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Zusammenfassung

Im Mittelpunkt dieser Arbeit stehen Erweiterungen und Anwendungen der Mirror Symme-
trie der topologischen Stringtheorie. Mirror Symmetrie ist eine Äquivalenz zwischen dem
A-Modell der topologischen Stringtheorie auf einer Mannigfaltigkeit X und dem B-Modell
auf einer Mirror Mannigfaltigkeit Y , zusammen mit deren Deformationsräumen. Die Man-
nigfaltigkeit der A-Seite wird durch Kähler Deformationen verändert, die eine Änderung
des Volumen bewirken. Die Deformationen auf der B-Seite bewirken eine Änderung der
komplexen Struktur. Die Mächtigkeit der Mirror Symmetrie liegt darin, dass diese einen
physikalischen einfachen Ursprung hat, jedoch die mathematische Übersetzung zwei äußerst
unterschiedliche Bereiche verknüpft, die symplektische- und die komplexe Geometrie. Diese
Verknüpfung hat weitreichende und ungeahnte Konsequenzen sowohl für die Physik als
auch für die Mathematik. Physikalische Probleme können mittels der mathematischen
Strukturen präzisiert und gelöst werden. In dieser Hinsicht werden in der Arbeit zum
einen quantenkorrigierte Superpotenziale berechnet, zum anderen wird das mathematische
Verständnis der Hintergrundabhängigkeit ausgenutzt, um eine Feynman Diagramm Ent-
wicklung einer Zustandssumme durch eine effektivere polynomiale Entwicklung zu ersetzen.
Der Beitrag dieser Arbeit zur mathematischen Seite ist gegeben durch die Übersetzung der
Zustandssumme in eine generierende Funktion mathematischer Invarianten, welche für di-
verse Beispiele extrahiert werden.

Die Essenz der Mirror Symmetrie besteht darin, die Lösung einfacher Probleme auf die
Lösung äquivalenter schwieriger Probleme abzubilden. Die dafür benötigte Mirror Abbil-
dung ist das Herzstück der Mirror Symmetrie. Die Berechnung dieser wird ermöglicht
durch eine physikalische Struktur, die in den mathematischen Realisierungen beider Mo-
delle wiederzufinden ist. Diese Struktur ist das Vakuum-Bündel, zusammen mit einer
Aufspaltung, die über dem Raum der Deformationen variiert. Im Kontext des B-Modells
führt die Untersuchung dieser Variation auf Differenzialgleichungen, die es ermöglichen die
Mirror Abbildung zu berechnen und weitere Größen zu bestimmen, deren Übersetzung
im A-Modell die Quantengeometrie beschreibt. In dieser Arbeit wird die Erweiterung der
Variation des Vakuumbündels untersucht, um zusätzlich D-Branen in kompakten Geome-
trien zu beschreiben. Basierend auf bestehenden Arbeiten für nicht-kompakte Geometrien
werden Differenzialgleichungen hergeleitet, die es ermöglichen die Mirror Abbildung auf
die Deformationsräume der D-Branen auszudehnen. Des Weiteren, ermöglichen diese Glei-
chungen die Berechnung der Superpotenziale, die durch die D-Branen induziert werden
und alle Quantenkorrekturen beinhalten.



xii Zusammenfassung

Basierend auf der holomorphen Anomalie Gleichung, die die Hintergrundabhängigkeit der
topologischen Stringtheorie beschreibt und dabei rekursiv Schleifenamplituden in Verbin-
dung setzt, wird in dieser Arbeit eine Polynomkonstruktion der Schleifenamplituden einer
Mannigfaltigkeit mit eindimensionalem Deformationsraum auf beliebige Mannigfaltigkeiten
verallgemeinert. Die Polynom-Generatoren werden allgemein in Abhängigkeit des Modells
aufgestellt und es wird bewiesen, dass die Korrelationsfunktionen bei einer bestimmten
Schleifenzahl Polynome eines bestimmten Grades in den Generatoren sind. Die Konstruk-
tion wird zudem verwendet, um die Erweiterung der holomorphen Anomalie Gleichung
für D-Branen ohne Deformationen zu lösen. Die Methode wird angewandt, um höhere
Schleifenamplituden für mehrere Beispiele zu berechnen und um mathematische Invarian-
ten daraus zu extrahieren.



Abstract

The central theme of this thesis is the extension and application of mirror symmetry of
topological string theory. Mirror symmetry is an equivalence between the topological string
A-model on a manifold X and the B-model on a mirror manifold Y , together with their
deformation spaces. Deformations of the target space on the A-side are Kähler deforma-
tions which change the volume of the manifold. Deformations on the B-side change the
complex structure. The power of mirror symmetry is due to its simple physical origin
which connects two different areas of mathematics, symplectic- and complex geometry.
This connection has far reaching and unexpected consequences both on the mathematical
and on the physical side. Physical problems can be given a precise mathematical meaning
and can be solved. In this regard, quantum corrected superpotentials are computed in
this work on the one hand. On the other hand the mathematical understanding of the
background dependence is used to reorganize a perturbative Feynman diagram expansion
in terms of a more efficient polynomial expansion. The contribution of this work on the
mathematical side is given by interpreting the calculated partition functions as generating
functions for mathematical invariants which are extracted in various examples.

The main idea of mirror symmetry is to map the solution of simple problems to the solution
of equivalent difficult problems. To do so, a mirror map is needed, which is at the heart of
mirror symmetry. The computation of this map is possible thanks to a physical structure
which occurs in both mathematical realizations. This structure is the vacuum bundle,
together with a grading which varies over the space of deformations. In the context of the
B-model the study of the variation of this grading leads to differential equations which al-
low the computation of the mirror map as well as other quantities which describe quantum
geometry when translated to the A-side. In this thesis, the extension of the variation of the
vacuum bundle to include D-branes on compact geometries is studied. Based on previous
work for non-compact geometries a system of differential equations is derived which allows
to extend the mirror map to the deformation spaces of the D-Branes. Furthermore, these
equations allow the computation of the full quantum corrected superpotentials which are
induced by the D-branes.

Based on the holomorphic anomaly equation, which describes the background dependence
of topological string theory relating recursively loop amplitudes, this work generalizes a
polynomial construction of the loop amplitudes, which was found for manifolds with a one
dimensional space of deformations, to arbitrary target manifolds with arbitrary dimension
of the deformation space. The polynomial generators are determined and it is proven that



xiv Abstract

the higher loop amplitudes are polynomials of a certain degree in the generators. Further-
more, the polynomial construction is generalized to solve the extension of the holomorphic
anomaly equation to D-branes without deformation space. This method is applied to cal-
culate higher loop amplitudes in numerous examples and the mathematical invariants are
extracted.



1 Introduction

This thesis contains work done within mirror symmetry, which is an equivalence of two
versions of topological string theory called A-model and B-model. Mirror symmetry is
perhaps the most interesting junction between mathematics and physics where the front
row research is pursued on both sides. The mutual flow of knowledge has far reaching
and unexpected implications. On the one hand the mathematical structure of mirror
symmetry is used to address physical problems. The highlights on this side in the thesis
are the computation of full quantum corrected superpotentials in physical theories and a
surprising polynomial organization of a perturbative Feynman graph expansion together
with a recursive procedure which allows to compute the partition function of topological
string theory. On the other hand the mathematical translation of the structures involved
allows to extract a tower of mathematical invariants from the physical correlation and
partition functions, computations which are very hard from a purely mathematical point
of view.

Spaces of theories

The conceptual novelty mirror symmetry introduces in physics is that the parameters
of a field theory can be given a geometric meaning. One can vary the parameters by
deforming the defining Lagrangian of the theory. Within the field theories underlying
topological string theory the set of all parameters accessible by deformations are organized
in geometrical spaces. One can thus speak of a space of deformations or space of theories
which is called the moduli space of the theory. Mirror symmetry states the equivalence of
the A-model and the B-model together with their moduli spaces, i.e., it is an equivalence
of families of theories. Moreover a study of the dependence of physical quantities, such as
the partition function, on the parameters used for the initial formulation of the theory is
possible and gives thus a quantitative access to studying background dependence.

Background dependence

In field theories background dependence is the term employed for the fact that these the-
ories depend on a choice of parameters and boundary conditions once the action of the
theory is formulated. Examples would be the values of the couplings of the interactions as
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well as the space-time geometry within which the theory is formulated. Background depen-
dence is an obstacle towards understanding quantum gravity. A field theory incorporating
gravity is formulated in a certain geometry and the fluctuations around this reference ge-
ometry are considered to be the degrees of freedom of quantum gravity. Within string
theory this approach is possible but not completely satisfactory. On the other hand also
gauge couplings suffer from background dependence. This is manifest in the perturbative
expansion of interactions which is only valid within a certain range of the parameters. A
weak coupling expansion of a theory does for example not allow to understand the same
theory at strong coupling.

The work of Seiberg and Witten

A breakthrough towards an understanding of the space of couplings, termed the moduli
space of theories of a given interaction pattern was achieved by the work of Seiberg and
Witten for field theories having N = 2 supersymmetry [1]. Understanding the coupling
dependence of these theories in terms of geometric quantities allowed for an exact descrip-
tion of the effective action at any coupling, i.e., at any given point in moduli space. This
lead to excitement both on the physics and on the mathematics side. Physicists had at
their disposal a method for computing the full quantum corrected effective action for a
given theory at any value of the coupling. The mathematical understanding of the cou-
plings paired with a physical understanding of the behavior of the theory at various special
values opened up the understanding of mathematical invariants of the geometric spaces
involved.

Superconformal field theories

Mirror Symmetry is the larger framework incorporating these ideas. N = 2 superconfor-
mal field theories (SCFT) are the field theoretic origin of mirror symmetry. These are
field theories in two dimensions having conformal symmetry and two copies of supersym-
metry relating fermions and bosons. In the context of string theory the two dimensions
parameterize the world sheet of a string, i.e., the spatial and time coordinate (σ, τ) of its
propagation. A geometric realization of these theories are the nonlinear sigma models. In
these models various copies of the fields are considered as coordinates in some target space
X. The fields can be thought of as mappings from the two dimensional surface into X,
which is interpreted as physical space-time

φi(σ, τ) : Σg,h → X , i = 1, . . . , dim(X) ,

where Σg,h denotes the two-dimensional surface. These are Riemann surfaces and they are
classified by their genus g and by the number of holes h.
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These SCFTs are at the heart of string theory and allow a precise description of what
is meant by the space of theories. The rich structure carried by these theories allows an
identification of the operators which cause deformations of the theory. The idea that the
couplings of the two-dimensional theory are relevant space-time quantities can be appre-
ciated by considering a typical action, where for simplicity only bosonic scalar fields are
included

S ∼
∫
dσdτ

√
−hhαβ∂αφi(σ, τ)∂βφj(σ, τ)gij ,

where hαβ is a two dimensional metric with determinant h, α and β take the values 0, 1
corresponding to the directions σ and τ . The indices i, j run over the dimension of the
target space of the sigma model X and gij is a metric on the target space. It is crucial that
the target space metric is merely a coupling from the point of view of the two-dimensional
field theory. The space of couplings of the field theory corresponds thus to the space of
metrics of the target space.

A-model and B-model

The requirement of N = 2 space-time supersymmetry in four dimensions puts restrictions
on the target space X, these spaces have to be Kähler which refers to a rich structure
within complex geometry. Conformal invariance restricts these Kähler spaces even more
to be Calabi-Yau (CY). The advantage of this restrictive structure is that the spaces of
deformations of CY metrics is mathematically well understood. This space splits generi-
cally into the product of two deformation spaces, one of them being the space of Kähler
deformations which can be thought of as varying the size of the manifold. The other space
is the space of complex structure deformations which can be pictured as changing the
shape of the manifold. Each one of the two topological string theories which are related
by mirror symmetry is affected by only one type of deformations while it is blind to the
other type. These topological string theories are called the A-model and the B-model and
were developed by Witten in references [2, 3].

To be able to separate the two types of deformations, the A- and the B-model are a
truncation of the original SCFT to a finite subspace of states. Every state in a conformal
field theory is created from the vacuum by an operator in the theory - this is the content of
the operator-state correspondence. The N = 2 SCFTs include a special class of operators
which have a ring structure which means that the composition of two operators in the ring
is expressible as the sum of single operators. Overall there are four versions of this ring
structure, two copies come from an additional U(1) charge of the SCFT and the whole is
doubled by considering the separation of the fields into left-moving and right-moving fields
which only depend on the combinations (σ + τ) and (σ − τ), respectively. The restriction
to the states obtained from these operators in both the left and right moving sectors leads
to four theories. Out of the four theories two are inequivalent, the A- and the B-model,
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and the other two are theories obtained from charge conjugation, the anti-A- and the
anti-B-model.

Topological string theory

The operators forming the finite rings are defined to be the ones annihilated in the SCFT
by certain charges QA and QB coming from the supersymmetry algebra, similarly for the
charge conjugate ones. The restriction to the states created by these operators is achieved
by considering only states as physical if they are annihilated by QA or QB for the A-model
and the B-model, respectively. This notion is known in physics within the quantization of
gauge theories using the BRST formalism where physical states are the ones annihilated
by the BRST operator QBRST and are considered equivalent if they differ by a state which
can be written as the BRST operator acting on another state. In mathematics this is the
well known notion of cohomology. The truncated theories obtained in this manner are
topological field theories of cohomological type. An important feature of topological field
theories is that the correlation functions are not affected by a variation of the metric.

Topological string theories are obtained from the previous topological field theories by
coupling to world-sheet gravity. This is achieved by integrating over all world-sheet met-
rics. As mentioned previously the world-sheets are Riemann surfaces Σg,h organized by
their genus and number of holes. Integration over all world-sheet metrics is achieved by
summing over all genera and holes (g, h) and in addition integrating over the moduli space
of the Riemann surfaces at each g and h. The partition function of topological string
theory is obtained by assigning a measure to each g, h to obtain an amplitude Fg,h. The
full partition function is organized as

Ztop = exp
∑
g,h

λ2g−2µhFg,h ,

where λ and µ are expansion parameters.

Mirror symmetry

Mirror symmetry can now be stated as the equivalence of the A-model on a target space
X, together with the space of Kähler deformations which are parameterized locally by
coordinates ta, a = 1, . . . , h1,1(X) 1 on the one hand and the B-model on a mirror target
space Y , together with the space of complex structure deformations parameterized locally

1h1,1(X) = dimH1,1(X) where H1,1(X) is a space containing (1,1) forms with respect to a complex
structure, this is the geometric space of infinitesimal Kähler deformations.
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by coordinates zi , i = 1, . . . , h2,1(Y )2 on the other hand. The matching is found by deter-
mining the mirror map t(z). The two spaces which form a mirror pair are required to have
h1,1(X) = h2,1(Y ). The idea of mirror symmetry evolved in a number of papers, starting
from the equivalence of the finite rings of Lerche, Vafa and Warner [4], through the first
explicit construction of mirror manifolds by Greene and Plesser [5] to the computation
of Candelas, De La Ossa, Green and Parkes [6] where the mirror map for a mirror pair
of quintics was found and used to predict mathematical invariants. This work generated
a lot of excitement in the mathematical community. It exemplifies the power of mirror
symmetry. Physical quantities were calculated on the B-model side and translated to the
A-model side with the mirror map. On the A-model side the physical quantities provide
generating functions for mathematical invariants which require otherwise hard mathemat-
ical computations.

The mirror map

The physical origin of the A- and the B-model allows the computation of the mirror map.
To do so, one considers sub-rings of the finite rings introduced previously. The sub-rings
are the span of operators that deform the theory. The variation of the states created by this
ring over the space of deformations is then studied. There is a natural flat connection on
this space of states which is considered as a bundle over the space of deformations, which is
called the bundle of ground-states or the vacuum bundle. The connection has its origin in
the ring structure. To find the mirror map one has to identify the mathematical problem
which corresponds to the study of the variation of the vacuum bundle and find coordinates
which describe the variation such that the connection of the SCFT is recovered. Since the
SCFT is the common origin of both theories, it is natural to find the matching in this way.

Quantum geometry

The mathematical surprise is that the problem connected to the B-model is well under-
stood. It is the study of variation of Hodge structure which is governed by differential
equations, the Picard-Fuchs equations. Furthermore, the manipulation to obtain the spe-
cial coordinates which mimic the SCFT is also understood. For the A-side however the
mathematics had to be developed. It involves notions of quantum cohomology, which is the
study of how string theory modifies the classical notions of geometry. Quantum corrections
due to string instantons modify the notions of volume, intersections and distances. Even
the moduli space of the A-model is in contrast to the B-model moduli space an intrigu-
ing space. Covering the whole deformation space of SCFT requires the consideration of
topology changes and even singular target spaces to lie within the moduli space [7, 8, 9].

2h2,1(Y ) = dimH2,1(Y ) where H2,1(Y ) is a space containing (2,1) forms with respect to a complex
structure, this is the geometric space of infinitesimal complex structure deformations.
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On the physics side these results are highly welcome as they provide some sought for con-
cepts of quantum geometry. Indeed there are ideas of how to construct theories of Kähler
gravity [10]. More recently these ideas were pushed forward, obtaining a foamy picture of
space-time in the A-model in ref. [11].

Background (in)dependence

In their seminal work [12, 13], Bershadsky, Cecotti, Ooguri and Vafa (BCOV) derived a set
of equations called the holomorphic anomaly equations describing the dependence of the
topological string theory A(B)-model on deformations of the anti-A(anti-B)-model which
are expected to decouple from a topological field theory reasoning. This is the sense in
which they describe an anomaly. The importance of these equations lies in the fact that
they relate recursively the genus g topological string amplitudes Fg to amplitudes of lower
genus. The recursive solution of these equations was furthermore found to be organized
in a Feynman-diagrammatic way. On the level of calculations, the equations are thus very
useful for computing the topological string partition function. The information contained
in the recursion has however to be supplemented by the so called holomorphic ambiguities.
On a conceptual level these equations are at least equally important as they provide a
quantitative study of the dependence of the full topological string partition function on
the reference background. In the B-model language this is the reference complex structure
which is chosen to initially formulate the theory. For a given complex structure, the
partition function is naively expected to be holomorphic. The moduli space of the B-model
is however the space of complex structures. After a deformation of complex structure,
the notions of holomorphic and anti-holomorphic mix. The partition function, being an
expansion in the moduli space coordinates, knows about this difference which is expressed
in the anomaly equations. This could at first sight underline the background dependence
of topological string theory but the equations allow a different interpretation outlined in
the following.

Partition function as a wave-function

In a very elegant paper [14] Witten reinterpreted the anomaly equations as actually dictat-
ing the background independence of the partition function. To do so, the full topological
string partition function has to be interpreted as representing a state in a Hilbert space
which is obtained by geometric quantization of the vacuum bundle. This state is described
by a wave-function. The notion of the partition function being holomorphic corresponds to
a choice of polarization. Choosing a polarization is familiar in quantum mechanics, where
wave functions depend on only half of the variables of phase space. For example choosing
the quantum mechanical wave-function to depend only on position coordinates x or only on
momenta p are two equivalent polarization choices related by the Fourier transform. The
same reasoning can be employed for choosing a holomorphic polarization: the anomaly
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equation states that the partition function transforms by a Bogoliubov transformation
once a different complex structure is chosen. This wave-function language turned out to
be not just a modification of the understanding of background dependence, the quantum
mechanical interpretation also appeared more recently in ref. [15] where the probability
density associated to that wave-function is conjectured to capture the partition function
of a Black hole. This is the Ooguri-Strominger-Vafa (OSV) conjecture.

