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GENERAL INTRODUCTION 
 

Adaptation to abiotic conditions and biotic factors is certainly one of the main 

driving forces for the evolution of the enormous number of morphologies, behaviors 

and life history strategies in the animal kingdom (Futuyma 1986). This is especially true 

for the adaptation to and the interactions with other species. According to the 

geographic mosaic of coevolution theory (Thompson 1999b, 2005) the interactions 

between two species can be influenced by several parameters: The variation of 

ecological parameters, the composition and history of a local community and the 

evolutionary potential of the two opponents. In contrast to ecological parameters, 

species are capable and forced to change rapidly and frequently. Interacting 

species like competitors, predator and prey or parasite and host thus exert highly 

variable selection pressures (Thompson 1994, 1999a), which can potentially result in a 

continuous process of reciprocal adaptations: the so-called “coevolutionary arms 

race” (Dawkins & Krebs 1979). In the extreme case, this race can even end in the 

Darwinian extinction of one of its participants due to a time lack in the development 

of effective counter-adaptations (Darwin 1859).  

The highly specialized relations of parasites and their hosts represent ideal 

model systems for the study of coevolution. Parasites were shown to influence their 

host species in various aspects (e.g. Anderson & May 1979, Freeland 1979, 1983; Price 

et al. 1986) and to dramatically reduce the fitness of infected host individuals up to 

complete sterilization. In the case of microparasites, this severe impact is due to the 

asymmetric evolutionary potentials of the opponents caused by differences in 

population sizes, mutations rates and generation times (e.g. viruses, bacteria, fungi). 

In contrast, macroparasites are much more similar to their host species and often 

show comparable evolutionary potentials (e.g. arthropods, helminthes). In the case 

of brood parasites the similarity between parasite and host is even greater since only 

closely related host species potentially fulfill both behavioral and nutritional needs of 

the parasitic young. 

Most energy acquired during an animal’s adult life is channeled into 

reproduction and it is thus not surprising that strategies evolved to lower the costs of 

brood care. This is especially true for species with extensive parental care, such as 

mammals, birds and social insects. One way to reduce these costs is brood 

parasitism, where the parasite exploits the brood care behavior of its host species. 

Brood parasitism has been found in a variety of different taxa (e.g. Boulton & Polis 
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2002, Sato 1986, Brooke & Davies 1988, Hölldobler & Wilson 1990). During the last 

decades, predominantly avian brood parasites, such as cuckoos and cowbirds, 

have received great attention and the potential occurrence of a coevolutionary 

arms race has been studied intensively in several species (Davies & Brooke 1989, 

Lotem & Rothstein 1995, Rothstein 1990, Soler & Soler 2000, Soler & Møller 1990). These 

avian brood parasites have been shown to lay their eggs in nests of other bird 

species and to thereby avoid the cost of parental care. Their avian host species thus 

suffer both the cost of brood care for the unrelated offspring and the loss of their 

own eggs due to the destructive behavior of the parasite young. 

Social parasites represent a highly analogous system and reduce the cost of 

parental care by exploiting the brood care behavior and the entire social system of 

members of their own or another socially living species (Davies et al. 1989). Generally 

this form of brood parasitism can be found among social insects and, within the 

Hymenopterans, it is especially common in ants. Remarkably, in ants, more than 250 

of the over 12,000 known ant species live a social parasitic life style (Buschinger 1986, 

Hölldobler & Wilson 1990) and these ants exploit their host species either temporarily 

or permanently. In ants, there are mainly two different forms of social parasites: 

inquilines, which have lost the worker caste and produce only sexuals to be raised by 

the hosts, and slavemakers, in which the queen produces her own workers that 

conduct slave raids on neighbouring host nests. Since its first detailed description in 

the year 1810 (Huber), the latter behavior in ants has fascinated both scientists and 

the general public.  

Slavemaking ants are social parasites with an extremely interesting life style 

(Buschinger 1986, Hölldobler & Wilson 1990, Brandt et al. 2005a). Usually, these 

parasites obligatorily depend on related ant species for brood care, foraging, and 

nest defense and their specific morphology and behavior allows them to find and 

subdue colonies of their host species for their purposes. Slavemaking ants are 

characterized by a large body size, strong mandibles, thick cuticle, a broad 

postpetiole and antennal scrobes, which are used to protect the antennal scapes 

during fights. The life cycle of a slavemaking ant begins, when a mated parasite 

queen conquers a host nest, expels or kills the host queen(s) and adult workers and 

takes over the remaining worker brood (Fig. 1) (Alloway 1979, Alloway 1980, Wesson 

1939, Wilson 1971). These first slave workers, which soon eclose from the usurped 

brood, learn to accept the slavemaker queen during the first days (Goodloe & 

Topoff 1987, Jaisson 1975, LeMoli & Mori 1982, LeMoli & Passetti 1977) and 
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subsequently fulfill all tasks of colony maintenance and brood care. Since enslaved 

host workers are unable to reproduce new slave workers, the steady supply of slaves 

has to be ensured in a different way. For this purpose, slavemaker workers raised 

during the following years, conduct recurrent slave raids on neighboring host 

colonies and steal new host worker brood (e.g. Alloway 1979). We consequently find 

a seemingly peaceful coexistence of species within a slavemaker colony but the 

colony survival often obligatorily depends on the collaboration of the enslaved host 

workers. These host workers rear both parasite and raided host brood and thus 

control the productivity of the social parasite nest.  

 

 
Figure 1: Life cycle of a slavemaking ant. Graphic by Susanne Foitzik 

 

 

Only 50 ant species of the 200 ant social parasites are active slavemakers 

(D’Ettorre & Heinze 2001, Hölldobler & Wilson 1990) and this exceptional life style 

evolved several times independently among the subfamilies Myrmicinae and 

Formicinae (Buschinger 1990, Buschinger et al. 1980, Hölldobler & Wilson 1990, Stuart 

& Alloway 1983). Particularly the Myrmicinae tribe of the formicoxenine ants seems to 

be a hot spot in the evolution of slavemaking ants with at least six independent 

origins. Among this tribe, slavemakers were shown to originate from non-parasitic 

Formicoxenini at different points of times (Beibl et al. 2005). 

The strength of reciprocal adaptations varies with the specificity of its 

participants and inevitably peaks in the relationship between obligate parasites and 

Colony take-over 
by slavemaker 
queen and nest 

Host 
colony 

Coexistence of slavemakers 
and enslaved host workers

Slavemaker colony with social 
parasite brood and raided host 

Slavemaker
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host colonies by slavemaker 
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their hosts (Futuyma & Slatkin 1983, Thompson 1994, Thompson 1999a). Despite of this 

and despite of the strong analogy to avian brood parasites, the fascinating 

relationship of insect social parasites and their hosts was not investigated under a 

coevolutionary perspective for a long time as it was assumed that social parasites 

have won the arms race against their hosts (Gladstone 1981, Grasso et al. 1992). Yet, 

recent studies on the association between slavemaker presence and host 

demographic and genetic structure have revealed strong evidence for an ongoing 

coevolutionary arms race (Foitzik & Herbers 2001a, Herbers & Foitzik 2002, Foitzik et al. 

2003, Hare & Alloway 2001) and thus fiercely questioned this view. 

In particular, empirical studies on the slavemaking ant Protomognathus 

americanus and its host species have demonstrated the strength of selection 

pressure, this social parasite exerts on its hosts. P. americanus is a tiny myrmicine ant, 

which obligatorily exploits three related species of the genus Temnothorax. These 

ants nest in hollow acorns, hickory nuts and small twigs on the ground of mixed 

deciduous forests throughout the north-eastern part of the American continent 

(Fig. 2). 

 

 

 
Figure 2: P. americanus worker (left), T. longispinosus worker (left middle), T.curvispinosus worker (right 
middle), T. ambiguus worker (right). Pictures by Miriam Brandt 

 

 

The strong impact of this social parasite on its host species largely stems from 

the frequent and destructive slave raids, with host colonies suffering from 2-10 

successful raiding attacks per year and social parasite colony, and a low post- raid 

survival (Foitzik et al. 2001, Foitzik & Herbers 2001a, Blatrix & Herbers 2003). In addition, 

host colonies in the vicinity of the social parasite were shown to exhibit a changed 

demography and investment strategies. These host colonies were smaller, more 

frequently monogynous and their production rather focussed on dispersing sexuals 

than on colony maintenance (Foitzik & Herbers 2001b, Herbers & Foitzik 2002). Yet, a 
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direct and causal relationship between P. americanus presence and host nest 

density, demography and investment strategies was as yet lacking. Publication 1 is 

trying to fill this gap with empirical data on a large-scale and long-term field 

experiment, manipulating parasite density in field. According to the geographic 

mosaic theory (Thompson 1994, 1999b, 2005), the nature and outcome of species 

interactions can vary greatly across and between regions. Earlier studies have found 

evidence for local adaptation of the cuticular hydrocarbon profile of P. americanus 

(Foitzik et al. 2001, Brandt & Foitzik 2004, Brandt et al. 2005a), which matched the 

chemical odor of sympatric hosts. Therefore it was especially interesting, if the social 

parasite is also locally adapted on an ecological scale. Publication 1 is addressing 

this question by including a special cross-fostering design with two geographically 

separated ant communities into the set-up (e.g. Foitzik et al. 2001, Herbers & Foitzik 

2002, Brandt & Foitzik 2004, Foitzik et al. 2004).  

Within the parasite-host system of P. americanus, preliminary studies and 

Publication 1 have impressively demonstrated the strong selection pressure exerted 

by this social parasite. This strong parasite pressure has inevitably led to the evolution 

of host defenses, especially in the context of slave raids and thus proven an ongoing 

coevolutionary arms race between P. americanus and its host species (Alloway 1990, 

Mori et al. 1991, Foitzik & Herbers 2001a, Herbers & Foitzik 2002). Apart from the 

already mentioned changes in demography and investment strategy, host defenses 

include enemy recognition and better fighting abilities as well as the fast evacuation 

and escape of the attacked host colonies (e.g. Alloway 1990, Foitzik et al. 2001, 

Brandt et al. 2005a). All these adaptations are defense strategies that help to avoid 

falling victim to slave raids or the colony take-over by a mated social parasite 

queen. Yet, counter-parasite strategies after successful establishment of parasitism 

have been argued to be impossible to be selected for (Gladstone 1981), because 

enslaved host workers seemed to gain no fitness benefit by rebelling against their 

oppressors. Publication 2 intensely questions this view and documents the killing of 

social parasite brood by enslaved host workers.  

The survival of a social parasite colony entirely depends on the collaboration 

of enslaved host workers. Apart from rearing social parasite brood, enslaved host 

workers are confronted with a steady supply of raided host brood representing the 

future slave workforce. Hence, the acceptance and brood care for alien raided 

brood is a critical point in the parasitic life style of slavemaking ants. Enslaved host 

workers could also develop defence strategies in this context. Publication 3 thus aims 
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to enlighten the potential evolution of a rejection behavior in the host and 

empirically investigates the acceptance of alien host and parasite pupae of 

different castes by Temnothorax workers in parasite colonies and in non-parasitized 

host colonies (Fig. 3). The rejection of raided alien host brood was so far excluded, 

since the brood acceptance of segregated host workers was shown to be either 

enhanced by the presence of the social parasite (Alloway 1982), or enforced by the 

exposure of enslaved host workers to allospecific odors during a critical learning 

period after their eclosion (Jaisson 1975, LeMoli & Passetti 1977, LeMoli & Mori 1982, 

Goodloe & Topoff 1987). Yet, behavioral studies on the brood acceptance in 

naturally composed field colonies, as in Publication 3, have as far been lacking.  

 

 

 
Figure 3: Male (M), worker (W) and queen (Q) pupae of the host species T. longispinosus, T. curvispinosus 
and the social parasite P. americanus. 

 

 

Furthermore, Publication 3 investigates a potential chemical recognition 

mechanism, which Temnothorax workers might use to discriminate between pupae 

of different castes and species. In social insects, chemical signals e.g. cuticular 

hydrocarbons and gland secretions are known to be widely used in the recognition 

and discrimination of nestmates, sex and species (Howard 1993). 

As demonstrated, P. americanus and its Temnothorax host species are caught 

in an ongoing coevolutionary arms race of reciprocal counter adaptations which 

were at least in part already shown to significantly vary across and between 

geographical regions (Foitzik et al. 2001, Brandt & Foitzik 2004, Brandt et al. 2005a, 

Foitzik et al. in press). Both the coevolutionary arms race and the local adaptation of 

P. americanus on a chemical and an ecological scale are clearly based on the 

evolutionary potentials of the interacting species. Unlike asymmetric host-parasite 

 M      W      Q        M     W       Q                                 M         W         Q 
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systems, with a substantially higher evolutionary potential for the parasite (Hamilton 

et al. 1990), social parasites like the slavemaking ants P. americanus are very closely 

related to their host species and are thus characterized by similar generation times 

and mutation and recombination rates (Emery’s rule; Emery 1909). In this evolutionary 

model, migration and gene flow can therefore be crucial for leading the 

coevolutionary arms race. Geographic population structure shapes the interspecific 

interactions between parasite and host (Gandon et al. 1996, Gandon & Michalakis 

2002, Thompson 1994). Local adaptation is consequently found in populations with 

low to intermediate levels of gene flow and conspecific population diverge due to 

genetic drift (Brodie & Brodie 1991, Carroll et al. 1997, Wilkinson et al. 1996). High 

levels of gene flow can cause to homogenize species interactions due to the rapid 

spread of new evolutionary traits (Slatkin 1987). Excluding the latter extreme, gene 

flow will allow beneficial adaptations as a result of local selection pressure 

(Thompson 1994). With genetic variability being the limiting factor, gene flow among 

parasite populations is crucial for spreading adaptive traits (Thompson 1994) and 

gene flow among host populations enables the antagonist to keep up with its 

opponent by evolving anti-parasite adaptations (Dybdahl & Lively 1996, Ladle et al. 

1993). Host populations which show a higher migration rate than their parasite, 

should consequently be able to locally adapt to their oppressor and vice versa 

(Gandon et al. 1996, Kaltz et al. 1999). Publication 4 thus represents a broad genetic 

microsatellite study on the amount of genetic variability and the pattern of gene 

flow between social parasite- and host populations.  
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SUMMARY: AIMS OF THIS THESIS 
 

The aim of this thesis was to investigate the coevolutionary arms race between the 

slavemaker P. americanus and its Temnothorax host species from different 

perspectives. Previous studies on this obligate social parasite have already 

demonstrated the evolution of morphological, behavioral and chemical 

adaptations, and have given variable results on the strength of the selection pressure 

exerted by this parasite. Based on these results, Publication 1 investigates the direct 

and causal relationship of the parasite pressure exerted by P. americanus and the 

reaction of nest density, social structure and life history of its main host species 

T. longispinosus in two ant communities. Publication 2 also enlightens the effects of 

the substantial selection pressure of P. americanus on its host species, but with a 

focus on host behavior and defensive anti-parasite adaptations of Temnothorax 

workers, which are active after host workers are parasitized. Based on the finding of 

slave rebellion, Publication 3 further investigates the brood acceptance behavior of 

Temnothorax workers and a potential chemical, recognition mechanism to 

discriminate between pupae. Finally in Publication 4, a genetic study on the amount 

of genetic variability and the patterns of gene flow between social parasite- and 

host populations is presented. 
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ABSTRACT 
 
Selection and adaptation are important processes in the coevolution between 

parasites and their hosts. The slavemaking ant Protomognathus americanus, an 

obligate ant social parasite, has previously been shown to evolve morphological, 

behavioral and chemical adaptations in the coevolutionary arms race with its 

Temnothorax hosts. Yet, empirical studies have given variable results on the strength 

of the selection pressure this parasite exerts on its host populations. In this study, we 

directly investigated the pressure exerted by P. americanus and the reactions of the 

main host species, T. longispinosus in two ant communities by manipulating parasite 

density in the field over several years. In addition, a cross-fostering design with the 

exchange of parasites between host populations allowed us to investigate local 

adaptation of parasite or host. We demonstrate a severe impact of the social 

parasite on the two host populations in West Virginia (WV) and New York (NY), but 

also variation in host reactions between sites, as expected by the geographic 

mosaic theory of coevolution. Host density decreased at the WV site with the 

presence of local slavemakers, whereas at the ecologically favorable NY site, density 

was unaffected. Nevertheless, social organization, colony size and investment 

patterns of these host colonies at this site changed in response to our parasite 

manipulation. The release of P. americanus colonies led to a reduction in the number 

of resident queens and workers, an increase in intra-nest relatedness, a lower 

productivity, but also a higher investment in reproductives. In WV, colony 

demography did not change, but raiding activity by NY slavemakers caused 

different investment patterns of host colonies. In addition, the cross-fostering element 

revealed local adaptation of the parasite P. americanus: slavemaking colonies fared 

better in their sympatric host population, as they contained more slavemaking ant 

workers and slaves at the end of our 27 months experiment. 

 

Keywords: Host-parasite interactions, geographic mosaic, coevolution, 

coevolutionary arms race, selection, social insects, slavemaking ants, 

Protomognathus, Temnothorax 
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INTRODUCTION 
 

Natural selection as the driving force of evolution can be especially intense in the 

coevolutionary interactions between obligate parasites and their hosts. Parasites 

often dramatically lower the fitness of infected host individuals, up to complete 

sterilization. These strong selection pressures often cause rapid counter-adaptations 

in the host, leading to an evolutionary arms race between parasite and host 

(Dawkins & Krebs 1979). Furthermore, ecological interactions between antagonistic 

species can have strong effects on the community level, as is best known from the 

population oscillations in predator-prey interactions (Wade 2007). Besides this aspect, 

adaptations in other species can negatively alter the ecological environment for an 

interacting species to such an extent that it can go extinct if it does not develop 

counter-adaptations quickly enough (Darwinian extinction; Darwin 1859). In addition 

to changes in the coevolution over time, these interactions also vary over 

geographic landscapes. According to the geographic mosaic theory (Thompson 

1994, 1999b, 2005), the nature and outcome of species interactions can differ greatly 

between locales. In coevolutionary “hot spots,” predominant selection pressures on 

each species stem from its enemies, which results in each species being tightly 

coadapted. In contrast to these are “cold spots”, where other selection pressures 

prevail and coevolution is less strong, or even absent if some species are lacking or 

occur at low densities.  

Slavemaking ants are social parasites with a highly sophisticated lifestyle 

(Buschinger 1986, Hölldobler & Wilson 1990, Brandt et al. 2005b), most of which 

obligatorily depend on a heterospecific workforce for routine tasks such as brood 

care, foraging, and nest defense. These parasitic ants are behaviorally and 

morphologically well-equipped for one task: finding and subduing colonies of their 

host species. Parasite colonies are initiated in summer when mated young 

slavemaker queens take over host colonies. The first slave workers, which emerge 

from the usurped host brood accept the parasite queen and care for her and the 

brood. Slavemaker workers, raised during the following years, engage in frequent 

raids on neighboring host nests to steal host brood and to replenish their slave supply. 

The negative impact of these social parasites on their hosts largely stems from these 

frequent and destructive slave raids.  

Genetic studies on the tiny formicoxenine slavemaking ant species 

Protomognathus americanus have shown between 2-10 successful attacks on host 
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colonies per year per parasite colony and a low post-raid survival rate of host nests 

(Foitzik et al. 2001, Foitzik & Herbers 2001a, Blatrix & Herbers 2003). In addition, 

demographic and ecological analyses have demonstrated the footprint of selection 

in these raids via a changed demography and investment pattern of host colonies in 

the vicinity of P. americanus nests. Host colonies within the raiding range of 

slavemaking nests were more frequently monogynous, smaller and reallocated 

resources from the production of new workers important for colony maintenance to 

dispersing sexuals (Foitzik & Herbers 2001b, Herbers & Foitzik 2002). However, as 

expected by the mosaic theory of coevolution (Thompson 1994, 1999b, 2005), the 

intensity of selection in the interaction between this obligate social parasite and its 

Temnothorax hosts differs greatly between ant communities. This variation has been 

attributed to pronounced geographic differences in parasite prevalence, raiding 

frequency, post-raid host survival and community composition (Foitzik et al. 2001, 

Herbers & Foitzik 2002, Blatrix & Herbers 2003, Brandt & Foitzik 2004, Johnson & Herbers 

2006). The observed variation in the coevolutionary process can also explain the 

results of two experimental manipulations of P. americanus density in Temnothorax 

populations in Ohio and Ontario (Hare & Alloway 2001, Johnson & Herbers 2006). 

These small scale, short-term experiments compared parasite pressure by 

P. americanus to selection exerted by a second slavemaker, T. duloticus. In contrast 

to the latter species, P. americanus was found to have only a minor impact on its 

hosts, and was accordingly described as prudent. Yet, this contradicts correlative 

results on Northeastern populations of T. longispinosus, where parasite pressure by 

P. americanus was found to be intense and appeared to greatly influence host 

demography and allocation (Foitzik & Herbers 2001a, Herbers & Foitzik 2002).  

In our large-scale field manipulation, we focus on the interaction between 

P. americanus and its main host species, T. longispinosus, which is a widely distributed 

ant species, with a highly variable ecology, social organization and life history 

(Herbers 1989, Herbers & Banschbach 1999, Herbers & Foitzik 2002, Foitzik et al. 2004). 

We directly manipulated slavemaker density in a long-term experiment in two ant 

communities in the States of New York (NY) and West Virginia (WV). Behavioral, 

chemical, genetic and ecological analyses agree that an ant community in upstate 

NY represents a coevolutionary “hot spot,” with strong reciprocal selection pressures 

(Foitzik et al. 2001, Foitzik & Herbers 2001a, Herbers & Foitzik 2002, Brandt & Foitzik 

2004, Foitzik et al. 2004, Brandt et al. 2005a). At this densely populated site, 

T. longispinosus hosts apparently experience optimal ecological conditions, with 
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large and frequently polygynous colonies. Host nest composition and allocation 

patterns strongly varied with the presence of P. americanus. In the vicinity of 

slavemaking nests, host colonies were generally smaller, contained fewer queens 

and showed higher intra-nest relatedness. In contrast, host nest demography was not 

associated with social parasite presence in the WV community, where genetic data 

indicate less frequent and less destructive raids by P. americanus (Foitzik et al. 2001, 

Herbers & Foitzik 2002). Moreover, the density, demography and social organization 

differed strongly between T. longispinosus populations with less dense, smaller and 

predominantly monogynous host nests located in WV (Herbers & Stuart 1996b).  

Based on these site-specific differences, we hypothesize that the experimental 

addition of P. americanus nests will strongly decrease host nest density in WV, but not 

in NY. Despite the fact that frequent slave raids are expected to destroy host 

colonies at both sites, the host colonies in NY are expected to quickly repopulate 

vacant nest sites. In addition, the large, polygynous colonies in NY are anticipated to 

split up, as has been demonstrated for small, monogynous Temnothorax nests in this 

population when empty nests sites are experimentally added (Herbers 1986). 

