 and obtain I.

We know by the PBW Criterion 7.3.1 that this set of relations making up I is enough to
get the basis{

xr22 [x1x2]r12 [x1x1x2]r112xr11 g | 0 ≤ r1 < 3, 0 ≤ r12 < 6, 0 ≤ r2, r112 < 2, g ∈ Γ
}
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and dimkA = 72 · |Γ|. For the implementation we use the isomorphism of Corollary 7.5.1:

(k〈X〉#k[Γ])/I ∼= k〈x2, x12, x112, x1,Γ〉/(IL+I ′Γ+I).

A.2 Short introduction to FELIX

The program presented is written for the computer algebra system FELIX [13], which
can be downloaded at http://felix.hgb-leipzig.de/. For multiplying tensors (e.g. for
calculating coproducts) one needs to treat ⊗ as a variable. We want to thank István
Heckenberger for providing his extension module tensor.cmp which realizes this. We want
to give some comments on the program:

• Using a terminal, we execute FELIX with the command felix. A file is compiled
with the command felix <file. Also a module is compiled in the same way, e.g.,
felix <tensor.cmp.

• The program starts with the inclusion of the modules : link("module").

• Then the definition of the non-commutative polynomial ring over the rational num-
bers with parameters and variables together with a matrix, which determines the
ordering of the variables, is given by select rat(parameters)<variables;matrix>.
We order the variables by � from Section 4.4.

Notabene: The right ordering-matrix is crucial for the termination of the Gröbner
basis, since the algorithm is non-deterministic in the non-commutative case.

• We treat a root of unity q as a variable and assign to it the degree zero in the
ordering-matrix. Further we give the minimal polynomial in the ideal defined by
ideal(relations).

• The variable ixi is treated by the tensor module as ⊗. We use the function ttimes

of tensor.cmp for the product of two tensors.
Further, we will denote coproducts like ∆([x1x2]) by variables like delx12, and powers
like ∆([x1x2]6) by del6x12.

• The function standard(ideal) computes the Gröbner basis of the ideal from which
we can read off the basis easily. Then the function remainder(polynomial , ideal)
computes the polynomial modulo the ideal w.r.t. the ordering matrix.

• To multiply two variables/parameters one needs to put the product sign *. To end
an command with an output we type $, to suppress the output we type .

• Finally, the command print("string") prints the string in the output, comments
are given by % comment %, and bye ends the program.
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A.3 Program

At first we execute the following program which calculates ∆([x1x2]6).

link("tensor.mdl")$

select rat(mu1,mu2,mu12,lam11212)<x2,x12,x112,x1,g1,g2,ixi,q;

{ {0,0,0,0,0,0,1,0},

{1,2,3,1,0,0,0,0},

{1,0,0,0,0,0,0,0},

{0,1,0,0,0,0,0,0},

{0,0,1,0,0,0,0,0},

{0,0,0,0,1,1,0,0},

{0,0,0,0,0,1,0,0}, }

>$

q11:=q$

q12:=1$

q21:=q$

q22:=-1$

si:=ideal(

q^2+q+1, q*ixi-ixi*q,

q*x1-x1*q, q*x2-x2*q,

q*g1-g1*q, q*g2-g2*q,

g1*g2-g2*g1,

g1*x1-q11*x1*g1, g1*x2-q12*x2*g1,

g2*x1-q21*x1*g2, g2*x2-q22*x2*g2,

x1*x2-q12*x2*x1-x12,

x1*x12-q11*q12*x12*x1-x112,

x112*x12-q11^2*q12^2*q21*q22*x12*x112

+3*(1-q)*mu1*x2^2 -lam11212*(1-g1^3*g2^2),

x2^2-mu2*(1-g2^2),

x1^3-mu1*(1-g1^3)

)$

si:=standard(si)$

print("Computation of the coproducts:")_
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delx1:=x1*ixi+g1*ixi*x1$

delx2:=x2*ixi+g2*ixi*x2$

delx12:=remainder(

ttimes(delx1,delx2)-ttimes(q12*ixi,ttimes(delx2,delx1))

,si)$

delx112:=remainder(

ttimes(delx1,delx12)-ttimes(q11*q12*ixi,ttimes(delx12,delx1))

,si)$

del2x1:=remainder(ttimes(delx1,delx1),si)$

del3x1:=remainder(ttimes(del2x1,delx1),si)$

del2x2:=remainder(ttimes(delx2,delx2),si)$

del2x12:=remainder(ttimes(delx12,delx12),si)$

del4x12:=remainder(ttimes(del2x12,del2x12),si)$

% (1) %

print("Delta(x12^6) =")_

del6x12:=remainder(ttimes(del4x12,del2x12),si)$

bye$

The code after (1) genereates the output

...
> Delta(x12^6) =

@ := . . .