Including D-branes

D-branes denote the locus in space-time to which the boundaries of the Riemann sur-
faces are mapped. Mirror symmetry up to this part was only discussed for the case of
world-sheets without boundaries . The mathematical framework of mirror symmetry can
be enlarged to take the boundaries into account. The mathematical picture of mirror
symmetry is formulated in the language of categories and mirror symmetry represents the
equivalence of two categories. This is denoted Homological Mirror Symmetry and is due
to Kontsevich [16]. The equivalence is between

Fuk(X) ' Db(cohY ),

the Fukaya category on the A-side and the bounded derived category of coherent sheaves on
the B-side. These categories should be thought of as the correct mathematical formalism to
incorporate all possible boundary conditions. There is currently a lot of work both on the
mathematical and on the physical side to understand the full details of this construction,
an overview can be gained in [17].

Extending closed string formalism to D-branes

Following a work of Aganagic and Vafa [18] who calculated the superpotential induced by
certain D-branes in non-compact topological string models, Lerche, Mayr and Warner [19,
20, 21] succeeded in finding the B-model formalism which extends the variation of Hodge
structure of the closed string B-model. This is the variation of mixed Hodge structure which
was found to be also governed by Picard-Fuchs equations, hence, allowing the calculation
of superpotential and special coordinates for open-string mirror symmetry. More recently
Walcher [22] derived extended holomorphic anomaly equations for D-branes which are fixed
at the minima of their superpotential.

Contribution of this thesis

Yamaguchi and Yau found in ref.[23] that the Feynman graph expansion for solving the
holomorphic anomaly equation for the quintic can be organized in terms of a finite number
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of generators. The amplitudes are polynomials of a certain degree in these generators.
In two publications [24, 25] we generalized this result on the one hand to arbitrary CY
target spaces with any number of moduli and on the other hand to also solve Walcher’s
extended holomorphic anomaly equation in terms of polynomials. This provides a signif-
icant enhancement for practical computations and carries very interesting mathematical
structure. In [26], we extended the formalism of Lerche, Mayr and Warner to the case of
compact target spaces, deriving Picard-Fuchs equations which allow a computation of the
superpotentials in these geometries and to gain an understanding of open/closed mirror
symmetry in moduli space.

Outline of the thesis

• In the second chapter the basic ingredients of mirror symmetry are introduced. N = 2
superconformal field theories, their finite operator rings and the vacuum bundle are
discussed. Next, the geometric realization of the vacuum bundle is presented. The
topological string A- and B-model are introduced as a truncation of the SCFT to two
possible choices of finite rings. Finally, mirror symmetry is explaed in the context of
the A- and B- model, the calculation of the mirror map is exemplified and a glimpse
of how mirror symmetry extends to include D-branes is given.

• In the third chapter the tt∗ equations and their realization in the context of special
geometry are discussed. Then, the holomorphic anomaly equations of BCOV and
their extension by Walcher are presented. The reinterpretation of the equations to
give the topological string partition function a background independent meaning is
outlined.

• In the fourth chapter we extend the work of Lerche, Mayr and Warner to the case of
compact CY target spaces. A system of Picard-Fuchs differential equations is derived
governing open/closed mirror symmetry in these cases. Furthermore, the superpo-
tentials are computed for examples of compact geometries. This work appeared in
[26].

• In the fifth chapter we generalize the polynomial construction of Yamaguchi and Yau,
which was found for the quintic, to arbitrary CY target spaces with any number of
moduli. The polynomial generators are introduced and the polynomial structure
is proven. Furthermore, it is discussed how boundary conditions allow to fix the
holomorphic ambiguities. The method is applied to the quintic with a D-brane fixed
at the real locus as well as to some non-compact CY target spaces. This work is
published in [24, 25].
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2 Mirror Symmetry

In the following some notions of N = 2 SCFT will be introduced to pave the way towards
topological string theory. Emphasis will be put on the ring structure carried by certain
states of the SCFT known as chiral states. The SCFT underlying topological string theory
is an N = (2, 2) SCFT, where the two copies refer to the right moving and left moving
versions of the algebra, which can be called holomorphic and anti-holomorphic given an
appropriate choice of coordinates on the worldsheet. A subset of the chiral states will also
parameterize the deformations of the SCFT and hence of the topological string theory.
Mirror symmetry will be the study of the interplay between two different combinations of
chiral states in the left moving and right moving sectors. The following exposition is based
on references [27, 28, 13].

2.1 N = 2 superconformal field theory (SCFT)

2.1.1 N = 2 superconformal algebra

The N = 2 superconformal algebra is an extension of the Virasoro algebra of the energy
momentum tensor T (z), which has conformal weight h = 2, by two anti-commuting cur-
rents G±(z) of conformal weight 3/2 and a U(1) current J(z) under which the G±(z) carry
charge ±.

G+(z)
T (z) J(z)

G−(z)

h = 2 3/2 1

(2.1)

The boundary conditions which must be imposed for the currentsG±(z) can be summarized
as follows

G±(e2πiz) = −e∓2πiaG± , (2.2)

with a continuous parameter a which lies in the range 0 ≤ a < 1. For integral and half
integral a one recovers anti-periodic and periodic boundary conditions corresponding to
the Ramond and Neveu-Schwarz sectors respectively. The currents can be expanded in
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Fourier modes

T (z) =
∑
n

Ln
zn+2

, G±(z) =
∑
n

G±n±a

zn±a+
3
2

, J(z) =
∑
n

Jn
zn+1

. (2.3)

The N = 2 superconformal algebra can be expressed in terms of the operator product
expansion of the currents or by the commutation relations of its modes. In the following
the latter are displayed for future reference

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 ,

[Jm, Jn] =
c

3
mδm+n,0 ,

[Ln, Jm] = −mJm+n ,[
Ln, G

±
m±a

]
=

(n
2
− (m± a)

)
G±m+n±a ,[

Jn, G
±
m±a

]
= ±G±n+m±a ,{

G+
n+a, G

−
m−a

}
= 2Lm+n + (n−m+ 2a)Jn+m +

c

3

(
(n+ a)2 − 1

4

)
δr+s,0 . (2.4)

The algebras obtained for every value of the continuous parameter a are isomorphic. This
isomorphism induces an operation on the states which is called spectral flow and has far
reaching implications. In particular the spectral flow operation shows the equivalence of
the Ramond (R) and Neveu-Schwarz (NS) sectors as the states in each sector are contin-
uously related by the flow. Moreover, as NS and R sectors give rise to space-time bosons
and space-time fermions respectively, this isomorphism of the algebra induces space-time
supersymmetry.

2.1.2 Chiral ring

The representation theory of the N = 2 superconformal algebra is equipped with an inter-
esting additional structure, namely a finite sub-sector of the operators creating the highest
weight states carries an additional ring structure. Topological string theory is a truncation
of the SCFT having as its physical states only those belonging to this subset. This ring
structure will be exhibited in the following. The unitary irreducible representations of the
algebra can be built up from highest weight states by acting on these with creation opera-
tors which are identified with the modes of negative indices. Similarly all the modes with
positive indices can be thought of as annihilation operators which lower the L0 eigenvalue
of a state. A highest weight state is thus one which satisfies,

Ln|φ〉 = 0 , G±r |φ〉 = 0 , Jm|φ〉 = 0 , n, r,m > 0 . (2.5)

In the NS sector the zero index modes L0 and J0 modes can be used to label the states by
their eigenvalues

L0|φ〉 = hφ|φ〉 , J0|φ〉 = qφ|φ〉 . (2.6)
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In the Ramond sector there are furthermore the modes G±0 . If a state is annihilated by
these then it is called a Ramond ground state. A highest weight state is created by a
primary field φ

φ|0〉 = |φ〉 . (2.7)

The subset of primary fields which will be of interest is constituted of the chiral primary
fields. States which are created by those satisfy furthermore

G+
−1/2|φ〉 = 0 . (2.8)

The name anti-chiral primary will be used for the primary fields annihilated by G−−1/2. In

combination with the representations of the anti-holomorphic currents G
±

this leads to the
notions of (c, c), (a, c), (a, a) and (c, a) primary fields, where c and a stand for chiral and
anti-chiral and the pair denotes the conditions in the holomorphic and anti-holomorphic
sectors. Considering

〈φ|{G−1/2, G
+
−1/2}|φ〉 = 〈φ|2L0 − J0|φ〉 , (2.9)

for a chiral primary field, the left hand side vanishes and a relation between the conformal
weight and the charge is obtained

hφ =
qφ
2
. (2.10)

For a more general state |ψ〉 the left hand side is non-negative and the following inequality
holds, hψ ≥ qψ/2. This property of chiral primary states is an analogue of the BPS bound
for physical states. Now looking at the operator product expansion of two chiral primary
fields φ and χ

φ(z)χ(w) =
∑
i

(z − w)hψi−hφ−hχψi , (2.11)

the U(1) charges add qψi = qφ + qχ and hence hψi ≥ hφ + hχ. The operator product
expansion has thus no singular terms and the only terms which survive in the expansion
when z → w are the one for which ψi is itself chiral primary. It is thus shown that the
chiral primary fields give a closed non-singular ring under operator product expansion.
Furthermore, one can show the finiteness of this ring by considering

〈φ|{G−3/2, G
+
−3/2}|φ〉 = 〈φ|2L0 − 3J0 +

2

3
c|φ〉 ≥ 0 , (2.12)

to see that the conformal weight of a chiral primary is bounded by c/6. For the combina-
tions with the anti-holomorphic sector (c, c), (a, c), (a, a) and (c, a) one sees that the latter
two are charge conjugates of the first two. The relation between charge and conformal
weight for an anti-chiral primary becomes hψ = − qψ

2
. Denoting the set of chiral primary

fields by φi where the index i runs over all chiral primaries, the ring structure can be
formulated as follows 1

φiφj = Ck
ijφk . (2.13)

1Formulas for products of operators are understood to hold within correlation functions.
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2.1.3 Deformation families

Mirror symmetry is a symmetry relating the deformation family of the (a, c) chiral ring with
the deformation family of the (c, c) chiral ring. To make this statement more precise the
deformation family of the (c, c) chiral ring will be discussed in the following. Deformations
of a conformal field theory are achieved by adding marginal operators to the original action,
these are operators having conformal weight h+ h = 2. In the following spinless operators
will be studied which have h = 1, h = 1. The operators which maintain their h = h = 1
conformal weights after perturbation of the theory are called truly marginal operators.
Such operators can be constructed from the chiral primary operators in two steps. For
instance in the (c, c) ring, starting from an operator of charge q = q = 1, h = h = 1/2 one
can first construct

φ(1)(w,w) =

∮
dz G−(z)φ(w,w) , (2.14)

which now has h = 1, q = 0. In the next step

φ(2)(w,w) =

∮
dz G

−
(z)φ(1)(w,w) , (2.15)

which has h = h = 1 and zero charge and is hence a truly marginal operator and can be
used to perturb the action of the theory

δS = ti
∫
φ

(2)
i + t

ī
∫
φ

(2)

ī
, i = 1, . . . , n , (2.16)

where a priori also the deformations coming from the (a, a) operators are included and n =
dimH(1,1) denotes the dimension of the subspace of the Hilbert space of the theory spanned
by the states which are created by the charge (1, 1) operators. A similar construction can
be done for the (a, c) chiral ring. The superscript notation is borrowed from topological
field theories where an analogous construction gives the two form descendants which can
be used to perturb the topological theory. The deformations constructed in this fashion
span a deformation space M, the moduli space of the SCFT.

2.1.4 The vacuum bundle

For the study of the geometric realization of the equivalence of the SCFTs a further impor-
tant construction has to be introduced, namely that of the vacuum bundle. This denotes
a holomorphic vector bundle VC over the deformation space M, which corresponds to a
subset of the ground-states of the theory. Its importance lies in the fact that the ground-
states of the theory do not change over the space of deformations. However there is a
certain way of splitting the bundle which varies smoothly over the moduli space. The
vacuum bundle collects the states of the theory which are created by the sub-ring of the
chiral ring spanned by the charge (1, 1) operators. A basis for this sub-ring is denoted
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by (φ0, φi, φ
i, φ0), i = 1, . . . , n. φ0 is the identity operator of charge (0, 0) and φi are the

charge (2, 2) fields which are dual to φi with respect to the topological metric and φ0 is
the top element of charge (3, 3)

η(φa, φ
b) = δba , a, b = 0, . . . , n . (2.17)

The ring structure can now be put in matrix form

φi


φ0

φj
φj

φ0

 =


0 δki 0 0
0 0 Cijk 0

0 0 0 δji
0 0 0 0




φ0

φk
φk

φ0

 . (2.18)

It should be noted that the topological metric and the ring structure constants are the two
point and three point correlation functions on the sphere in the topological field theory.
The states created by this sub-ring are organized in a vector bundle

V = H0,0 ⊕H1,1 ⊕H2,2 ⊕H3,3 , (2.19)

where H(i,i) denotes the subspace of the Hilbert space of states created by charge (i, i)
operators. The splitting of the bundle is hence given by the charge grading. The variation
of this grading over the moduli space M and its geometric realization is going to be a
central theme in the study of mirror symmetry. The operator-state correspondence can
be used to obtain a basis of the vector bundle from the basis of the chiral ring operators.
Denoting by |e0〉 ∈ H0,0 the unique ground state of charge (0, 0) up to scale, a basis for V
can be obtained as follow

|ei〉 = φi|e0〉 , |ei〉 = φi|e0〉 , |e0〉 = φ0|e0〉 . (2.20)

The metric on the vacuum bundle is given by the topological metric

〈ea|eb〉 = δba a, b = 0, . . . , n . (2.21)

The representation of the chiral ring in this basis reads

φi


|e0〉
|ej〉
|ej〉
|e0〉

 =


0 δki 0 0
0 0 Cijk 0

0 0 0 δji
0 0 0 0


︸ ︷︷ ︸

:=Ci


|e0〉
|ek〉
|ek〉
|e0〉

 . (2.22)

This structure will turn out to be crucial for the understanding of mirror symmetry. In
terms of coordinates on the moduli space M an insertion of the chiral field φi is equivalent
to an infinitesimal displacement in moduli space and hence can be obtained by a derivative
∂
∂ti

. Denoting the matrix on the right hand side by Ci, the whole equation can be read as
a connection on the vacuum bundle ∇ = ∂i − Ci which is flat

[∇i,∇j] = 0 .
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2.1.5 Geometric realization of SCFT

A geometric realization of the N = (2, 2) SCFT is provided by the nonlinear sigma model.
This is discussed and reviewed in many places [29, 30, 31, 32, 33]. The goal here is to
identify the geometric realization of the (a, c) and (c, c) rings. The nonlinear sigma model
that will be considered is a field theory of bosons and fermions φi, ψi living on a Riemann
surface Σ, being related by supersymmetry where the bosonic fields are considered as
coordinates of some target space X, i.e., φ : Σ → X. In order for the theory to have
N = (2, 2) the target space spanned by the bosonic fields has to be a Kähler manifold,
which allows a split of its tangent bundle TX = T 1,0X ⊕ T 0,1X. The action of the theory
is [29]

S =

∫
Σ

d2z(
1

2
gij̄∂zφ

i∂z̄φ
j̄ +

i

2
gij̄ψ

iDzψ
j̄

+
i

2
gij̄χ

iDz̄χ
j̄ +Rik̄jl̄ψ

iψk̄χjχl̄) +

∫
Σ

φ∗(B) , (2.23)

where the term involving the B-field is topological. Denoting by K the canonical bundle
on Σ the fermions are section of

ψi ∈ Γ(K1/2 ⊗ φ∗T 1,0X) , ψī ∈ Γ(K1/2 ⊗ φ∗T 0,1X) ,

χi ∈ Γ(K
1/2 ⊗ φ∗T 1,0X) , χī ∈ Γ(K

1/2 ⊗ φ∗T 0,1X) . (2.24)

The covariant derivative in the action is with respect to these bundles. The fermions ψ
and χ correspond to the left and right moving sectors. The action is conformally invariant
if the Ricci tensor is vanishing, together with the Kähler condition this yields a Calabi-Yau
target space. The (a, c) and (c, c) rings stem from the representation of the zero-mode
algebra of the fermions

{ψi0, ψ
j
0} = 0 = {ψī0, ψ

j̄
0} {ψi0, ψ

j̄
0} = gij̄ , (2.25)

and similarly for the χs. The last anticommutator suggests considering the fermionic zero
modes as creation and annihilation operators. This choice can be done for both ψ and χ
algebras of the zero modes. The elements of the finite rings of the SCFT correspond to
the Ramond ground states. In the present context these are the ones annihilated by the
supercharges of the supersymmetry. The states created in either choice and the action of
the supercharges on them can be translated into the correspondence2

R(a,c) '
⊕
p,q

H
(p,q)

∂
(X) ,

R(c,c) '
⊕
p,q

H
(3−p,q)
∂

(X) . (2.26)

2For the intermediate steps of the derivation one can consult for example [28]
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The indices i and ī correspond to the U(1) charges of the chiral ring, the two sectors
correspond to the ψ and χ sectors. The sub-rings which appear in the construction in the
vacuum bundle are those of equal absolute value of charges. This correspondence gives a
first flavor of the geometric realization of mirror symmetry. On the geometric level mirror
symmetry related even cohomology with the middle dimensional cohomology.

2.2 Topological string theory

The physical arena for the study of the geometric realization of mirror symmetry is topo-
logical string theory. The notions of a topological field theory, how it can be obtained
from the previous SCFT discussion and the coupling to two dimensional gravity to obtain
a topological string theory will be discussed in the following.

2.2.1 Topological field theory

In the following some features of topological sigma models of cohomological type are dis-
cussed. These are sigma models, i.e., theories of maps x : Σg → X into some target space
X, the case of interest is where Σg denotes a Riemann surface of genus g. The maps are
realized physically as bosons and fermions which are related by supersymmetry. The addi-
tional structure of cohomological topological field theories is the existence of a Grassmann,
scalar symmetry operator Q with the following properties

• Q is nilpotent Q2 = 0 .

• The sigma model action is exact 3 S = {Q, V } .

• The energy momentum tensor is also Q exact,

Tµν = {Q, Gµν} .

A direct consequence of the last property is that the correlation functions do not depend
on the two dimensional metric. To see this one notices that a variation with respect to
the metric is equivalent to inserting the energy momentum tensor in the correlators, this
one being exact and Q being a symmetry of the theory shows the metric independence.
Furthermore, physical states of the theory correspond to cohomology classes of the operator
Q and the semi-classical approximation for evaluating the path integral is exact. Further
background as well as derivations of these properties can be found in [34, 35, 30] .