Therefore, our second hypothesis states that in the polygynous population in NY, an 

increase in parasite pressure should lead to small, monogynous host nests with 

altered allocation strategies. However, these changes in demography and social 

organization are not expected in WV. 

Our hypotheses are based on population comparisons and correlations 

between parasite presence and host demography in two ant communities. 

Unfortunately, these correlative approaches lack the power to disentangle cause 

and effect. Consequently, it remains unclear whether the recorded variation in life-

history in the NY T. longispinosus population is directly caused by its social parasite or 

whether P. americanus preferentially settles in habitats with small, monogynous host 

colonies (Herbers & Foitzik 2002). Nevertheless, our first hypothesis invokes a direct 

and causal relationship, which our experimental approach will permit us to directly 

examine. Our approach will also allow us to differentiate the two hypotheses that we 

have proposed. 

We included a cross-fostering element in our field manipulation with the 

exchange of P. americanus colonies between ant communities to investigate the 

potential occurrence of local adaptation in this social parasite system on an 

ecological scale. Local adaptation describes a situation where the mean fitness of a 

population is higher in its home locality than in any other environment (Kaltz & Shykoff 
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1998). While behavioral cross-fostering studies on P. americanus and its hosts did not 

indicate local adaptation, the cuticular hydrocarbon profile of this obligate parasite 

was found to be adapted to its sympatric host populations (Foitzik et al. 2001, Brandt 

& Foitzik 2004, Brandt et al. 2005a). If the social parasite is also locally adapted on an 

ecological scale, we would expect that the released P. americanus colonies fare 

better in their sympatric host populations. Maladaptation, in contrast, would indicate 

local adaptation of the T. longispinosus populations. However, an alternative 

hypothesis could suggest that low host density in WV might lead to lower parasite 

success independent of the origin of P. americanus colonies. Alternatively, host 

density could be is less important for the parasite than defensive behaviors of the 

host, which were found to be more effective in NY (Foitzik et al. 2001).  

 

 

MATERIAL AND METHODS 
 

Study system 

The obligate social parasite, Protomognathus americanus (Tribus Formicoxenini), is 

widely distributed throughout the deciduous forests of the northeastern United States 

and Canada. This slavemaking ant parasitizes three Temnothorax species, with 

T. longispinosus being its main host (Creighton 1927, Wesson 1939, Creighton 1950). 

These tiny ants inhabit cavities in acorns, nuts and sticks in the leaf litter. 

Our field manipulations were conducted at two well-studied ant communities 

in the eastern United States (Culver 1974, Herbers 1989, Herbers & Stuart 1996b): The 

study site at the Edmund Niles Huyck Preserve near Albany in New York State (NY) is 

situated at 600m above sea level, while the more Southern site in the State of West 

Virginia (WV) was at a slightly higher elevation (1,000 m above sea level) at Watoga 

State Park in Pocahontas County. In NY the host species T. longispinosus constitutes 

more than 95% of all host nests, while in WV this host species is slightly less dominant, 

comprising only about 84% of the local Temnothorax community. Secondary hosts 

are T. ambiguus in NY and T. curvispinosus in WV. Parasite prevalence in both 

communities varies between 7-10%, but slavemaking ant colonies are generally 

smaller in WV (Herbers & Foitzik 2002). 
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Field manipulations 

In spring 2001, we started a 27-month, large scale, cross-fostering field experiment at 

the NY and WV field sites. To keep the experimental conditions for the ants as natural 

as possible we marked plots, but did not prohibit movement of host or parasite 

colonies. For Temnothorax ants, nest movement is regular part of a colony’s life 

because their nest sites e.g. acorns quickly decompose. Our decision to not restrict 

colony movement was a risky one as migration in and out of our study plots could 

potentially equalize any effects of our manipulation. Due to the breadth of our 

experiment, involving over 1400 m² of forest floor and more than 950 ant colonies, we 

still felt confident we would be able to show, if present in the field, an influence of 

P. americanus on its hosts. 

In our experiment, we used a hierarchical design with site (NY vs. WV), block 

(six-seven sub-sites within each site) and plot (three plots per block, each with a 

different treatment). In May of 2001, we collected and mapped all ant colonies of 

the study species in 39 plots of 5m x 5m by carefully searching the forest floor and 

opening all potential nest sites. We set up 18 plots in NY, located in six different sub-

sites (blocks), and 21 plots in WV in seven blocks. Within each site, blocks were 

separated by a minimum of 10m and a maximum of 500m and each block 

contained three plots, which lay between 4 and 6 m apart. The block design was 

used to measure small scale ecological differences between areas, which are 

known to affect the biology of the host T. longispinosus (Foitzik et al. 2004). Ant 

colonies were transferred to the field station where they were censused and allowed 

to move into artificial nest sites. These nest sites were made of cylindrical beech 

dowels (10 cm long, 1.5 cm in diameter, with a longitudinal 4-mm hole), closely 

resemble natural nest sites and are readily accepted by Temnothorax ants (Herbers 

1986, Foitzik et al. 2004). Ant colonies were returned to the exact position in the forest 

within two weeks. In each block, plots were randomly subjected to one of the 

following three treatments:  

 

I. In six NY plots and seven WV plots we refrained from returning P. americanus 

colonies. These plots, which were free of slavemaking ant colonies at the 

onset of the experiments, are called “parasite-free plots”, though 

P. americanus colonies could immigrate during the experiment. As parasite 

colonies only moved in over time, a long-term reduction in parasite pressure 

was expected.  
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II. In six plots in NY and seven plots in WV, we released P. americanus colonies 

from NY (“NY parasite plots”). P. americanus colonies were placed close to 

the center of our plots, so that parasite emigration out of the plot boundaries 

was less likely for these tiny ants with a body size of less than 4 mm. 

III. In six plots in NY and seven plots in WV plots we transferred and released 

P. americanus colonies from WV (“WV parasite plots”). 

 

 With our manipulation, we imitated natural prevalence of P. americanus in 

the two ant communities. We standardized both the number of P. americanus 

colonies and the number of slavemaking workers per host colony in each plot: one 

P. americanus colony was released for ten T. longispinosus host colonies, with a 

minimum of two P. americanus colonies per plot. In addition, we selected 

P. americanus colonies according to the number of slavemaking ant workers. 

Careful colony selection allowed us to release P. americanus colonies in such a way 

that for every three T. longispinosus colonies in a plot at least one P. americanus 

worker was released (in its colony). For example, in a plot with 20 host nests, we 

released two P. americanus colonies, with a total of seven workers. The distribution of 

these seven workers among the two P. americanus nests could vary and depended 

on the natural composition of the available nests. We did not manipulate the natural 

composition of P. americanus colonies used in this experiment. Slavemaking nests 

were positioned close to the center of the study plots, with at least one meter 

between them and the boundaries of the plot. The demography of the released 

P. americanus colonies (N of queens and workers) did not vary with their origin or 

release site (Factorial ANOVA: Parasite origin F2, 65 = 0.27, p = 0.76; Release site: F2, 65 = 

0.89, p = 0.41; Parasite origin x Release site F2, 65 = 0.09, p = 0.92). 

We completely excavated all plots in July to August 2003, shortly before the 

emergence of pupae in ant nests. As the exact raiding range of P. americanus 

colonies is currently unknown, we additionally surveyed a 50 cm strip surrounding 

each plot, thus plot size in 2003 increased to 6m x 6m (36m²). We examined all 

potential nest sites (artificial and natural ones), mapped the position of all colonies 

and transported them to the laboratory in Germany where each colony was 

censused and frozen for genetic analysis. To estimate annual investment, we 

combined census data with data on the average dry masses of adult T. longispinosus 

males, new queens and workers (Foitzik et al. 2004), but adjusted the investment in 

female sexuals with the energetic cost ratio (Boomsma 1989). We calculated the sex 
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allocation ratio for each nest as the relative proportion of energy allocated to male 

versus female propagules (Crozier & Pamilo 1996). We also computed the 

reproductive allocation ratio, which is the relative proportion of energy invested in 

sexual reproduction compared to new workers (Sundström 1995, Herbers et al. 2001, 

Reuter & Keller 2001).  

 

Influence on the genetic colony structure 

Demographic data from this experiment and earlier studies have showed a strong 

effect of P. americanus on the social organization of T. longispinosus nests at the NY 

study site, but not in WV (Herbers & Foitzik 2002). To investigate whether the 

intracolonial relatedness was also affected by our manipulation, we investigated 

worker-worker relatedness in T. longispinosus colonies from NY. We analyzed three 

workers each from all T. longispinosus nests in a subsample of nine plots, three plots 

from each treatment. In total we genotyped 564 T. longispinosus workers from 188 

different colonies. Ants were preserved in 100% ethanol and frozen at -20°C until 

extraction. DNA from individual ants was isolated with the Puregene® DNA isolation 

kit (Gentra systems). We genotyped all samples at four microsatellite loci: LXA GT1 

(Bourke et al. 1997), L-18, L-5 (Foitzik et al. 1997) and Myrt3 (Evans 1993). PCR was 

conducted in a 20µl reaction volume using the Q biogene TaqCoreKit containing 1x 

incubation buffer, 2.2mM MgCl2, 0.4mM each dNTP, 0.5µM labeled forward, 0.5µM 

unlabeled reverse primer, 0.13U of Taq DNA polymerase (Q biogene) and 1-2 µl of 

template. Initial denaturation for 5min at 94 °C was followed by 28 amplification 

cycles (denaturation at 92°C for 1min 30sec; annealing at 54°C for 45sec; and 

extension at 72°C for 30sec), and a final extension at 72°C for 7 min, in a Thermo 

Electron Corporation Thermocycler (PxE 0.2 Thermo). PCR products were 

precipitated with a mixture of 0.5µl of 3M Ammonium acetate and 10µl of ethanol 

(100%) at -60°C for 60 min, dehydrated with a series of different ethanol 

concentrations (100%, 70%) and dried. The thus purified PCR products were dissolved 

in 5.75 µl dd H2O and 0.25 µl MegaBACE™ ET400-R size standard (Amersham 

Bioscience) and analyzed in a capillary sequencer (Amersham Bioscience 

MegaBACE™ 1000). Data analysis was performed using the software program 

MegaBACE™ Fragment Profiler 1.2 (Amersham Bioscience). Relatedness values, 

allele frequencies and allele numbers were calculated with the software program 

Relatedness 5.0 (Queller & Goodnight 1989). We calculated the population-level 
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estimates and their standard errors obtained by jack-knifing over colonies, and report 

them below. 

 

Data analysis and statistics 

Data analysis was complicated by the fact that host density and demography varies 

on a fine scale at the NY study site (Foitzik et al. 2004). Therefore, we included the 

factor ‘block’ in our analytical methods, which indicates the respective sub-site 

within each site. The raiding range of P. americanus colonies is unknown, but 

potentially extends outside of the study plots. Microsatellite analyses revealed an 

average distance between polydomous P. americanus nest units of 1.19 ± 0.92m, 

indicating that migrations and raids are conducted over a range of about 1 meter 

(Foitzik & Herbers 2001b). For this reason, analyses of the 2003 Temnothorax data set 

were generally based on the larger 36m² plots, with a few exceptions: first, we used 

the original 25m² when we directly compared the number of ant nests in 2001 and 

2003 plots. Second, analyses of the density and demography of P. americanus 

colonies were also based on the original quadrat, because parasite nests found 

outside of this range most likely represent naturally occurring P. americanus colonies 

of the local ant community and not colonies released by us. We examined nest 

frequency data with a log-linear analysis (Sokal & Rohlf 1995), which allowed us to 

study the impact of our parasite manipulation and of ecological parameters 

(i.e. differences between blocks) and their interaction simultaneously. To analyze the 

impact of slave raids on host nest demography we used two different approaches. 

First, we compared social structure (i.e. N of queens per nest) and colony size (N of 

workers) for colonies found in the same plot in 2001 and 2003. We tested whether 

changes in social organization or colony size were associated with our manipulation 

of parasite density. Furthermore, we compared the demography of host colonies in 

2003 between plots that experienced different treatments. The latter analyses 

additionally allowed us to contrast productivity and investment patterns, which are 

highly variable between years. We used a hierarchical approach and first analyzed 

the entire data set with factorial ANOVAs using as independent factors treatment 

and study site (NY vs. WV). Then we focused on each study site separately and in 

these factorial ANOVAS we included the treatment and block (sub-sites within each 

site) as independent factors. Data distributions were tested for deviation from 

normality and heteroscedasticity. As expected for large data sets such as ours 

(e.g. the analysis on host nest demography was based on 797 host colonies) tests 
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often revealed significant deviations from normality. Consequently, a number of 

transformations (log, arcsine, square root etc.) were used to normalize data or else 

we used non-parametric statistics. We generally report two sided p-values. All 

statistical tests were performed with the program Statistica 6.0. 

 

 

RESULTS 
 

Composition of ant communities and nest densities 

In 2001, we found a total of 397 T. longispinosus, 13 T. ambiguus and 33 P. americanus 

nests within the 450m² of mapped forest floor at the NY study site, resulting in an 

average density of 0.909 ± 0.081 host nests / m² and a parasite prevalence of one 

P. americanus colony per 12.4 Temnothorax nests. In WV with a total study area of 

525 m² (21 plots x 25m²), we collected 312 T. longispinosus, 3 T. curvispinosus and 34 

P. americanus nests, resulting in a mean density of 0.598 ± 0.081 host nests / m² and a 

parasite prevalence of one per 9.3 host nests. 

 
 

Figure 1 Influence of site (NY vs. WV) and parasite treatment on host nest density. In 2001, all 

P. americanus colonies were removed from the study plots and either no social parasite nests (parasite-

free) or P. americanus colonies from New York (NY parasite) or West Virginia (WV parasite) were 

released. We show mean density of Temnothorax host nests ± SE in our study plots in 2003. 
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In 2003, we collected 499 T. longispinosus, 22 T. ambiguus and 86 

P. americanus nests in NY in an area of 648 m² (18 plots x 36m²), yielding an average 

density of 0.804 ± 0.097 host nests / m² and a parasite prevalence of one 

P. americanus colony per 6.1 Temnothorax nests (Fig. 1). In WV (mapped area 

756 m²), we collected 298 T. longispinosus, one  T. curvispinosus and 45 P. americanus 

colonies, resulting in a mean density of 0.396 ± 0.056 host nests / m² and a parasite 

prevalence of one slavemaking colony per 6.6 host nests. 

A between-years comparison at the NY site revealed a slight decrease in host 

density over time (Wilcoxon Matched Pairs test: N = 18; Z = 1.94; p = 0.053). In 

contrast, we uncovered a higher number of P. americanus nests in the inner 25m² in 

2003 than we released in 2001 (Wilcoxon Matched Pairs test: N = 18; Z = 2.43; p < 

0.015; median 2001: 2; median 2003: 3). In contrast, for the WV site we observed no 

significant change in the number of parasite nests per plot over time (Wilcoxon 

Matched Pairs test: N = 21; Z = 0.37; p = 0.71, median 2001: 2; median 2003: 1), but a 

strong reduction in Temnothorax nest density (Wilcoxon Matched Pairs test: N = 21; Z 

= 3.15; p = 0.002). 

During the 27 months of our experiment, slavemaking colonies apparently 

moved around considerably, as indicated by the presence of P. americanus 

colonies in “parasite-free” plots in 2003. Nevertheless, in both study sites the number 

of parasite colonies was still higher in the 25m² plots where we released slavemaking 

colonies than in plots which were set-up parasite-free in 2001 (NY parasite plots: 

mean = 4.17 ± SE 0.74; NY parasite-free plots: mean = 2.50 ± SE 0.62; WV parasite 

plots: mean = 1.86 ± SE 0.56; WV parasite-free plots: mean = 0.86 ± SE 0.46). A general 

linear model demonstrated that the number of slavemaking colonies per plot in 2003 

depended on the number of parasite colonies released in 2001 and the study site 

(GLM: Number of parasite nests released in 2001: F1, 36= 9.15; p < 0.005, Site: F1, 36= 9.18; 

p < 0.005). 

Log linear analysis over the entire data set demonstrated that host nest density 

in the 36m² study plots in 2003 varied between study sites, sub-sites (blocks) and in 

reaction to our parasite manipulation (χ²-tests of partial association : Site: χ²1= 58.0, p 

< 0.001; Block: χ²12= 210.9, p < 0.001; Treatment: χ²2= 5.5, p = 0.06). In NY, the host nest 

density strongly varied between blocks, but did not change in response to our 

treatments (Block: χ²5= 52.2, p < 0.001; Treatment: χ²2= 0.6, p = 0.75; Fig. 1). In contrast, 

the WV host density was over 40% lower in plots with sympatric P. americanus nests 

compared to parasite-free control plots and those with NY parasites (Block: χ²6= 66.2, 
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p < 0.001; Treatment: χ²2= 14.5, p < 0.001). Importantly, these differences in host 

density in WV were not present before our manipulation in the 2001 data set (Log 

linear analysis: Differences between plots later subjected to different treatments; χ²2 

= 0.47, p = 0.79).  

 

Impact of treatments on T. longispinosus nest demography in 2003 

At the onset of the experiment in 2001, the T. longispinosus nest demography 

(number of dealate queens and number of workers) did not differ between plots 

subjected to different parasite treatments, but as expected, we found strong 

variation between host populations (ANOVA: Site: F2, 701 = 12.95, p < 0.0001; 

Treatment: F4, 402 = 0.47, p = 0.76). 

Factorial ANOVAs on the entire 2003 data set show strong differences 

between the two host populations, effects of our manipulation and interactions 

between site and treatments (Table 1, Fig. 2). In the NY site, T. longispinosus nests 

were larger, but less productive than host colonies in WV. In addition, NY 

T. longispinosus nests in 2003 produced a female-biased allocation ratio and invested 

more in sexuals than in new workers. At both sites, our parasite manipulation 

influenced investment patterns of host colonies, i.e. the male allocation ratio and 

reproductive allocation ratio. Site by treatment interactions indicated that our 

parasite manipulation differently affected the two host populations. We found this 

interaction in the social structure (number of dealate queens) and more strongly in 

the reproductive allocation ratio. 
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Table 1 Univariate results of factorial ANOVAs on the impact of our parasite manipulation on 

T. longispinosus nest demography and reproductive strategies over both sites (not including block 

effects), for NY and WV separately. Host nest demography varied strongly between sub-sites (blocks) 

within each study site and consequently we included block as an additional factor in the local 

analyses. 
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Figure 2 Social organization, demography, productivity and allocation patterns of T. longispinosus 

colonies varied between study sites and in response to our parasite treatments. We report weighted 

means ± SE for a) the number of dealate queens per nest, b) the number of workers per nest, c) the 

total annual production, d) male allocation ratio and e) reproductive allocation ratio. Open boxes 

represent parasite-free plots, hatched boxes NY parasite plots and filled boxes WV parasite plots. Note 

that NY P. americanus nests released in NY encountered sympatric host colonies, while those released in 

WV were confronted with allopatric hosts (and vice versa for WV parasites).  
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The site-specific factorial ANOVAs demonstrated that NY host colonies in parasite-

free plots more frequently became polygynous (Fig 2a). These host colonies under 

reduced parasite pressure also invested correspondingly more in new workers than in 

reproductives (Fig 2e). However, the analysis also demonstrated different, but highly 

significant reactions to our manipulations in different sub-sites (blocks) (Table 1). 

These interactions could be shown for the number of workers, the total annual 

production, the reproductive allocation ratio and tentatively for the male allocation 

ratio. In the NY site, we further uncovered strong differences between sub-sites in the 

number of queens, total annual production and reproductive allocation ratio. These 

microgeographic differences, with the exception of the reproductive allocation 

ratio, were absent in the WV site. 

In WV, our parasite treatment directly influenced the investment patterns of 

T. longispinosus colonies (Table 1; Fig. 2e). Here, the origin of the social parasite 

colonies was more important than the parasite pressure. Host colonies exposed to 

sympatric parasites generally invested more in reproductives than in new workers. 

The converse was true for T. longispinosus nests in allopatric NY parasite plots, 

whereas host nests from parasite-free plots showed intermediate investment patterns. 

We also found an interaction between treatment and block in respect to the male 

allocation ratio and the reproductive allocation ratio.  

 

Comparison of host nest demography between 2001 and 2003 

An alternative way to investigate how our treatments affected T. longispinosus nest 

demography is to compare the situation before and after our manipulation. To 

accomplish this, we contrasted the mean number of queens and workers in 

T. longispinosus nests from the same plots in relation to whether we removed or 

added P. americanus colonies from the study plot in 2001. An experimental increase 

in the number of slavemaking colonies led to a decrease in the average number of 

resident queens in free-living T. longispinosus nests in NY (Spearman Rank correlation: 

rs= -0.63, p < 0.005, N = 18; Fig. 3), while we found no such change in social 

organization in WV (Spearman Rank correlation: rs= -0.28, p = 0.22, N =21). There was 

no effect on the mean T. longispinosus colony size in NY and WV (Spearman Rank 

correlations; NY: rs= -0.31, p = 0.19; WV: rs= 0.17, p = 0.46).  
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Figure 3 Change in the number of dealate queens per T. longispinosus nest in NY from the start of the 

experiment in May 2001 to the end in July 2003 in response to the experimental change in 

P. americanus nests per plot. Average queen number in host nests decreased with an experimental 

increase in the number of slavemaker colonies per plot. 

 

 

Influence on the genetic colony structure 

Intracolonial relatedness strongly responded to our treatments in the NY population 

(ANOVA: F2, 185 = 6.50, p < 0.002; Figure 4). T. longispinosus workers in colonies from 

plots without parasites were significantly less closely related than workers in colonies 

from social parasite plots (Fisher LSD post-hoc tests: Parasite-free / NY parasite: 

p < 0.03; Parasite-free / WV parasite: p < 0.001). Plots with either NY or WV parasites 

did not differ in worker-worker relatedness (Fisher LSD post-hoc test: p = 0.19). 

Worker-worker relatedness in T. longispinosus colonies was not associated with 

any demographic or allocation parameter (Spearman Rank correlations: p > 0.20; N 

= 188). However, intracolonial relatedness was lower in polygynous T. longispinosus 

colonies than in monogynous or queenless nests (queenless / monogynous: mean r = 

0.509 ± SE 0.020; polygynous: mean r = 0.399 ± SE 0.054; ANOVA: F1, 180 = 3.92, p < 0.05). 
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Figure 4 Intra-nest worker-worker relatedness in T. longispinosus colonies from the NY study site in 

parasite-free, NY parasite and WV parasite plots. Means ± SE are given over all colonies residing in three 

plots per treatment.  

 

 

Local adaptation in the social parasite: the success of released P. americanus 

colonies 

The survival rate of released P. americanus nests was higher in NY than in WV, but did 

not depend on the source population of the parasite or on an interaction between 

parasite origin and release site (General linear model: Site: F1, 22 = 7.31, p < 0.015; 

Treatment: F1, 22 = 0.00; p = 1.00; Site × Treatment: F1, 22 = 0.01, p = 0.96). 