From the . . . we take the term occuring with *ixi*1, which will be s12 as said before. We
then define in (2) below the variable w which corresponds to [x1x2]6 − s12 − µ12(1− g6

12):

link("tensor.mdl")$

select rat(mu1,mu2,mu12,lam11212)<x2,x12,x112,x1,g1,g2,ixi,q;

{ {0,0,0,0,0,0,1,0},

{1,2,3,1,0,0,0,0},

{1,0,0,0,0,0,0,0},

{0,1,0,0,0,0,0,0},

{0,0,1,0,0,0,0,0},

{0,0,0,0,1,1,0,0},

{0,0,0,0,0,1,0,0}, }

>$

q11:=q$
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q12:=1$

q21:=q$

q22:=-1$

si:=ideal(

q^2+q+1, q*ixi-ixi*q,

q*x1-x1*q, q*x2-x2*q,

q*g1-g1*q, q*g2-g2*q,

g1*g2-g2*g1,

g1*x1-q11*x1*g1, g1*x2-q12*x2*g1,

g2*x1-q21*x1*g2, g2*x2-q22*x2*g2,

x1*x2-q12*x2*x1-x12,

x1*x12-q11*q12*x12*x1-x112,

x112*x12-q11^2*q12^2*q21*q22*x12*x112

+3*(1-q)*mu1*x2^2 -lam11212*(1-g1^3*g2^2),

x2^2-mu2*(1-g2^2),

x1^3-mu1*(1-g1^3)

)$

si:=standard(si)$

print("Computation of the coproducts:")_

delx1:=x1*ixi+g1*ixi*x1$

delx2:=x2*ixi+g2*ixi*x2$

delx12:=remainder(

ttimes(delx1,delx2)-ttimes(q12*ixi,ttimes(delx2,delx1))

,si)$

delx112:=remainder(

ttimes(delx1,delx12)-ttimes(q11*q12*ixi,ttimes(delx12,delx1))

,si)$

del2x1:=remainder(ttimes(delx1,delx1),si)$

del3x1:=remainder(ttimes(del2x1,delx1),si)$

del2x2:=remainder(ttimes(delx2,delx2),si)$

del2x12:=remainder(ttimes(delx12,delx12),si)$

del4x12:=remainder(ttimes(del2x12,del2x12),si)$

% (1) %

print("Delta(x12^6) =")_

del6x12:=remainder(ttimes(del4x12,del2x12),si)$
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% (2) %

print("Definition of w:=x12^6-s12-mu12*(1-g1^6*g2^6)")_

w:=x12^6

+((-3*mu2*lam11212+27*mu1*mu2^2)*q+3*mu2*lam11212)

*x12^2*x1*g2^2

+((-6*mu2*lam11212+27*mu1*mu2^2)*q+(-3*mu2*lam11212+27*mu1*mu2^2))

*x12*x112*g2^2

+((-3*mu2*lam11212^2+9*mu1*mu2^2*lam11212)*q

+(-3*mu2*lam11212^2+18*mu1*mu2^2*lam11212-27*mu1^2*mu2^3))

*g1^6*g2^6

+(9*mu1*mu2^2*lam11212*q+(18*mu1*mu2^2*lam11212-27*mu1^2*mu2^3))

*g1^3*g2^6

+(9*mu1*mu2^2*lam11212*q+(3*mu2*lam11212^2-9*mu1*mu2^2*lam11212))

*g1^3*g2^4

-27*mu1^2*mu2^3

*g2^6

+((9*mu1*mu2^2*lam11212-81*mu1^2*mu2^3)*q-9*mu1*mu2^2*lam11212)

*g2^4

+((3*mu2*lam11212^2-36*mu1*mu2^2*lam11212+81*mu1^2*mu2^3)*q

+(-18*mu1*mu2^2*lam11212+81*mu1^2*mu2^3))

*g2^2

-mu12*(1-g1^6*g2^6)$

delw:=remainder(

del6x12

+((-3*mu2*lam11212+27*mu1*mu2^2)*q+3*mu2*lam11212)

*ttimes(ttimes(del2x12,delx1),g2^2*ixi*g2^2)

+((-6*mu2*lam11212+27*mu1*mu2^2)*q+(-3*mu2*lam11212+27*mu1*mu2^2))

*ttimes(delx12,ttimes(delx112,g2^2*ixi*g2^2))

+((-3*mu2*lam11212^2+9*mu1*mu2^2*lam11212)*q

+(-3*mu2*lam11212^2+18*mu1*mu2^2*lam11212-27*mu1^2*mu2^3))

*g1^6*g2^6*ixi*g1^6*g2^6

+(9*mu1*mu2^2*lam11212*q+(18*mu1*mu2^2*lam11212-27*mu1^2*mu2^3))

*g1^3*g2^6*ixi*g1^3*g2^6

+(9*mu1*mu2^2*lam11212*q+(3*mu2*lam11212^2-9*mu1*mu2^2*lam11212))

*g1^3*g2^4*ixi*g1^3*g2^4

-27*mu1^2*mu2^3

*g2^6*ixi*g2^6

+((9*mu1*mu2^2*lam11212-81*mu1^2*mu2^3)*q-9*mu1*mu2^2*lam11212)

*g2^4*ixi*g2^4

+((3*mu2*lam11212^2-36*mu1*mu2^2*lam11212+81*mu1^2*mu2^3)*q

+(-18*mu1*mu2^2*lam11212+81*mu1^2*mu2^3))

*g2^2*ixi*g2^2

-mu12*(ixi-g1^6*g2^6*ixi*g1^6*g2^6)

,si) $
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print("Is w=x12^6-s12-mu12*(1-g1^6*g2^6) skew-primitive? (0 = Yes)")_

remainder(delw-w*ixi-g1^6*g2^6*ixi*w,si)$

bye$

As a final result we obtain the output

...
> Is w=x12^6-s12-mu12*(1-g1^6*g2^6) skew-primitive? (0 = Yes)

@ := 0

which confirms that the chosen s12 is correct.
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