3In topological string theory this condition is relaxed, the action is exact up to a topological term.
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2.2.2 Topological strings

The special structure of the finite rings of marginal operators in superconformal field the-
ories was emphasized in the last section. In particular it was shown that a sub-ring exists,
out of which the vacuum bundle is constructed. Here it is shown that a topological field
theory can be obtained by restricting to these finite rings. The way this restriction is
achieved is by treating the annihilators of the states in question as BRST operators and
considering only those states as physical states which are annihilated by the BRST oper-
ator. From the definition of a chiral state in eq. (2.8) and its anti-chiral counterpart it is
clear that the operators in question are 4

G−0 +G
+

0 , G+
0 +G

+

0 .
(a, c) (c, c)

(2.27)

Topological string theory is obtained by coupling the resulting theory to 2d gravity which
involves an integration over the space of all possible 2dmetrics. The two dimensional spaces
are the Riemann surfaces which are organized by their genus g. One has in particular to
be able to define the BRST operator globally on every such Riemann surface. The charges
corresponding to the SCFT G currents are however fermions. In order to have a global
well defined charge on every Riemann surface the topological twist is introduced. Since
the spin of a current is determined by its conformal weight, which appears in the operator
product expansion with the energy momentum tensor, the idea of the twist is to modify
the energy momentum tensor. The new energy momentum tensor is a combination of the
old one and the U(1) current J . Depending on which ring one wants to restrict to, this is
achieved by

A B

T → T + 1
2
J T → T − 1

2
J

T → T − 1
2
J T → T − 1

2
J

(a, c) (c, c)

(2.28)

yielding Grassmann valued scalars QA and QB

QA = G−0 +G
+

0 , QB = G+
0 +G

+

0 ,
(a, c) (c, c)

(2.29)

these square to zero and provide hence the essential ingredient of a topological field theory
of cohomological type. The cohomology of these operators gives the desired restriction to
the finite rings. As the notation suggests restricting to the (a, c) ring gives the A-model
and restricting to the (c, c) ring gives the B-model. The coupling to gravity is achieved by

4Here the operators from the NS sector with subscripts −1/2 are traded for the operators of the R sector
with subscripts 0.
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defining a correlator for every genus of a Riemann surface and integrating the correlator
over the moduli space of Riemann surfaces. The moduli space of a Riemann surface at genus
g is described by 3g−3 so called Beltrami differentials µzz̄, these are anti-holomorphic forms
taking values in the holomorphic tangent bundle µa ∈ H0,1(Σg, TΣg) and their complex
conjugates µzz. These differentials are contracted with the two currents which get their
conformal weight augmented to h = 2 (h̄ = 2). This construction is motivated from the
bosonic string where the anti-ghosts are contracted with the Beltrami differentials in a
similar manner. The genus g amplitudes or free energies are now defined by (here for the
B-model and g > 1)5

Fg =

∫
Mg

[dmdm̄]〈
3g−3∏
a=1

(

∫
Σ

µaG
−)(

∫
Σ

µaG
−
)〉Σg , (2.30)

where 〈. . . 〉Σg denotes the CFT correlator and dmdm are dual to the Beltrami differentials.
For a more detailed exposition of the construction of topological string theory as well as
for a thorough treatment of the A and B-model reference is given to the many reviews
that exist by now on this vast subject [30, 36, 37, 38, 35, 39]. This work will focus instead
on recovering the structure of the vacuum bundle discussed in the context of SCFT and
highlight the structure that it carries which allows the matching between the A- and the
B-model.

2.3 Mirror symmetry

This part is concerned with recovering in the context of the A-model and B-model the
notions of the moduli space of theories, the vacuum bundle and its varying split. Using
the common origin in SCFT mirror symmetry for the A and B-model predicts dramatic
consequences relating different areas of mathematics. For the B-model, the notions of
moduli space of theories, vacuum bundle and Yukawa coupling find their natural geometric
counterparts in the study of the problem of variation of Hodge structures on the moduli
space of complex structures of a family of CY manifolds. For the A-model however, the
classical notions of geometry have to be modified. To begin with, the moduli space of
SCFT which is smooth reflecting the smooth deformation of one SCFT to another does
not have a smooth geometric counterpart of Kähler deformations. The moduli space of
Kähler deformations of a given CY is encoded is the Kähler cone. What the moduli
space of SCFT seems to suggest however is to consider an enlarged Kähler moduli space
having for instance adjacent Kähler cones corresponding to manifolds which are related by
topological transitions, the flops [9, 8]. The enlarged Kähler moduli space also includes
loci corresponding to orbifold target spaces or singular geometries.

5The amplitudes at g = 0, 1 need separate treatment, in particular F0 denotes the prepotential and can
be calculated from the geometry of the vacuum bundle.
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2.3.1 Quantum cohomology

The geometric realization on the A-model side of the vacuum bundle construction and the
study of its variation over the moduli space is hard and not understood in full generality.
The reason for this is that string theory modifies the notions of classical geometry and
defines quantum geometry. This is a statement that is commonly made in this context and
the following text is intended to give a flavor of what is meant by that. One manifestation
of the last statement is the aforementioned non-smoothness of the enlarged Kähler moduli
space. Another manifestation lies in quantum cohomology which can be understood as
introducing the notion of instanton effects into the classical intersection theory on a man-
ifold. To avoid introducing the vast mathematical terminology needed to properly define
what quantum cohomology is, reference is given to [40, 41, 42]. In the following a short
exposition is given of what the vacuum bundle and what the corresponding Gauss-Manin
connection on it are. This will follow closely [43]. The concept of quantum cohomology
is only developed for the large radius regime of moduli space, it involves power series in a
variable q = e−t, where t is measuring the size of a two-cycle and hence the power series
only converge for the large radius regime, where the value of t is large. There has however
been progress recently on the mathematics side to develop mathematical notions for mirror
symmetry also for the orbifold region in moduli space.6 The vacuum bundle in this case
corresponds geometrically to the even dimensional cohomology of the CY. The complexi-
fied Kähler classes are elements in H2(X,C), which constitutes the tangent space to the
Kähler moduli space M. The pairing is given by the product of forms. The discussion
boils down to give an interpretation for the following diagram

H0(X,C)
∇A−−→ H2(X,C)

∇A−−→ H4(X,C)
∇A−−→ H6(X,C) . (2.31)

To define the connection let η0 be the generator of H0(X,Z), ηi , i = 1, . . . , n a basis of
H2(X,Z), χi , i = 1, . . . , n a basis of H4(X,Z) which is dual with respect to the symplectic
pairing 〈ηi, χj〉 = δij and finally let χ0 ∈ H6(X,Z) be the dual to η0. The connection ∇A

is now defined by

∇Aη0 =
n∑
i=1

ηi ⊗
dqi
qi
,

∇Aηk =
n∑

i,j=1

Cijkχj ⊗
dqi
qi
,

∇Aχj = χ0
dqj
qj

,

∇Aχ0 = 0 . (2.32)

6Check for example [44] and references therein.
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The coefficients Cijk are power series in q1, . . . , qn defined by rational curves on X

Cijk = 〈ηi, ηj, ηk〉+
∑
C⊂X

n[C]〈C, ηi〉〈C, ηj〉〈C, ηk〉
q[C]

1− q[C]
, (2.33)

where q[C] = qc1 . . . qcmn , cn = 〈C, ηi〉 . And where

Γ[C](ηi, ηj, ηk) = n[C]〈C, ηi〉〈C, ηj〉〈C, ηk〉 (2.34)

are rational numbers called the Gromov-Witten invariants.

2.3.2 Variation of Hodge structures

In the following the geometric realization on the B-model side of the SCFT structures will
be outlined. In particular the B-model has a well known realization of the vacuum bundle
structure which does not vary over the moduli space but which is equipped with a split
that does. This is the variation of Hodge structures. There exist many references for this
subject, e. g. [40, 45], the exposition here will focus on the main ingredients needed for the
discussion of mirror symmetry and will follow in some parts closely ref.[46]. The moduli
space on the B-side corresponds to the moduli space of complex structures of the target
space and in the case of Calabi-Yau (CY) threefolds the vacuum bundle corresponds to
the Hodge bundle, a term which denotes the middle dimensional cohomology H3(Y,C).
This space, which forms a vector bundle over the moduli space of complex structure has
a natural splitting once a given complex structure is chosen, i.e., at a specific point in the
complex structure moduli space. The split is

H3(Y,C) '
⊕
p+q=3

Hp,q(Y ) . (2.35)

This split has a natural notion of complex conjugation, namely Hp,q(Y ) = Hq,p(Y ). The
term Hodge structure refers to H3(Y,C), together with the split (2.35) and with a lattice
given by H3(Y,Z) which generates H3(Y,C) upon tensoring with C. The split (2.35) does
however not vary holomorphically when the complex structure moduli are varied. The
non-holomorphicity of this split is in some sense at the origin of the holomorphic anomaly
equations which will be discussed in the next chapter. There is however a different split of
the bundle which varies holomorphically over the moduli space of complex structures. This
split is given by the Hodge filtration F •(Y ) = {F p(Y )}3

p=0, where the spaces in brackets
are defined by

F p(Y ) =
⊕
a≥p

Ha,3−a(Y ) . (2.36)

To recover the splitting (2.35) one can intersect with the anti-holomorphic filtration

Hp,q(Y ) = F p(Y ) ∩ F q(Y ) . (2.37)
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Moreover the filtration is equipped with a flat connection ∇ which is called the Gauss-
Manin connection with the property ∇F p ⊂ F p−1, which is called Griffiths transversality.
Together with the symplectic pairing given by integrating the wedge product of two three
forms over the CY, this transversality allows to define the Yukawa couplings in this language

Cijk := −
∫
Y

Ω ∧∇i∇j∇kΩ , (2.38)

where Ω denotes the unique up to scale holomorphic three-form of a CY manifold.
Having the mathematical framework at hand, it remains to show which computations can
be done on the B-model side to find the mirror map connecting this to the A-model. The
upshot of the following discussion is: given a patch in M described by local coordinates
zi, i = 1, . . . , h2,1(Y ), there exist coordinates ta(zi), a = 1, . . . , h2,1(Y ) = h1,1(X)7 in terms
of which the Gauss-Manin connection takes the SCFT form, namely that a derivative
corresponds to the chiral ring action (2.22) of the topological theory. As the topological
theory constructed out of the SCFT is the common origin of both the A and the B-
model, it is natural to identify the coordinate which mimics this structure on the B-model
side studying the variation of Hodge structure of a CY Y with the coordinate describing
quantum cohomology on the A-model side on a mirror manifold X with h1,1(X) = h2,1(Y ).
On the A-model side the coordinates ta are measuring the sizes of two-cycles in terms of
the Kähler form.
Starting from the holomorphic 3-form Ω one can use the property of Griffiths transversality
of the Gauss-Manin connection to construct a basis for H3(Y,C). Denote this basis with
2h2,1 + 2 entries by

Ω = (Ωβ) = (Ω3,0,Ω2,1
i ,Ωi 1,2,Ω0,3)t ,

i = 1, . . . , h2,1(Y ) , β = 0, . . . , 2h2,1 + 1 . (2.39)

The Gauss-Manin connection is expressed as

∇iΩ(z) = (∂i −Ai)Ω(z) = 0 , (2.40)

this holds up to exact pieces. These drop out if one considers integrals over a fixed basis
of three cycles γα ∈ H3(Y,C). This defines the period matrix

Πα
β(z) =

∫
γα

Ωβ(z) α, β = 0, . . . 2h2,1 + 1 . (2.41)

which satisfies
∇i Π

α
β = 0 , (2.42)

when the cycles have no boundary. The flatness of the Gauss-Manin connection [∇i,∇j] =
0 can be interpreted as the integrability condition for the matrix equation (2.42) . Bearing
in mind that all elements of the vector Ω are obtained by applying derivatives to the

7X and Y denote a mirror pair of CY 3-folds.
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holomorphic 3-form, eq. (2.42) can be translated into an equivalent system of higher order
differential equations [47] for the period vector Πα =

∫
γα

Ω0

LaΠα = 0 , a = 1, . . . , h2,1 , (2.43)

which is called the Picard-Fuchs system. This system has 2h2,1 + 2 solutions. In order to
interpret these in the context of the A-model as measuring volumes of cycles it is further
necessary to translate the result into the right coordinates. This is achieved by noticing
that the Gauss-Manin connection decomposes in the following manner

∇i = ∂i −Ai = ∂i − Γi − Ci , (2.44)

where the nonzero entries of the matrix Γi are on and below the diagonal while the matrix
Ci has the form of the chiral ring action discussed in the context of the bundle of ground-
states in eq. (2.22). Finding the coordinates for which the Γi part of the connection vanishes
is termed finding the flat coordinates in the physics literature. The procedure to do so will
be exemplified in the case of the quintic. Expressing the right linear combinations of the
solutions of the Picard-Fuchs system in terms of the flat coordinates8, the period vector of
the holomorphic (3, 0) form becomes

Πα(z(t)) = (X0, Xi,F i,F0) ' (1, ti, ∂iF , 2F − tj∂jF) . (2.45)

The period vector interpreted on the A-model side gives the quantum volumes of a point,
2-cycles, 4-cycles and of the 6-cycle. One finds moreover

Cabc = ∂a∂b∂cF . (2.46)

F is called the prepotential of N = 2 special geometry.

2.3.3 The Quintic

As an example of the geometric realization of mirror symmetry the mirror quintic will be
discussed [6]. The goal is to exemplify the calculation of the mirror map and to give a
flavor of the different phases of mirror. The derivation of the Picard-Fuchs equations is
reviewed in [48, 30] which will be the guideline for the following exposition.
The quintic X denotes the CY manifold defined by

X := {P (x) = 0} ⊂ P4 (2.47)

where P is a homogeneous polynomial of degree 5 in 5 variables x1, . . . , x5. The mirror
quintic Y can be constructed using the Greene-Plesser construction [5]9. Equivalently it

8This is achieved by requiring integral monodromy around singular points in moduli space.
9See [49] for an outline of the idea of the construction.
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may be constructed using Batyrev’s dual polyhedra[50] in the toric geometry language10.
In the Greene-Plesser construction the family of mirror quintics are the one parameter
family of quintics defined by

{p(Y ) =
5∑
i=1

x5
i − ψ

5∏
i=1

xi = 0} ∈ P4 (2.48)

after a (Z5)
3 quotient. This can be stated in Batyrev’s formalism as imposing the following

superpotential in the total space of the anti-canonical line bundle O(−5) → P
4 over P4

p(Y ) =
5∑
i=0

aiyi = 0 , (2.49)

where the coordinates yi are subject to the relation

y1y2y3y4y5 = y5
0 . (2.50)

Changing the coordinates yi = x5
i , i = 1, . . . , 5 shows the equivalence of (2.48) and (2.49)

with
ψ−5 = −a1a2a3a4a5

a5
0

=: z . (2.51)

The holomorphic (3, 0) form Ω can be written in every patch ofP4 as a residue expression[52]

Ω(z) =

∫
γ

a0µ

P
, (2.52)

where the contour surrounds the pole P = 0 and the measure is given by

µ =
5∑

k=1

(−1)kxkdx1 ∧ · · · ∧ ˆdxk ∧ · · · ∧ dx5 , (2.53)

where ˆdxk is omitted from the product. The redundancy of the ai to parameterize the
complex structure of the mirror quintic can be seen from the gauge invariance of Ω(ai)

• It is invariant under ai → ρ ai , ρ ∈ C∗, which translates into

5∑
i=0

θaiΩ(a) = 0 , θai = ai
∂

∂ai
.

• It is invariant under (ai, aj) → (ρ−5ai, ρ
5aj) , i, j = 1, . . . , 5 ρ ∈ C∗

(θi − θ5)Ω(a) = 0 , i = 1, . . . , 4

10For a review of toric geometry one can consult the references [28, 30, 51]
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These equations dictate the dependence of Ω(a) on the combination z = −a1a2a3a4a5

a5
0

. Fur-

thermore one obtains from the definition (2.52) the equation(
∂

∂a0

)5
Ω(a)

a0

=

(
5∏
i=1

∂

∂ai

)
Ω(a)

a0

. (2.54)

Translating the last equation into the z variable one obtains the Picard-Fuchs equation

LΩ(z) = 0 , L = θ4 − 5z
4∏
i=1

(5θ + i) , θ = z
d

dz
. (2.55)

This differential equation has three regular singular points which correspond to points in
the moduli space of the family of quintics where the defining equation becomes singular,
these are the points 11

• z = 0 , the quintic at this value corresponds to the quotient of
∏5

i=1 xi = 0 which is
the most degenerate Calabi-Yau and corresponds to large radius when translated to
the A-side.

• z = 5−5 this corresponds to a discriminant locus of the differential equation (2.55)
and also to the locus where the Jacobian of the defining equation vanishes. This type
of singularity is called a conifold singularity. Its A-model interpretation is going to
be very useful in the context of higher genus amplitudes in a later chapter of the
thesis.

• z = ∞ , this is known as the orbifold point in the moduli space of the quintic and
it corresponds to a non-singular CY 3 fold with a large automorphism group. This
will be reflected in a monodromy of order 5.

Finding flat coordinates

The GM connection matrix will first be analyzed at the large complex structure point,
which is the term employed for the z = 0 point in the present case and it is termed large
because is it mirror to large radius on the A-model side. Choosing as a section of the
filtration

Ωz(z) = (Ω(z), ∂zΩ(z), ∂2
zΩ(z), ∂3

zΩ(z))T , (2.56)

one can use the Picard-Fuchs equation (2.55) to read off the following connection matrix

∂zΩ =


0 1 0 0
0 0 1 0
0 0 0 1

120
z3∆

−1−15000z
z3∆

−7−45000z
z2∆

−6−25000z
z∆


︸ ︷︷ ︸

Mz

Ω , (2.57)

11For more details on the mathematical meaning of these singular points one can consult reference [53],
for the physical SCFT interpretation see [54]
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where ∆ = 1− 3125z. This can be written as

∇zΩz = (∂z −Mz)Ωz = 0 . (2.58)

To find the basis and the coordinate in terms of which the connection becomes the topo-
logical connection, the following ansatz is made

Ωt(z(t)) =

(
Ω(z(t))

S0(t)
, ∂t

Ω(z(t))

S0(t)
, C(z(t))−1∂2

t

Ω(z(t))

S0(t)
, ∂t

(
C(z(t))−1∂2

t

Ω(z(t))

S0(t)

))
, (2.59)

the vector transforms as
Ω(z(t))t = A(t)Ωz .

Transforming the connection matrix Mz with

Mt = (∂tA(t) +
∂z(t)

∂t
A(t) ·Mz(z(t))) · A−1(t) ,

the following matrix is found

Mt =


0 1 0 0
0 0 C(z(t)) 0
0 0 0 1
∗ ∗ ∗ 0

 , (2.60)

where

C(z(t)) =

(
∂z(t)

∂t

)3
c

z(t)3(S0(t))2∆(z(t))
, ∆(z(t)) = 1− 3125z(t) .

The remaining ∗s in the matrix are differential equations for S0(t) and z(t). The differential
equations for the mirror map and for the normalization can be solved and yield

S0(t) = 1 + 120q + 21000q2 + 14115000q3 + . . . , q = e−t

z(t) = q − 770q2 + 171525q3 + . . . ,

Cttt = ∂3
t F0 = 5 + 2875q + 4876875q2 + 8564575000q3 + . . . ,

where the classical intersection number appearing in C(t) has been fixed c = 5.

2.3.4 Including D-branes

This part contains an overview of how the mathematics involved in the variation of Hodge
structures can be generalized to describe a certain class of D-branes. This is intended to
be a short preparation for chapter 4 of the thesis and is based on work of Lerche, Mayr
and Warner [19, 20, 21] which is excellently reviewed in [46]. To begin with, an overview
of the description of D-branes in the topological string language is given.12

12More details can be found for example in [46, 31].
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A-branes and B-branes

A-branes denote branes in the A-model. They wrap a special Lagrangian cycles γ3, their
deformation space is of dimension b1(Mγ3) and a notion of special coordinates t̂a can be in-
troduced which measures disk sizes which end on the special Lagrangian. A superpotential
is associated to the brane which is predicted to have an integral expansion in terms of the
exponentiated special coordinate q̂ = e−t̂. The integral invariants are called Ooguri-Vafa
invariants [55].