In contrast, the demography of slavemaking colonies strongly depended on 

an interaction between parasite origin and site, i.e. the host population the 

slavemaking ant colony was released in (Table 2, Fig. 5). In 2003, NY slavemaking 

colonies, which were released in NY, contained more slavemaking workers and 

slaves than the same parasite colonies that were released in WV. Likewise, WV 

P. americanus colonies were much larger after 27 months when living in their 

sympatric host population than in the NY ant community. 
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Table 2 Impact of source population of P. americanus colonies and release site on the demography of 

P. americanus nests. Univariate results of factorial ANOVAs are reported. 

 

 Parameter F df1, df2 P 

Site 1.07 1, 72 0.30 

Parasite origin 1.07 1, 72 0.30 

N of P. americanus queens 

Parasite origin × site 0.52 1, 72 0.47 

Site 1.67 1, 72 0.20 

Parasite origin 1.95 1, 72 0.17 

N of P. americanus workers 

Parasite origin × site 6.99 1, 72 0.01 

Site 0.00 1, 72 0.97 

Parasite origin 0.16 1, 72 0.69 

Total annual production 

 

Parasite origin × site 2.63 1, 72 0.11 

Site 0.54 1, 71 0.46 

Parasite origin 5.46 1, 71 0.02 

N of Temnothorax slave workers 

Parasite origin × site 6.71 1, 71 0.01 

 



PUBLICATION 1   28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 Demography of P. americanus colonies in respect to their origin and their release site. Weighted 

means ± SE are given for the N of slavemaking workers and the N of enslaved Temnothorax workers 

present in slavemaking ant colonies. Hatched boxes represent NY parasite plots, filled boxes WV 

parasite plots. 
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DISCUSSION 

 

Our field manipulation clearly demonstrates exceptionally strong selective forces on 

T. longispinosus caused by the frequent and destructive raids of its main obligate 

social parasite P. americanus. These findings reflect earlier results of correlative 

approaches, but we can now confirm a direct and causal relationship between 

P. americanus presence and host nest density, demography and investment 

strategies (Foitzik & Herbers 2001a, Herbers & Foitzik 2002). As expected, we found a 

strong negative impact of the slavemaker P. americanus on host nest density in WV, 

while host density did not respond to our treatments at the high density NY study site. 

However, especially in NY, we uncovered strong reactions of Temnothorax colonies 

to our parasite manipulation in their social organization, intranest relatedness, 

demography and allocation patterns. The observed variation in the species 

interaction between the two communities is one of the requirements for a 

geographic mosaic of coevolution (Gomulkiewicz et al. 2007, Thompson 1994, 

1999b). Moreover, we found preliminary indications for local adaptation in the social 

parasite as P. americanus colonies generally fared better in their local host 

population. 

At the WV study site, where the T. longispinosus population is characterized by 

a low nest density, predominantly monogynous social organization and an 

independent colony foundation strategy (Herbers & Stuart 1996b, Herbers & Foitzik 

2002), we uncovered a negative impact of local P. americanus colonies. 

Temnothorax nest density was reduced by over 40% as a consequence of slave raids 

by the local parasite, while we found no reduction in host density with the allopatric 

P. americanus colonies from NY. This difference in parasite impact can be explained 

by NY P. americanus colonies performing rather poorly in WV and containing less 

than a third of slavemaking and slave workers than WV social parasite nests after 27 

months. Interestingly, T. longispinosus colonies in plots with NY parasites were slightly 

more often polygynous, showed a male-biased allocation ratio and invested more in 

reproductives compared to the situation in plots with WV parasites. This shift towards 

a more polygynous social organization with its typical allocation pattern (Bourke & 

Franks 1995) might be due to the recovery of the host population as the result of a 

reduced impact of NY parasites during the final months of the experiment. 

Demographic analysis on the destructive NY P. americanus nests released in WV 
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indicates a collapse of these nests presumably caused by local overexploitation of 

host colonies. 

As predicted and in contrast to the situation in WV, we found no host density 

reduction in NY, but much more pronounced changes in the demographic 

composition and social structure of T. longispinosus nests as a reaction to the 

presence of P. americanus colonies, independent of their origin. This is in 

accordance with earlier studies, which found strong associations between host 

demography and social organization in NY, but not in WV (Foitzik & Herbers 2001a, 

Herbers & Foitzik 2002). Indeed, social parasite nests from both populations fared 

similarly well at this high density site, and significantly better than in WV. This indicates 

that host density is more important for the parasite than host defenses, which were 

found to be more effective in NY (Foitzik et al. 2001). At this study site, the origin of 

released parasite colonies did not matter and the strongest differences were found 

between parasite-free and parasitized plots. Host colonies in plots that we 

supplemented with social parasites were more likely to be monogynous, highly 

related, contain fewer workers, have a lower annual production, and show different 

allocation patterns. The observed changes in host demography and allocation 

patterns presumably reflect a transition in the age structure of host colonies: nests in 

parasitized plots appeared to be in earlier developmental stages (Herbers & Stuart 

1996a). Under the high nest density situation in NY, destroyed host colonies are 

quickly replaced by young founding nests and budding or immigrating colonies from 

the vicinity, which all tend to be small, monogynous nests with a high relatedness.  

We also found that host nests in areas with experimentally increased social 

parasite density showed different investment patterns: parasite presence was 

correlated with low allocation to new workers and high allocation to sexuals. Since 

high investment in sexuals is generally associated with later stages of colony 

development (Oster & Wilson 1978, Bourke & Franks 1995), this observation is 

inconsistent with the shifts in nest size discussed above. Theoretical work in 

epidemiology has shown that under sufficiently high virulence, two alternative 

strategies can coexist in a host population. The first is to develop rapidly and 

reproduce before being infected, at the cost of reduced fecundity (Hochberg et al. 

1992). For ant colonies, this strategy is equivalent with allocating their resources to 

early production of sexual offspring, which may ensure at least some reproductive 

output before the colony is destroyed in a slave raid. Polygynous ants are often 

characterized by high differences in dispersal rates between the sexes, with young 
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queens showing higher philopatry than males (Pamilo 1990, Chapuisat et al. 1997). 

Since males are thus likely to disperse far by flight, they have a chance of escaping 

parasitism by mating with young queens residing in parasite-free patches. The 

alternative strategy is to develop slowly, thereby risking infection and death before 

reproduction, but benefiting from high fecundity (Restif et al. 2001). Our results 

indicate that T. longispinosus colonies preferentially follow the first strategy: when host 

nests perceive that they live in a high-risk, parasite-infested area, an investment in 

the highly mobile sexuals appears to provide greater fitness returns than investment 

in growth.  

The cross-fostering element of our field manipulation revealed local 

adaptation in the social parasite P. americanus on an ecological scale. In both study 

sites, slavemaking ant colonies fared better in their home locality than in an 

allopatric environment. As climatic conditions and ant community composition are 

roughly similar between the two sites (Herbers & Foitzik 2002) and this social parasite 

obligatorily depends on a heterospecific workforce, we conclude that P. americanus 

is locally adapted to its host T. longispinosus and/or its density. The occurrence of 

local adaptation is generally thought to be the result of a balance between 

selection and gene flow (Fisher 1950, Endler 1973, Slatkin 1973). In the case of 

adaptation to a coevolving enemy, local adaptation or maladaptation also 

depends on the evolutionary speed with which the opponents in a species 

interaction are adapting. In our study, the observed local adaptation of 

P. americanus means that the host species T. longispinosus is maladapted, as it 

suffers more from its local parasite than from P. americanus colonies from a different 

location. This is especially evident in the WV host population. Population genetics 

also demonstrate higher gene flow between populations of P. americanus than 

between T. longispinosus populations, indicating the importance of migration for the 

evolutionary potential of these species (Brandt et al. 2007). In our study, local 

adaptation supported the findings of previous work on chemical integration 

strategies (Brandt et al. 2005a). However, it stands in contrast to earlier laboratory 

studies of slave raids, which demonstrated strong differences between slavemaking 

and host populations in raiding and defense efficiency, despite uncovering no 

evidence for adaptation to the sympatric host populations (Foitzik et al. 2001, Brandt 

& Foitzik 2004). Since NY hosts were known to have sound defenses against slave 

raids, we expected WV parasites to fare less well at the NY site than in their home 

locale, which we have indeed found in the current study. The fact that 
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P. americanus colonies from NY did not do well in the WV host population cannot be 

explained in terms of behavioral interactions during raids. In laboratory trials, NY 

slavemakers were easily able to overcome the defenses of WV Temnothorax 

colonies (Foitzik et al. 2001). In the field, factors other than behavioral adaptations 

must come into play. One possible explanation is that the NY parasites were 

negatively affected by the low host density in WV. This interpretation implies that, 

concordant with the geographic mosaic of coevolution theory, local communities 

differ in traits of the interacting species that are selected for during the arms race. 

Whichever characters are affected, our field manipulation indicates local 

adaptation of P. americanus populations. 

Local adaptation has been described commonly in parasites or pathogens of 

non-social parasite systems (Parker 1985, Ebert 1994). For example the trematode, 

Microphallus, was found be adapted to common local clones of its molluscan host 

(Lively & Dybdahl 2000) and the rust fungus Melampsora amygdalinae was adapted 

to sympatric populations of its plant host Salix triandra (Niemi et al. 2006). However, 

other studies have uncovered no local adaptation (Davelos et al. 1996, Roy 1998) or 

maladaptation of the parasite species to its sympatric host (Kaltz et al. 1999, Zhan et 

al. 2002). This latter finding indicates maladaptation might be the consequence of 

local adaptation of the host to the parasite. 

Lastly, we would like to address potential problems caused by allowing 

movement of host and parasite colonies during our experiments. Movement was 

evident by the presence of P. americanus colonies in “parasite-free” plots. Mean 

densities in these plots were still only half of P. americanus densities in plots where we 

originally released slavemaking ant colonies and parasite densities. Colony migration 

could potentially have made it difficult to show effects of our manipulation making 

our findings of complex changes in host biology even more remarkable. Thus, 

although slavemaking ant colonies slowly moved into originally parasite-free areas, 

parasite pressure over the duration of the 27 months was clearly lower in these plots 

causing different host demography, social organization and investment patterns. In 

addition, we cannot be sure that all P. americanus colonies collected at the end of 

the manipulation are the same colonies we originally released. However, as similarly-

sized P. americanus colonies from two populations released at the same study sites 

showed a different demographic composition at the end of the experiment, parasite 

colony movement and mistaking local parasites for released colonies should have 

made it more difficult to show local adaptation. Clearly colony movement, a regular 
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part of the colony life in these small ants, led us to underestimate rather than 

overestimate both the impact of these social parasites on their hosts and the 

strength of local adaptation in the social parasite P. americanus. 
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ABSTRACT 
 

During the process of coevolution, social parasites have evolved sophisticated 

strategies to exploit the brood care behavior of their social hosts. Slavemaking ant 

queens invade host colonies and kill or eject all adult host ants. Host workers, which 

eclose from the remaining brood, are tricked into caring for the parasite brood. Due 

to their high prevalence and frequent raids, following which stolen host broods are 

similarly enslaved, slavemaking ants exert substantial selection upon their hosts, 

leading to the evolution of anti-parasite adaptations. However, all host defenses 

shown to date are active before host workers are parasitized, while selection was 

thought to be unable to act on traits of already enslaved hosts. Yet, here we 

demonstrate the rebellion of enslaved Temnothorax workers, which kill two thirds of 

the female pupae of the slavemaking ant Protomognathus americanus. Thereby, 

slaves decrease the long-term parasite impact on surrounding related host colonies. 

This novel anti-parasite strategy of enslaved workers constitutes a new level in the 

coevolutionary battle after host colony defense has failed. Our discovery is 

analogous to recent findings in hosts of avian brood parasites where perfect mimicry 

of parasite eggs leads to the evolution of chick recognition as a second line of 

defense. 

 

Keywords: Coevolution, arms race, host defenses, brood parasites, slavemaking ants 
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INTRODUCTION 
 

Social brood parasites reduce the cost of parental care by exploiting the brood care 

behavior of other social insect species in an analogous manner to avian brood 

parasites such as cuckoos and cowbirds (Davies & Bourke 1989). Social parasitism 

evokes counter-adaptations in host species, eventually resulting in a coevolutionary 

arms race between these parasites and their  hosts (Foitzik et al. 2001, Als et al. 2004, 

Brandt & Foitzik 2004, Brandt et al. 2005b, Brandt et al. 2007, Martin et al. 2007, Nash 

et al. 2008).  

Slavemaking ants are social parasites, which depend on enslaved allospecific 

host workers for routine tasks such as brood care, foraging, and nest defense 

(Buschinger 1986, Hölldobler & Wilson 1990). These ants are behaviorally and 

morphologically well-equipped for one task: finding and subduing colonies of their 

host species. A mated parasite queen conquers a host nest, expels or kills the host 

queen(s) and adult workers and usurps the remaining worker brood (Stuart 1984, 

Hölldobler & Wilson 1990, Schumann & Buschinger 1994). Slave workers, which eclose 

from this host brood, imprint on the slavemaking queen during the first few days 

(Jaisson 1975, LeMoli & Mori 1982, Goodloe & Topoff 1987) and they subsequently 

take over colony maintenance and care for the allospecific parasite brood. 

Slavemaking workers raised during the following years, attack and raid neighboring 

host colonies and steal the brood to replenish the slave labor force (Wilson 1971, 

Alloway 1979). Yet, within the nests of slavemaking ants, social parasites and workers 

from up to two different host species seemingly coexist peacefully. 

Slavemaking ants exert substantial selection on host populations due to their 

high abundances and their repeated, destructive raids (e.g. Cool-Kwait & Topoff 

1984). Field studies have shown a significant reduction in productivity and average 

life expectancy of host colonies in parasitized populations (Foitzik & Herbers 2001a, 

Fischer-Blass et al. 2006, Johnson & Herbers 2006, Foitzik et al. in press). As expected 

during host-parasite coevolution, this strong parasite pressure has led to the evolution 

of host defenses, especially in the context of slave raids (Alloway 1990, Mori et al. 

1991, Foitzik & Herbers 2001a, Herbers & Foitzik 2002).  

The slavemaking ant Protomognathus americanus is an evolutionarily old, 

obligate social parasite that exerts exceptionally high parasite pressure upon its 

Temnothorax hosts (Foitzik & Herbers 2001a, Blatrix & Herbers 2003, Beibl et al. 2005, 

Johnson & Herbers 2006). Protomognathus americanus colonies successfully raid 
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between 2-10 host colonies per year with higher raiding frequencies recorded for 

larger slavemaking colonies (Foitzik et al. 2001). Although raiding success appears to 

increase with size, P. americanus colonies are unexpectedly small with a mean of 

two to five slavemaking workers per nest depending on population (Herbers & Foitzik 

2002). The behavior, ecology, chemistry and genetics of the coevolutionary 

interactions between this tiny social parasite and its three host species have been 

studied intensively (Herbers & Stuart 1998, Foitzik & Herbers 2001a, Herbers & Foitzik 

2002, Brandt et al. 2005a, Johnson & Herbers 2006, Brandt et al. 2007). These studies 

have demonstrated that the effectiveness of host defenses against slave raids 

depends on parasite pressure and the composition of the local ant community. Yet, 

all anti-parasite strategies of its Temnothorax hosts described so far are effective only 

before host workers are parasitized. 

Generally within host-parasite systems, selection can evoke two lines of host 

defenses, which are either effective before or after parasitism has been established. 

In vertebrate–microparasite interactions, an infection barrier preventing the entry of 

the parasite into the host body is the first line of defense. Once this line has been 

broken and parasites have entered the host, an effective host immune system can 

shorten the duration of the infection and can minimize its detrimental effects. Two 

such defense lines have been shown in hosts of avian brood parasites as well. Many 

cuckoo hosts reject parasitic eggs and thus preclude brood parasitism (Rothstein 

1982, Lyon 2003). Recently a second line of defense has been demonstrated in the 

superb fairy wren, the host of the Australian Bronze cuckoo, which discriminates and 

rejects parasitic young (Langmore et al. 2003). By this point, the host has already 

suffered severe fitness costs through the parasite’s ejection of host chicks and the 

investment in allospecific brood care. 

In slavemaking ant systems, host adaptations that provide protection against 

enslavement include enemy recognition, adjustment of the recognition threshold, 

better fighting abilities or fast evacuation and escape from the attacked host 

colonies (e.g. Alloway 1990, Foitzik et al. 2001, Brandt et al. 2005a). Yet, it has been 

argued that selection could not alter the behavior of already enslaved hosts 

(Gladstone 1981). In this context, three behavioral options of how slaves could 

benefit from rebelling against their oppressors have been either rejected for 

theoretical reasons or were eliminated on empirical grounds. The return of slaves to 

their mother host colony has been discussed as one potential strategy. This scenario 

appears highly unlikely, because enslaved workers are raided during the pupal or 
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larval stage and with their emergence as adult ants they adopt the parasitic colony 

odor (Kaib et al. 1993). Consequently, they would neither find their mother colony, 

nor would their relatives accept these escaped slave workers due to their deviant 

colony odor. A second option, the refusal to work or desertion of the parasite colony, 

could potentially force slavemakers to conduct new slave raids earlier, to 

compensate for the loss of workforce. Thereby slaves’ indirect fitness could be 

reduced due to the enhanced raiding risk on related neighboring host colonies 

(Gladstone 1981). Only in the long run slave desertion or strike would result in the 

reduced growth of parasite colonies and lower parasite pressure on the host 

population. The third option, the possibility of slave reproduction, has been rejected 

on empirical grounds, because behavioral and genetic studies have demonstrated 

that slavemakers successfully prevent host workers from reproducing (Heinze et al. 

1994, Foitzik & Herbers 2001b). All in all, slaves are thought to be caught in an 

evolutionary trap where no behavioral strategy could increase their direct or indirect 

fitness. 

Yet, we think that one potential slave rebellion strategy has been completely 

missed: We argue that enslaved host workers could increase their inclusive fitness by 

killing the brood of their social parasite, providing populations are strongly structured 

and neighboring host colonies are related. If so, then destruction or negligence of 

slavemaking brood would reduce parasite colony growth, and thereby reduce the 

frequency or efficacy of raids on uninfected, but related host colonies (Foitzik & 

Herbers 2001a). Selection would then favor this defense trait via its effect on inclusive 

fitness, even though it is expressed in forced-to-be-sterile, enslaved host workers.  

In addition to these theoretical considerations, several empirical findings led us 

to investigate the potential occurrence of slave rebellion in hosts of P. americanus. 

Colonies of the slavemaker P. americanus consistently show a high production of 

slavemaker brood early in the season, yet only few adult slavemakers emerge per 

nest in summer (Herbers & Foitzik 2002). The resulting small colony sizes could 

potentially thus be explained by the fact that enslaved Temnothorax host workers 

are less effective in their care for the social parasite brood compared to the 

productivity of host workers in their unperturbed nests (Foitzik & Herbers 2001b). 

Enslaved host workers rear fewer workers and queens per capita than their 

unparasitized conspecifics, while the production of males is no different between 

slaves and unparasitized host ants. However, the mechanism(s) behind this reduced 

productivity of enslaved host workers in colonies of the slavemaker, P. americanus, 
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has remained unclear. For these reasons, we compared the brood care behavior of 

enslaved host workers in colonies of the social parasite P. americanus with the brood 

care of host workers in unparasitized Temnothorax colonies and followed the 

development of parasite and host brood. 

 

 

MATERIALS AND METHODS 
 

Study system, ant collection and housing  

The slavemaking ant P. americanus and its host species T. longispinosus, T. ambiguus 

and T. curvispinosus occur in the mixed deciduous forests of northeastern North 

America. They nest in hollow acorns, sticks and hickory nuts on the forest floor. Ant 

colonies were collected at the Huyck Preserve in Albany County, New York (N 42° 

31`35.3`` W 74° 9`30.1``) and in Harpersfield, Ashtabula County, Ohio (N 41° 45`34.2`` 

W 80° 57`55.7``) during May and June of 2005 and 2006. Two ant communities were 

analyzed to elucidate potential inter-population differences in brood care. Colonies 

were transported to the laboratory in Munich in their natural nesting sites. Ants were 

counted and transferred to artificial plastic boxes (10 cm x 10 cm x 1.5 cm) with three 

chambers, an artificial nest and moistened plaster floor (Heinze and Ortius 1991). 

Subsequently, the ant colonies were kept in an incubator (20°C for 14 h light, 15°C for 

10 h dark) and fed water, pieces of cricket and honey twice a week. 

 

Standardized observations 

We compared the brood-rearing success of Temnothorax workers in slavemaking 

P. americanus colonies to the situation in unparasitized host colonies of 

T. longispinosus and T. curvispinosus. Enslaved Temnothorax workers in parasite 

colonies care for allospecific brood, while non enslaved host workers raise only their 

close relatives. We surveyed brood development in a total of 141 ant colonies and 

directly observed brood care behavior of Temnothorax workers in host and parasite 

colonies. We could not monitor ant colonies over the entire brood developmental 

time continuously, however we did survey each ant colony once per day for about 5 

min (total observation time >150h). This allowed us to directly observe the behavior of 

Temnothorax workers towards the brood and to determine how their behavior 

affects their fate. 
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In total, we monitored the development of queen, worker and male pupae in 

88 P. americanus, 36 T. longispinosus and 17 T. curvispinosus colonies. Brood 

development was checked daily and the fate of larvae and pupae was followed 

until seven days after eclosion from the pupal stage (Table 1). When we collected 

P. americanus colonies in the field in May and June, they exclusively contained the 

slavemaking brood. Slave raids, where host worker pupae are stolen, occur only later 

in the season (July – September). Protomognathus americanus and Temnothorax 

pupae can be easily distinguished based on their external morphology, e.g. head 

shape and size and the absence or presence of ocelli. 

 

 
Table 1 Number of slavemaker and host pupae observed in ant colonies. Individuals were monitored 

until the 7th day after eclosion 

 

 

Species 

Caste of 

pupae 

N pupae N colonies N pupae per nest 

Mean ± SE 

Queen 113 47 2.4 ± 0.44 

Worker 191 65 2.9 ± 0.23 

P. americanus 

Male 169 37 4.6 ± 0.69 

Queen 13 10 1.3 ± 0.15 

Worker 75 31 2.4 ± 0.27 

T. longispinosus 

Male 72 21 3.4 ± 0.63 

Queen 3 3 1.0 ± 0.00 

Worker 34 13 2.6 ± 0.50 

T. curvispinosus 

Male 18 8 2.3 ± 0.45 

 

 

The development of pupae was observed in colonies of all three species. 