Branes in the B-model wrap holomorphic cycles and induce a World-volume superpotential
which is given by the Chern-Simons action which reads

W =

∫
Ω3,0 ∧ Tr(A ∧ ∂A+

2

3
A ∧ A ∧ A) . (2.61)

For 5-branes wrapping two-cycles in the internal space this can be reduced to

W(z, ẑ) =

∫
γ̂3

Ω3,0 , (2.62)

where γ̂3 denotes a 3-chain, whose boundary are the two cycles.

Variation of mixed Hodge structure

This topic will be briefly reviewed in chapter 4 of this thesis which is concerned with
the extension of the results of Lerche, Mayr and Warner which were derived and applied
for non-compact CY spaces to the case of compact CY spaces. Here the idea of the
extension of the variation of Hodge structures to describe certain D-branes will be given.
The observation is that the superpotential stemming from background fluxes [56, 57] and
the superpotential coming from the reduction of the Chern-Simons action

W = Wflux(z) +Wbrane(z, ẑ) , (2.63)

can be described in terms of the third relative homology of the CY H3(Y,H,Z) which
combines the three cycles without boundaries from the closed string and the three chains
with boundaries the two cycles wrapped by the branes. These two cycles are captured by
a subset H which is embedded in the CY by i : H → Y . The variation of this embedding
gives rise to the modulus ẑ which is interpreted as the open string modulus. Also the
notion of relative cohomology is introduced and a filtration is found. The variation of this
filtration is described by the variation of mixed Hodge structure which allows in addition a
separation of the variation into two variations of pure Hodge structures. From the variation
Picard-Fuchs equations can be derived which govern the relative periods, schematically the
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variation diagram looks as follows

F 3H3(Z∗)
δz−→ F 2H3(Z∗)

δz−→ F 1H3(Z∗)
δz−→ F 0H3(Z∗)

↘δẑ ↘δẑ ↘δẑ ↓δẑ

F 2H2(H)
δz ,δẑ−−→ F 1H2(H)

δz ,δẑ−−→ F 0H2(H)

(2.64)

More details on this structure and the computations associated to it will be given in the
fourth chapter of this thesis.



3 Holomorphic Anomaly

The central theme of this chapter are the holomorphic anomaly equations of Bershadsky,
Cecotti, Ooguri and Vafa (BCOV)[12, 13]. These relate recursively the topological string
amplitudes at genus g, Fg with amplitudes of lower genus and provide thus the central
ingredient of the polynomial construction of the higher genus amplitudes in a later chapter
of the thesis. The derivation of BCOV is based on a worldsheet analysis of the SCFT
underlying topological string theory. It was previously shown that one can construct
four topological string theories out of the SCFT depending on which finite chiral ring
one wants to restrict the attention to. These were the A/anti -A-model and the B/anti-B-
models corresponding to the (a, c)/(c, a) and (c, c)/(a, a) rings respectively. The key insight
which allows the derivation of the equations is the failure of decoupling of deformations
coming from the anti-ring. For instance, deformations coming from the (a, a) ring will
have an effect on the amplitudes of the B-model which is supposed to be only deformed
by marginal fields coming from the (c, c) ring. The starting point for the analysis are the
tt∗ equations of Cecotti and Vafa [58]. The setup for these is to reconsider the bundle of
ground-states discussed previously and to replace half of the states with states coming from
worldsheet CPT conjugate operators. In terms of the variation of Hodge structures the
interplay of the two theories leads to a consideration of the non-holomorphic variation of the
Hodge structure instead of the filtration which varies holomorphically as shown. The set
of equations obtained from the variation are familiar in the language of supergravity where
they reflect the special geometry of the manifold of the scalars of the vector multiplets. 1

3.1 Special geometry

3.1.1 tt∗ equations

To state the tt∗ equations, half of the states in the vacuum bundle are replaced by states
coming from the worldsheet CPT conjugate operators. The states created by the charge
(2, 2) and (3, 3) operators that were introduced with upper indices with respect to the
topological metric are replaced using the so called tt∗ metric which is obtained using the

1See [59, 60] for an overview.
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worldsheet CPT operator Θ 2,3

gab̄ = 〈ea|Θeb〉 . (3.1)

Using this metric a new basis for the dual states can be defined as follows

|ei〉 = gki|ek〉 , |e0̄〉 = g00̄|e0〉 . (3.2)

This tt∗ metric induces a connection on the bundle V which is compatible with the holo-
morphic structure. It is given by

Di(|ea〉) = ∂i(|ea〉)− (Ai)
b
a(|eb〉) , (3.3)

where (Ai)
a
b = gbc̄∂igac̄ and (|ea〉) denotes the vector (|e0〉, |ei〉, |eī〉, |e0̄〉)T , in matrix form

the connection reads

Ai =


g00̄∂ig00̄ 0 0 0

0 glj̄∂igkj̄ 0 0
0 0 0 0
0 0 0 0

 , Aī =


0 0 0 0
0 0 0 0

0 0 glj̄∂īgkj̄ 0
0 0 0 g00̄∂īg00̄

 . (3.4)

Moreover the action of the chiral ring operators φi, φī becomes in this basis

φi


|e0〉
|ej〉
|ej̄〉
|e0̄〉

 =


0 δki 0 0

0 0 Cijkg
kk̄ 0

0 0 0 gij̄
0 0 0 0


︸ ︷︷ ︸

:=Ci


|e0〉
|ek〉
|ek̄〉
|e0̄〉

 , (3.5)

and

φī


|e0〉
|ej〉
|ej̄〉
|e0̄〉

 =


0 0 0 0
gīj 0 0 0

0 Cīj̄k̄g
k̄k 0 0

0 0 δk̄ī


︸ ︷︷ ︸

:=Cī


|e0〉
|ek〉
|ek̄〉
|e0̄〉

 . (3.6)

As pointed out previously the ground-state |e0〉 of the SCFT is unique up to scale. This
means that it is a section of a line bundle L over the moduli space M. Moreover, as the
|ei〉 states are created by the operators which also parameterize the deformations of the
theory, these can be identified with sections of L⊗TM. The reason they are also sections
of the line bundle is because they inherit the arbitrary scale from the ground-state. The
bundle of ground-states can hence be organized as

VC = L ⊕ L⊗ TM⊕L⊗ TM⊕L. (3.7)

2The notation here follows [22].
3Letters from the beginning of the alphabet are running from 0, . . . , n while letter from the middle of the

alphabet are only running over 1, . . . , n.
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The tt∗ equations [58]4 can now be spelled out

[Di, Dj] = 0, [Di, Dj] = 0,
[Di, Cj] = [Dj, Ci], [Di, Cj] = [Ci, Dj],[
Di, Dj

]
= −[Ci, Cj] .

(3.8)

The last one of these equations is particularly interesting as it allows to define a modified
connection which has vanishing curvature

∇i = Di + Ci , ∇ī = Dī + Cī , [∇i,∇ī] = 0 . (3.9)

This connection is the Gauss-Manin connection which was already encountered in the
discussion of topological field theory and variation of Hodge structures.

3.1.2 Geometry of M

The tt∗ metric on VC can further be used to define a metric on M by restricting to the
TM valued part of the metric and its complex conjugate. The metric obtained in this way
is the Zamolodchikov metric which is defined by

Gij̄ =
gij̄
g00̄

. (3.10)

Setting further
g00̄ := e−K ,

it is shown that Gij̄ = ∂i∂j̄K and hence the Zamolodchikov metric is Kähler. Furthermore,
the last equation of (3.8) can be translated into the following statement about the curvature
of Gij̄

R l
ii j

= [∂̄i, Di]
l
j = ∂̄īΓ

l
ij = δliGjī + δljGīi − CijkC

kl
ī , (3.11)

where D is the covariant derivative with connection parts which follow from the context

Γkij = Gkk∂iGkj, and Ki = ∂iK,

for the cotangent bundle and the line bundle respectively and

C
jk

i := e2KGkkGll̄Cikl.

The Kähler condition together with the condition on the curvature makes the manifold
M a special Kähler manifold, the geometry of which is called special geometry. Before
revisiting the B-model realization of this whole structure some further notions will be

4For a pedagogical derivation see [30].
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introduced on the abstract level. The Yukawa coupling in this setting is a holomorphic
section of L2 ⊗ Sym3T ∗M. Also the filtration structure can be introduced

0 ⊂ F 3VC ⊂ F 2VC ⊂ F 1VC ⊂ F 0VC = VC, (3.12)

where F kVC denotes the sum of the first 4-k summands in (3.7). F 2VC is a real sub-bundle.
There exists further structure in VC namely a lattice V ∗

Z
⊂ V ∗

R
which can be used to define

the 2n+ 2 periods given a local section Ω of L:

XI = αI(Ω), FI = βI(Ω) . (3.13)

It is also convenient at this stage to introduce a new ingredient needed for the extension
of the holomorphic anomaly discussion to include D-branes which carry no open string
moduli [22]. This is the normal function ν which is a section of 5

(F 2VC)∗/V ∗
Z
,

this can be used to define the domainwall tension T

T = ν(Ω). (3.14)

Now the open string analog of the Yukawa coupling, the disk two point function

F (0,1)
ij := ∆ij , (3.15)

can be defined as

∆ij = DiDjT − Cijke
KGkk̄Dk̄T̄ . (3.16)

It is not holomorphic but obeys the following equation

∂̄ī∆ij = −Cijk∆k
ī , ∆k

ī = ∆īj̄e
KGkj̄. (3.17)

Here ∆īj̄ denotes the complex conjugate of ∆ij .

3.1.3 Variation of Hodge structures revisited

Here it will be shown that the tt∗ formulation of the geometry of the vacuum bundle
corresponds on the B-model side to the non-holomorphic variation of the Hodge bundle

VC = H3(X,C) = H3,0(X)⊕H2,1(X)⊕H1,2(X)⊕H0,3(X) . (3.18)

5See [22] for more details.
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Taking as section of L the unique up to scale holomorphic (3, 0) form Ω ∈ H3,0(X) and
the inner product which is given by taking wedge products of forms and integrating over
X, the metric on the line bundle is

g00̄ = e−K = −
∫
X

Ω ∧ Ω . (3.19)

One can define elements in H2,1 and H1,2 in the following way

χi := DiΩ = (∂i +Ki) Ω , χī := DīΩ = (∂ī +Kī) Ω . (3.20)

With inner product

gij̄ =

∫
X

χi ∧ χj̄ = e−KGij̄ = e−K∂i∂j̄K . (3.21)

Defining the Yukawa coupling

Cijk := −
∫
X

Ω ∧DiDjDkΩ = −
∫
X

Ω ∧ ∂i∂j∂kΩ , (3.22)

it is easy to find
DiDjΩ = Diχj = Cijke

KGkk̄χk̄ , Diχī = GīiΩ . (3.23)

Taking as a section of VC the following vector

Ω = (Ω, χi, χī,Ω) , (3.24)

one recovers the Gauss-Manin connection

Di


Ω
χj
χj̄
Ω

 =


0 δki 0 0

0 0 Cijke
KGkk̄ 0

0 0 0 Gij̄

0 0 0 0




Ω
χk
χk̄
Ω

 . (3.25)

This matrix equation can be translated into the following fourth order differential equation
for Ω

DmDn(C
−1
i )ljDiDjΩ = 0 (3.26)

which is the Picard-Fuchs equation. In ref.[61, 62] it is shown that this equation is equiva-
lent to the holomorphic Picard-Fuchs equations encountered previously and that choosing
the non-holomorphic variation of Hodge structures is merely a choice of gauge for the vec-
tor Ω.
To proceed, a realization of the additional structure of a normal function is given [22]. The
basic example of normal function comes from a pair of homologically equivalent holomor-
phic curves C+, C− in X varying over M. Over every point in M one can pick a three
chain Γ in X such that ∂Γ = C+−C−. An element ν of (F 2VC)∗ ' (H3,0⊕H2,1)∗ is given
by associating to any (3, 0) or (2, 1) form ω the chain integral

〈ω, ν〉 =

∫
Γ

ω , (3.27)

this is known under the name of Abel-Jacobi map.
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3.2 Holomorphic anomaly

3.2.1 Anomaly equations

It was argued that deformations of the topological string theory corresponds to the addition
of terms of the form

zi
∫
φ

(2)
i + z̄i

∫
φ̄

(2)

i
,

to the action S. zi are complex coordinates on M, the notation change from ti to zi is
to make manifest the difference between the topological coordinates ti for which taking
derivatives corresponds to insertions and the more general coordinates zi for which inser-
tions correspond to taking covariant derivatives. Hence amplitudes with insertions of n
descendants of marginal (c,c) fields (for the B-model) can be defined by [13]

F (g)
i1...in

= DinF
(g)
i1...in−1

. (3.28)

Taking a derivative with respect to z ī on the other hand corresponds to inserting a descen-
dant of marginal (a, a) operator

φ
(2)

ī
= dzdz̄{G+, [G

+
, φī]} = −1

2
dzdz{G+ +G

+
, [G+ −G

+
, φī]} . (3.29)

Within topological field theory such an insertion in a correlator would vanish as the second
part of the equation shows that the operator is QB exact. The field theory argument for
this decoupling is that the operator QB is a symmetry of the theory and can be commuted
through the correlator until it acts on a ground-state and gives zero. The failure of this
argument in the case of topological string theory is outlined in the following. The formula
for Fg is given again

Fg =

∫
Mg

[dmdm̄]〈
3g−3∏
a=1

(

∫
Σ

µaG
−)(

∫
Σ

µaG
−
)〉Σg , (3.30)

one can see that while commuting G+ and G
+

through the correlation function defining

Fg that these will hit the G− and G
−

which are contracted with the Beltrami differentials,
this will give by the superconformal algebra the energy momentum tensor T . The energy
momentum tensor in turn measures the response of the theory to a variation of the metric
and can hence be traded for derivatives ∂2

∂m∂m
on the moduli space of Riemann surfaces Mg

as this latter space precisely parameterizes such changes. One is thus finally left with an
integral of a derivative with respect to the moduli of Riemann surfaces over the moduli
space of Riemann surfaces which is zero up to boundary contributions. It is exactly these
contributions coming from the boundary of the moduli space of Riemann surfaces which
is arranged in the holomorphic anomaly equations. These are pictured diagrammatically
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in the following, for the full derivation of the equations reference is given to the original
work [12, 13]. The equations read

∂̄īF (g) =
1

2
C̄jk
ī

( ∑
g1+g2=g

DjF (g1)DkF (g2) +DjDkF (g−1)

)
, (3.31)

×ϕī

genus = g

= × × × +

genus = g1 genus = g2

1

2
C

jk

ī

Di Dk

×× ×
1

2
C

jk

ī

Dj Dk

genus = g − 1

where g > 1 and

C̄ij

k̄
= C̄īj̄k̄G

īiGjj̄ e2K , C̄īj̄k̄ = Cijk. (3.32)

For g = 1 the equation is

∂̄īF
(1)
j =

1

2
CjklC

kl
ī + (1− χ

24
)Gjī . (3.33)

3.2.2 Solving the anomaly equations

BCOV proposed together with the anomaly equation [13] a method to recursively solve for
the F (g) s. The idea is to partially integrate the anti-holomorphic derivative appearing in
the anomaly equation until one ends up with an expression of the form

∂i(expression1) = ∂i(expression2) ⇒ expression1 = (expression2) + f(z),

where f(z) is the holomorphic ambiguity. To be able to do this in practice they first note
that the anti-holomorphic Yukawa coupling can locally be written as

Cijk = e−2KDiDj∂kS,

where S is a section of L−2. One can further introduce some objects Sij, Si which are
sections of L−2 ⊗ Sym2(T ∗M) and of L−2 ⊗ T ∗(M) such that

∂īS
ij = C̄ij

ī
, ∂īS

j = GīiS
ij, ∂īS = GīiS

i. (3.34)

Now the procedure is to successively partially integrate the anomaly equation as follows,
first write

∂̄ī
(
F (g) − 1

2
Sjk(

∑
g1+g2=g

DjF (g1)DkF (g2) +DjDkF (g−1))
)

(3.35)

= −1

2
Sjk∂̄ī(

∑
g1+g2=g

DjF (g1)DkF (g2) +DjDkF (g−1)
)
,
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then the repeated use of the expression found for the curvature [∂i, Dj] and the knowledge
of ∂iF g̃ with g̃ < g yields the desired result. They further remarked that the expressions
found this way resemble Feynman diagrams if one considers a quantum system with one
more degree of freedom than the dimension of the moduli space M, where the propagators
are given by

Kij = −Sij, Kiφ = −Si, and Kφφ = −2S,

and vertices are given by the correlation functions with insertions. Furthermore a proof
was given for the expansion in terms of Feynman diagrams.
One of the practical shortcomings of this procedure is however that the number of iterations
grows exponentially, expressions for the F (g) become very long. On the other hand the
recursive information contained in the anomaly equation needs to be supplemented by
boundary conditions at every step in order to fix the holomorphic ambiguities.

Yamaguchi and Yau’s proposal

Yamaguchi and Yau proposed in [23] that the higher genus amplitudes of the topological
string for the mirror quintic which has a one dimensional space of deformations of complex
structures can be written as polynomials of degree 3g−3+n where n refers to the number of
insertions, in a finite number of generators. Hints of a polynomial structure of topological
string amplitudes were already contained in [63, 64], where the polynomial building blocks
are modular forms. As generators of the polynomials Yamaguchi and Yau used typical
building blocks that appear on the r.h.s of the holomorphic anomaly equation namely
multi-derivatives of the connections. The non-holomorphic generators consist of

Ap = Gzz̄(z∂z)
pGzz̄ and Bp = eK(z∂z)

pe−K , p = 1, 2, 3, . . .

As a holomorphic generator they take X ∼ 1
∆

with ∆ discriminant.
In the next step they show relations between the generators such that the infinite number
of non-holomorphic generators can be reduced to A1, B1, B2 and B3. Furthermore from
the analysis of the holomorphic anomaly equation they further show that only special
combinations of the generators appear in the topological string amplitudes and thus the
number of non-holomorphic generators gets reduced by one.

3.2.3 Extension of the anomaly equation

The extension by Walcher [22] of the holomorphic anomaly equations to include D-branes
which are fixed at the critical locus of a superpotential leads to the following modification
of the anomaly equations

∂̄īF (g,h) =
1

2
C̄jk
ī

∑
g1+g2=g
h1+h2=h

DjF (g1,h1)DkF (g2,h2) +
1

2
C̄jk
ī
DjDkF (g−1,h) −∆j

ī
DjF (g,h−1), (3.36)
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× = × × × +

×× ×
+ ×ϕī

genus = g genus = g1 genus = g2

1

2
C

jk

ī

Di Dk

1

2
C

jk

ī

Dj Dk

genus = g − 1 genus = g

Dj

−∆
j

ī

holes = h holes = h1 holes = h2 holes = h holes = h− 1

furthermore

∂̄īF
(0,2)
j = −∆jk∆

k
ī +

N

2
Gjī . (3.37)

The holomorphic anomaly equations were also derived [13] for the amplitudes with inser-

tions F (g,h)
i1...in

. Furthermore through the introduction of a generating function for all am-
plitudes, the holomorphic anomaly equations can be summarized into a master anomaly
equation, here the conventions of [65] will be used which will be useful for later discussions.
The generating function is

Ψ(ti, t̄ī;xi, λ−1) = λ
χ
24
−1−µ2N

2 exp

[∑
g,h,n

λ2g+h+n−2

n!
µhF (g,h)

i1...in
xi1 . . . xin

]
, (3.38)

the anomaly equation now reads[
∂ī −

1

2
C̄jk
ī

∂2

∂xj∂xk
−Gjīx

j ∂

∂λ−1
− iµ∆̄j

ī

∂

∂xj

]
Ψ = 0, (3.39)

also, the equations DinF (g,h) = F (g,h)
in

can be written as

[∂i − Γkijx
j ∂

∂xk
+ ∂iK(λ−1 ∂

∂λ−1
+ xk

∂

∂xk
+
χ

24
− 1− µ2N

2
) (3.40)

−λ−1 ∂

∂xi
+ F (1,0)

i + µ2F (0,2)
i +

1

2
Cijkx

jxk + µ∆ijx
j]Ψ = 0.

Topological tadpole cancellation

In [66, 67] Gopakumar and Vafa conjectured that the partition function of the closed
topological string can be interpreted as counting BPS states in M-theory compactified to
five dimensions on a Calabi-Yau manifold. This conjecture was extended to cases with D-
branes in ref. [55]. In ref. [68] evidence was found for the necessity of cancellation of total D-
brane charge. Through localization computation it was shown that the integrality of some
invariants associated to the given D-brane background could not be achieved worldsheet
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by worldsheet but by summing over world-sheets with a fixed Euler characteristic χ given
by

χ = 2g + h+ c− 2, (3.41)

where g, h, c refer to the genus, number of holes and number of crosscaps respectively. The
perturbation series of the topological string is reorganized as follows

G =
∑
χ

λχG(χ), (3.42)

where G(χ) is given by

G(χ) =
1

2
χ
2
+1

[
F (gχ) +

∑
2g+h−2=χ

F (g,h) +
∑

2g+h−1=χ

R(g,h) +
∑

2g+h−2=χ

K(g,h)

]
. (3.43)

It was further found that the G(χ) satisfy essentially the same equation as the proposed
extension of the holomorphic anomaly equation.

In [69] a worldsheet derivation of the effects of a non-vanishing disc one-point function was
worked out. It was already shown in [70] that disk one-point functions depend on moduli
of the wrong model, i.e., on Kähler moduli in the B-model, as D-branes are described by
holomorphic even cycles and complex structure moduli in the A-model as D-branes are
described by Lagrangian sub-manifolds. It was found that it spoils the recursiveness of the
anomaly equations is spoiled by a non-vanishing of the disk one-point functions.

3.3 Background independence

Background dependence is a longstanding problem of the formulation of string theory. It
refers to an explicit choice of target space data which is needed to formulate perturbation
theory like for example the background metric. On the level of two dimensional field
theories these choices reflect different values of couplings.

Background dependence in the case of topological string theory translates into an explicit
dependence of some reference expansion point in the moduli space of theories. This depen-
dence is captured by the anomaly equations that were shown previously [12, 13]. However
in a very elegant paper, Witten [14] reinterpreted the holomorphic anomaly equation as
actually dictating background independence of the topological string, if one reinterprets
the full partition function of the topological string as being a wave-function in some Hilbert
space that is obtained by geometric quantization of H3(X,R). In this case the holomor-
phic anomaly equation can be interpreted as invariance under parallel transport between
Hilbert spaces corresponding to different choices of background which are all identified
with each other.
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3.3.1 Wave-function property

Here the idea of Witten’s paper [14] will be briefly reviewed. The idea is to examine
geometric quantization6 of H3(X,R) as a symplectic phase space W . Quantization of the
classical phase space requires a choice of polarization and there is no natural or background
independent choice of polarization. Given a complex structure J on X, W gets a complex
structure which depends on J . Then the Hilbert space HJ is constructed as a suitable
space of holomorphic functions over W . A wave function will be denoted by ψ(t′a; zi)
where zi are complex coordinates on W and t′a are coordinates parameterizing the choice
of J , i.e., coordinates on M. Now background independence does not hold in a naive
sense, i.e. ψ cannot be independent of t′a. Background independence can be formulated in
another way. TheHJ can be identified with each other projectively using a projectively flat
connection over the space of J ’s. This connection∇ is such that a covariantly constant wave
function should have the following transformation property: as J changes, ψ changes by a
Bogoliubov transformation. Using ∇ to identify various HJ one can speak of the quantum
Hilbert space, background independence of ψ would now mean that ψ is covariantly under
parallel transport by ∇. This can be written as an equation

0 =

(
∂

∂t′a
− 1

4

(
∂J
∂t′a

ω−1

)ij
D

Dzi
D

Dzj

)
ψ , (3.44)

which is essentially the same equation as (3.39) for the case of the closed string ∆̄j
ī
= 0.

3.3.2 Large phase space anomaly

The coordinates that appear in the total holomorphic anomaly equation are (ti;xi, λ(−1)),
they parameterize (L⊕L⊗ TM) →M. One can trade these coordinates for coordinates
(XI , zI) on TM̃ where M̃ denotes the total space of the line bundle L minus the zero
section. XI(ti) are given by period maps and

zI = 2(λ−1XI + xiDiX
I).

Using these coordinates the relation of the holomorphic anomaly equation to a heat equa-
tion becomes manifest. The large phase space was introduced in [74, 75], the relation to
heat equations was also studied in [76]. This section closely follows [65].

In the large phase space the holomorphic data becomes

F :=
1

2
XIFI , FI = ∂IF, τIJ := ∂I∂JF, CIJK := ∂I∂J∂KF, ∂I :=

∂

∂XI
. (3.45)

6[71, 72, 73]are some references for background material on geometric quantization.
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Open string data is built from the domain wall tension T

T = XIνI , νI = ∂IT , ∆IJ = νIJ − CK
IJImνK . (3.46)

The holomorphic anomaly equation now becomes in large phase space:[
∂̄I −

1

2
C̄JK
I

∂2

∂zJ∂zK
+ iµ∆̄J

I

∂

∂zJ

]
Ψ = 0 . (3.47)

[∂I −
1

2
∂I log det ImτIJ +

i

2
CK
IJz

J ∂

∂zK
+

1

8
CIJKz

JzK (3.48)

+
1

2
µ∆IJz

J − i

2
µ2∆IJ∆

J +
1

8
µ2CIJK∆J∆K ]Ψ = 0 .

After absorbing some factors in the definition of Ψ and variable redefinition

ȳI = ImτIJz
J , (3.49)

going further to the conjugate Ψ → Ψ the following relations are obtained[
∂I −

1

2
CIJK

∂2

∂yJ∂yK
− iµνIJ

∂

∂yJ

]
Ψ = 0 , (3.50)

∂̄IΨ = 0 . (3.51)

3.3.3 Shift relating open and closed strings

Rewriting the holomorphic anomaly in this may make explicit that by the following shift
of variables

yI → yI + iµ νI , (3.52)

open string data can be removed from the equation. This shift maps the holomorphic
anomaly equations to the ones of the closed string satisfying both equations.

The shifted open topological string partition function Ψν satisfies the holomorphic anomaly
equation of the closed string which means that it is a state in the same Hilbert space.
However the conjecture of [65] is that it represents a different state and that the set of all
possible D-branes give states that correspond to a basis of the Hilbert space.



4 Mirror Symmetry for Toric Branes on
Compact Hypersurfaces

We use toric geometry to study open string mirror symmetry on compact Calabi–Yau
manifolds. For a mirror pair of toric branes on a mirror pair of toric hypersurfaces we derive
a canonical hypergeometric system of differential equations, whose solutions determine the
open/closed string mirror maps and the partition functions for spheres and discs. We define
a linear sigma model for the brane geometry and describe a correspondence between dual
toric polyhedra and toric brane geometries. The method is applied to study examples with
obstructed and classically unobstructed brane moduli at various points in the deformation
space. Computing the instanton expansion at large volume in the flat coordinates on the
open/closed deformation space we obtain predictions for enumerative invariants. This work
is published in [26].

4.1 Introduction

Mirror symmetry has been the subject of intense research over many years and its study
remains rewarding. Whereas the early works focused on the closed string sector and the
Calabi–Yau (CY) geometry, the interest has shifted to the interpretation of mirror sym-
metry as a duality of D-brane categories and the associated open string sector [16]. One
object of particular interest is the disc partition function F0,1 for an A brane on a compact
CY 3-fold, which depends on the Kähler type deformations of the brane geometry and is
an important datum for the definition of the category of A branes. If a modulus is clas-
sically unobstructed, the large volume expansion of the disc partition function captures
an interesting enumerative problem of “counting” holomorphic discs that end on the A
brane. In a certain parametrization motivated by physics, the coefficients of this instanton
expansion in the A model are predicted to be the integral Ooguri-Vafa invariants [55].

One of the virtues of mirror symmetry, first demonstrated for the sphere partition function
in [6] and for the disc partition functions in [18], is the ability to compute the instanton
expansion of the A model partition function in the mirror B model. The disc partition
function relates on the B model side to the holomorphic Chern-Simons functional on the
CY Z∗ [77]

S(Z∗, A) =

∫
Z∗

tr(
1

2
A ∧ dA+

1

3
A ∧ A ∧ A) ∧ Ω . (4.1)
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In the physical string theory S represents a space-time superpotential obstructing some of
the moduli of the brane geometry and the instanton expansion of the A model is, under
certain conditions, the non-perturbative superpotential generated by space-time instantons
[78, 55]. While the action of mirror symmetry on the moduli space and the computation
of superpotentials is well understood for non-compact brane geometries1, the physically
interesting case of branes on compact CY 3-folds has been elusive. Starting with [79],
superpotentials for a class of involution branes without open string moduli have been
studied in [80, 68, 81, 82, 83]. The definition of the Lagrangian A brane geometry as
the fixed point of an involution has various limitations: It allows to study only discrete
brane moduli compatible with the involution and the instanton invariants computed by
the superpotential are not generic disc invariants, but rather the number of real rational
curves fixed by the involution [84].

The present lack of a systematic description of the geometric deformation space in the
compact case is a serious obstacle to the general study of open string mirror symmetry
on compact manifolds, in particular the computation of superpotentials and mirror maps
for more general deformations including open string moduli. For the closed string case
without branes, a powerful approach to study mirror symmetry is given in terms of gauged
linear sigma models and toric geometry [7, 9], in particular if combined with Batyrev’s
construction of dual manifolds via toric polyhedra [50].2 A similar description of open
string mirror symmetry has been given for non-compact branes in [19, 21, 20], starting
from the definition of toric branes of ref. [18]. A first important step to generalize these
concepts to the compact case has been made in [83] by applying theN = 1 special geometry
defined in [21, 20] to involution branes.

The class of toric branes defined in [18] (see also [85]) is much larger than the class of
involution branes and allows for relatively generic deformations. The purpose of this note
is to describe a toric geometry approach to open string mirror symmetry for toric branes
on compact manifolds. Specifically we consider mirror pairs (Z,L) and (Z∗, E), where
Z and Z∗ is a mirror pair of compact CY 3-folds described as hypersurfaces in toric
varieties, and L and E is a mirror pair of branes on these manifolds with a simple toric
description.3 For these toric brane geometries we derive in sect. 4.2 a canonical system of
differential equations that determines the open/closed string mirror maps and the partition
functions for spheres and discs at any point in the moduli space. The B model geometry
for this Picard-Fuchs system relates to a certain gauged linear sigma model, which may be
associated with an “enhanced” toric polyhedron ∆[. A dual pair of enhanced polyhedra
(∆[,∆

?
[ ) encodes the mirror pair of compact CY manifolds (Z,Z∗) and the mirror pair

(L,E) of A and B branes on it, extending in some sense Batyrev’s [50] correspondence
between toric polyhedra and CY manifolds to the open string sector. In sect. 4.3 we apply

1See e.g. [36, 46] for a summary.
2We refer to [40, 30] for background material and references.
3In the following, L will denote the A brane wrapped on a Lagrangian submanifold and E the holomorphic

bundle corresponding to a B brane.
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this method to study some compact toric brane geometries with obstructed and classically
unobstructed moduli. The phase structure of the linear sigma model can be used to define
and study large volume phases of the brane geometry, where the superpotential has an
instanton expansion in the classically unobstructed moduli. We compute the mirror maps
and the superpotentials and find agreement with the integrality predictions of [55, 79] for
both closed and open string deformations.

4.2 Toric brane geometries and differential equations

4.2.1 Toric hypersurfaces and branes

Our starting point will be a mirror pair of compact CY 3-folds (Z,Z∗) defined as hypersur-
faces in toric varieties (W,W ∗). By the correspondence of ref. [50], one may associate to the
pair of manifolds (Z,Z∗) a pair of integral polyhedra (∆,∆∗) in a four-dimensional integral
lattice Λ4 and its dual Λ∗4. The k integral points νi(∆) of the polyhedron ∆ correspond to
homogeneous coordinates xi on the toric ambient space W and satisfy M = h1,1(Z) linear
relations4 ∑

i

lai νi = 0, a = 1, ...,M .

The integral entries of the vectors la for fixed a define the weights lai of the coordinates xi
under the C∗ action

xi → (λa)
lai xi, λa ∈ C∗ ,

generalizing the idea of a weighted projective space. Equivalently, the lai are the U(1)a
charges of the fields in the gauged linear sigma model (GLSM) associated with the toric
variety [7]. The toric variety W is defined as Ck divided by the (C∗)M action and deleting
a certain exceptional subset Ξ of degenerate orbits, W ' (Ck − Ξ)/(C∗)M .

In the context of CY hypersurfaces, W will be the total space of the anti-canonical bundle
over a toric variety with positive first Chern class. The compact manifold Z ⊂ W is defined
by introducing a superpotential WZ = x0 p(xi) in the GLSM, where x0 is the coordinate
on the fiber and p(xi) a polynomial in the xi>0 of degrees −la0 . At large Kähler volumes,
the critical locus is at x0 = p(xi) = 0 and defines the compact CY as the hypersurface
Z : p(xi) = 0 [7]. To be concrete, we will later study A branes on the following examples

4For simplicity we neglect points on faces of codimension one of ∆ and assume that h1,1(W ) = h1,1(Z).
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of CY hypersurfaces:

X
(1,1,1,1,1)
5 :

x0 x1 x2 x3 x4 x5

(l1) = (−5 1 1 1 1 1 )

X
(1,1,1,6,9)
18 :

x0 x1 x2 x3 x4 x5 x6

(l1) = (−6 3 2 1 0 0 0 )
(l2) = ( 0 0 0 −3 1 1 1 )

X
(1,1,1,3,3)
9 :

x0 x1 x2 x3 x4 x5 x6

(l1) = (−3 1 1 1 0 0 0 )
(l2) = ( 0 0 0 −3 1 1 1 )

(4.2)

As indicated by the notation, this is the familiar quintic in projective space P4 = WP4
1,1,1,1,1

in the first case and a degree 18 (9) hypersurface in a blow up of a weighted projective
space WP4

1,1,1,6,9 (WP4
1,1,1,3,3) in the other two cases.5

On these toric manifolds we consider a certain class of mirror pairs of branes, defined in
[18] by another set of N charge vectors l̂a for the fields xi.

6 The Lagrangian submanifold
wrapped by the A brane L is described in terms of the vectors l̂a by the equations∑

i

l̂ai |xi|2 = ca,
∑
i

vibθ
i = 0,

∑
i

l̂ai v
i
b = 0 , (4.3)

where a, b = M + 1, ...,M + N . The N real constants ca parametrize the brane position
and the integral vectors vib may be defined as a linearly independent basis of solutions to
the last equation. As in [18] we restrict to special Lagrangians which requires that the
extra charges add up to zero as well,

∑
i l̂
a
i = 0.

Applying mirror symmetry as in [86, 50], the mirror manifold Z∗ is defined in the toric
variety W ∗ by the equations

p(Z∗) =
∑
i

yi,
∏
i

y
lai
i = za , a = 1, ...,M. (4.4)

The parameters za are the complex moduli of the hypersurface Z∗ and classically related
to the complexified Kähler moduli ta of Z by za = e2πita . The precise relation za = za(tb) is
called the mirror map and is generically complicated. In the open string sector, the mirror
transformation of [86] maps the A brane (4.3) to a B brane E defined by the holomorphic
equations [18]

Ba(E) :
∏
i

y
l̂ai
i − ẑa = 0, ẑa = εae

−ca , a = M + 1, ...,M +N. (4.5)

5The deleted set is Ξ = {xi = 0,∀i > 0} for P4 and Ξ = {{x1 = x2 = x3 = 0} ∪ {x4 = x5 = x6 = 0}} in
the other two cases. The toric polyhedra will be given in sect. 3.

6A hat will be sometimes used to distinguish objects from the open string sector.
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The (possibly obstructed) complex open string moduli ẑa arise from the combination of
the phases εa dual to the gauge field background on the A brane and the parameters ca in
(4.3) [87].

The class of toric branes defined above is quite general and describes many interesting
cases, in particular involution branes with an obstructed modulus as well as branes with
classically unobstructed moduli. It is instructive to consider the quintic X

(1,1,1,1,1)
5 , which

will be one of the manifolds studied in sect. 4.3. The manifold Z for the A model is defined
by a generic degree 5 polynomial in P4, while the mirror manifold Z∗ is given in terms of
eq. (4.4) by the superpotential and relation7

p(Z∗) =
5∑
i=0

aiyi = 0, y1y2y3y4y5 = y5
0. (4.6)

A change of coordinates yi = x5
i , i = 1, ..., 5 and a rescaling leads to the more familiar

form in P4

p(Z∗) =
5∑
i=1

x5
i − ψ x1x2x3x4x5 = 0, ψ−5 = −a1a2a3a4a5

a5
0

≡ z1 . (4.7)

The above definition of toric branes has an interesting overlap with more recent studies of
B branes via matrix factorizations8. Consider the charge vectors

x0 x1 x2 x3 x4 x5

l1 = -5 1 1 1 1 1

l̂2 = 0 1 -1 0 0 0

l̂3 = 0 0 0 1 -1 0

(4.8)

For the special values ca = 0 the equation (4.3) for the Lagrangian submanifold can be
rewritten as

x1 = x2, x3 = x4, x5 = x5 .

The above equation describes an involution brane on the quintic defined as the fixed set of
the Z2 action (x1, x2, x3, x4, x5) → (x2, x1, x4, x3, x5). The equation for the mirror B-brane
follows from (4.5):

y1 = ẑ2 y2, y3 = ẑ3 y4, or x5
1 = ẑ2 x

5
2, x5

3 = ẑ3 x
5
4 . (4.9)

A naive match of the moduli of the A and B model together with a choice of phase leads
to ẑ2 = ẑ3 = −1 and the above equations become

x5
1 + x5

2 = 0, x5
3 + x5

4 = 0, (x2
5 − ψ1/2x1x3) (x2

5 + ψ1/2x1x3)x5 = 0 . (4.10)

7The coefficients ai are homogeneous coordinates on the space of complex structure and related to the
za in 4.4 by an rescaling of the variables yi.

8See ref. [17, 33] for a summary.
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These equations define a set of holomorphic 2-cycles in Z∗ which may be wrapped by the
D5 brane mirror to the A brane on the Lagrangian subset defined by (4.3).