Larval development was monitored only in P. americanus colonies. In these 26 nests, 

social parasite larvae were cared for by Temnothorax slaves (n= 86; 3.3 ± 0.57 larvae 

per nest). Larval development was observed in P. americanus colonies as a control 

for potential artifacts caused by laboratory housing and/or artificial nutrition. All 

T. longispinosus and T. curvispinosus colonies contained at a least one queen and 

had 30 ± 5 workers. Protomognathus americanus colonies invariably contained a 

single P. americanus queen, at least two P. americanus workers and 10 ± 3 enslaved 

Temnothorax host workers. 59.1% of these 88 P. americanus colonies contained only 
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T. longispinosus slave workers, 26.1% T. curvispinosus workers, 4.5% T. ambiguus and 

the remaining social parasite colonies enslaved either T. longispinosus and 

T. curvispinosus (5.6%) or T. longispinosus and T. ambiguus (4.5%) slaves. We did not 

alter the slavemaking or host colony demography. 

 

Data analysis 

Brood development and mortality rates of pupae did not differ between populations 

of each species (Mann-Whitney U tests: p > 0.05). Consequently, we combined data 

from New York and Ohio colonies for further analysis. We compared pupal mortality 

rates between castes (queen, worker, male) and species (P. americanus, 

T. longispinosus, T. curvispinosus) on a colony basis using non-parametric tests (Mann-

Whitney U,- Kruskal-Wallis tests) as our data were far from a normal distribution. When 

several tests were performed on the same dataset, p-values were corrected with the 

sequential Bonferroni correction (Rice 1989). Statistics were carried out using the 

program Statistica 6.0 (StatSoft). 

 

 

RESULTS 
 

We recorded the fate of 473 P. americanus pupae (113 queens, 191 workers, 169 

males) in 88 slavemaking colonies. In general, slavemaking larvae were successfully 

reared to the pupal stage (97.7% ± 1.3; n = 86; 3.3 ± 0.57 larvae per nest), but many of 

these P. americanus pupae were unable to complete their development and did 

not reach adulthood (Mann-Whitney U test, n = 149, 26; U = 695.0; p = 0.0001).  

On average 66.9% of slavemaking worker pupae, 83.2% of the queen pupae, 

but only 2.8% of the male pupae died during this last developmental stage or shortly 

after eclosion (Figure 1). The mortality rate clearly depended on caste in that male 

pupae showed a much lower mortality than female pupae (Mann-Whitney U test, n = 

112, 37; U = 332.5; p = 0.0001). Among the latter, slavemaking queen pupae less 

frequently reached adulthood than worker pupae (Mann-Whitney U test, n = 47, 65; 

U = 1065.0; p = 0.006). Mortality was independent of the slave species 

(T. longispinosus /T. curvispinosus, T. ambiguus) present in the P. americanus nests 

(Kruskal Wallis test, H (4, n = 49) = 1.12; p = 0.88). 
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Figure 1 Mortality of queen (white bars), worker (striped bars) and male (grey bars) pupae of the 

slavemaker Protomognathus americanus (n Q = 113; n W = 191; n M = 169) and its two Temnothorax host 

species (T. longispinosus: n Q = 13; n W = 75; n M = 72; T. curvispinosus: n Q = 3; n W = 34; n M = 18). 

Individuals were monitored until the 7th day after eclosion. Given are mean ± SE. 

 

 

Behavioral observations revealed that enslaved workers of both Temnothorax 

host species actively killed the seemingly healthy slavemaking pupae. Specifically, 

we observed the removal of slavemaker pupae from the nest chamber by enslaved 

host workers and their frequent death due to negligence. Of all slavemaking pupae, 

which failed in development (n = 27), we directly observed the killing of 29.5% (n = 

67) by enslaved host workers (Figure 2). In addition, 52.8% (n = 120) of the parasite 

pupae were selectively removed from the nest chamber and died due to 

negligence. 

 

 



PUBLICATION 2  43 

 
 

Figure 2 Enslaved Temnothorax longispinosus workers attacking and tearing apart a Protomognathus 

americanus worker pupa in a slavemaker colony. 

 

 

In contrast to the high mortality rates of P. americanus pupae in slavemaking 

nests, the vast majority of Temnothorax pupae of both host species successfully 

eclosed in their mother colonies. We monitored the development of 160 

T. longispinosus (13 queens, 75 workers, 72 males) and 55 T. curvispinosus pupae 

(3 queens, 34 workers, 18 males). The average mortality rates of T. longispinosus 

queen, worker and male pupae were 5.0%, 3.5% and 7.1%, respectively and did not 

differ from each other (Kruskal-Wallis-test: H (2, n = 62) = 0.27, p = 0.87). Similar low 

mortalities were observed in colonies of the second host species T. curvispinosus, 

where less than 10% died during the pupal stage (differences between castes: 

Kruskal-Wallis-test: H (2, n = 24) = 1.09, p= 0.58; differences between host species: 

Mann-Whitney U test, n = 24, 62; U = 703.5; p = 0.69).  

A comparison of pupae mortality rates between unparasitized Temnothorax 

colonies and P. americanus colonies demonstrated dramatically higher mortalities 

for slavemaking worker (66.9% versus 6.4%) and queen pupae (83.2%  versus 5.6%; 

differences within caste, but between species: worker pupae: Kruskal-Wallis-Test: H (2, 

n =109) = 52.72, p = 0.0001; queen pupae: Kruskal-Wallis-Test: H (2, n = 60) = 30.4, p 

=0.0001). In contrast, P. americanus male pupae developed as successfully as 
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T. longispinosus and T. curvispinosus male pupae (2.8% versus 6.2%) Kruskal-Wallis-test: 

H (2, n = 66) = 0.03, p = 0.99). We never observed killing of host pupae or their 

removal by conspecific nest mates. 

 

 

DISCUSSION 
 

Here, we have demonstrated rebellion of enslaved Temnothorax workers, which 

revolt against their oppressors by attacking slavemaking pupae under their care. The 

active destruction of parasitic pupae by slaves can explain the low productivity and 

ultimately the extraordinary small nest size of P. americanus colonies (Foitzik & 

Herbers 2001b, Herbers & Foitzik 2002). While Temnothorax workers in unparasitized 

colonies successfully rear conspecific pupae, enslaved Temnothorax workers 

selectively eliminate parasite queen and worker pupae. Direct observations show 

that these parasite pupae were either actively killed or removed from the nest 

chamber and neglected. The strong discrepancy between the high production of 

slavemaking larvae (Foitzik & Herbers 2001b) and the low number of adult 

slavemakers (two to five) per nest (Herbers & Foitzik 2002) is consequently not due to 

a low efficiency of allospecific brood care. The behavior of enslaved Temnothorax 

workers instead dramatically switches from nurturing care for parasitic larvae to 

aggressive and detrimental attacks on pupae. 

The elimination of parasite brood by enslaved Temnothorax workers can be 

seen as a second line of defense, when host nest defense has failed. Our finding is 

thus analogous to chick recognition and rejection in hosts of the bronze cuckoo 

(Langmore et al. 2003). In this Australian host-brood parasite system, strong egg 

resemblance of parasite eggs and the consequent failure of egg discrimination has 

led to an escalation of the coevolutionary arms race: the host, the superb fairy wren, 

was shown to recognize and eliminate parasitic young. But, unlike the situation in 

avian brood parasites evidence for anti-parasite strategies after parasitic colony 

usurpation has so far been lacking in social parasite systems and enslaved host 

workers have been thought to be unable to rebel against their oppressors 

(Gladstone 1981, Heinze et al. 1994, Foitzik & Herbers 2001b). 

In contrast to these earlier considerations, we argue that enslaved ant workers 

can increase their inclusive fitness by killing the social parasite brood. The elimination 

of parasite brood by enslaved Temnothorax workers decreases the workforce of the 
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parasite. Furthermore, genetic analyses have indicated that smaller P. americanus 

colonies conduct fewer and less destructive slave raids (Foitzik et al. 2001). Enslaved 

ants can benefit from a decline in the number and destructive power of future slave 

raids if this reduction directly benefits relatives in neighboring colonies. This indirect 

fitness benefit ultimately depends on the relatedness of slaves to host ants residing in 

surrounding nests, which itself is a consequence of three different processes. First, 

host colonies and their queens occasionally survive a slave raid, which has been 

demonstrated for a Vermont Protomognathus and Temnothorax community (Blatrix 

& Herbers 2003). Second, Temnothorax species are known to be polydomous, 

meaning a single colony can occupy several nests concurrently, so that slaves taken 

from one nest have close relatives in nearby nests (Herbers 1986, Foitzik and Herbers 

2001a). For example, in the New York population one fifth of all T. longispinosus nests 

belong to polydomous colonies, with an average distance between subunits of 

78cm (Foitzik et al. 2004). Finally, the facultative polygynous Temnothorax colonies 

frequently reproduce by budding, such that daughter colonies are established in 

close vicinity to mother colonies. The polygynous and polydomous social 

organization of Temnothorax host populations has led to a strong genetic structure 

on a microgeographic scale (Foitzik et al. 2004). However, variation in post-raid 

survival, social organization and therefore genetic structure of host populations 

(Herbers & Stuart 1996b) should lead to differential selection for the evolution of slave 

rebellion. We would therefore expect variation in the expression of this defensive trait 

between various host populations and species, which indeed is indicated in 

preliminary follow-up studies. 

Variation in the level of host defenses has also been reported for hosts of avian 

brood parasites (Davies & Brooke 1989, Soler & Møller 1990, Lotem et al. 1995, 

Servedio & Hauber 2006). Two main hypotheses – evolutionary lag or equilibrium - 

have been put forward to explain why some hosts do not evolve defenses to prevent 

brood parasitism (Davies & Brooke 1989¸ Krüger 2007). The evolutionary lag 

hypothesis states that it would be advantageous for hosts to counteract brood 

parasitism but they do not evolve defenses, because of a lack of time or due to 

insufficient genetic variation in host populations (Rothstein 1975). In contrast, the 

evolutionary equilibrium hypothesis suggests that it can be adaptive for a host to 

accept brood parasitism if rejection costs are high. Empirical studies on the evolution 

of host defenses have shown various outcomes, from hosts that have apparently 

evolved counter-adaptations that prevent parasitism (Davies 2000, Rothstein 2001) to 
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oscillatory systems, where brood parasite prevalence and the levels of host defense 

fluctuate around an evolutionary equilibrium and to systems where continuous 

exploitation of defenseless hosts is commonplace (Krüger 2007). 

In our social parasite system, selection must currently be tremendous on 

P. americanus to develop chemical or behavioral adaptations to counter the killing 

of nearly two-thirds of its female pupae. A recent phylogeny has shown that 

P. americanus is an evolutionarily old parasite with a long coevolutionary history with 

its hosts (Beibl et al. 2005). Thus, this parasite should have had enough time to adapt 

to the exploitation of slave behavior, and its obvious failure has to be explained by 

the recent evolution of this novel defense trait in the host species. To stay in the arms 

race with its hosts, P. americanus has to develop counter-adaptations or else host 

defenses will rise to a level that could preclude persistent brood parasitism. 

Our study shows that slaves do not destroy all pupal castes: rather parasite 

males were spared and frequently reached adulthood. Temnothorax workers can 

thus discriminate brood of different developmental stages and/or different castes. 

Social insects generally recognize their nestmates by chemical recognition cues on 

their cuticle (Singer 1998) and social parasites, therefore, mainly use chemical 

strategies to manipulate host behavior (Allies et al. 1986, Martin et al. 2007, Nash et 

al. 2008). A lack of chemical recognition cues on parasite larvae might explain why 

enslaved Temnothorax workers are unable to recognize and eliminate them. At this 

early stage in development, the chemical profile on the body surface might still be 

insufficiently developed or chemical compounds of larvae might actively induce 

brood care behavior (Alloway 1982, Zimmerli & Mori 1993). Chemical analyses on 

more advanced developmental stages revealed caste- and species-specific 

differences in cuticular hydrocarbon profiles of parasite and host pupae 

(Achenbach and Foitzik in preparation). Parasite male pupae, which were only rarely 

killed, showed a characteristic chemical profile, which was distinct both from host 

male profiles and from the profiles of parasite queen and worker pupae. So, if 

parasite males exhibit a distinctive chemical profile, why were they not killed by 

enslaved host workers? In addition to chemical cues, slaves could use differences in 

morphology to distinguish pupae. Protomognathus and Temnothorax males show a 

very similar morphology, whereas the female castes of the parasite with their 

characteristic large heads are clearly distinct from Temnothorax queen and worker 

pupae. Similarly, to escape host recognition and elimination, males of the inquiline 

social parasite Plagiolepis xene were proposed to have first evolved chemical 
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mimicry and only later morphological changes – in this case miniaturization - to 

prevent host workers from secondarily using size as a recognition cue (Aron et al. 

2004). 

Ultimately, male pupae survival could also be explained by insufficient fitness 

benefits from killing parasite males. The selective aggression of enslaved 

Temnothorax workers against female parasite pupae can be due to the strong 

selection that female slavemakers exert on their host. Adult male slavemakers eclose, 

participate in mating flights, copulate and subsequently die. In contrast, adult 

parasite queens and workers take part in slave raids and the destructive usurpation 

of Temnothorax host colonies (Wilson 1971, Alloway 1979). As a result, the evolution of 

counter-parasite adaptations in the host especially against female slavemaking 

castes should be under strong selection. The low percentage of female slavemaking 

pupae that survived the systematic killings may then be explained by rare 

discrimination errors. Our discovery of enslaved host workers selectively killing female 

parasite pupae suggests that this behavioral trait evolved as a host defense in the 

context of host-parasite coevolution. 
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ABSTRACT 
 

Parasite and hosts frequently engage in a coevolutionary arms race, in which newly 

developed host defenses will be counteracted by parasite adaptations. 

Slavemaking ants are virulent social parasites that trick enslaved host workers into 

caring for their brood. These slaves also have to accept kidnapped host pupae, 

which slavemakers retrieve during raids. Until recently, selection was thought to be 

unable to act on traits of these enslaved host ants. Yet, a novel study demonstrated 

rebellion of enslaved Temnothorax workers, which selectively killed female pupae of 

the slavemaking ant Protomognathus americanus. This defensive trait could lower 

the costs of parasitism, because slowed growth of parasite nests reduces the raiding 

impact on related neighboring host colonies. In cross-fostering experiments, we 

investigated the acceptance of host and parasite pupae by Temnothorax workers in 

parasitized and unparasitized colonies. Host workers killed a large fraction of the 

transferred pupae, and the social parasite was only able to increase the 

acceptance of parasite pupae in its major host and of heterospecific host pupae in 

its minor host. Parasite pupae survived much better when transferred to sympatric 

host colonies than to allopatric ones, indicating local adaptation in the parasite 

P. americanus. Cuticular hydrocarbon analyses explain this with chemical 

differences in pupae profiles between communities. Overall, parasite and host 

pupae have highly divergent profiles, hence cuticular hydrocarbons can be used by 

host workers to identify and selectively destroy parasite pupae. The parasite 

P. americanus is now under strong selection to adapt its pupal recognition cues to 

those of its hosts to counteract slave rebellion. 

 

Keywords: Coevolution, arms race, chemical communication, host defenses, brood 

parasites, slavemaking ants 
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INTRODUCTION 
 

Brood parasites, which exploit the brood care behavior of other animal species, 

have evolved sophisticated strategies to trick their hosts into caring for their young. 

Many avian brood parasites, for example cuckoos, actively mimic visual or acoustic 

host cues, such as the color pattern of host eggs (Davies 2000) or the calls of host 

young (Langmore et al. 2003). In contrast, communication is mainly chemical in 

social insects, and as such, hymenopteran parasites have developed chemical 

strategies to secure an exploitative relationship with their hosts (Lenoir et al. 2001; 

Sledge et al. 2001). Ant social parasites can manipulate host behavior by using 

glandular secretions, such as chemical weapons (Allies et al. 1986, Foitzik et al. 2003) 

or they can deceive their hosts, either by actively producing (Dettner & Liepert, 1994) 

or passively adopting (Johnson et al. 2008, Kaib et al. 1993, Vander Meer et al. 1989) 

host species-specific cuticular hydrocarbon cues. Long-chained hydrocarbons on 

the cuticle are known not only to serve as desiccation barriers, but are widely used in 

social insects for the recognition of nestmates, sex partners and conspecifics 

(Howard 1993). 

Slavemaking ants are highly specialized social parasites with an extraordinary 

life cycle. They are able to circumvent the time and energy that brood care requires 

by concurrently exploiting a slave work force of several host colonies (Buschinger 

1986, Davies et al. 1989). The life cycle of the tiny slavemaking ant Protomognathus 

americanus starts when a young mated parasite queen successfully conquers a nest 

of Temnothorax host ants (Wesson 1939). She kills or expels the host queen(s) and the 

adult workers and usurps the remaining host brood. Workers that hatch from this 

brood become her first generation of slaves (Hölldobler & Wilson, 1990). 

Subsequently, all tasks of colony maintenance and brood care are taken over by 

these enslaved host workers, which can belong to up to three different Temnothorax 

species. To maintain a steady supply of slaves, slavemaker workers raised during the 

following years conduct raids on host colonies in the vicinity of their mother nest, 

stealing host larvae and pupae of these colonies (Alloway 1979, Brandt et al. 2005b). 

This remarkable parasitic life style entirely depends, therefore, on the behavioral 

exploitation of these enslaved host workers. The recognition and destruction of the 

social parasite brood can be avoided by chemical mimicry of host brood profiles 

(Akino et al. 1999) or by the absence of detectable recognition cues (Cervo et al. 

2008). The ability to manipulate the behavior of enslaved workers into caring for 
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parasite brood can also be linked to the exposure of slave workers to allospecific 

odors during a critical period of chemical learning shortly after their eclosion from the 

pupae (Goodloe & Topoff 1987, Hare & Alloway 1987, Jaisson 1975). Early exposure 

to a wider range of chemical cues could extend the brood acceptance threshold of 

slaves and thereby lower aggression of the enslaved workers towards the alien 

brood, though recognition and destruction of the social parasite brood has been 

demonstrated repeatedly. This reduction in aggression is not only important in slave 

interactions with parasite brood, but also in their relationship with the stolen host 

brood that slavemakers kidnap on raids against neighboring host colonies. Enslaved 

workers must rear these larvae and pupae to adulthood and integrate them into the 

slave workforce of the parasite nest. In addition to influencing the natal environment, 

the physical presence of slavemaker workers can enhance slave acceptance of 

alien host pupae either through behavioral or chemical interference (Alloway 1982). 

Slavemaking ant workers of the species Harpagoxenus sublaevis aggressively attack 

enslaved host workers, which start to develop their ovaries (Heinze et al.  1994). 

Hence, direct behavioral control of slave worker behavior also occurs in social 

parasite nests. 

During host-parasite coevolution, (social) parasites are continuously adapting 

to succeed in host exploitation, whereas hosts are expected to evolve defenses if 

parasite pressure is sufficiently strong. Indeed, slavemaking ants exert substantial 

selection on host populations due to their high prevalences and repeated 

destructive raids (Bono et al. 2006, Cool-Kwait & Topoff 1984, Fischer-Blass et al. 2006, 

Foitzik et al. in press, Herbers & Foitzik 2002) and this leads to the evolution of 

defensive adaptations in their hosts. These host defenses can provide protection 

against enslavement and include enemy recognition, adjustment of the recognition 

threshold, better fighting abilities or fast evacuation and escape from the attacked 

host colonies (Alloway 1990, Brandt et al. 2005a, Foitzik et al. 2001). Selection could, 

in theory, also alter the behavior of already enslaved hosts (Gladstone 1981). 

However, most behavioral options of how slaves could benefit from rebelling against 

their oppressors - through own reproduction, strike or desertion - have been rejected, 

either because they do not increase slave fitness or were eliminated on empirical 

grounds such as the possibility of slave reproduction (Foitzik & Herbers 2001a, Heinze 

et al. 1994). Therefore, slaves were thought to be caught in an evolutionary trap 

where no behavioral strategy could increase their direct or indirect fitness. 
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Nonetheless, we recently demonstrated that enslaved Temnothorax workers 

regularly destroy the brood of their slavemaker P. americanus. After successfully 

raising parasitic larvae to the pupal stage, enslaved workers killed two thirds of the 

queen and worker pupae of the slavemaking ant P. americanus (Achenbach & 

Foitzik in press). This active destruction of parasite pupae, described as slave 

rebellion, leads to a slower growth of P. americanus colonies and consequently to a 

lower raiding frequency (Foitzik & Herbers 2001a). The murderous slaves, therefore, 

actively decrease the long-term parasite impact on surrounding host colonies to 

which they are frequently related. This behavioral trait could consequently increase 

their indirect fitness. A molecular phylogeny showed that P. americanus is an 

evolutionarily old parasite with a long co-evolutionary history (Beibl et al. 2005), which 

had enough time to adapt to the exploitation of its hosts. Systematic killing of 

parasite brood by enslaved host workers appears therefore to be a novel resistance 

trait in Temnothorax hosts to which P. americanus is now under strong selection to 

react. 

In this study, we investigate the acceptance of transferred queen and worker 

pupae in P. americanus and Temnothorax host colonies. We test several hypotheses: 

First, if the slavemaker P. americanus is leading the evolutionary arms race with its 

hosts (Dawkins & Krebs 1979), it should increase the acceptance of raided host or 

parasite pupae by Temnothorax slave workers. Acceptance of transferred brood 

should then be higher in the slavemaker nests rather than in the unparasitized host 

nests. Slavemakers are only able to exploit two host species concurrently (mixed 

nests), if they can also persuade their slaves to accept raided pupae of a different 

species. Second, if host workers developed resistance against slavemaker 

exploitation, then host workers should be able to recognize and selectively kill 

parasite pupae more often than pupae of other host species (enemy recognition; 

Alloway 1990). 

Coevolution is not a uniform process over broad geographic ranges 

(Thompson 1999). Therefore, our third hypothesis states that if pupal traits of the 

parasite and host rejection behavior are coevolving on a local scale, brood 

acceptance should depend on the geographic origin of the experimental colonies. 

If parasites are well-adapted to their local hosts, transferred parasite pupae from 

sympatric colonies should be killed less often than P. americanus pupae from 

allopatric nests. To investigate these geographic patterns, we included parasite and 

host colonies from communities in New York and Ohio. 
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In the darkness of ant nests, chemical and tactile signals are the most 

important communication cues (Hölldobler & Wilson 1990). Enslaved Temnothorax 

workers selectively kill P. americanus queen and worker pupae, while unparasitized 

host workers raise nearly 100% of the conspecific brood to adulthood (Achenbach & 

Foitzik in press). This selective destruction of parasite brood by enslaved Temnothorax 

workers demonstrates that slaves are able to discriminate between pupae of 

different species, as well as castes. We hypothesize that enslaved host workers 

recognize parasite pupae by their distinct cuticular hydrocarbon profile. Finally, our 

fifth hypothesis states that parasite populations respond to slave rebellion by closely 

mimicking the pupae profiles of their local hosts. We therefore analyzed the cuticular 

hydrocarbon profiles of pupae of different castes, populations and species by gas 

chromatography and mass spectrometry to investigate the chemical side of this 

coevolutionary arms race between the social parasite P. americanus and its ant 

hosts. 