Eq. (4.10) should be compared to the results of refs. [79, 80], where the 2-cycle wrapped by
the B brane mirror to an involution brane has been determined in a much more involved
way along the lines of [88], by proposing a matrix factorization and computing the second
algebraic Chern class of the associated complex. The result agrees with the above result
from a simple application of mirror symmetry for toric branes. A conclusive match of the
toric brane defined by (4.5) and the matrix factorization brane studied in [79, 80] will given
in sect. 4.3, where we compute the superpotential from the toric family and find agreement
near a specific critical locus.

There are ambiguities in the above match between the A and the B model that need to
be resolved by a careful study of boundary conditions. E.g. in (4.10), the last equation is
the superpotential intersected with the two hypersurfaces (4.9), but one may permute the
meaning of the three equations. The parametrization

x0 x1 x2 x3 x4 x5

l1= -5 1 1 1 1 1

l̂2= 1 0 0 0 0 -1

l̂3= 0 1 -1 0 0 0

(4.11)

leads to the same equations (4.10) for the special values ẑ2 = ψ, ẑ3 = −1 of the (new)
moduli. An important aspect in resolving these ambiguities is provided by the mirror
map za(tb) on the open/closed moduli space, as it determines where a specific (family of)
point(s) in the A moduli attaches in the moduli space of the B model and vice versa. In
the above example we have simply used the classical version of the open string mirror maps
|ẑa| = e−ca to find agreement with the result from matrix factorizations. More seriously
we will compute the exact mirror map – which may in principle deviate substantially
from the classical expression – to determine the B brane configuration. Since some of
the deformations will be fixed at the critical points of the superpotential it is in fact more
natural to start with the computation of the B model superpotentials and to find its critical
points. Computing the mirror map near these points determines a correlated set of points
in the A model parameter space, which may or may not allow for a nice classical A brane
interpretation.

4.2.2 N = 1 special geometry of the open/closed deformation space

We proceed by discussing a general structure of the open/closed deformation space that
will be central to the following approach to mirror symmetry for the toric branes defined
above. In [21, 20, 83] it was shown, that the open/closed string deformation space for
B-type D5-branes wrapping 2-cycles C in Z∗ can be studied from the variation of mixed
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Hodge structure on a deformation family of relative cohomology groups H3(Z∗,H) of Z∗,
where H is a subset that captures the deformations of C.9 In the simplest case, H is a
single hypersurface and the action of the closed and open string variations is schematically

F 3H3(Z∗)
δz−→ F 2H3(Z∗)

δz−→ F 1H3(Z∗)
δz−→ F 0H3(Z∗)

↘δẑ ↘δẑ ↘δẑ ↓δẑ

F 2H2(H)
δz ,δẑ−−→ F 1H2(H)

δz ,δẑ−−→ F 0H2(H)

(4.12)

Here F k is the Hodge filtration and δz and δẑ denote the closed and open string variations,
respectively. For more details on this structure we refer to refs. [21, 20, 83] (see also [89, 90]).
The variations δ can be identified with the flat Gauss-Manin connection ∇, which captures
the variation of mixed Hodge structure on the bundle with fibers the relative cohomology
groups. The mathematical background is described in refs. [45, 91, 92, 93, 52, 94].

The flatness of the Gauss-Manin connection leads to a non-trivial “N = 1 special geometry”
of the combined open/closed field space, that governs the open/closed chiral ring of the
topological string theory [21, 20]. This geometric structure leads to a Picard-Fuchs system
of differential equations satisfied by the relative period integrals

LaΠΣ = 0, ΠΣ(z, ẑ) =

∫
γΣ

Ω, γΣ ∈ H3(Z
∗,H) . (4.13)

Here {La} is a system of linear differential operators, z(ẑ) stands collectively for the closed
(open) string parameters and the holomorphic 3-form Ω and its period integrals are defined
in relative cohomology. The relative periods ΠΣ(z, ẑ) determine the mirror map and the
combined open/closed string superpotential, which can be written in a unified way as

WN=1(z, ẑ) = Wclosed(z) +Wopen(z, ẑ) =
∑

γΣ∈H3(Z∗,H)

NΣΠΣ(z, ẑ) . (4.14)

Here Wclosed(z) is the closed string superpotential proportional to the periods over cycles
γΣ ∈ H3(Z∗) and Wopen(z, ẑ) the brane superpotential proportional to periods over chains
γΣ with non-empty boundary ∂γΣ. The coefficients NΣ are the corresponding “flux” and
brane numbers.10

In the following we implement this general structure for the class of toric branes on compact
manifolds defined in sect. 4.2.1. In the present context, the deformations of C are controlled
by eq. (4.5) and the relative cohomology problem is naturally defined by the hypersurfaces
Ba(E) in the B model. In [21, 20] this identification was used to set up the appropriate

9Physically, H may be interpreted as a D7-brane which contains the D5 brane world-volume.
10To obtain the physical superpotential, an appropriate choice of reference brane has to be made for the

chain integrals, since a relative period more precisely computes the brane tension of a domain wall
[95, 96, 97, 18]. This should be kept in mind in the following discussion where we simply refer to “the
superpotential”.
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problem of mixed Hodge structure for branes in non-compact CY manifolds and to compute
the Picard-Fuchs system of the N = 1 special geometry. This approach was extended to
the compact case in [83] by relating H to the algebraic Chern class c2(E) of a B brane
as obtained from a matrix factorization. As observed in sect. 4.2, these two definitions
of H are closely related and it is straightforward to check that they coincide in concrete
examples; in particular the hypersurfaces defined in [83] fit into the definition of H via
(4.5) in [21, 20].11

4.2.3 GLSM and enhanced toric polyhedra

To make full use of the machinery of toric geometry we start with defining a GLSM for the
CY/brane geometry. The GLSM puts the CY geometry and the brane geometry on equal
footing and allows to study the phases of the combined system by standard methods of
toric geometry. The GLSM thus provides valuable information on the global structure of
the combined open/closed deformation space which will be important for identifying and
investigating the various phases of the brane geometry, in particular large volume phases.

We will use the concept of toric polyhedra to define the GLSM for the mirror pairs of toric
brane geometries. This approach has the advantage of giving a canonical construction of
the B model mirror to a certain A brane geometry and provides a short-cut to derive the
generalized hypergeometric system for the relative periods given in eq. 4.19 below. As
discussed above, Batyrev’s correspondence describes a mirror pair of toric hypersurfaces
(Z,Z∗) by a pair of dual polyhedra (∆,∆?). What we are proposing here is that there
is a similar correspondence between “enhanced polyhedra” (∆[(Z,L),∆?

[ (Z
∗, E)) and the

pair (Z,Z∗) of mirror manifolds together with the pair of mirror branes (L,E) as defined
before.

The enhanced polyhedron ∆[(Z,L) has the following simple structure: The points νi(Z)
of ∆(Z) defining the manifold Z are a subset of the points of ∆[(Z,L) that lie on a
hypersurface H in a five-dimensional lattice Λ5. We choose an ordering of the points
µi ∈ ∆[(Z,L) and coordinates on Λ5 such that the points in H are given by

(µi) = (νi, 0), i = 1, ..., k ,

where k is the number of points of ∆(Z). The brane geometry is described by k′ extra
points ρi with (ρi)5 < 0, where k′ is related to the number n̂ of (obstructed) moduli of the
brane by k′ = n̂+ 1. Thus ∆[(Z,L) is defined as the convex hull of the points

∆[(Z,L) = conv
(
{µi(∆(Z))} ∪ {ρi(L)}

)
, {µi(∆(Z))} ⊂ ∆[(Z,L) ∩H , (4.15)

11As was stressed in sect. 3.6 of [80], the chain integrals, which define the normal functions associated
with the superpotential, do not depend on the details of the infinite complexes constructed in [88].
Our results suggest that the relevant information or the superpotential is captured by the linear sigma
model defined below.
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For simplicity we assume that the polyhedron ∆?
[ can be naively defined as the dual of ∆[

in the sense of [50].

To make contact between the definition of the toric branes in sect. 4.2 and the extra points
ρi, consider the linear dependences between the points of ∆[(Z,L)∑

i

lai (∆[)µi = 0 . (4.16)

These relations may be split into two sets in an obvious way. There are h1,1(Z) relations,
say

(la(∆[)) = (la(∆), 0k
′
), a = 1, ..., h1,1(Z) ,

which involve only the first k points and reflect the original relations la(∆) between the
points νi(Z) of ∆(Z); they correspond to Kähler classes of the manifold Z. The remaining
relations la(∆[), a > h1,1(Z) involve also the extra points ρi. To describe a brane as defined
by the charge vectors l̂a(L) we choose the points ρi such that the remaining relations are
of the form

(la(∆[)) = (l̂a(L), ...), a > h1,1(Z) .

The above prescription for the construction of the enhanced polyhedron ∆[(Z,L) from
the polyhedron ∆(Z) for a given manifold Z and the definition (4.3) of the A brane L in
sect. 4.2 is well-defined if we require a minimal extension by k′ = n̂+ 1 points.

4.2.4 Differential equations on the moduli space

The combined open/closed string deformation space of the brane geometries (Z,L) or
(Z∗, E) can now be studied by standard methods of toric geometry. Let12 {lai } denote a
specific choice of basis for the generators of the relations (4.16) in the GLSM and ai the
coefficients of the hypersurface equation p =

∑
i aiyi of the mirror B model. From the

homogeneous coordinates ai on the complex moduli space one may define local coordinates
associated with the choice of a basis {lai } by13

za = (−)l
a
0

∏
i

a
lai
i , a = 1, ...,M +N. (4.17)

Our main tool will be a system of linear differential equations of the form

LaΠ(zb) = 0, (4.18)

whose solutions are the relative periods (4.13). The relative periods determine not only the
genus zero partition functions but also the mirror map za(tb) between the flat coordinates

12The underscore on la(∆[) will be dropped again to simplify notation.
13The sign is a priori convention but receives a meaning if the classical limit of the mirror map is fixed as

in [98].
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ta and the algebraic moduli za for the open/closed string deformation space [21, 20]. There
are two ways to derive the system of differential operators {La}: Either as the canonical
generalized hypergeometric GKZ system associated with the enhanced polyhedron ∆[(Z,L)
[99, 50]. Or as the system of differential equations capturing the variation of mixed Hodge
structure on the relative cohomology group H3(Z∗,H) as in refs. [21, 20, 83].

Here we use the short-cut of toric polyhedra and define the Picard-Fuchs system as the
canonical GKZ system associated with ∆[.

14 The derivation of the Picard-Fuchs system
from the variation of mixed Hodge structure on the relative cohomology group, which is
similar to that in [21, 20], will be given in future work; the coincidence of the two definitions
is non-trivial and reflects a string duality [100]. By the results of [99, 50], the generalized
hypergeometric system associated to (∆[,∆

?
[ ) leads to the following differential operators

for a = 1, ...,M +N :

La =

la0∏
k=1

(θa0 − k)
∏
lai>0

lai−1∏
k=0

(θai − k)− (−1)l
a
0za

−la0∏
k=1

(θa0 − k)
∏
lai<0

−lai−1∏
k=0

(θai − k) (4.19)

Here θx denotes a logarithmic derivative θx = x ∂
∂x

and the derivatives of the homogeneous
coordinates ai on the complex structure moduli and the local coordinates (4.17) are related
by θai =

∑
a l
a
i θza . The products are defined to run over non-negative k only so that the

derivatives θa0 appear only in one of the two terms for given a. The solutions of the Picard-
Fuchs system in eq. (4.19) have a nice expansion around za = 0; expansions around other
points in the moduli space can be obtained from a change of variables.

Eqs. (4.18), (4.19) represent the homogeneous Picard-Fuchs system for the brane geometry
(Z∗, E). These homogeneous Picard-Fuchs equations give rise to inhomogeneous Picard-
Fuchs equations by splitting the operators La in a piece La,bulk that depends only on the
moduli z of the manifold Z∗ and essentially represent the Picard-Fuchs system of the CY
geometry and a part La,open that governs the dependence on the open string deformations
ẑ. Upon evaluation at a critical point w.r.t. the open string deformations, δẑW = 0, the
split leads to an inhomogeneous term fa(z), if Π is a chain that depends non-trivially on
the brane deformations ẑ.

La,bulkΠ(z, ẑ) = −La,openΠ(z, ẑ)
δẑW=0−→ La,bulkΠ(z) = fa(z) . (4.20)

For the case of the quintic, the inhomogeneous term fa(z) has been computed by a careful
application of the Dwork-Griffiths reduction method for the chain integrals in [80] and it
is straightforward to check that this term agrees with the inhomogeneous term on the r.h.s
of (4.20), see eq. (4.32) below.

In [90] it has been proposed that the problem of mixed hodge variations on the relative
cohomology groups defined in [21, 20, 83] can be reinterpreted in terms of the deformations

14We are tacitly assuming that the GKZ system {La} is already a complete Picard-Fuchs system, which
is possibly only true after a slight modification of the GKZ system.
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of a certain non Ricci-flat Kähler blow up Y of the B model geometry. It has been
further suggested that it should be possible to obtain a Picard-Fuchs system for the brane
geometry by computing in the manifold Y and restricting the complex structure of Y
in an appropriate way. At the moment the details appear to be unknown and it would
be interesting to relate these ideas to the above results. It would also be interesting to
understand a possible connection to the differential equations and superpotentials derived
from matrix factorizations in [101, 82, 102].

4.2.5 Phases of the GLSM and structure of the solutions of 4.19

In the previous definitions we have used a specific choice of basis {lai } to define the local
coordinates (4.17) and the differential operators (4.19). Different choices of coordinates
correspond to different phases of the GLSM [7]. The extreme cases are on the one hand
a large volume phase in all the Kähler parameters, where the GLSM describes a smooth
classical geometry and on the other hand a pure Landau-Ginzburg phase. In between there
are mixed phases, where only some of the moduli are at large volume and other moduli
are fixed in a stringy regime of small volume. A nice instanton expansion can be expected
a priori only for moduli at large volume.

Representing the GLSM by the toric polyhedron ∆[, the different phases of the GLSM
may be studied by considering different triangulations of the polyhedron [9, 50]. Without
going into the technical details of this procedure, let us outline the relevance of this phase
structure in the present context. A given B brane configuration corresponds to a critical
point of the superpotential which lies in a certain local patch of the parameter space.
To study the critical points in a given patch and to give a nice local expansion of the
superpotential it is necessary to work in the appropriate local coordinates. The different
triangulations of ∆[ define different regimes in the parameter space, where the relative
periods ΠΣ have a certain characteristic behavior depending on whether the brane moduli
are at large or at small volume. To find an interesting instanton expansion we look for
triangulations that correspond to patches where at least some of the moduli are at large
volume.

From the interpretation of the system {La} of differential operators as the Picard-Fuchs
system for the relative periods on Z∗ we expect the solutions of the equations (4.18) to
have the following structure:

a) There are 2M + 2 solutions Π(z) that represent the periods of Z∗ up to linear com-
bination and depend only on the complex structure moduli za, a = 1, ..., h1,1(Z) of
Z∗.

b) There are 2N further solutions Π̂(z, ẑ) that do depend on all deformations and de-
fine the mirror map for the open string deformations and the superpotential (more
precisely: brane tensions).
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c)15For a maximal triangulation corresponding to a large complex structure point cen-
tered at za = 0 ∀a, there will be a series solution ω0(za) = 1 + O(za) and M + N
solutions ωc(za) with a single log behavior that define the open/closed mirror maps
as (c is fixed in the following equation)

tc(za) =
ωc(za)

ω0(za)
=

1

2πi
ln(zc) + Sc(za),

where Sc(za) is a series in the coordinates za.

It follows from a) that the mirror map t(cl)(z) in the closed string sector does not involve
the open string deformations, similarly as has been observed in [18, 103, 21, 20] in the
non-compact case.16 However the open string mirror map t(op)(z, ẑ) depends on both types
of moduli. For explicit computations of the mirror maps at various points in the moduli
we refer to the examples.

The special solution Π = Wopen(z, ẑ) has the further property that its instanton expansion
near a large volume/large complex structure point encodes the Ooguri-Vafa invariants of
the brane geometry:

Winst(qa) =
∑
β

Gβq
β =

∑
β

∞∑
k=1

Nβ
qk.β

k2
. (4.21)

Here β is the non-trivial homology class of a disc, β ∈ H2(Z,L), qβ a weight factor
related to its appropriately defined Kähler volume, Gβ the fractional Gromov-Witten type
coefficients in the instanton expansion and Nβ the integral Ooguri-Vafa invariants [55].

Below we study some illustrative examples and find agreement with the above expectations.

4.3 Applications

In the following we apply the above method to study some examples including involution
branes with obstructed deformations as well as a class of branes with classically unob-
structed moduli.

15The following holds for appropriate choices of normalization and the sign in (4.17) that have been
made in (4.19), explaining the special appearance of the entry i = 0 corresponding to the fiber of the
anti-canonical bundle.

16This statement holds at zero string coupling.
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4.3.1 Branes on the quintic X
(1,1,1,1,1)
5

Brane geometry

We first study a family of toric branes on the quintic that includes branes that have been
studied before in [79, 80, 83] by different means. We recover these results for special choice
of boundary conditions and study connected configurations. As in sect. 4.2. we consider a
one parameter family of A branes defined by the two charge vectors

(l1) = (−5, 1, 1, 1, 1, 1), (l̂2) = (1,−1, 0, 0, 0, 0) . (4.22)

As discussed in sect. 4.2.3 we may associate with this brane geometry a five-dimensional
toric polyhedron ∆[(Z,L) that contains the points of the polyhedron ∆(Z) of the quintic
as a subset on the hypersurface y5 = 0:

∆(Z) ν0 = ( 0, 0, 0, 0, 0)
ν1 = (−1, 0, 0, 0, 0)
ν2 = ( 0, −1, 0, 0, 0)
ν3 = ( 0, 0, −1, 0, 0)
ν4 = ( 0, 0, 0, −1, 0)
ν5 = ( 1, 1, 1, 1, 0)

∆[(Z,L) = ∆∪ ρ1 = (−1, 0, 0, 0, −1)
ρ2 = ( 0, 0, 0, 0, −1)

Table 4.1: Points of the enhanced polyhedron ∆[ for the geometry (4.22) on X(1,1,1,1,1)
5 .

Choosing a maximal triangulation of ∆[(Z,L) determines the following basis of generators
for the relations (4.16)17

l1 = (−4, 0, 1, 1, 1, 1; 1,−1), l2 = (−1, 1, 0, 0, 0, 0;−1, 1) , (4.23)

where the last two entries correspond to the extra points. In the local variables18

z1 = −a2a3a4a5a6

a4
0a7

, z2 = −a1a7

a0a6

, (4.24)

the hypersurface equations for the B brane geometry (Z∗, E) read

p(Z∗) : x5
1 + x5

2 + x5
3 + x5

4 + x5
5 − x1x2x3x4x5 z

− 1
5 = 0,

B(E) : x5
1 + x1x2x3x4x5 z2z

− 1
5 = 0 . (4.25)

17The following computations have been performed using parts of existing computer codes:
Puntos, http://www.math.ucdavis.edu/ deloera/RECENT WORK/puntos2000; Schubert,
http://math.uib.no/schubert; Instanton, http://www.math.uiuc.edu/ katz/software.html.

18We equipped z1 with an additional minus sign compared to 4.17 for later convenience.
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Here z = −z1z2 denotes the complex structure modulus of the CY geometry Z∗.

From eq. (4.23) one can immediately proceed and solve the toric Picard-Fuchs system (4.19)
to derive the mirror maps and the superpotentials and we will do so momentarily. However,
it is instructive to take a closer look at the geometry of the problem of mixed Hodge
variations on the relative cohomology groups (4.12), which has the following intriguing
structure. Rewriting the superpotential p(Z∗) in the original variables yi of the toric
ambient space and restricting to the hypersurface B(E) : y1 = y0 in these variables (cpw.
(4.5)) defines the following boundary superpotential WH = p(Z∗)|y1=y0 for the relative
cohomology problem on H = B(E):

WH = (a0 + a1)y0 + a2y2 + a3y3 + a4y4 + a5y5 .

The boundary superpotential WH describes a K3 surface defined as a quartic polynomial
in P3 after the transformation of variables yi = x4

i , i = 1, ..., 4:

WH = x4
1 + x4

2 + x4
3 + x4

4 + z
−1/4
H x1x2x3x4 . (4.26)

Thus the part of the Hodge variation associated with the lower row in (4.12), which can be
properly defined as a subspace through the weight filtration [21, 20, 83], is the usual Hodge
variation associated with the complex structure of the family of K3 manifolds defined by
WH. The complex structure determined by the (2,0) form ω on the K3 is parametrized by
the modulus

zH =
z1

(1 + z2)4

a6/a7=−1−→ a2a3a4a5

(a0 + a1)4
,

which is a special combination of the closed and open string moduli. Since the dependence
of the Hodge variation on the brane modulus z2 localizes on H, the open string mirror map
and the brane tension will be directly related to periods on the K3 surface (4.26)! This
observation is very useful in studying details of the critical points and generalizes to other
brane geometries.

The differential operators (4.19) in the local variables z1, z2 defined by (4.23) read

L1 = (θ4
1 − z1

4∏
i=1

(4θ1 + θ2 + i))(θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(θ1 − θ2) . (4.27)

The above operators L1 and L2 reveal the relation of the variation of mixed Hodge structure
to the family of K3 manifolds defined in (4.26). Indeed the combination (θ1 − θ2) is the
direction of the open string parameter that localizes on H. The split

La = L̃a(θ1 − θ2) ,

shows that the solutions πσ of the equations L̃aπσ = 0 are just the K3 periods. The
operator L̃2 imposes that the periods depend non-trivially only on the variable zH

19

L̃2

(
(z2 + 1)−1f(zH)

)
= 0 ,

19The z2 dependent prefactor arises from the normalization of the holomorphic form.
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whereas the operator L̃1 reduces to the Picard-Fuchs operator of the K3 surface in the new
variable zH. It follows that the solutions of the K3 system are the first variations of the
relative periods w.r.t. the open string deformation and a critical point δ̂W = 0 corresponds
to a particular solution π of the K3 system that vanishes at that point. The solution that
describes the involution brane is determined by requiring the right transformation property
under the discrete symmetry of the moduli space as in [83].

Further differential operators can be obtained from linear combinations of the basis vectors
la. E.g. the linear combination l = l1 + l2 defines the differential operator

L′1 = θ2θ
4
1 + z1z2

5∏
i=1

(4θ1 + θ2 + i) ,

which also annihilates the relative periods.20 The solutions of the complete system of
differential operators have the expected structure described in sect. 4.2.5. The mirror
maps can be computed to be

−z1(t1, t2) = q1 + (24 q2
1 − q1 q2) + (−396 q3

1 − 640 q2
1 q2) + . . . ,

z2(t1, t2) = q2 + (−24 q1 q2 + q2
2) + (972 q2

1 q2 − 178 q1 q
2
2 + q3

2) + . . . , (4.28)

with qa = exp(2πi ta). The deformation parameters t1 and t2 are the flat coordinates near
the large complex structure point z1 = z2 = 0 associated with open string deformations
[21, 20]. Their physical interpretation is the quantum volume of two homologically distinct
discs as measured by the tension of D4 domain walls on the A model side [18, 103]. The
other solutions of the differential operators (4.19) describe the brane tensions (4.14) of
the domain walls in the family. We proceed with a study of various critical points of the
superpotential.

Near the involution brane

To study brane configurations mirror to the involution brane we consider a critical point
of the type (4.10), that is a D5 brane locus

x5
2 + x5

3 = 0, x5
4 + x5

5 = 0, x5
1 − x1x2x3x4x5 z

− 1
5 = 0 .

Comparing with (4.25) we search for a superpotential with critical locus near z2 = −1 and
arbitrary z1. Let us first look at the large volume phase z1 ∼ 0 of the mirror A brane,
where one expects an instanton expansion with integral coefficients. The local variables

20One can further factorize the above operators to a degree four differential operator θ4
1 + (5z1z2(4θ1 +

θ2 + 4)− 4z1(θ1 − θ2))
∏3

i=1(4θ1 + θ2 + i) which together with L2 represents a complete Picard-Fuchs
system.
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(4.24) are centered at z1 = z2 = 0, not z2 = −1, however. To get a nice expansion of the
superpotential near the locus z2 + 1 = 0 we change variables to

u = z
−1/4
1 (1 + z2), v = z

1/4
1 .

Examining the z2-dependent solution of the GKZ system in these variables, we find the
superpotential

cW(u, v) =
u2

8
+15v2 +

5u3v

48
− 15uv3

2
+

u6

46080
+

35v2u4

384
− 15v4u2

8
+

25025v6

3
+ . . . (4.29)

which has the expected critical locus δ̂W = 0 at u = 0 for all values of v. Here c is a constant
that can not be fixed from the consideration of the differential equations (4.19) alone.21 At

the critical locus u = 0 the above expression yields the critical value Wcrit(z
(cl)
1 ) = W(u =

0, v = z1/4)

Wcrit(z) = 15
√
z +

25025

3
z3/2 +

52055003

5
z5/2 + . . . . (4.30)

Here the constant has been fixed to c = 1 by comparing (4.30) with the result of [79] for
Wcrit(z).

As alluded to in sect. 4.2.5, the differential operators (4.27) have the special property that
the periods of Z∗ are amongst their solutions. One may check that the open string mirror
maps (4.28) conspire such that the mirror map for the remaining modulus z = −z1z2

at the critical point coincides with the closed string mirror map for the quintic. Using
the multi-cover prescription of [55, 79] and expressing (4.30) in terms of the exponentials
q(z) = exp(2πi t(z)) = z + O(z2) one obtains the integral instanton expansion of the A
model

Wcrit(z(q))

ω0(q)
= 15

√
q +

2300

3
q3/2 +

2720628

5
q5/2 + . . . ,

=
∑
k odd

(
15

k2
qk/2 +

765

k2
q3k/2 +

544125

k2
q5k/2 + . . . ) .

To make contact with the inhomogeneous Picard-Fuchs equation of [80], we rewrite the
differential operators above in terms of the bulk modulus z and the open string deformation
z2 and split off the z2 dependent terms as in (4.20). In particular the operator L′1 leads to
a non-trivial equation of the form θLbulkΠ = −LopenΠ, where

Lbulk = θ4 − 5z
4∏
i=1

(5θ + i) , Lopen = L′1 − θLbulk ,

L′1 = (θ + θ2)θ
4 − z

5∏
i=1

(5θ + θ2 + i) , (4.31)

21The precise linear combination of the solutions of the Picard-Fuchs system that corresponds to a given
geometric cycle can be determined by an intersection argument and possibly analytic continuation,
similarly as in the closed string case [6]. Such an argument has been made in the present example
already in [79], from which we will borrow the correct value for c.
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and θ = θz. Setting Π = W(u, v) and restricting to the critical locus z2 = −1 one obtains

LbulkWcrit =
15

16

√
z . (4.32)

This identifies the inhomogeneous Picard-Fuchs equation of [79, 80] as the restriction of
(4.19) to the critical locus.

While the result (4.30) had been previously obtained in [79], the above derivation gives some
extra information. Since the definition of the toric branes holds off the involution locus,
the superpotential W(u, v) describes more generally any member of the family of toric A
branes defined by (4.3), not just the involution brane. It describes also the deformation
of the large volume superpotential away from z2 = −1. It is also possible to describe
more general configurations with several deformations. It should also be noted that the
use of the closed string mirror map in [79] was strictly speaking an assumption, as the
closed string mirror map measures the quantum volume of fundamental sphere instantons,
not the quantum tension of D4 domain walls wrapping discs, which is the appropriate
coordinate for the integral expansion of [55]. It is neither obvious nor true in general that
this D4 tension agrees with half the sphere volume of the fundamental string, in particular
off the involution locus. In the present case it is not hard to justify this choice and to check
it from the computation of the mirror map, but more generally there will be corrections
to the D4 quantum volume that are not determined by the closed string mirror map, see
eq. (4.28) and the examples below.

Small volume in the A model: 1/z1 ∼ 0
Another interesting point in the moduli space is the Landau-Ginzburg point of the B
model. This case has been studied previously in [83], so we will be very brief. The only
non-trivial thing left to check is that the system of differential equations obtained in [83]
from Dwork-Griffiths reduction is equivalent to the toric GKZ system (4.19) transformed
to the local variables near the LG point. Choosing local variables

x1 =
a0

(a2a3a4a5)1/4

(
−a7

a6

)1/4

, x2 =
a1

(a2a3a4a5)1/4

(
−a7

a6

)5/4

,

one obtains by a transformation of variables the differential operators

L1 = (x4
1(θ1 + θ2)

4 − 44

4∏
i=1

(θ1 − i))(θ1 + 5θ2) ,

L2 = (x2(θ1 − 1)− x1θ2) (θ1 + 5θ2) , (4.33)

L′1 = x5
1(θ1 + θ2)

4θ2 − 44x2

5∏
i=1

(θ1 − i) ,

where θi denotes the logarithmic derivatives θxi . The above operators agree with eqs.(5.14)-
(5.16) of [83] up to a change of variables. The superpotential is

W = −x
2
1

2
− x2x1

6
− x6

1

11520
− x2x

5
1

3840
− x2

2x
4
1

2688
− x3

2x
3
1

3456
− x4

2x
2
1

8448
− x5

2x1

49920
+ . . . ,
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which has its critical locus at x2 = −x1, which corresponds to u = 0 in these coordinates.
In terms of the closed string variable x

(cl)
1 = −x1x

−1/5
2 at the Landau Ginzburg point, the

expansion at the critical locus reads

Wcrit = −x
5/2

3
− x15/2

135135
− x25/2

1301375075
+ . . . ,

which satisfies a similar equation as (4.32)

LbulkWcrit =
15

16
x5/2 ,

where Lbulk = 5−4x5θ4
x − 5

∏4
i=1(θx − i) .

4.3.2 Branes on X
(1,1,1,6,9)
18

As a second example we study branes on the two moduli CY Z = X
(1,1,1,6,9)
18 . Z is an

elliptic fibration over P2 with the elliptic fiber and the base parametrized by the coordinates
x1, x2, x3 and x4, x5, x6 in 4.2, respectively. In the decompactification limit of large fiber, the
compact CY approximates the non-compact CY O(−3)P2 with coordinates x3, x4, x5, x6.
This limit is interesting, as it makes contact to the previous studies of branes on O(−3)P2

in [103, 19].

Brane geometry

We consider a family of A branes parametrized by the relations

|x4|2 − |x3|2 = c1, l̂ = (0, 0, 0,−1, 1, 0, 0) . (4.34)

This defines a family of D7-branes in the mirror parametrized by one complex modulus. To
make contact with the non-compact branes we may add a second constraint |x5|2−|x3|2 = 0
that selects a particular solution of the Picard-Fuchs system.22 The brane geometry on the
B model side is defined by the two equations

p(Z∗) =
∑

aiyi = a0x1x2x3x4x5 + a1x
2
1 + a2x

3
2 + a3(x3x4x5)

6 + a4x
18
3 + a5x

18
4 + a6x

18
5 ,

B(E) : y3 = y4 or (x3x4x5)
6 = x18

3 . (4.35)

As in the previous case one observes that the complex deformations of the brane geometry
are related to the periods of a K3 surface defined by

WH = a0x
′
1x
′
2x
′
3x
′
4 + a1(x

′
1)

2 + a2(x
′
2)

3 + (a3 + a4)(x
′
3x
′
4)

6 + a5(x
′
3)

12 + a6(x
′
4)

12.

22Since the constant in this equation must be zero to get a non-zero superpotential [18], there is no new
modulus.
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The GLSM for the above brane geometry corresponds to the enhanced polyhedron.

∆(Z) ν0 = ( 0, 0, 0, 0, 0)
ν1 = ( 0, 0, 0, −1, 0)
ν2 = ( 0, 0, −1, 0, 0)
ν3 = ( 0, 0, 2, 3, 0)
ν4 = (−1, 0, 2, 3, 0)
ν5 = ( 0, −1, 2, 3, 0)
ν6 = ( 1, 1, 2, 3, 0)

∆[(Z,L) = ∆∪ ρ1 = ( 0, 0, 2, 3, −1)
ρ2 = (−1, 0, 2, 3, −1)

Table 4.2: Points of the enhanced polyhedron ∆[ for the geometry (4.34) on X18.

Choosing a triangulation of ∆[ that represents a large complex structure phase yields the
following basis of the linear relations (4.16) between the points of ∆[:

l1 = (−6, 3, 2, 1, 0, 0, 0, 0, 0), l2 = (0, 0, 0,−2, 0, 1, 1,−1, 1),

l3 = (0, 0, 0,−1, 1, 0, 0, 1,−1). (4.36)

The last two charge vectors define a GLSM for the “inner phase” of the brane in the non-
compact CY described in [19]. The differential operators (4.19) for the relative periods are
given by

L1 = θ1(θ1 − 2θ2 − θ3)− 12z1(6θ1 + 5)(6θ1 + 1),

L2 = θ2
2(θ2 − θ3) + z2(θ1 − 2θ2 − θ3)(θ1 − 2θ2 − 1− θ3)(θ2 − θ3), (4.37)

L3 = −θ3(θ2 − θ3)− z3(θ1 − 2θ2 − θ3)(θ2 − θ3).

Large volume brane

The elliptic fiber compactifies the non-compact fiber direction x3 of the non-compact CY
O(−3)P2 . In the limit of large elliptic fiber we therefore expect to find a deformation of the
brane studied in [103, 19]. Large volume corresponds to za = 0 in the coordinates defined
by eqs. (4.36), (4.17).

The mirror maps and the superpotential can be computed from (4.19). Expressing the
superpotential in the flat coordinates ta defines the Ooguri-Vafa invariants Nβ in (4.21).
The homology class β can be labelled by three integers (k, l,m) that determine the Kähler
volume kt1 + lt2 + mt3 of a curve in this class. Here t1 is the volume of the elliptic fiber
and t2, t3 are the (D4-)volumes of two homologically distinct discs in the brane geometry.
The Kähler class of the section, which measures the volume of the fundamental sphere in
P2, is t2 + t3.
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For the discs that do not wrap the elliptic fiber we obtain the following invariants for
β = (0, l,m):

l\m 0 1 2 3 4 5 6
0 * 1 0 0 0 0 0
1 1 * -1 -1 -1 -1 -1
2 -1 -2 * 5 7 9 12
3 1 4 12 * -40 -61 -93
4 -2 -10 -32 -104 * 399 648
5 5 28 102 326 1085 * -4524
6 -13 -84 -344 -1160 -3708 -12660 *
7 35 264 1200 4360 14274 45722 159208
8 -100 -858 -4304 -16854 -57760 -185988 -598088
9 300 2860 15730 66222 239404 793502 2530946
10 -925 -9724 -58208 -262834 -1004386 -3460940 -11231776

Table 4.3: Invariants N0,l,m for the geometry (4.36).

The above result agrees with the results of [103, 19] for the disc invariants in the “inner
phase” of the non-compact CY O(−3)P2 . This result can be explained heuristically as
follows. The holomorphic discs ending on the non-compact A brane in O(−3)P2 lie within
the zero section of O(−3)P2 . Similarly discs with k = 0 in X18 are holomorphic curves
that must map to the section x3 = 0 of the elliptic fibration. The moduli space of maps
into the sections of the non-compact and compact manifolds, respectively, does not see
the compactification in the fiber, explaining the agreement. The agreement of the two
computations can be viewed as a statement of local mirror symmetry in the open string
setup.
For world-sheets that wrap the fiber we obtain

l\m 0 1 2 3 4 5
0 * 252 0 0 0 0
1 -240 * 300 300 300 300
2 240 780 * -2280 -3180 -4380
3 -480 -2040 -6600 * 24900 39120
4 1200 6300 22080 74400 * -315480
5 -3360 -21000 -82200 -276360 -957600 *
6 10080 73080 319200 1134000 3765000 13300560
7 -31680 -261360 -1265040 -4818240 -16380840 -54173880

Table 4.4: Invariants N1,l,m for the geometry (4.36).
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l\m 0 1 2 3 4
0 * 5130 -18504 0 0
1 -141444 * -73170 -62910 -62910
2 -28200 -108180 * 544140 778560
3 85320 403560 1557000 * -7639920
4 -285360 -1647540 -6485460 -24088680 *
5 1000440 6815160 29214540 106001100 392435460
6 -3606000 -28271880 -133294440 -505417320 -1773714840

Table 4.5: Invariants N2,l,m for the geometry (4.36).

It would be interesting to confirm some of these numbers by an independent computation.

Deformation of the non-compact involution brane

In [68] an involution brane in the local model O(−3)P2 has been studied. Similarly as in
the previous case one expects to find a deformation of this brane by embedding it in the
compact manifold and taking the limit of large elliptic fiber, z1 = 0. In order to recover
the involution brane of the local geometry we study the critical points near z3 = 1 in the
local coordinates

z̃1 = z1(−z2)
1/2, u = (−z2)

−1/2(1− z3) , v = (−z2)
1/2 .

After transforming the Picard-Fuchs system to these variables, the solution corresponding
to the superpotential has the following expansion

cW = −v − 35v3

9
+

1

2
uv2 +

200

3
z̃1v

2 − u2v

8
− 12320z̃2

1v − 60uz̃1v + . . . , (4.38)

where c is a constant that will be fixed again by comparing the critical value with the results
of [68]. In the decompactification limit z̃1 = 0, the critical point of the superpotential is at
u = 0, where we obtain the following expansion

cW|crit = −
√
z2 −

35

9
z

3/2
2 − 1001

25
z

5/2
2 + . . . , (4.39)

The restricted superpotential satisfies the differential equation

LbulkW|crit = −
√
z2

8c
,

with Lbulk the Picard-Fuchs operator of the local geometryO(−3)P2 . The above expressions
at the critical point agree with the ones given in [68] for c = 1.
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As might have been expected, the full superpotential (4.38) shows that the involution brane
of the local model is non-trivially deformed in the compact CY manifold for z1 6= 0. It
is not obvious that the modified multi-cover description of [79], which is adapted to real
curves and differs from the original proposal of [55], can be generalized to obtain integral
invariants for the deformations of the critical point in the z1 direction. One suspects
that an integral expansion in the sense of [79] exists only at critical points with an extra
symmetry and for deformations that respect this symmetry. It will be interesting to study
this further.

4.3.3 Branes on X
(1,1,1,3,3)
9

As a third example we study branes on the two moduli CY Z = X
(1,1,1,3,3)
9 . Z is again

an elliptic fibration over P2 and one can consider a similar compactification of the non-
compact brane in O(−3)P2 . The invariants for this geometry are reported in Appendix
A.