 

 

MATERIAL AND METHODS 
 

Study system, ant collection and housing  

The tiny slavemaking ant P. americanus parasitizes three host species of the genus 

Temnothorax: T. longispinosus, T. curvispinosus and infrequently T. ambiguus. These 

ant species occur in mixed deciduous forests throughout northeastern North 

America, where they nest in hollow acorns, twigs and hickory nuts on the forest floor. 

Experimental colonies were collected at two locations, at the Huyck Preserve, 

Albany County, New York (NY, N 42° 31`35.3`` W 74° 9`30.1``), and in Harpersfield, 

Ashtabula County, Ohio (OH, N 41° 45`34.2`` W 80° 57`55.7``) in May - June of 2005 

and 2006. The host community in New York is composed of 95% T. longispinosus and 

5% T. ambiguus; while in Ohio T. curvispinosus contributes 71% and T. longispinosus 

29% to the host community (Brandt & Foitzik 2004). We therefore focused our 

analyses on P. americanus and T. longispinosus colonies both from New York and 

Ohio and T. curvispinosus colonies from Ohio. Colonies were transported to our 

laboratory in Munich in their natural nesting sites, censused and transferred to 

artificial nest sites in three chambered plastic boxes (10 cm x 10 cm x 1.5 cm) with a 

moistened plaster floor (Heinze & Ortius 1991). The ants were kept in an incubator 
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(22°C for 14 h light, 18°C for 10 h dark) and fed water, pieces of cricket and honey 

twice weekly. 

 

Transfer experiment 

In this experiment, we observed the developmental success of transferred queen 

and worker pupae of the slavemaker P. americanus, of its host species 

T. longispinosus and of worker pupae of T. curvispinosus. Lightly colored, freshly 

pupated individuals were relocated to alien con- or heterospecific nests where 

either enslaved or non-parasitized Temnothorax workers cared for them. Queen and 

worker pupae of all three species were very carefully removed from their native nests 

and relocated to either alien con- or heterospecific adoptive nests and gently 

positioned among the brood. Between one and two pupae were transferred per 

source nest. Transferred pupae in colonies of a different species could be followed, 

because P. americanus and Temnothorax pupae can be distinguished based on 

their external morphology, e.g. head shape and size. For the supervision of 

transferred conspecific pupae, we used visible developmental differences such as 

color changes due to the hardening cuticular of pupae. Brood development was 

monitored daily and the fate of pupae was followed until seven days after eclosion 

from the pupal stage. Besides the daily surveillance of brood development in a total 

of 222 colonies, we directly observed brood care behavior of Temnothorax workers. 

Ant colonies could not be observed over the entire time of brood development, but 

we surveyed each ant colony at least every other day for 5 min (Total observation 

time >350h). This allowed us to monitor the behavior of Temnothorax workers towards 

alien brood and to determine how their behavior affected the pupal fate.  

For the transfer experiments, we removed queen and worker pupae from 52 

P. americanus colonies (20 from NY and 33 from OH), 42 and 31 T. longispinosus 

colonies, from NY and OH respectively, and 10 OH T. curvispinosus colonies. Ninety 

percent of the 20 P. americanus colonies from NY contained only T. longispinosus 

slaves, the remaining two colonies also contained T. ambiguus slaves. From the OH 

P. americanus colonies only 36.3% had solely T. longispinosus slaves, 58.7% had only 

T. curvispinosus slaves and 6.0% had slaves of both species.  

Pupae were transferred to 92 P. americanus (45 from NY and 47 from OH), 88 

T. longispinosus (49 from NY and 39 from OH) and 50 T. curvispinosus from OH 

adoptive colonies. All T. longispinosus and T. curvispinosus adoptive colonies 

contained a queen and had 30 ± 10 workers. Protomognathus americanus adoptive 
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colonies were monogynous, contained at least two P. americanus workers and 15 ± 5 

slave workers. Of these 92 P. americanus colonies 59.1% contained only 

T. longispinosus slave workers, 26.1% T. curvispinosus slaves, 4.5% T. ambiguus slaves 

and the remaining social parasite colonies enslaved either T. longispinosus and 

T. curvispinosus (5.6%) or T. longispinosus and T. ambiguus (4.5%) slaves. 

 

Chemical analyses 

To study the recognition mechanism behind the species- and caste-specific killings 

(Achenbach & Foitzik, in press), we analysed the hydrocarbon profiles of 37 

P. americanus pupae from 18 colonies (18 workers, 13 queens and 6 males), 55 

T. longispinosus pupae from 24 colonies (18 workers, 20 queens and 17 males) and 19 

T. curvispinosus pupae from nine colonies (9 workers, 3 queens and 7 males) by gas 

chromatography and mass spectrometry. Hydrocarbons on the cuticle of pupae 

were extracted by individually immersing the ant pupae in 200 µl of pentane (HPLC 

grade) for five minutes in 2 ml glass vials. Extracts were then analyzed by coupled 

gas chromatography (GC) and mass spectrometry (MS) (Agilent Technologies 6890N 

GC and 5975 MSD) equipped with a Restek Rxi-5MS column (30m length, 0.25 mm ID, 

0.25 µm film thickness). Sample injection was splitless over 1 minute at 280°C. Helium 

was used as carrier gas at a constant flow of 1ml/min. The oven program started at 

150°C for 3 minutes, followed by a temperature increase to 300°C in two steps (150°C 

- 250°C with 30°C/min; 250°C - 300°C with 3°C/min). The final temperature of 300°C 

was held for two minutes. After an initial solvent delay of 3.8 minutes a mass range of 

50 to 500 amu was scanned. The transfer line was held constant at 310°C. 

 

Data analysis 

Statistical tests were performed on the mortality rate of all pupae of a single caste, 

which were transferred from the same source nest into the same adoptive nest. Data 

distributions were tested for deviation from normality and heteroscedasticity. As 

expected for a large dataset such as ours (e.g. the transfer experiment included 511 

exchanges), these tests often revealed significant deviations from normality. 

Consequently, we tried to normalize the data with a number of transformations (log, 

arcsine, square root etc.). We compared mortality rates, depending on the caste 

(queen, worker), species (P. americanus, T. longispinosus, T. curvispinosus) and 

geographic origin of pupae and the species and source population of the adoptive 

nest using MANOVAs, ANOVAs and factorial ANOVAs. To differentiate between 



Publication 3  56 

various groups, we used Fisher LSD post-hoc tests. Calculations were carried out with 

the program Statistica 6.0 (StatSoft). 

Chemical data were processed by integrating peak areas with the software 

MSD ChemStation D.03.00.611 and exported to the program Primer 6 (Version 6.1.6 

Primer-E Ltd.). Peak areas were fourth root transformed and standardized by the 

maximum of each sample. Similarity percent (SIMPER) procedures were used to 

calculate the relative contributions of chemical compounds to the similarity of a 

within-caste and species group. Non-metric multidimensional scaling (NMDS) based 

on Bray-Curtis distances was used to visualize the chemical distances between the 

samples and the proximities between sample groups were statistically evaluated by 

analysis of similarities (ANOSIM). 

 

 

RESULTS 
 

Transfer experiments 

To follow up on the first hypothesis, which assumed that P. americanus can influence 

the acceptance of host pupae, we contrasted the survival of introduced host pupae 

in different types of adoptive colonies. The mortality of transferred T. longispinosus 

host pupae depended both on the species present in the adoptive nest and the 

caste of the pupae (Fig. 1; ANOVA: Species in adoptive nest: F3,299 = 6.86, p < 0.0001; 

caste of pupae: F1,299 = 16.46, p < 0.0001). Worker pupae were less often killed (mean 

mortality: 48.33 % ± SE 0.03) than transferred queen pupae (mean mortality: 70.31 % ± 

SE 0.05). T. longispinosus pupae introduced into conspecific host nests survived more 

often than those transferred to T. curvispinosus host colonies (LSD test: p < 0.006) or 

P. americanus colonies with T. curvispinosus slaves (LSD test: p < 0.05). The mortality 

rate did not differ between T. longispinosus pupae transferred into P. americanus 

colonies with T. longispinosus slaves and unparasitized T. longispinosus nests (LSD test: 

p = 0.73), nor from P. americanus colonies with T. curvispinosus slaves (LSD test: p = 

0.09). However, T. longispinosus pupae, which were introduced to P. americanus 

colonies with T. curvispinosus slaves had a lower mortality than those transferred to 

unparasitized T. curvispinosus nests (LSD test: p < 0.0005). 

Survival of transferred T. curvispinosus worker pupae clearly depended on the 

species of the adoptive colony (Fig. 1; MANOVA: Species of adoptive nest: F1,91 = 

12.96, p < 0.000001). T. curvispinosus pupae had a lower mortality in conspecific 
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colonies than in T. longispinosus host colonies (LSD test: p < 0.00001) or in 

P. americanus colonies with either T. curvispinosus slaves (LSD test: p < 0.00001) or 

enslaved T. longispinosus workers (LSD test: p < 0.00001). The mortality of 

T. curvispinosus pupae did not differ between unparasitized T. longispinosus host 

colonies and P. americanus colonies with T. longispinosus slaves (LSD test: p = 0.40). 

 

 

 
Figure 1 Mortality rate of transferred Temnothorax host pupae in different types of colonies, i.e. host 

colonies and P. americanus colonies with slaves of either host species. Results for T. longispinosus pupae 

are shown in filled circles, for T. curvispinosus pupae are in open squares. Weighted mean ± SE is given. 

 

 

We also compared mortality rates of queen and worker pupae of the 

slavemaker species P. americanus, which were transferred either into conspecific 

slavemaker or T. longispinosus host colonies. Slavemaker pupae survived better when 

relocated into other slavemaker colonies (mean mortality: 79.00 % ± SE 6.81) than 

when brought into unparasitized T. longispinosus host colonies (mean mortality: 92.09 

% ± SE 2.85), while the caste (worker / queen) of the pupae had no influence on its 

survival (Factorial ANOVA: Species of adoptive nest: F1,95 = 3.83, p < 0.05; caste of 

pupae: F1,95 = 1.73, p = 0.19).  

To address the second hypothesis, which stated that resistant host colonies 

should accept parasite pupae less often than pupae of other host species, we 

tested whether T. longispinosus host colonies accepted P. americanus pupae less 
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often than T. curvispinosus pupae. Survival of worker pupae in T. longispinosus 

colonies clearly depended on the species of the pupae, with T. longispinosus pupae 

(mean mortality: 43.11 % ± SE 4.77) surviving at much higher rates (MANOVA: Species 

of pupae: F1,182 = 25.05, p < 0.00001). However, there was no difference in survival 

between P. americanus (mean mortality: 90.28 % ± SE 4.81) and T. curvispinosus 

pupae (mean mortality: 87.50 % ± SE 5.30; LSD test: p = 0.78). 

Next, we compared the mortality of P. americanus worker pupae, which were 

transferred to a conspecific nest, with the mortality of T. longispinosus or 

T. curvispinosus host pupae that were also relocated into conspecific nests. 

P. americanus pupae (mean mortality: 71.67 % ± SE 10.15) survived less well than host 

pupae of either Temnothorax species, while there was no difference between 

T. longispinosus (mean mortality: 43.12 % ± SE 4.77) and T. curvispinosus (mean 

mortality: 25.00 % ± SE 11.18; MANOVA: F2,137 = 3.72, p < 0.03; LSD tests: P. am. – T. long: 

p < 0.04; P. am. – T. curv.: p < 0.008; T. long – T. curv.: p = 0.16). 

In slave raids, P. americanus retrieve Temnothorax and occasionally also 

P. americanus (Foitzik & Herbers, 2001b) worker pupae and integrate them into their 

societies. In the following analysis, we explicitly tested how the species of slaves in 

P. americanus colonies influenced the acceptance of pupae. We tested whether 

the survival of worker pupae transferred into P. americanus colonies depend on their 

species and / or on the species of the slaves residing in the slavemaker colony 

(T. longispinosus or T. curvispinosus) or in an interaction between these two factors. Of 

the three species, T. longispinosus pupae survived best, independent of the slave 

species present (Fig. 2; Factorial ANOVA: Slave species: F1,129 = 0.79, p = 0.37; slave 

species x pupae species F2,129 = 2.31, p = 0.10; Pupae species F2,129 = 15.73, 

p < 0.00001; LSD tests: P. am. – T. long: p < 0.008; P. am. – T. curv.: p = 0.48; T. long – 

T. curv.: p < 0.00001). 
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Figure 2 Mortality rate of pupae in P. americanus colonies depending on the species of the pupae and 

the slave species present. Results for P. americanus colonies with T. longispinosus slaves are shown in 

filled triangles, for P. americanus colonies with T. curvispinosus slaves in open triangles. Weighted mean ± 

SE is given. 

 

 

Under a geographic mosaic of coevolution, parasites are expected to adapt 

their pupal traits to those of their sympatric host to avoid recognition and killing. 

Please, note that only P. americanus and T. longispinosus occur in both communities, 

so that we restricted the following analyses to those two species. To reveal potential 

local adaptation in this context, we analyzed whether the survival of parasite pupae 

in our transfer experiments depended on the source population of the pupae or on 

the geographic origin of the adoptive T. longispinosus host nest or on an interaction 

between the two parameters. Indeed, transferred P. americanus pupae were 

accepted at higher rates in sympatric T. longispinosus host colonies than in allopatric 

ones (Fig 3; Factorial ANOVA: Population of parasite pupae: F1,69 = 3.13, p = 0.08; 

Population of adoptive host nest: F1,69 = 5.56, p < 0.02; Pupae population x host 

population: F1,69 = 8.19, p < 0.006). In a second analysis, we investigated whether this 

local pattern would also be detectable in a more comprehensive data set, including 

all transfer experiments with P. americanus and T. longispinosus pupae into colonies 

with parasitized or unparasitized T. longispinosus workers. Indeed, ant pupae were 

generally better accepted in colonies of the same community (Factorial ANOVA: 
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Community of pupae: F1,442 = 10.86, p < 0.001; Community of adoptive nest: F1,442 = 

1.02, p = 0.31; Pupae community x Adoptive nest community: F1,442 = 4.10, p < 0.04). 
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Figure 3 Mortality of P. americanus parasite pupae in T. longispinosus host colonies depending on the 

geographic origin of pupae and adoptive colonies. Results for P. americanus pupae from New York are 

shown in filled diamonds, Ohio P. americanus pupae in open diamonds. Weighted mean ± SE is given. 

 

 

We also compared pupae mortality in our transfer experiments with data on 

brood development in undisturbed ant colonies of all three species from an earlier 

study (Achenbach & Foitzik in press). Queen and worker P. americanus pupae were 

destroyed by Temnothorax slaves at similarly high rates in their undisturbed native 

colony than when transferred to an alien conspecific colony (MANOVA: F1,131 = 0.75, 

p = 0.39), whereas T. longispinosus pupae showed a much higher survival when left 

undisturbed in their native nest (MANOVA: F1,194 = 37.64, p < 0.000001). In contrast, 

T. curvispinosus pupae survived equally well in their native nests than when 

transferred to alien conspecific nests (MANOVA: F1,38 = 2.55, p = 0.12). 

Behavioral observations revealed the causes for the frequent death of 

transferred ant pupae. Enslaved and unparasitized Temnothorax workers of both host 

species actively killed introduced ant pupae. In addition, we observed host workers 

removing pupae from the nest chamber and pupal death due to negligence. At the 

same time, P. americanus larvae, Temnothorax larvae and pupae, which were not 
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transferred, but remained in their native nests, showed nearly 100% survival 

(Achenbach & Foitzik in press), indicating that laboratory conditions were not 

responsible for the observed low survival rates of pupae.  

 

Chemical analyses 

Cuticular hydrocarbon profiles of ant pupae were comparatively simply structured. 

They were composed of more than 90% of only eight hydrocarbons: tricosane, 

tetracosane, pentacosane, hexacosane, heptacosane, 5-methyl-pentacosene, 3-

methyl-pentacosene and nonacosane (Table 1, Fig. 4). Multivariate analysis based 

on the comparison of the relative proportions of cuticular hydrocarbons showed 

distinct chemical differences depending both on species and caste across all pupae 

(Fig. 4, 5; Anosim: N = 111; Species: R = 0.378, p < 0.001; Caste: R = 0.118, p < 0.001). 

Slavemaker worker pupae could be separated very clearly from host worker pupae, 

while worker pupae of the two Temnothorax species showed only marginal 

differences (Anosim, Global: R = 0.584, p < 0.001, NPa, Tl, Tc= 18, 18, 9; P. am. – T. long.: 

R = 0.789, P < 0.001; P. am. – T. curv.: R = 0.577, P < 0.001; T. long.  – T. curv.: R = 0.158, 

P < 0.04). P. americanus queen pupae could be differentiated statistically from 

queen pupae of either of the two Temnothorax species, while these host pupae 

could not be separated with our multivariate analysis (Anosim: Global: R = 0.546, 

p < 0.001, NPa, Tl, Tc = 13, 20, 3; P. am. – T. long.: R = 0.630, P < 0.001; P. am. – T. curv.: R = 

0.476, P < 0.03; P. am. – T. curv.: R = 0.256, P = 0.13). Finally, P. americanus male 

pupae differed chemically from host male pupae, but again host pupae did not 

vary in chemical profile (Anosim: Global: R = 0.539, p < 0.001, NPa, Tl, Tc = 6, 17, 7; P. am. 

– T. long.: R = 0.957, P < 0.001; P. am. – T. curv.: R = 0.75, P < 0.02; T. long. – T. curv.: R = 

0.095, P = 0.17). 
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Table 1 Contribution (%) of each compound to the cuticular hydrocarbon profiles of queen, worker and 

male pupae of the slavemaker P. americanus and its two Temnothorax host species as calculated by 

SIMPER analyses. Eight hydrocarbons accounted for at least 90% of the group similarity. Missing values 

represent chemical substances of less than 0.001% contribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Within species, we could distinguish all three castes in P. americanus, except 

male from queen pupae (Anosim; Global: R = 0.331, p < 0.001, Nw,q,m = 18, 13, 6; 

worker – queen: R = 0.435, P < 0.001, worker - male: R = 0.321, P < 0.02, queen - male: 

R = -0.038, P = 0.58). In T. longispinosus only the combination worker - male pupae 

were indistinguishable (Anosim; Global: R = 0.369, p < 0.001, N w,q,m = 18, 20, 17; worker 

– queen: R = 0.502, P < 0.001, worker - male: R = 0.03, P = 0.20, queen - male: R = 

0.486, P < 0.001). Yet, we could not detect differences in the chemical profile of 

pupae of different castes in T. curvispinosus, for which we had the lowest sample size 

(Anosim: Global: R = 0.055, p = 0.25, N w,q,m = 9, 3, 7).  
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P. americanus Queen 0.22 0.87 38.20 1.28 46.98 0.24 6.53 5.67 

 Worker 0.00 0.00 28.61 4.67 57.05 0.00 6.57 3.10 

 Male 0.00 0.00 38.04 1.70 55.46 0.00 3.59 1.21 

T. longispinosus Queen 0.00 0.00 23.17 5.86 56.98 0.36 5.18 8.44 

 Worker 0.00 0.00 8.39 0.36 78.32 0.00 6.01 6.55 

 Male 0.00 0.00 6.01 1.46 73.92 0.32 9.05 9.25 

T. curvispinosus Queen 0.00 0.00 15.68 7.51 57.24 2.41 9.90 7.26 

 Worker 0.00 0.00 16.21 3.06 73.76 0.00 4.73 2.24 

 Male 0.00 0.00 10.65 2.39 73.63 0.00 5.59 7.75 
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To test our fifth hypothesis of chemical local adaptation we analysed a data 

set including P. americanus and T. longispinosus pupae from New York and Ohio 

colonies. We investigated whether the chemical profile of a pupa depended on its 

species and / or on the ant community, in which its colony had been found. Albeit 

differences between species were much more pronounced than those between 

communities, we nevertheless detected a geographic pattern in the chemical 

profile of the ant pupae (Anosim: N = 92; Species: R = 0.541, p < 0.001; Community: 

R = 0.064, p < 0.025). 

 

 

 
 
Fig. 4 Gas chromatogram of the cuticular hydrocarbon profile of a P. americanus queen pupae. 1 = 

Tricosane, 2 = Tetracosane, 3 = Pentacosane, 4 = Hexacosane, 5 = Heptacosane, 6 = 5-Methyl-

Pentacosene, 7 = 3-Methyl-Pentacosene, 8 = Nonacosane. 
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Fig. 5 Non-metric, multidimensional scaling plots (NMDS) of chemical distances based on cuticular 

hydrocarbon components extracted from queen, worker and male pupae of the slavemaker 

P. americanus and its two Temnothorax host species. a) Species-specific differences: P. americanus 

pupae are symbolized by black triangles, T. longispinosus pupae by open circles and T. curvispinosus 

pupae by black stars. b) Caste-specific differences: Queen pupae are symbolized by black circles, 

worker pupae by open squares and male pupae by black crosses. 
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DISCUSSION 
 

Our transfer experiments clearly demonstrate that Temnothorax workers are able to 

recognize and selectively destroy pupae of different species and castes, but also 

that the slavemaker P. americanus partly induces enslaved T. longispinosus workers 

to accept alien host and parasite pupae. The GC-MS analyses show consistent 

differences in chemical profiles of host and parasite pupae, such that these cuticular 

hydrocarbons can be used by host workers as recognition cues. The apparent 

chemical discrepancy between parasite and host pupae profiles indicates that the 

social parasite is running behind its hosts at least on the chemical side of this 

coevolutionary arms race (Dawkins & Krebs 1979). This was also readily apparent in 

the high destruction rate of parasite pupae in undisturbed P. americanus colonies 

(Achenbach & Foitzik in press). On the other hand, both the transfer experiments and 

the chemical analyses reveal that the parasite tries to mimic the profile of its local 

hosts, indicating that these coevolutionary processes are occurring on a local scale.  

Our data give mixed support of our first hypothesis that P. americanus, when 

leading the coevolutionary arms race, should be able to induce enslaved 

Temnothorax workers to accept alien pupae. Enslaved T. longispinosus workers 

accepted transferred P. americanus pupae more often, than unparasitized 

T. longispinosus workers. Interestingly, this was not the case for host pupae, which 

were equally well accepted by parasitized and unparasitized T. longispinosus 

workers. In addition, a different pattern was shown for enslaved T. curvispinosus 

workers, which accepted alien conspecific pupae less, but T. longispinosus pupae 

more often than unparasitized workers of the same species. Overall, T. longispinosus 

pupae were clearly best accepted by enslaved host workers in P. americanus 

colonies, irrespective of the slave species present in slavemaker nests. This indicates a 

tighter adaptation of the parasite P. americanus to its major host T. longispinosus, 

while the secondary host T. curvispinosus is largely resistant to this parasite 

manipulation. This result is in accordance with earlier studies on the behavior during 

raids, which also found closer adaptation of P. americanus to its host T. longispinosus 

and partial resistance of its secondary host T. curvispinosus at the same communities 

(Brandt & Foitzik 2004).  

How can parasites influence slave worker behavior, in particular the 

acceptance of alien brood? Observations have shown that slavemaking ants force 

slave workers to do what they want by physical aggression (Heinze et al. 1994). 
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Social parasites could also manipulate enslaved Temnothorax workers by using 

chemicals, such as an ‘acceptance pheromone’ which, applied to pupae or 

transmitted via trophallaxis to enslaved host workers could induce them the accept 

alien brood (Alloway 1982). In addition, the brood acceptance of parasitized 

workers can be influenced by early experience of slaves, which emerge in parasite 

nests with a wider range of odor sources (Goodloe & Topoff 1987, Hare & Alloway 

1987, Jaisson 1975). If the behavior of enslaved workers is under selection, as 

suggested by the behavioral trait “slave rebellion” (Achenbach & Foitzik in press), 

than it is also possible that hosts are under selection to evolve a less flexible, more 

innate odor template. Such an intrinsic odor template would enable enslaved host 

workers to recognize parasites reliably. Similarly, cuckoo chicks do not learn their 

song from their foster parents, as is typical for passerine birds, but rather, they have 

an innate template (Davies 2000). A learned component in the development of an 

odor template certainly has its advantages (fast adaptation to environmentally-

induced changes in the colony odor), but these have to be contrasted with fitness 

costs caused by frequent social parasitism. Parasite pressure could thus influence the 

development of an odor template, a hypothesis, which is testable by comparing 

host populations under variable social parasite pressure. 

The second hypothesis stated that host workers which developed resistance 

against its social parasite, should be able to recognize and selectively kill parasite 

pupae more often than pupae of other host species (enemy recognition; Alloway 

1990). We could only test this for T. longispinosus where we introduced both 

P. americanus and T. curvispinosus host pupae. Pupae of both species rarely, if ever, 

survived the transfer, but mortality rates did not differ between the parasite pupae 

and pupae of the alternative host T. curvispinosus. It is difficult to draw conclusions 

from this finding, as over 90% of the transferred parasite pupae were killed. Host 

defenses against alien brood appear to be generally well-developed, albeit not only 

focused on the enemy P. americanus. On the other hand, enslaved host workers 

regularly come into the situation that alien heterospecific pupae are added to the 

colony, so that rejection of these pupae could also be under selection.  

Generation times of ant social parasites and their hosts are long (approx. 10 

years), so it is impossible to directly observe evolutionary changes in the field (Brandt 

et al. 2005b). However, as host and parasite populations are genetically structured 

(Brandt et al. 2007), we can compare coevolutionary interactions at sites, which can 

be at different stages of the interaction or where different outcomes are caused by 
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variation in community composition (Brandt & Foitzik 2004, Thompson 1999). In 

addition, the investigation of coevolution in a distinct geographic setting allows us to 

study local adaptation. Local adaptation frequently occurs in host-parasite 

interactions and describes a situation when the mean fitness of a population is higher 

in its home locality than in any other environment (Hoeksema & Forde 2008, Kaltz & 

Shykoff 1998). And, this is exactly what we observe in P. americanus for our transfer 

experiments: Social parasite pupae, which were transferred into unparasitized 

sympatric host nests survived much better than those relocated into host colonies of 

the same species from a different community. This finding supports results from a 

large scale field manipulation, where P. americanus colonies fared much better in 

their local host population, than when transferred to a distant host population (Foitzik 

et al. in press). Parasite local adaptation also means that the hosts have to be mal-

adapted to their local parasites. This was obvious in the field manipulation, where a 

reduction in host nest density was only observed in interactions with the sympatric 

parasite. Our cuticular hydrocarbon analyses explain why parasitic pupae are less 

frequently killed by their local hosts: Surface chemicals of the parasite appeared to 

be adapted to the local host population.  

In addition, our chemical analysis of the cuticular hydrocarbons of pupae 

revealed strong species and caste specific differences, which should enable 

Temnothorax workers to discriminate between pupae. Cuticular hydrocarbons are 

the most important recognition cues in social insects (Howard 1993), such that 

cuticular chemicals are the most likely basis for pupae recognition. The distinct 

differences between the chemical profile of parasite and host pupae, which were 

much more pronounced than those between the two host species, raises the 

question of why P. americanus is not able to mimic the host profiles better. Indeed, 

the high rate of parasite pupae destruction by slaves even in undisturbed 

P. americanus colonies demonstrates that these mal-adapted chemical profiles 

entail large fitness costs (Achenbach & Foitzik in press). P. americanus colonies are 

known for their very low productivity and extraordinary small nest size with a mean of 

only 2 - 4 slavemaker workers per nest (Foitzik & Herbers 2001b, Herbers & Foitzik 

2002). Possibly, phylogenetic constraints hinder P. americanus from adapting better 

to its hosts, though we see the first indications of local adaptation in chemical 

profiles. It is even more likely that pupae detection and destruction – that is the trait 

“slave rebellion” – only evolved recently and there has not been enough time for the 

parasite to respond.  
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Our experiments and chemical analyses clearly show that P. americanus is 

ahead in certain aspects of the coevolutionary arms race, while in others, the 

Temnothorax hosts, with their effective defenses, are leading. This coevolutionary 

struggle in the leaf litter remains fascinating.  
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ABSTRACT 
 

Coevolution of hosts and parasites is strongly affected by the evolutionary potential 

of the antagonists, which in turn depends on population sizes as well as on levels of 

recombination, mutation, and gene flow. Using six to eight microsatellite markers, we 

investigated population structure, gene flow and post-glacial migration routes of the 

obligate social parasite Protomognathus americanus and its two main host species 

of the genus Temnothorax across their natural range. The polymorphic nuclear 

markers displayed high levels of genetic diversity in all three species with variation 

across loci and populations. Genetic differentiation was significant, but moderate to 

low in T. curvispinosus, P. americanus and T. longispinosus with FST values of 0.086, 

0.070, 0.052, for the three species respectively. Along with high levels of genetic 

diversity, this pattern of host and parasite populations connected by limited gene 

flow can lead to a geographic mosaic of coevolution and accelerated arms races 

between species. The main host species T. longispinosus showed the weakest 

genetic differentiation, which can be explained by its high effective population size 

with retained ancient lineages and gradual lineage sorting. Genetic distances 

between populations did not correlate with geographic distances and this absence 

of isolation-by-distance could in part be explained by the Pleistocene history of these 

species, which might have survived in different refugia. In the main host 

T. longispinosus, eastern populations were genetically separated from western 

populations and cluster analysis revealed one to two clusters and additional 

unclustered populations in all three species. Glacial history thus might still influence 

population genetic structure in these ants until today.  

 

Keywords: Gene flow, microsatellites, genetic differentiation, slavemaking ants 
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INTRODUCTION 
 

Genetic variation in natural populations is a fundamental parameter in evolution 

and has fascinated scientists for the last century. The development of the 

polymerase chain reaction, allowed to swiftly analysing genetic variation especially 

by using highly polymorphic neutral markers, such as microsatellites. Microsatellite 

mutation rates are believed to be substantial compared to normal rates of point 

mutations (Jarne & Lagoda 1996, Queller et al. 1993) resulting in a positive correlation 

of effective population size and number of alleles. Consequently, microsatellite 

variation of current populations might on the one hand correlate directly with the 

effective population size, and might on the other hand reflect the size of past 

populations and the process of post-glacial dispersal (Jarne & Lagoda 1996). 

Patterns of genetic variation reflects the potential of a species to respond to 

selection and to adapt to changing environmental conditions but also delivers 

insights into the history of past populations. Since species vary in their dispersal 

capacity, population size and in life history parameters (such as their mating system), 

different species show different levels of genetic structuring, which determine the 

effects of selection and genetic drift (Avise 1994). Yet also historical processes and 

environmental barriers may have shaped the genetic structure of a species.  

In temperate North-America, Pleistocene glaciations predominantly 

influenced biological communities. Species were restricted to ice free region south of 

the Laurentide Ice Sheet or to glacial refugia, areas that persisted within, or adjacent 

to the ice sheets. Subsequently, the dispersal and migration of species was affected 

and limited substantially affecting ecology, geographic distribution of species and 

genetics (Hewitt 2000). Refugial populations are generally expected to harbour 

higher levels of genetic diversity compared to populations in areas that have been 

colonized since the retreat of glaciers (Hewitt 1996). This hypothesis was supported by 

recent studies that demonstrated the identification of refugia and post-glacial 

colonization routes using nuclear markers, such as microsatellites (Comps et al. 2001, 

Koskinen et al. 2000).  

However, the evolution of species is not only influenced by the geographic 

population structure and past colonization, but also by interspecific interactions 

(Gandon et al. 1996, Gandon & Michalakis 2002). Especially host-parasite systems 

show close coevolutionary relationships with strong reciprocal selection and 

adaptation (Dydahl & Storfer 2003), and are thus regarded as perfect model systems 
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of coevolution (Kaltz & Shykoff 1998). In the coevolutionary arms race, the ability of a 

species to keep up with its opponent strongly depends on selection pressure and the 

evolutionary potential, e.g. the amount of genetic variation of a species. 

Intermediate levels of genetic structuring, allowing the exchange of alleles between 

populations (gene flow) without a complete admixture facilitates local adaptation 

to the antagonists (Barton & Hewitt 1985), and thus to be ahead in the arms race. 

Here we examine the population structure, gene flow and post-glacial 

colonization of the North American slavemaking ant Protomognathus americanus 

and two of its Temnothorax host species, T. longispinosus and T. curvispinosus. 

P. americanus is an obligate social parasite, which depends on its hosts to carry out 

all tasks of colony maintenance (Wesson 1939). Instead, slavemaking ants exploit 

their host species by raiding neighboring host colonies. During raids host brood is 

stolen and carried back to the slavemakers’ nest to restock slave supplies and thus to 

obtain the slavemaker colony’s work force (Alloway 1980, Hölldobler & Wilson 1990). 

All three interacting species are widely distributed in mixed deciduous forests 

throughout the northeastern American continent and are closely related to each 

other (Emery’s rule, (Emery 1909)) and consequently characterized by similar 

generation times and comparable rates of recombination and mutation. Since a 

recent phylogeny could show that P. americanus is an evolutionary old parasite with 

a long coevolutionary history with its hosts (Beibl et al. 2005), over time, the 

interacting species are expected not only to be influenced by climate changes, but 

also by parasite-host interactions and coevolution. 
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MATERIAL AND METHODS 
 

Sampling and DNA extraction 

Genetic specimens were collected from 10 spatially separated populations in the 

summers of 2001-2007 (Figure 1) and were preserved in 100% ethanol and frozen at -

20°C until extraction. The DNA was isolated from individual ant workers using liquid 

nitrogen and the Puregene® DNA isolation kit (Gentra systems), according to Foitzik 

& Herbers (Foitzik & Herbers 2001b).  

 

 
 
Figure 1 Collecting sites of P. americanus (black), T. longispinosus (grey) and T. curvispinosus (white): IL 

(Ottawa, Illinois, N 41°22’366’’ W 88°50’279’’), MA (Maryland, N 39°08’64.6’’ W 77°14’4’’), MI (Hell, 

Michigan, N 42°25’754’’ W 83°58’956’’), NY (Huyck Preserve Rensselaerville, New York, N 42°31’35.3’’ 

W 74°9’30.1’’), OH (Harpersfield, Ohio, N 41°45’34.2’’ W 80°57’55.7’’), OH II (Kraus Wilderness Preserve, N 

40°7’31.2’’ W 82°57’92.3’’), PA (Elliot State Park, Pennsylvania, N 41°6’30’’ W 78°31’59’’), VT (East 

Middlebury, Vermont, N 43°58’182’’ W 73°5’’01’’), VA (Shenandoah NP, Virginia, N 38°53’25.4’’ W 

78°12’12.3’’), WV (Watoga SP, West Virginia, N 38°6’25.1’’ W 80°7’48.7’’) 

 

 

Amplification and scoring 

We genotyped one or two ant workers per colony at six (P. americanus) to eight 

(T. longispinosus, T. curvispinosus) specific polymorphic microsatellite loci (Table 1). 

Depending on the community composition, a maximum of three different ant 

species and a maximal number of 50 colonies per population was analysed 

(Table 2).  
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Table 1 Microsatellites used for the three different ant species 

 

Species Microsatelites used 

P. americanus L4 (Giraud et al., 1999); L5, L18 (Foitzik et al., 1997); LXAGT1 (Bourke et 
al., 1997); Myrt 3 (Evans, 1993); LXGT218 (Hamaguchi et al., 1993); 
 

T. longispinosus L4 (Giraud et al., 1999); L5, L18 (Foitzik et al., 1997); MS 86 (Azuma et al., 
2005); LXAGT1 (Bourke et al., 1997); Myrt 3 (Evans, 1993); LXGT223, 
LXGT218 (Hamaguchi et al., 1993); 
 

T. curvispinosus L4 (Giraud et al., 1999); L5, L18 (Foitzik et al., 1997); MS 86 (Azuma et al., 
2005); LXAGT1 (Bourke et al., 1997); Myrt 3 (Evans, 1993); LXGT223, 
LXGT218 (Hamaguchi et al., 1993); 

 

 

Table 2 Number of workers genotyped per nest and population 

 

No. of workers / nests genotyped Population 
(Code) P. americanus T. curvispinosus T. longispinosus 

Illinois (IL) - 50/50 50/50 
Maryland (MA) 13/8 50/50 3/3 
Michigan (MI) - 50/50 6/3 
New York (NY) 50/50 - 50/50 
Pennsylvania (PA) - 18/10 50/33 
Ohio (OH) 50/50 50/50 50/50 
Ohio II (OH II) 17/12 50/50 - 
Vermont (VT) 2/2 - 32/32 
Virginia (VA) 1/1 44/44 2/2 
West Virginia (WV) 50/50 50/50 50/50 

 

 

The PCR was accomplished in a 20µl reaction volume using the Q biogene 

TaqCoreKit containing 1x incubation buffer, 2,2mM MgCl2, 0,4mM of each dNTP, 

0,5µM of labelled (TET, FAM and HEX dyes) forward, 0,5µM unlabeled reverse primer 

and 0,13U of Taq DNA polymerase (Q biogene). The PCR was performed in a 

thermocycler (PxE 0.2 Thermo) using the following program: polymerase activation at 

94°C (5 min), initial denaturation at 92°C (1min 30s), annealing at 54°C (45s) and 

extension at 72°C (30s), followed by 28 cycles at 92°C (45s), 54°C (45s) and 72°C 

(30s). The last step was a final extension at 72°C (7min). PCR products were 

precipitated with a mixture of 0,5µl of 3M Ammonium acetate and 10µl of ethanol 

(100%) at -60°C (60 min), dehydrated with a series of different ethanol concentrations 

(100%, 70%) and dried. The purified PCR products were visualized on a capillary 

sequencer (Amersham Bioscience MegaBACE™ 1000) using MegaBACE™ ET400-R 
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size standard (Amersham Bioscience) and the MegaBACE™ Fragment Profiler 1.2 

software (Amersham Bioscience). 

 

Data Analysis 

Genetic diversity was evaluated for each population by the number of alleles per 

locus (AN), allelic frequencies (AF), observed heterozygosity (HO) and expected 

heterozygosity (HE). HE is equivalent to the proportion of heterozygous loci per 

individual under Hardy–Weinberg expectations. A locus was considered polymorphic 

if the frequency of its most common allele did not exceed 0.95 (the 95% criterion). 

Calculations were assessed for each locus using the program MICROSATELLITE 

ANALYSER (MSA, (Dieringer & Schlötterer 2002). We also calculated the number of 

private alleles (alleles present exclusively in one of the populations) and allelic 

richness (number of alleles corrected for sample size) by the method of El Mousadik 

and Petit (El Mousadik & Petit 1996), which is based on the rarefaction method of 

Hurlbert (Hurlbert 1971). Allelic richness and linkage disequilibrium was tested with the 

software FSTAT version 2.9.3 (Goudet 2001).  

Tests for Hardy-Weinberg equilibrium were calculated for each locus and 

population using the software package GENEPOP 3.2 (Raymond & Rousset 1995). 

The significance of departures from Hardy-Weinberg expectations was tested by the 

Markov chain exact test (Guo & Thompson 1992) and by the inbreeding coefficient 

FIS (Wright 1951). As null alleles may also cause heterozygosity deficiency, we 

estimated the frequency of null alleles as: 

 

r = HE – HO / 1 + HE (Brookfield 1996) 

 

Genetic differentiation between and across all populations and degree of 

inbreeding was quantified using Wright’s (Wright 1965) F-statistics. FST and FIS estimates 

(Weir & Cockerham 1984) were computed using the software MSA and FSTAT 2.9.3 

(Goudet 2001). There were no qualitative differences between the two calculations. 

FST can theoretically range from 0 (no genetic divergence) to 1 (complete fixation of 

alternative alleles). Values above 0.15 are suggested to indicate great genetic 

differentiation (Wright 1978). Mean and 95% confidence intervals (CI) for F-statistics 

were estimated by jackknifing and bootstrapping over loci, respectively. Genetic 

viscosity of a population is expressed as the increase of genetic differentiation 

between geographically distant groups and consequently as the increase of 
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relatedness among neighbours. Genetic distances were calculated between pairs of 

populations (pairwise FST values (Goudet et al. 1996)) with the software MSA 

(Dieringer & Schlötterer 2002) and correlation between metric and genetic distance 

was tested by the Mantel test (Mantel 1967) using the software XLSTAT 2006.5 

(Addinsoft). 

During the time following a genetic bottleneck event, populations are out 

mutation-drift equilibrium conditions (Cornuet & Luikart 1996, Kimmel et al. 1998) and 

alleles at low frequency (< 0.1) are expected to become less abundant in a 

population than alleles with intermediate frequencies. To reveal possible recent 

bottlenecks, we analysed the distributions of allele frequencies within populations 

with the software BOTTLENECK 1.2.02 (Cornuet & Luikart 1996, Luikart et al. 1998). 

Associations between populations were visualized using the proportion of 

shared alleles between populations (MSA Dieringer & Schlötterer 2002), in a non-

metric multi-dimensional scaling plot (Primer 6 Version 6.1.6 Primer-E Ltd.). Proximities 

between hypothetical refugia were statistically evaluated by analysis of similarities 

(ANOSIM). Additionally a Neighbour-Joining phylogram based on Nei’s genetic 

distance (Nei 1978) (Populations 1.2.30, (Langella 1999) was constructed using the 

software TreeView (Page 1996) to depict the pattern of genetic relationships among 

populations. Support for the topology was estimated using 1000 bootstrap replicates. 

The degree of gene flow among the populations was calculated using 

Wright’s indirect method (Wright 1978) as Nm = (1/FST – 1)/4 (Slatkin & Barton 1989). 

 

 

RESULTS 
 

Pattern of genetic diversity and variation among microsatellite loci and among 

populations 

We genotyped 183 P. americanus workers from seven populations at six 

microsatellite loci, 293 T. longispinosus workers from nine populations and 362 

T. curvispinosus workers from eight populations at eight microsatellite loci each. All 

loci were polymorphic in all populations (Table 3, 4, 5). Genotypic disequilibrium was 

not apparent for any pair of loci according to a global test for each of the 15 

(P. americanus) and 28 (T. longispinosus, T. curvispinosus) different pairs of loci across 

all populations based on 300 and 500 permutations. Therefore we proceeded under 

the assumption of statistical independence between loci. 
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In total 22 - 45 alleles per microsatellite locus were detected in the species 

P. americanus, 17 – 39 alleles per locus in T. longispinosus and 23 - 58 alleles per locus 

in T. curvispinosus (Table 3, 4, 5). Among loci, the highest genetic diversity was shown 

in T. curvispinosus with a mean number of alleles of 35.4, followed by P. americanus 

with a mean of 27.9 and T. longispinosus with a mean number of 26 different alleles. 

The mean expected heterozygosity HE among loci ranged from 0.78 to 0.95 in 

P. americanus, from 0.32 to 0.94 in T. longispinosus and from 0.62 to 0.97 in the species 

T. curvispinosus.  

Genetic diversity also varied among populations (Table 6, 7, 8). Mean allele 

numbers ranged from 2.0 (Virginia) to 19.5 (New York) in P. americanus, from 2.5 

(Virginia) to 17.1 (Ohio) in T. longispinosus and from 11.1 (Virginia) to 18.6 (Michigan) 

in T. curvispinosus. Allelic richness showed less variation, but still values differed 

among populations. A test for correlation between allelic richness and longitude 

and/or latitude in all three species showed no statistically significant correlations 

(Spearman correlations: p ≥ 0.19). Nevertheless, there seemed to be a positive 

association between allelic richness and both longitude and latitude in 

P. americanus (Spearman: r= 0.40, p= 0.37; r= 0.55, p= 0.20), between allelic richness 

and longitude in T. longispinosus (Spearman: r= 0.48, p= 0.19) and between allelic 

richness and latitude in T. curvispinosus (Spearman: r= 0.36, p= 0.39).  

Mean expected heterozygosity HE among populations varied from 0.72 

(Maryland) to 1.00 (Virginia) in P. americanus, from 0.71 (Virginia) to 0.82 (Maryland) 

in T. longispinosus and from 0.75 (Ohio) to 0.87 (Michigan, Ohio 2, Pennsylvania) in 

T. curvispinosus. Alleles present exclusively in one of the populations (private alleles) 

were found at each species and each locus, except in the locus LXGT 223 in 

P. americanus. All populations, except P. americanus and T. longispinosus from 

Virginia (VA), contained unique alleles, suggesting limited current levels of genetic 

exchange (Barton & Slatkin 1986). Their numbers ranged from two to 15 in 

P. americanus, from one to 15 in T. longispinosus and from one to seven in 

T. curvispinosus and generally occurred in low mean frequencies from 0.021 in 

T. curvispinosus to 0.045 in P. americanus. The main host species T. longispinosus had 

an intermediate mean frequency of private alleles of 0.030. 

Significant deviation from Hardy-Weinberg equilibrium was observed in most 

of the loci analysed in all three study species (P. americanus: 4 out of 6; 

T. longispinosus: 5 out of 8; T. curvispinosus: 7 out of 8) and a global test for Hardy-

Weinberg expectations across all loci and populations in the three study species 



PUBLICATION 4  78 

showed a P value (Hardy-Weinberg equilibrium) of 0.001. This deviation may be due 

to an excess or a deficiency of heterozygotes from expected values. The Markov 

chain exact test for significance of deviations from Hardy-Weinberg-expectations 

revealed deficiency of heterozygotes in 15 out of 42 locus-population combinations 

in P. americanus. In T. longispinosus 24 out of 72 and in T. curvispinosus 36 out of 64 

locus-population combinations had less heterozygotes than expected. Multilocus FIS 

analysis showed a significant multilocus heterozygote deficiency in four out of seven 

sampling localities for P. americanus, in six out of nine localities for T. longispinosus 

and in eight out of eight sampling localities for T. curvispinosus indicating significant 

levels of inbreeding in the latter species (Table 6, 7, 8). Besides inbreeding, the 

deficiencies of heterozygotes observed may also be caused by the presence of null 

alleles. Frequencies of null alleles (NAF) varied from -0.021 to 0.206 in P. americanus, 

from -0.035 to 0.156 in T. longispinosus and from -0.006 to 0.149 in T. curvispinosus. 

Since genetic bottlenecks cause an excess of heterozygosity we thus found 

no evidence for this event in the study species P. americanus and T. curvispinosus 

under the Stepwise Mutation Model (SMM) or the Infinite Alleles Model (IAM) 

(Wilcoxon test: P. americanus: p SSM≥ 0.34, p IAM≥ 0.42; T. curvispinosus: p SSM≥ 0.98, p 

IAM≥ 0.16). In T. longispinosus we detected evidence for bottleneck events in two 

populations (Wilcoxon test: Maryland p SSM= 0.001, p IAM=0.45; Michigan p SSM= 0.04, 

p IAM=0.004), even though sample sizes were rather small in these locations (nMA= 3, 

nMI= 6). For the remaining seven populations we could not significantly show the 

experience of a genetic bottleneck (Wilcoxon test: p SSM≥ 0.93, p IAM≥ 0.31). The some 

populations displayed discrepancy of p-values between the IAM test and the SMM 

test is the consequence of different heterozygosity expectations at mutation 

equilibrium (Shriver et al. 1993, Valdes & Slatkin 1993). Since microsatellite mutation is 

generally thought to occur through a stepwise process, the best estimates of 

heterozygosity for a bottleneck analysis may be expected by using a combination of 

both models. 
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Table 3 Genetic variation at 6 microsatellite loci for P. americanus; AN = number of alleles per locus, HO= 

observed heterozygosity, HE= expected heterozygosity, FIS = inbreeding coefficient, NAF = null allele 

frequency 

 

Locus  
Population 

L4 L5 L18 LXAGT1 Myrt3 LXGT218 
AN 9 14 12 14 12 8 
HO 0.500 1.0 0.923 0.727 1.0 0.923 

MA 

HE 0.866 0.957 0.911 0.957 0.935 0.825 
AN 22 14 15 26 28 12 
HO 0.679 0.940 0.889 0.741 0.920 0.260 

NY 

HE 0.923 0.906 0.869 0.968 0.930 0.501 
AN 14 22 15 14 22 15 
HO 0.783 1.0 1.0 0.952 0.875 0.460 

OH 

HE 0.906 0.900 0.888 0.850 0.949 0.785 
AN 12 13 14 11 12 9 
HO 0.643 0.882 1.0 0.667 0.692 0.750 

OH II 

HE 0.857 0.900 0.923 0.902 0.935 0.879 
AN 2 4 2 4 3 2 
HO 0.500 1.0 0.500 1.0 1.0 0.500 

VT 

HE 0.500 1.0 0.500 1.0 0.833 0.500 
AN 2 2 2 2 2 2 
HO 1.0 1.0 1.0 1.0 1.0 1.0 

VA 

HE 1.0 1.0 1.0 1.0 1.0 1.0 
AN 21 17 16 24 14 8 
HO 0.536 0.980 0.958 0.854 0.85 0.255 

WV 

HE 0.921 0.919 0.873 0.928 0.874 0.490 
Total AN 42 27 28 45 31 22 
Mean HO 0.639 0.967 0.953 0.837 0.879 0.413 
Mean HE 0.953 0.934 0.913 0.950 0.945 0.780 
NAF 0.161 -0.017 -0.021 0.060 0.034 0.206 
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Table 4 Genetic variation at 6 microsatellite loci for T. longispinosus; AN = number of alleles per locus, HO= 

observed heterozygosity, HE= expected heterozygosity, FIS = inbreeding coefficient, NAF = null allele 

frequency 

 

Locus  
Population L4 L5 L18 MS86 LXAGT1 Myrt3 LXGT223 LXGT218

AN 10 27 12 12 18 13 4 8
HO 0.857 0.800 0.860 0.207 0.979 0.932 0.404 0.333

IL 

HE 0.880 0.935 0.874 0.584 0.908 0.858 0.576 0.654
AN 5 5 4 2 3 5 2 5
HO 1.0 1.0 1.0 0.500 0.667 1.0 0.500 1.0

MA 

HE 0.933 0.933 1.0 0.500 0.800 0.933 0.500 0.933
AN 6 6 6 2 5 4 3 5
HO 1.0 0.500 0.833 0.250 1.0 1.0 0.833 0.800

MI 

HE 0.818 0.879 0.864 0.250 0.848 0.758 0.591 0.844
AN 21 19 18 7 19 15 4 8
HO 0.956 0.604 0.940 0.194 1.0 0.878 0.375 0.563

NY 

HE 0.923 0.894 0.926 0.372 0.918 0.829 0.326 0.704
AN 24 21 25 3 21 16 11 16
HO 0.829 0.629 0.917 0.049 0.932 0.784 0.471 0.646

OH 

HE 0.921 0.930 0.935 0.072 0.940 0.863 0.604 0.821
AN 19 22 20 5 22 11 6 12
HO 0.900 0.960 0.979 0.161 1.0 0.937 0.261 0.540

PA 

HE 0.924 0.857 0.929 0.495 0.932 0.838 0.360 0.684
AN 12 17 15 3 17 8 7 9
HO 0.591 0.933 0.933 0.500 1.0 0.933 0.455 0.581

VT 

HE 0.877 0.939 0.903 0.500 0.903 0.815 0.874 0.546
AN 3 2 3 2 4 2 2 2
HO 0.500 0.500 1.0 0.500 1.0 1.0 0.0 0.0

VA 

HE 0.833 0.500 0.833 0.500 1.0 0.667 0.667 0.667
AN 24 16 18 7 19 11 8 11
HO 0.824 0.891 0.979 0.086 0.979 0.933 0.353 0.318

WV 

HE 0.946 0.738 0.927 0.265 0.912 0.795 0.680 0.651
Total AN 35 39 31 17 35 30 21 26
Mean HO 0.853 0.796 0.935 0.123 0.978 0.905 0.378 0.502
Mean HE 0.930 0.933 0.939 0.323 0.932 0.840 0.568 0.780
NAF 0.040 0.071 0.002 0.151 -0.024 -0.035 0.121 0.156
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Table 5 Genetic variation at 6 microsatellite loci for T. curvispinosus; AN = number of alleles per locus, HO= 

observed heterozygosity, HE= expected heterozygosity, FIS = inbreeding coefficient, NAF = null allele 

frequency 

 

Locus  
Population L4 L5 L18 MS86 LXAGT1 Myrt3 LXGT223 LXGT218

AN 31 17 17 9 25 14 16 10
HO 0.891 0.958 0.755 0.286 0.980 0.980 0.745 0.634

IL 

HE 0.958 0.877 0.879 0.545 0.943 0.906 0.883 0.766
AN 17 12 19 3 31 17 15 19
HO 0.400 0.563 0.714 0.0 0.957 0.771 0.405 0.735

MA 

HE 0.912 0.684 0.794 0.329 0.967 0.921 0.925 0.820
AN 31 17 17 12 22 22 16 12
HO 0.792 0.837 0.688 0.829 1.0 1.0 0.750 0.605

MI 

HE 0.955 0.815 0.839 0.859 0.943 0.928 0.898 0.734
AN 14 13 22 8 30 20 14 14
HO 0.290 0.604 0.612 0.138 0.978 0.891 0.775 0.511

OH 

HE 0.599 0.672 0.860 0.344 0.965 0.928 0.825 0.764
AN 7 9 20 5 36 18 19 22
HO 0.375 0.432 0.740 0.333 0.957 0.841 0.619 0.980

OH II 

HE 0.867 0.545 0.870 0.405 0.962 0.869 0.927 0.916
AN 18 12 16 9 16 13 8 12
HO 0.944 0.667 0.889 0.529 0.944 0.611 0.455 0.611

PA 

HE 0.943 0.849 0.944 0.613 0.946 0.906 0.879 0.889
AN 12 12 11 4 15 15 10 10
HO 0.444 0.651 0.433 0.333 0.971 0.700 0.360 0.667

VA 

HE 0.941 0.859 0.870 0.867 0.927 0.898 0.733 0.580
AN 34 16 19 2 20 17 21 18
HO 0.830 0.640 0.796 0.025 1.0 0.791 0.800 0.735

WV 

HE 0.968 0.813 0.867 0.025 0.941 0.901 0.943 0.828
Total AN 48 28 30 23 58 32 30 34
Mean HO 0.694 0.677 0.702 0.341 0.976 0.851 0.654 0.696
Mean HE 0.963 0.824 0.901 0.623 0.965 0.926 0.943 0.899
NAF 0.137 0.081 0.105 0.174 -0.006 0.039 0.149 0.107

 
 

Table 6 Genetic variation among populations for P. americanus; AN = number of alleles per locus, AR= 

allelic richness, PAN= number of private alleles, HO= observed heterozygosity, HE= expected 

heterozygosity, FIS = inbreeding coefficient 

 

 
Population 

AN 
Mean

HO 

Mean
HE 

Mean
AR PAN FIS 

MA 11.5 0.846 0.909 1.90 2 0.072 
NY 19.5 0.738 0.850 1.85 15 0.133 
OH 17 0.845 0.880 1.88 5 0.039 
OH II 11.8 0.772 0.899 1.90 7 0.146 
VT 2.8 0.750 0.722 1.80 2 -0.067 
VA 2.0 1.00 1.00 1.91 0 - 
WV 16.7 0.739 0.834 1.83 9 0.115 
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Table 7 Genetic variation among populations for T. longispinosus; AN = number of alleles per locus, AR= 

allelic richness, PAN= number of private alleles, HO= observed heterozygosity, HE= expected 

heterozygosity, FIS = inbreeding coefficient  

 

Population AN 

Mean
HO 

Mean
HE 

Mean
AR PAN FIS 

IL 13 0.672 0.784 1.78 9 0.145
MA 3.9 0.833 0.817 1.69 2 -0.030 
MI 4.6 0.777 0.732 1.73 1 -0.069 
NY 13.9 0.689 0.737 1.74 7 0.066

OH 17.1 0.657 0.761 1.76 15 0.138
PA 14.6 0.717 0.752 1.75 10 0.047
VT 11 0.741 0.795 1.73 2 0.077
VA 2.5 0.563 0.708 1.65 0 0.304

WV 14.3 0.670 0.739 1.74 7 0.095
 

 

Table 8 Genetic variation among populations for T. curvispinosus; AN = number of alleles per locus, AR= 

allelic richness, PAN= number of private alleles, HO= observed heterozygosity, HE= expected 

heterozygosity, FIS = inbreeding coefficient 

 

Population AN 

Mean
HO 

Mean
HE 

Mean
AR PAN FIS 

IL 17.4 0.779 0.845 4.44 5 0.080
MA 16.6 0.568 0.794 4.22 5 0.289
MI 18.6 0.813 0.871 4.57 2 0.068

OH 16.9 0.600 0.745 3.92 5 0.196
OH II 17.0 0.660 0.871 4.21 7 0.176
PA 13.0 0.706 0.871 4.63 1 0.195

VA 11.1 0.570 0.834 4.24 2 0.335
WV 18.4 0.702 0.786 4.29 4 0.107

 

 

Genetic structure and degree of inbreeding of the populations 

Data on F-Statistics is summarized in Table 9. FST values, which can be interpreted as a 

measure of the level of differentiation among populations relative to the limiting 

amount under complete fixation (Wright 1978), showed a highly significant 

differentiation between populations in all three study species. We found the highest 

structuring in one of the host species T. curvispinosus (Global FST = 0.086), followed by 

the slavemaker P. americanus (Global FST = 0.070) and its main host species 

T. longispinosus (Global FST = 0.052). Since confidence intervals of all three species 
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largely overlap, FST estimates are not qualitatively different (Mann-Whitney U test: p > 

0.05) (Table 6).  

The global inbreeding coefficients FIS were positive in all three study species 

(Table 9) but in P. americanus and T. longispinosus confidence intervals extended 

beyond zero, indicating no significant inbreeding. In contrast, the second host 

species T. curvispinosus showed the highest global FIS value of 0.141 with a 

confidence interval clearly above zero. Additional, multilocus FIS analysis for each 

population indicated significant multilocus heterozygote deficiency in eight out of 

eight sampling localities for T. curvispinosus (Table 8) and consequently a significant 

degree of inbreeding. 

 
Table 9 F-Statistics for microsatellite date of P. americanus, T. longispinosus and T. curvispinosus 

Species locus FIS 

Mean ± SE 
Global FIS 

Mean ± SE  
(95% CI) 

FST 
Mean ± SE 

 

Global FST 
Mean ± SE 
(95% CI) 

L 4 0.297 ± 0.062 0.053 ± 0.021 *** 
L 5 -0.064 ± 0.021 0.028 ± 0.016 *** 
L 18 -0.081 ± 0.026 0.042 ± 0.009 *** 
LXAGT 1 0.073 ± 0.089 0.059 ± 0.024 *** 
Myrt 3 0.044 ± 0.027 0.036 ± 0.011 *** 

P. am. 

LXGT 218 0.370 ± 0.075

0.092 ± 0.069 
(-0.022-0.228) 

0.227 ± 0.124 *** 

0.070 ± 0.027  
(0.038-0.129) 

*** 

L 4 0.062 ± 0.036 0.022 ± 0.010 *** 
L 5 0.092 ± 0.092 0.072 ± 0.039 *** 
L 18 -0.021 ± 0.014 0.027 ± 0.009 *** 
MS 86 0.613 ± 0.048 0.048 ± 0.032 ** 
LXAGT 1 -0.067 ± 0.016 0.017 ± 0.005 *** 
Myrt 3 -0.090 ± 0.036 0.015 ± 0.008 *** 
LXGT 223 0.267 ± 0.086 0.100 ± 0.057 *** 

T. long. 

LXGT 218 0.278 ± 0.069

0.079 ± 0.057 
(-0.008-0.211) 

0.128 ± 0.023 *** 

0.052 ± 0.016 
(0.027-0.084) 

*** 
 

L 4 0.223 ± 0.072 0.065 ± 0.059 *** 
L 5 0.111 ± 0.053 0.084 ± 0.038 *** 
L 18 0.183 ± 0.041 0.053 ± 0.018 *** 
MS 86 0.247 ± 0.188 0.426 ± 0.192*** 
LXAGT 1 -0.028 ± 0.011 0.018 ± 0.005 *** 
Myrt 3 0.062 ± 0.044 0.020 ± 0.007 *** 
LXGT 223 0.264 ± 0.065 0.064 ± 0.023 *** 

T. curv. 

LXGT 218 0.112 ± 0.057

0.141 ± 0.039 
(0.071-0.209) 

0.143 ± 0.035 *** 

0.086 ± 0.027 
(0.045-0.147) 

*** 
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Differentiation between populations and gene flow 

Genetic differentiation among populations was examined using a pairwise 

comparison of FST values (Table 10, 11, 12). The pairwise test revealed significant 

differences in allele frequencies between most populations in all three study species. 

Non-significant results were most likely due to small sample sizes. Pairwise FST values 

ranged from 0.023 to 0.205 in P. americanus, from 0.007 to 0.165 in T. longispinosus 

and from 0.042 to 0.189 in T. curvispinosus.  

There was no significant correlation between genetic differentiation (pairwise 

FST) and geographical distance between populations for P. americanus (Mantel test: 

r= 0.308; p = 0.17) and its host species T. curvispinosus (Mantel test: r= -0.262; p = 0.18). 

However, low p-values indicated a tendency for an association of both factors in 

both species. The non-significance of results might be due to small sample sizes in 

Virginia and Vermont und thus low statistical power. The Mantel test for the main host 

species T. longispinosus (Mantel test: r= 0.063; p = 0.72) revealed no significant 

correlation and no tendency for an association. Consequently, isolation by distance 

certainly played no important role in the genetic structure of the main host species 

T. longispinosus. 

The proportion of shared alleles between populations revealed no significant 

clustering of populations for P. americanus and T. curvispinosus (ANOSIM: p> 0.05). 

However in the host species T. longispinosus, western populations were clearly 

separated from populations originating from a hypothetical eastern refugia 

(ANOSIM: r= 0.33, p= 0.012). The genetic distance between pairs of populations 

ranged from 0.32 to 0.85 in P. americanus, from 0.16 to 0.76 in T. longispinosus and 

from 0.30 to 0.61 in T. curvispinosus. The Neighbour-Joining clustering analysis, based 

on Nei’s genetic distance (Nei 1978) between populations, showed the existence of 

one cluster and two ungrouped populations in P. americanus, one cluster and two 

ungrouped populations in T. longispinosus and two clusters and one ungrouped 

population in T. curvispinosus. In T. longispinosus, populations mostly deriving from a 

hypothetical western refugia (except Vermont) formed one large cluster (Illinois, 

West Virginia, Michigan, Ohio, Vermont, Virginia), whereas New York and the 

ungrouped populations (except Maryland) presumably represent populations 

colonized from the hypothetical eastern refugia. However, P. americanus and 

T. curvispinosus showed no clear relationship between genetic distances and 

geographical location based on the phylogram of genetic distance generated by 

the Neighbour-Joining method (Figure 2).  
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Gene flow (Nm) between populations ranged from 2.66 in T. curvispinosus to 

4.56 in T. longispinosus (Table 13). The slavemaker P. americanus showed an 

intermediate number of 3.32 migrants per generation.  

 

 
Table 10 Pairwise matrix of genetic differentiation (FST lower diagonal) and geographical distance (in 

km, upper diagonal) for P. americanus; ns = not significant 

 

Population MA NY OH OH II VT VA WV 

MA - 456.2 428.6 503.3 641.6 88.6 277.3 
NY 0.080 ** - 566.3 782.7 182.7 528.8 704.6 
OH 0.060 ** 0.043 ** - 248.0 689.1 395.7 412.3 
OH II 0.057 ** 0.097 ** 0.065 ** - 923.2 431.7 332.6 
VT 0.093 ns 0.139 ns 0.086 ns 0.061 ns - 711.7 883.0 
VA 0.027 ns 0.075 ns 0.031 ns 0.023 ns 0.205 ns - 189.0 
WV 0.055 ** 0.089 ** 0.065 ** 0.079 ** 0.070 ns 0.081 ns - 

 

 

Table 11 Pairwise matrix of genetic differentiation (FST lower diagonal) and geographical distance (in 

km, upper diagonal) for T. longispinosus; ns = not significant 

 

Population IL MA MI NY OH  PA VT VA WV 

IL - 1022.3 407.1 1223.2 661.1 867.5 1321.0 953.0 837.6 
MA 0.034 ns - 703.4 456.2 428.6 244.0 641.6 88.6 277.3 
MI 0.066 ns 0.059 ns - 824.4 285.8 501.1 914.3 655.7 610.8 
NY 0.044 ** 0.012 ns 0.057 ns - 566.3 395.3 182.7 528,8 704.6 
OH 0.040 ** 0.007 ns 0.047 ns 0.041 ** - 215.3 689.1 395.7 412.3 
PA 0.049 ** 0.014 ns 0.044 ns 0.021 ** 0.050 ** - 914.3 248.2 360.7 
VT 0.070 ** 0.120 ** 0.121 ** 0.116 ** 0.053 ** 0.118 ** - 711.7 883.0 
VA 0.122 ns 0.165 ** 0.131 ns 0.119 ns 0.112 ns 0.114 ns 0.102 ns - 189.0 
WV 0.047 ** 0.038 ns 0.081 * 0.044 ** 0.055 ** 0.047 ** 0.088 ** 0.110 ns - 
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Table 12 Pairwise matrix of genetic differentiation (FST lower diagonal) and geographical distance (in 

km, upper diagonal) for T. curvispinosus 

 

Population IL MA MI OH OH II PA VA WV 

IL - 1022.3 407.1 661.1 521.3 867.5 953.0 837.6 
MA 0.036 ** - 703.4 428.6 503.3 244.0 88.6 277.3 
MI 0.081 ** 0.096 ** - 285.8 297.2 501.1 655.7 610.8 
OH 0.063 ** 0.053 ** 0.124 ** - 248.0 215.3 395.7 412.3 
OH II 0.069 ** 0.043 ** 0.087 ** 0.086 ** - 390.5 431.7 332.6 
PA 0.042 ** 0.042 * 0.059 ** 0.079 ** 0.049 ** - 248.2 360.7 
VA 0.123 ** 0.140 ** 0.054 ** 0.189 ** 0.138 ** 0.095 ** - 189.0 
WV 0.047 ** 0.040 ** 0.120 ** 0.059 ** 0.064 ** 0.044 ** 0.173 ** - 
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Figure 2 Phylogram of Neighbour-Joining method based on genetic distance (Nei, 1978) among 

populations of P. americanus, T. longispinosus and T. curvispinosus. Confidence values for nodes are 

percentages over 1000 bootstrap replications. 
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Table 13 Summary of genetic variation at 6 to 8 microsatellite loci, F-Statistics and estimates of the 

approximate number of migrants per generation Nm for P. americanus and its host species 

T. longispinosus and T. curvispinosus 

 

 No. of 
workers/ 

nests/ 
populations 

locus AN HO HE Global FST 

Mean ± SE  
(95% CI) 

Global FIS 

Mean ± SE  
(95% CI) 

Nm from 
FST  

L 4 42 0.64 0.95
L 5 27 0.97 0.93
L 18 28 0.95 0.91
LXAGT 1 45 0.84 0.95
Myrt 3 31 0.88 0.95

P. am. 183/173/7 

LXGT 
218 

22 0.41 0.78

0.070 ± 0.027 
(0.038-0.129) 

*** 

0.092 ± 0.069 
(-0.022-0.228) 

3.32

L 4 35 0.85 0.93
L 5 39 0.80 0.93
L 18 31 0.94 0.94
MS 86 17 0.12 0.32
LXAGT 1 35 0.98 0.93
Myrt 3 30 0.91 0.84
LXGT 
223 

21 0.38 0.57

T. long. 293/273/9 

LXGT 
218 

26 0.50 0.78

0.052 ± 0.016 
(0.027-0.084) 

*** 
 

0.079 ± 0.057 
(-0.008-0.211) 

4.56

L 4 48 0.69 0.96
L 5 28 0.68 0.82
L 18 30 0.70 0.90
MS 86 23 0.34 0.62
LXAGT 1 58 0.98 0.97
Myrt 3 32 0.85 0.93
LXGT 
223 

30 0.65 0.94

T. curv. 362/354/8 

LXGT 
218 

34 0.70 0.90

0.086 ± 0.027 
(0.045-0.147) 

*** 

0.141 ± 0.039 
(0.071-0.209) 

2.66
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Figure 3 Hypothetical post-glacial colonization routes (arrows) of the slavemaker P. americanus and its 

host species T. longispinosus and T. curvispinosus. Ovals indicate hypothetical refugia. Black line first 

migration movement, broken line second migration movement, dotted line third migration movement 
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DISCUSSION 
 

In the present study, microsatellite markers revealed high levels of genetic diversity in 

the slavemaker Protomognathus americanus and its two Temnothorax host species 

suggesting a high evolutionary potential of the species to adapt to changing 

environmental conditions and to respond to selection. The levels of genetic 

differentiation among populations, as indicated by global FST values (Hartl & Clark 

1997, Wright 1978), documented moderate, but statistically significant genetic 

differentiation in the slavemaker Protomognathus americanus and its host species 

T. curvispinosus and little significant genetic differentiation in its main host species 

T. longispinosus. Our findings are thus consistent with previous studies on the nuclear 

and the mitochondrial level (Brandt et al. 2007), and demonstrated weak to 

moderate nuclear genetic structure in all three study species. Under the assumption 

of the island model of migration (Wright 1931), the degree of genetic structuring 

correlates negatively with gene flow among populations (Nm = (1/FST – 1)/4 (Slatkin & 

Barton 1989)). However in our three study species, predominantly in the main host 

species T. longispinosus, gene flow (mostly via males) among populations was shown 

to be at a sufficient level to compensate genetic drift (Nm> 1) and thus to counteract 

isolation by distance as also indicated by our Mantel tests. The estimation whether 

gene flow is more strongly biased by one particular sex remains somewhat unclear, 

since high genetic diversities may have restricted the range of FST values thus leading 

to an overestimation of male dispersal to some extent.  

Altogether, the slavemaker P. americanus and its two host species 

T. longispinosus and T. curvispinosus demonstrated high evolutionary potentials with 

high levels of genetic variability and gene flow leading to new adaptations 

developing faster and an accelerated arms race between the interacting species. 

The main host species T. longispinosus had the highest migration, e.g. gene flow, and 

thus the highest potential for local adaptations (Gandon et al. 1996). Along with little 

genetic differentiation between populations, we suppose a high effective 

population size with retained anciently separated lineages and gradual lineage 

sorting (Avise 2000). This seems reasonable since T. longispinosus can reach extremely 

high nest densities throughout its range (Herbers 1985). In the slavemaker 

P. americanus and its host species T. curvispinosus restricted migration increased 

differentiation among populations. 
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Glacial refugia populations are generally expected to harbour higher levels of 

genetic diversity than populations in areas that have been colonized since the 

retreat of glaciers (colonization mostly involved only a few individuals) (Hewitt 1996) 

and differences in allelic diversity can help to reveal geographic range shifts (Figure 

3). Consequently, recent studies have shown that refugia and postglacial migration 

routes can be identified using nuclear markers by a steady decline in the number of 

alleles and subsequently allelic richness (Comps et al. 2001, Koskinen et al. 2000). In 

our three study species, the reconstruction of potential postglacial migration routes is 

rather speculative since differences in allele numbers and allelic richness are not of 

great significance. Still the following part will attempt a hypothetical interpretation of 

our data.  

In T. curvispinosus the mean number of alleles and allelic richness was 

substantially high and the frequency of private alleles was lowest compared to 

P. americanus and T. longispinosus, indicating one large refugia population in 

Pleistocene history that may have been less affected by genetic drift. This scenario is 

also supported by recent sequencing data indicating one recent population 

expansion into the present geographical extension (Brandt et al. 2007). With the 

exception of West Virginia, T. curvispinosus allelic richness was highest in the north-

western populations followed by eastern populations. This pattern was mostly 

consistent with genetic distances (Nei 1978) between pairs of populations and partly 

consistent with different degrees of genetic differentiation (pairwise FST values), that 

both also point to a hypothetical population expansion from a refugia around Illinois 

in east- and north-eastward direction. Interestingly Virginia seemed to be colonized 

rather via a northern route (Michigan, Pennsylvania) than via West Virginia, 

explaining that we could neither find a significant correlation between geographic 

distance and pairwise FST values, nor between allelic richness and longitude and/or 

latitude. The hypothetical migration pattern found in our dataset is in accordance 

with knowledge about glacial movements in North America. During Pleistocene most 

of north-eastern and north-central North America was covered by the Laurentide Ice 

Sheet, leaving only a few glacial refugia mostly along mountain ranges, coastlines or 

between adjacent ice sheets ice-free. The most famous non-glaciated region was 

the so called “driftless area” in Wisconsin and neighbouring Illinois and Iowa which 

was bypassed by the glacial fronts (Lomolino et al., 2006). 

In contrast the slavemaker P. americanus and its main host species 

T. longispinosus, which are assumed to have occupied multiple Pleistocene refugia 
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(Brandt et al. 2007, Rogers & Harpending 1992), were genetically less diverse and 

more distinct e.g. showed more private alleles. The estimation of migration routes 

using pairwise FST values and genetic diversity parameters is thus much more 

speculative. Especially, the large effective population size and high contemporary 

gene flow between populations in T. longispinosus might obscure historical signals, 

making an interpretation more difficult. A plausible scenario for T. longispinosus is the 

population expansion from a refugia around Illinois and a second one along the 

Appalachian Mountains around Pennsylvania in east- and north-eastward direction. 

This hypothetical expansion in mostly eastward direction is supported by a positive 

association between allelic richness and longitude suggesting a movement from 

west to east. The expansion from two hypothetical refugia is to some extent 

supported by our neighbour-joining clustering based on genetic distances (Nei 1978) 

and the clustering of populations based on the proportion of shared alleles. Both 

methods also revealed two distinct groups of populations, one group originating 

from a hypothetical western refugia and a second one originating from a 

hypothetical eastern refugia. This clustering might also explain the missing correlation 

between genetic differentiation (pairwise FST) and geographical distance between 

populations of the host species T. longispinosus.  

Our findings for the slavemaker P. americanus did not confirm the assumption 

of multiple Pleistocene refugia (Brandt et al. 2007, Rogers & Harpending 1992). In 

contrast P. americanus might have survived Pleistocene in one southern refugia 

around Virginia and Maryland, and than have expanded north-west- and north-

eastward following the glacial retreat. 

The different post-glacial migration routes of the three interacting species 

might have resulted in different durations of coexistence and thus varying potentials 

for the evolution of adaptations to each other. Consequently, we would expect 

different levels of reciprocal selection resulting in a geographic mosaic of 

coevolutionary adaptations (Thompson 1994). Values of allelic diversity parameters, 

e.g. allelic richness was higher for populations close to assumed refugia, but 

expected heterozygosity values showed no such distinct pattern. A possible reason 

for this is that HE is less sensitive to the presence of rare alleles. 

Several factors can hamper the correct interpretation of microsatellite data 

and make our interpretations speculative. On the one hand, mutation processes 

underlying the evolution of microsatellite loci are yet not fully understood (Jarne & 

Lagoda 1996, Slatkin 1995, Valdes & Slatkin 1993) and the selective neutrality of 
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microsatellites is not undisputed (Jarne & Lagoda 1996). On the other hand, 

microsatellite data can deviate from Hardy-Weinberg equilibrium due to excess or 

deficit of heterozygotes.  

The deficiency of heterozygotes observed in our study species P. americanus, 

T. longispinosus and T. curvispinosus may be due to three factors: the presence of null 

alleles due to mismatching primers (Callen et al. 1993, Koorey et al. 1993), the 

Wahlund effect or inbreeding (Lade et al. 1996, Paxton et al. 1996). The existence of 

null alleles can not be excluded, since the primers used in this study were not 

specially designed for P. americanus and its Temnothorax host species and 

nucleotide sequence variation in the primer annealing sites thus seem feasible. 

Moreover, we detected relatively high, locus dependent null allele frequencies, 

which were mainly consistent with heterozygote deficient loci. The Wahlund effect 

arises from subdivision of populations into groups, differing in allele frequencies. Since 

different dispersal strategies, linked with the level of polygyny, can lead to different 

genetic structure within populations, polygyny can potentially forward breeding 

subunits within a population (Pamilo & Rosengren 1984, Seppä & Pamilo 1995). 

Consequently, population subdivision may be more likely in the facultatively 

polygynous Temnothorax host species, where young mated queens can be re-

adopted or disperse by budding at limited distances (Alloway et al. 1982), 

compared to the strictly monogynous slavemaker P. americanus (Herbers & Stuart 

1998). Inbreeding, as a third cause for deficiency of heterozygotes, seemed to be 

unlikely in P. americanus and T. longispinosus, and was only suggested in 

T. curvispinosus by its substantial global and consistent multilocus FIS (inbreeding 

coefficient) values. 

Consequently for our dataset, we propose null alleles as the most likely 

explanation for heterozygote deficiency in the slavemaker P. americanus, and a 

combination of null alleles and population subdivision in its polygynous host species 

T. longispinosus and T. curvispinosus. Inbreeding should only be considered in 

T. curvispinosus as additional cause for less heterozygotes than expected. Thus it is 

also not surprising, that there was an absence of any detectable large, recent 

genetic bottleneck in P. americanus and T. curvispinosus. We could only show that 

T. longispinosus has undergone a population bottleneck in Maryland and Michigan, 

but this finding remains doubtful, because of the small sample sizes at these 

locations. 
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SYNOPSIS 
 

The host-parasite interactions of the tiny myrmicine slavemaking ant Protomognathus 

americanus and its Temnothorax host species have shown itself to be ideal models 

for the study of antagonistic coevolution. The frequent and highly destructive slave 

raids of this obligate social parasite exert substantial selection pressure on its host 

species and hence set base for the ongoing coevolutionary arms race between the 

opponents (Foitzik et al. 2001, Foitzik & Herbers 2001a, Blatrix & Herbers 2003).  

Previous correlative approaches on the association between slavemaker 

presence and host demographic and genetic structure suggested a very strong 

parasite impact leading to dramatic changes in host demography and investment 

patterns (Foitzik & Herbers 2001a, Herbers & Foitzik 2002). Yet these earlier studies 

lacked the power to disentangle cause and effect. The question whether the 

slavemakers actively causes host changes or whether it preferentially settles in 

patches with small monogynous and unproductive host colonies so far kept 

unsolved. The unique large-scale and long-term field manipulation in two different 

study sites (Publication 1) finally confirms the causality and demonstrates that social 

parasite presence causes the observed changes in host demography and 

investment strategies. In both study sites, the social parasite was shown to exert a 

severe impact on its host populations. In addition, parasite colonies fared better in 

their home locality than in an allopatric environment, consequently leading to the 

conclusion that P. americanus colonies are locally adapted to their local host 

community and/or its density. In response to the parasite manipulation, host colonies 

were shown to change their investment patterns and to focus on the production of 

highly mobile sexuals, which appear to provide greater fitness returns than the 

investment in colony growth. As expected by the geographic mosaic theory of 

coevolution (Thompson 1994, 1999b), we also found a variation in host reactions 

between sites. Whereas the presence of local social parasites did not affect host 

density at the NY site, it significantly reduced host density in WV. Furthermore, 

parasite pressure led to a reduction in the number of resident queens and workers, 

an increase in intra-nest relatedness and a lower productivity in NY, while colony 

demography did not change at the WV site. Since climatic conditions and ant 

community composition are roughly similar between the two study sites (Herbers & 

Foitzik 2002), these documented changes were supposedly due to characteristic site 

specific differences with NY being a densely populated evolutionary “hot spot” 
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(Foitzik et al. 2001, Foitzik & Herbers 2001a, Herbers & Foitzik 2002, Brandt & Foitzik 

2004, Foitzik et al. 2004, Brandt et al. 2005a). In contrast, T. longispinosus populations 

at the WV site are less dense, smaller and predominantly monogynous (Herbers & 

Stuart 1996b). Hence, Prof. Dr. Foitzik’s field manipulation and my sociogenetic 

analyses of the experiment are finally able to show a causal and direct relationship 

between parasite presence and changes of host demography and relatedness and 

investment patterns. The social parasite Protomognathus americanus thus exerts a 

strong, negative impact on its host species.  

Based on these findings and the high evolutionary potential (Publication 4) of 

both Temnothorax host species, selection pressure exerted by the parasite should 

enforce the evolution of anti-parasite adaptations in the host. In fact, studies could 

already demonstrate the existence of such reciprocal adaptations in slavemaking 

ant systems. These strategies mainly provide protection against slave raids and 

include offensive mechanisms like the active recognition of and effective fighting 

against enemies, but also more defensive behaviors like the evacuation and escape 

of the attacked host colonies (e.g. Alloway 1990, Foitzik et al. 2001, Brandt et al. 

2005a). Yet, all these host defenses are only active before host workers are 

parasitized, whereas enslaved host workers were though to lack possibilities to rebel 

against their oppressors out of evolutionary reasons (Gladstone 1981).  

Publication 2 contradicts this view and reveals a novel potential anti-parasite 

strategy after successful enslavement of host workers by the social parasite: Enslaved 

Temnothorax workers actively destroyed two thirds of parasite queen and worker 

pupae resulting in a decreasing productivity and consequently smaller nest sizes of 

P. americanus colonies. In theory this might reduce the long-term parasite impact 

and hence the raiding risk on related neighboring host colonies (Foitzik & Herbers 

2001b, Herbers & Foitzik 2002) but this hypothesis has to be tested in future studies. 

Nevertheless the destructive behavior stands in strong contrast to the brood care of 

unparasitized host colonies, where Temnothorax workers successfully reared the vast 

majority of their conspecific pupae. Temnothorax workers were obviously able to 

discriminate between pupae of different species and castes leading to a selective 

behavioral reaction.  

Besides the active killing of social parasite pupae, the acceptance and brood 

care for alien raided brood in social parasite colonies is an additional critical point 

for effective counter-parasite strategies. The survival of a parasite colony thus 

obligatorily depends on the collaboration of enslaved host workers, because raided 
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host pupae represent the future supply of slaves and thus an essential part in the life 

cycle of a social parasite colony. Publication 3 demonstrates that enslaved 

Temnothorax workers kill high proportions of alien introduced host pupae and thus 

exert substantial selection pressure on the social parasite. Despite of this strong 

influence, slaves reared a higher percentage of introduced pupae than 

Temnothorax workers in unparasitized host colonies. This consequently points to an 

active manipulation of brood acceptance of enslaved host workers by the parasite. 

Nevertheless, the observed and documented killings of both social parasite and 

alien introduced host pupae in colonies of the social parasite Protomognathus 

americanus indicates that Temnothorax hosts are leading the arms race in the 

coevolutionary battle in this respect. 

Chemical signals were well known to be of utmost importance for 

communication in social insects. Ants recognize nestmates, mating partners and 

conspecifics on the basis of cuticular hydrocarbons (Singer 1998, Lahav et al. 1999, 

Peeters & Tsuji 1993). Publication 3 thus analyzed the cuticular hydrocarbon profiles 

of pupae. Parasite and host pupae showed distinct species and caste specific 

differences in their profiles, which potentially enables Temnothorax workers to 

discriminate between pupae of different species and sex. Besides the recognition 

and discrimination using chemical profile dissimilarities, tactile cues, mostly due the 

characteristic interspecific variation in head width, seem likely. 

The basic requirement and key factor for the coevolutionary arms race 

between the social parasite P. americanus and its hosts and for the local 

adaptation, which has already been documented in various aspects, lies in the 

evolutionary potential of the interacting species. Social parasites and their host are 

closely related species (Emery 1909) with comparable population sizes, mutations 

rates and generation times. It is therefore expected that their evolutionary potential 

is similar and strongly influenced by the levels of gene flow and the amount of 

genetic variation present in parasite and host.  

My population genetic analyses of Protomognathus americanus and its two 

host species (Publication 4) revealed high levels of genetic variability and gene flow 

between populations. Consequently all these species exhibit high evolutionary 

potentials, which are important in the coevolutionary arms races between the 

parasite with its hosts. Genetic differentiation showed a gradient from very low levels 

in the main host species Temnothorax longispinosus to moderate levels in the second 

host T. curvispinosus with the parasite P. americanus in-between its hosts. None of the 
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three species showed a clear pattern of isolation-by-distance, which can be in part 

explained by the Pleisocene history of these species, which survived in different 

refugia. In the main host T. longispinosus, eastern populations were genetically 

separated from western populations and cluster analysis also revealed one to two 

clusters and unclustered populations in all three species. Glacial history thus might still 

influence population genetic structure in these ant species today.  

 

 

 

CONCLUSION 
 

The complex relationship of the social parasite Protomognathus americanus and its 

Temnothorax host species represent a fascinating study system for coevolutionary 

interactions. The parasite and its two host species exhibit high evolutionary potentials 

to engage in an escalating coevolutionary arms race. The substantial selection 

pressure exerted by the parasite coerces the hosts to evolve anti-parasite 

adaptations such as the novel trait “slave rebellion”, which now forces the parasite 

to react. The evolutionary battle will continue. 
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ZUSAMMENFASSUNG 
 

Die Koevolution von Arten kann entweder auf mutualistischen oder antagonistischen 

Interaktionen der Gegenspieler basieren. Vor allem letztere Interaktionen, zwischen 

Räuber und Beute oder Parasit und Wirt, prägen die Evolution des Lebens 

entscheidend und gipfeln oft in einem endlosen Prozess des koevolutiven 

Wettrüstens. Aufgrund der oft hohen Spezifität gelten besonders die 

Wechselwirkungen zwischen Parasit und Wirt als ideales Studienmodel und wurden 

bereits in zahlreichen Systemen und Aspekten untersucht. Im Gegensatz zu 

Mikroparasiten, die aufgrund von großen Populationen, schnellen Mutationsraten 

und kurzen Generationszeiten in starker Asymmetrie zu ihren Wirten stehen und die 

Physiologie ihres Wirtsorganismus ausbeuten, sind Makroparasiten ihren Wirtsarten 

meist vielfach deutlich ähnlicher und zeichnen sich meist durch ein Gleichgewicht 

des evolutionären Potentials von Parasit und Wirt aus.  

Ein weithin bekanntes Beispiel hierfür, stellt der Brutparasitismus des Kuckucks 

dar, bei dem der Parasit seine Eier in das Nest anderer Vogelwirtsarten legt und so 

die oft erheblichen Kosten von Brutpflege vermeidet. Gleich den Brutparasiten der 

Vögel, beuten Sozialparasiten in analoger Weise das Brutpflegeverhalten ihrer sozial 

lebenden Wirtsarten aus. Die Gegenspieler sind in der Regel phylogenetisch sehr nah 

verwandt, und deren ähnliches evolutionäres Potential macht sie zu idealen 

Modelsystemen zur Entschlüsselung gegenseitiger koevolutiver Anpassungen. 

Bei der nordamerikanischen sklavenhaltenden Ameisenart Protomognathus 

americanus handelt es sich um einen obligaten Sozialparasiten, der drei nah 

verwandte Arten der Gattung Temnothorax parasitiert. Die Parasitierung beginnt mit 

der Nestgründung, bei der eine verpaarte Sklavenhalter-Jungkönigin in ein Wirtsnest 

eindringt, alle adulten Wirtsameisen tötet oder vertreibt, und die Wirtsbrut übernimmt. 

Diese Wirtsbrut wird im Folgenden versorgt und nach dem Schlupf auf den 

artfremden Nestgeruch geprägt. Die adulten Wirtsarbeiterinnen stellen die erste 

Generation an Sklaven und übernehmen alle anfallenden Arbeiten des 

Kolonieerhalts. Nach dieser kritischen Gründungsphase beginnt die 

Sklavenhalterkönigin eigene Eier zu legen und die sich daraus entwickelnden 

Sklavenhalterarbeiterinnen sorgen durch regelmäßige Raubzüge auf die Brut 

benachbarter Wirtsnester für stetigen Nachschub an Sklaven. 

Studien zeigen deutlich, dass der durch die Koloniegründung und die 

Raubzüge entstehende Selektionsdruck des lokal angepassten Sozialparasiten auf 
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seine Wirte erheblich ist. Dies führt bei den Wirtsnestern unter bestimmten 

Voraussetzungen sowohl zu einer Reduktion der Dichte, als auch zu einer 

Reduzierung der Königinnen und Arbeiterinnen, geringerer Nestproduktivität und 

einer Erhöhung der Verwandtschaft innerhalb der Wirtsnester. Unter Parasitendruck 

zeigen Wirtsnester zudem eine Veränderung ihrer Investmentstrategie, und 

produzieren deutlich mehr in Geschlechtstiere. 

Diese Ergebnisse zeigen deutlich den starken Einfluss des Sozialparasiten 

Protomognathus americanus auf seine Wirte, wobei der ausgeübte Selektionsdruck 

auch direkt die Evolution von Anti-Parasit-Strategien bewirken kann. Neben bereits 

dokumentierten Feinderkennungs- und Feindabwehrstrategien zur Vermeidung von 

Raubzügen und Versklavung, haben bereits versklavte Temnothorax Arbeiterinnen 

eine effektive Verhaltensweise entwickelt um ihre indirekte Fitness theoretisch zu 

erhöhen. Während dieser Sklavenrebellion werden ca. zwei Drittel aller Königinnen 

und Arbeiterinnen des Sozialparasiten im Puppenstadium getötet und so würde auf 

lange Sicht der Parasitdruck auf benachbarte, mit den Sklaven verwandte 

Wirtkolonien reduziert. Sowohl art- als auch kastenspezifische Kohlenwasserstoffprofile 

auf der Kutikula ermöglichen den Wirtsarbeiterinnen die Erkennung und vor allem die 

Unterscheidung von Parasit- und Wirtspuppen. Ein tatsächlicher Beweis für den 

theoretischen Fitnessgewinn durch das Töten von Parasitenbrut muss jedoch noch 

durch weitere Studien erbracht werden. 

Versklavte Temnothorax Arbeiterinnen werden in den heterogenen 

Sozialparasitenkolonien aber nicht nur mit Parasitenbrut konfrontiert, sondern auch 

mit geraubter Wirtsbrut. Trotz der Fähigkeit art- und nestfremdes zu erkennen, ziehen 

versklavte Temnothorax Arbeiterinnen diese Puppen mit größerer Wahrscheinlichkeit 

auf, als unversklavte Arbeiterinnen in homogenen Nestern. Dies legt eine 

Einflussnahme des Sozialparasiten auf die Puppenakzeptanz nahe.  

Die Grundlage dieses faszinierenden koevolutiven Wettrüstens in all seinen 

bisher offengelegten Fassetten, liegt im evolutionären Potential des Sozialparasiten 

Protomognathus americanus und zwei seiner Wirtsarten. Alle drei untersuchten Arten 

zeichnen sich durch ein hohes Maß an Genfluss aus, das koevolutive Anpassungen 

der Gegenspieler stark begünstigt. 
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