Here we consider a different family of D7-branes which we expect to include a brane that
exists at the Landau Ginzburg point of the two moduli Calabi–Yau. The mirror A brane
is defined by

−|x0|2 + |x1|2 = c1, l̂ = (−1, 1, 0, 0, 0, 0, 0) . (4.40)

The polyhedron for the GLSM is

∆(Z) ν0 = ( 0, 0, 0, 0, 0)
ν1 = ( 0, 0, 0, −1, 0)
ν2 = ( 0, 0, −1, 0, 0)
ν3 = ( 0, 0, 1, 1, 0)
ν4 = (−1, 0, 1, 1, 0)
ν5 = ( 0, −1, 1, 1, 0)
ν6 = ( 1, 1, 1, 1, 0)

∆[(Z,L) = ∆∪ ρ1 = ( 0, 0, 0, 0, −1)
ρ2 = ( 0, 0, 0, −1, −1)

Table 4.6: Points of the enhanced polyhedron ∆[ for the geometry (4.40).

A suitable basis of relations for the charge vectors is

l1 = (−2, 0, 1, 1, 0, 0, 0,−1, 1), l2 = (0, 0, 0,−3, 1, 1, 1, 0, 0),

l3 = (−1, 1, 0, 0, 0, 0, 0, 1,−1), (4.41)
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leading to the differential operators

L1 = θ1(θ1 − 3θ2)(θ1 − θ3) + z1(θ1 − θ3)(2θ1 + 1 + θ3)(2θ1 + 2 + θ3),

L2 = θ3
2 − z2(θ1 − 3θ2)(θ1 − 3θ2 − 1)(θ1 − 3θ2 − 2), (4.42)

L3 = −θ3(θ1 − θ3)− z3(θ1 − θ3)(2θ1 + 1 + θ3) .

The brane geometry on the B model side is defined by the two equations

p(Z∗) =
∑

aiyi = a0x1x2x3x4x5 + a1x
3
1 + a2x

3
2 + a3(x3x4x5)

3 + a4x
9
3 + a5x

9
4 + a6x

9
5,

B(E) : y0 = y1 or x1x2x3x4x5 = x3
1 . (4.43)

As in the previous cases, the deformations of the hypersurface B(E) are described by the
periods on a K3 surface.

We are interested in a brane superpotential with critical point at z3 = −1. Choosing the
following local coordinates centered around z3 = −1

u = (−z1)
−1/2z

−1/6
2 (z3 + 1) , v = (−z1)

1/2z
1/6
2 x2 = z

−1/3
2 ,

we obtain the superpotential

cW = −1

2
ux2 +

1

24
u3 + 210v3 +

3

4
vx2

2 −
3

8
u2vx2 + . . . . (4.44)

This superpotential has a critical point at u = 0 and x2 = 0. At the critical locus we have
v = z1/6, where z denotes the closed string modulus

z = −a
3
1a

3
2a4a5a6

a9
0

.

The expansion of the superpotential at this critical locus reads

cW|crit = 210
√
z+

53117350

3
z3/2 +

18297568296042

5
z5/2 +

7182631458065952702

7
z7/2 + . . . ,

As in the example of sect. 4.3.2 it is an interesting question to study the instanton expansion
of the above expressions and its possible interpretation in terms of integral BPS invariants.
We leave this for the future.

4.4 Summary and outlook

As proposed above, the open/closed string deformation space of the toric branes defined
in [18] can be studied by mirror symmetry and toric geometry in a quite efficient way.
The toric definition of the brane geometry in sect. 4.2 leads to the canonical Picard-
Fuchs system (4.19), whose solutions determine the mirror maps and the superpotential.
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The phase structure of the associated GLSM determines large volume regimes, where
the superpotential has an disc instanton expansion with an interesting mathematical and
physical interpretation.

Since the toric branes cover only a subset within the category of D-branes, e.g. matrix
factorizations on the B model side, it is natural to ask for the precise relation between
these two definitions. It is an interesting question to which extent it is possible to lift
the machinery of toric geometry directly to the matrix factorization and to make contact
with the works [101, 102]. On the positive side one notices that the class of toric branes
is already rather large and not too special, as can be seen from the fact that the above
framework covers all cases where explicit results have been obtained so far.

There are some other obvious questions left open by the above discussion, such as the
geometric and physical interpretation of some of the objects appearing in the definition of
the GLSM and the mirror B geometry, e.g. the appearance of the “enhanced polyhedra”
∆[(Z,L) and K3 surfaces, which beg for an explanation. A discussion of these issues
is beyond the scope of this work and will be given elsewhere, but here we outline some
of the answers. As the reader may have noticed, the polyhedra (∆[(Z,L),∆?

[ (Z
∗, E))

define Calabi-Yau fourfolds, which are the hallmark of F-theory compactifications with
the same supersymmetry.23 Another conclusive hint towards F-theory comes from the fact
that we have effectively studied families of 7-branes on the B model side by intersecting
a single equation with the Calabi–Yau hypersurface. In fact the “auxiliary geometry”
defined in sect. 4.3 should be viewed as a physical 7-brane geometry and this interpretation
suggests that the results of the GLSM determine also the Kähler metric on the open/closed
deformation space.

23An M-theory interpretation of the 4-folds for local models has been given in [100].



5 Polynomial Structure of Topological
String Amplitudes

We first show that the polynomial structure of the topological string partition function
found by Yamaguchi and Yau for the quintic holds for an arbitrary Calabi-Yau manifold
with any number of moduli. Furthermore, we generalize these results to the open topo-
logical string partition function as discussed recently by Walcher and reproduce his results
for the real quintic. We then derive topological string amplitudes on local Calabi-Yau
manifolds in terms of polynomials in finitely many generators of special functions. These
objects are defined globally in the moduli space and lead to a description of mirror symme-
try at any point in the moduli space. Holomorphic ambiguities of the anomaly equations
are fixed by global information obtained from boundary conditions at few special divisors
in the moduli space. As an illustration we compute higher genus orbifold Gromov-Witten
invariants for C3/Z3 and C3/Z4. The work of this chapter appeared in [24, 25].

5.1 Introduction and summary

The holomorphic anomaly equation of the topological string [12, 13] relates the anti-holo-
morphic derivative of the genus g topological string partition function F (g) with covariant
derivatives of the partition functions of lower genus. This enables one to recursively de-
termine the partition function at each genus up to a holomorphic ambiguity which has to
be fixed by further information. A complete understanding of the holomorphic anomaly
equation and its recursive procedure to determine the partition functions at every genus
might lead to new insights in the understanding of the structure of the full topological
string partition function Z = exp(

∑
λ2g−2F (g)). For example in [14], Witten interpreted

Z as a wave function for the quantization of the space H3(X,R) of a Calabi-Yau X and
the holomorphic anomaly equation as the background independence of this wave function.
In [23], Yamaguchi and Yau discovered that the non-holomorphic part of the topological
string partition function for the quintic can be written as a polynomial in a finite number
of generators. This improves the method using Feynman rules proposed in [13]. This poly-
nomial structure was used in [104] to solve the quintic up to genus 51 and was applied to
other Calabi-Yau manifolds with one modulus in [104, 105].
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The first aim of this work is to generalize the polynomial structure of the topological string
partition function discovered in [23] to an arbitrary Calabi-Yau manifold with any number
of moduli.1 A related method for integrating the holomorphic anomaly equation using
modular functions was presented in [107, 108].

Recently, an extension of the holomorphic anomaly equation which includes the open
topological string was proposed by Walcher [22].2 Its solution in terms of Feynman rules
was proven soon after in [110]. The second task of this work is to extend Yamaguchi and
Yau’s polynomial construction to the open topological string. A similar generalization for
the open topological string on the quintic appeared in [111].

The organization of this chapter is as follows. In the next section we briefly review the
extended holomorphic anomaly equation and the initial correlation functions at low genus
and number of holes which will be the starting point of the recursive procedure. Next we
introduce the polynomial generators of the non-holomorphic part of the partition functions
and show that holomorphic derivatives thereof can again be expressed in terms of these
generators. As the initial correlation functions are expressions in these generators we will
have thus shown that at every genus the partition functions will be again expressions in the
generators. Afterwards we assign some grading to the generators and show that F (g,h)

i1...in
, the

partition function at genus g, with h holes and n insertions, will be a polynomial of degree
3g−3+3h/2+n in the generators. Finally, we determine the polynomial recursion relations
and argue that, by a change of generators, the number of generators can be reduced by
one. In order to solve the holomorphic anomaly equation it now suffices to make the most
general Ansatz of the right degree in the generators for the partition function and use the
recursion relation to match the coefficients. The deficiency of the recursive information
contained in the anomaly equation lies in the additional purely holomorphic data which has
to be determined by boundary conditions [12]. We discuss in detail the construction of the
polynomial generators and analyze the freedom one has in choosing these. We identify the
relevant boundary conditions at various expansion points and discuss how to use the fact
that the polynomial expressions hold everywhere in moduli space to extract information.

We then apply the method to the real quintic and give the polynomial expressions for the
partition functions and reproduce some recent results. We further apply the method to
compute higher genus topological string amplitudes for local Calabi-Yau manifolds in terms
of polynomials of a finite number of generating functions. The polynomial expression is
globally defined and allows for an expansion of the topological string amplitudes at different
points in moduli space. In particular we compute orbifold Gromov-Witten (GW) invariants
which were recently studied on the physics and mathematics sides [107, 44, 112, 113]3 and
make predictions for higher genus orbifold invariants for C3/Z4. This demonstrates the
power of this framework for computations of mathematical invariants at various expansion

1This problem has independently solved in [106].
2A generalization of the holomorphic anomaly equations for the open topological string appeared in [109].
3We refer to [44] for a complete list of references.
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points in moduli space.4 The formalism is applied to some well studied local Calabi–Yau
threefolds, namely local P2 which contains a C3/Z3 orbifold and local P1 ×P1 as well as
local F2. The latter contains a C3/Z4 orbifold.
In a related work [115] the authors also use the polynomial construction to study local
models.

5.2 Polynomial method

5.2.1 Holomorphic anomaly

In this work we consider the open topological string with branes as in [22]. The B-model on
a Calabi–Yau manifold X depends on the space M of complex structures parameterized by
coordinates zi, i = 1, ..., h1,2(X). More precisely, the topological string partition function
F (g,h) at genus g with h boundaries is a section of a line bundle L2−2g−h over M [22]. The
line bundle L may be identified with the bundle of holomorphic (3, 0)-forms Ω on X with
first Chern class Gij̄ = ∂i∂̄j̄K . Here K is the Kähler potential and Gij̄ the Kähler metric.

Under Kähler transformations K → K(zi, z̄ j̄) − lnφ(zi) − ln φ̄(z̄ j̄), Ω → φΩ and more
generally a section f of Ln ⊗ L̄n̄ transforms as f → φnφ̄n̄f . The fundamental objects of
the topological string are the holomorphic three point couplings at genus zero Cijk which
can be integrated to the genus zero partition function F0

Cijk = DiDjDkF0, ∂̄īCijk = 0, (5.1)

and the disk amplitudes with two bulk insertions ∆ij which are symmetric in the two
indices but not holomorphic

∂̄ī∆ij = −Cijk∆k
ī , ∆k

ī = ∆īj̄e
KGkj̄. (5.2)

Here ∆īj̄ denotes the complex conjugate of ∆ij and Di = ∂i + · · · = ∂
∂zi

+ . . . denotes the
covariant derivative on the bundle Lm ⊗ SymnT ∗ where m and n follow from the context.
T ∗ is the cotangent bundle of M with the standard connection coefficients Γijk = Gii∂jGki.
The connection on the bundle L is given by the first derivatives of the Kähler potential
Ki = ∂iK.5

The correlation function at genus g with h boundaries and n insertions F (g,h)
i1···in is only non-

vanishing for (2g− 2+h+n) > 0. They are related by taking covariant derivatives as this

represents insertions of chiral operators in the bulk, e.g. DiF (g,h)
i1···in = F (g,h)

ii1···in . Furthermore,
in [22] it is shown that the genus g partition function with h holes is recursively related
to lower genus partition functions and to partition functions with less boundaries. This is

4See [108, 114] for other approaches addressing this problem.
5See section two of [13] for further background material.
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expressed for (2g − 2 + h) > 0 by an extension of the holomorphic anomaly equations of
BCOV [13]

∂̄īF (g,h) =
1

2
C̄jk
ī

∑
g1+g2=g
h1+h2=h

DjF (g1,h1)DkF (g2,h2) +
1

2
C̄jk
ī
DjDkF (g−1,h) −∆j

ī
DjF (g,h−1), (5.3)

where

C̄ij

k̄
= C̄īj̄k̄G

īiGjj̄ e2K , C̄īj̄k̄ = Cijk. (5.4)

These equations, supplemented by

∂̄īF
(1,0)
j =

1

2
CjklC

kl
ī + (1− χ

24
)Gjī, (5.5)

∂̄īF
(0,2)
j = −∆jk∆

k
ī +

N

2
Gjī, (5.6)

and special geometry, determine all correlation functions up to holomorhpic ambiguities.
In (5.5), χ is the Euler character of the manifold and in (5.6) N is the rank of a bundle
over M in which the charge zero ground states of the open string live. Similar to the closed
topological string [13], a solution of the recursion equations is given in terms of Feynman
rules. These Feynman rules have been proven for the open topological string in [110].

The propagators for these Feynman rules contain the ones already present for the closed
topological string S, Si, Sij and new propagators ∆, ∆i. Note that these are not the same
as the ∆, with or without indices, that appear in [13] which there denote the inverses of
the S propagators. S, Si and Sij are related to the three point couplings Cijk as

∂īS
ij = C̄ij

ī
, ∂īS

j = GīiS
ij, ∂īS = GīiS

i. (5.7)

By definition, the propagators S, Si and Sij are sections of the bundles L−2⊗SymmT with
m = 0, 1, 2. ∆ and ∆i are related to the disk amplitudes with two insertions by

∂̄ī∆
j = ∆j

ī
, ∂̄ī∆ = Gīi∆

i. (5.8)

They are sections of L−1 ⊗ SymmT with m = 0, 1. The vertices of the Feynman rules are
given by the correlation functions F (g,h)

i1···in .

Note that the anomaly equation (5.3), as well as the definitions (5.7) and (5.8), leave the
freedom of adding holomorphic functions under the ∂ derivatives as integration constants.
This freedom is referred to as holomorphic ambiguities.

5.2.2 Initial correlation functions

To be able to apply a recursive procedure for solving the holomorphic anomaly equation, we
first need to have some initial data to start with. In this case the initial data consists of the



5.2 Polynomial method 69

first non-vanishing correlation functions. The first non-vanishing correlation functions at
genus zero without any boundaries are the holomorphic three point couplings F (0,0)

ijk ≡ Cijk.
At genus zero with one boundary, the first non-vanishing correlation functions are the disk
amplitudes with two insertions. The holomorhpic anomaly equation (5.2) is solved with
(5.8) by

F (0,1)
ij ≡ ∆ij = −Cijk∆k + gij , (5.9)

with some holomorphic functions gij. Finally we solve (5.5) and (5.6). (5.5) can be inte-
grated with (5.7) to

F (1,0)
i =

1

2
CijkS

jk + (1− χ

24
)Ki + f

(1,0)
i , (5.10)

with ambiguity f
(1,0)
i . For the annulus we find

∂̄īF
(0,2)
j = Cjkl∆

l∂̄ī∆
k + ∂̄ī(−gjk∆k +

N

2
Kj)

= ∂̄ī(
1

2
Cjkl∆

k∆l − gjk∆
k +

N

2
Kj) , (5.11)

and therefore

F (0,2)
i =

1

2
Cijk∆

j∆k − gij∆
j +

N

2
Ki + f

(0,2)
i , (5.12)

where f
(0,2)
i are holomorhpic. As can be seen from these expressions, the non-holomorphicity

of the correlation functions only comes from the propagators together with Ki. Indeed, we
will now show that this holds for all partition functions F (g,h).

5.2.3 Non-holomorphic generators

From the holomorphic anomaly equation and its Feynman rule solution it is clear that at
every genus g with h boundaries the building blocks of the partition function F (g,h) are

the propagators Sij, Si, S, ∆, ∆i and vertices F (g′,h′)
i1···in with g′ < g or h′ < h. Here it will

be shown that all the non-holomorphic content of the partition functions F (g,h) can be
expressed in terms of a finite number of generators. The generators we consider are the
propagators Sij, Si, S, ∆i, ∆ as well as Ki, the partial derivative of the Kähler potential.
This construction is a generalization of Yamaguchi and Yau’s polynomial construction for
the quintic [23] where multi derivatives of the connections were used as generators. The
propagators of the closed topological string as building blocks were also used recently by
Grimm, Klemm, Marino and Weiss [108] for a direct integration of the topological string
using modular properties of the big moduli space, where all propagators can be treated on
equal footing.
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In the following we prove that if the anti-holomorphic part of F (g,h) is expressed in terms
of the generators Sij, Si, S, ∆i, ∆ and Ki, then all covariant derivatives thereof are also
expressed in terms of these generators. As the correlation functions for small genus and
small number of boundaries are expressed in terms of the generators, it follows by induction,
that all F (g,h) are expressed in terms of the generators.

The covariant derivatives contain the Christoffel connection and the connection Ki of L.
By integrating the special geometry relation

∂̄īΓ
l
ij = δliGjī + δljGīi − CijkC

kl
ī , (5.13)

to

Γlij = δliKj + δljKi − CijkS
kl + slij , (5.14)

where slij denote holomorphic functions that are not fixed by the special geometry relation,
we can express the Christoffel connection in terms of our generators. What remains is to
show that the covariant derivatives of all generators are again expressed in terms of the
generators. To obtain expressions for the covariant derivatives of the generators we first
take the anti-holomorphic derivative of the expression, then use (5.13) and write the result
as a total anti-holomorphic derivative again, for example

∂ī(DiS
jk) = ∂ī(δ

j
iS

k + δki S
j − CimnS

mjSnk). (5.15)

This equation determines DiS
jk up to a holomorphic term. In this manner we obtain the

following relations

DiS
jk = δjiS

k + δki S
j − CimnS

mjSnk + hjki , (5.16)

DiS
j = 2δjiS − CimnS

mSnj + hjki Kk + hji , (5.17)

DiS = −1

2
CimnS

mSn +
1

2
hmni KmKn + hjiKj + hi, (5.18)

DiKj = −KiKj − CijkS
k + CijkS

klKl + hij, (5.19)

Di∆
j = δji∆− gikS

kj + gji , (5.20)

Di∆ = −gijSj + gjiKj + gi, (5.21)

where hjki , h
j
i , hi, hij, g

j
i and gi denote holomorphic functions (ambiguities). This completes

our proof that all non-holomorphic parts of F (g,h) can be expressed in terms of the gener-
ators. Next, we will determine recursion relations, assign some grading to the generators
and show that F (g,h)

i1···in is a polynomial of degree 3g − 3 + 3h/2 + n.

5.2.4 Polynomial recursion relation

Let us now determine some recursion relations from the holomorhpic anomaly equation.
Computing the ∂̄ī derivative of F (g,h) expressed in terms of Sij, Si, S, ∆i, ∆, Ki, and using
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(5.3) one obtains

C̄jk
ī

∂F (g,h)

∂Sjk
+ ∆j

ī

∂F (g,h)

∂∆j
+Gīi

(
∂F (g,h)

∂Ki

+ Si
∂F (g,h)

∂S
+ Sij

∂F (g,h)

∂Sj
+ ∆i∂F (g,h)

∂∆

)
=

1

2
C̄jk
ī

∑
g1+g2=g
h1+h2=h

DjF (g1,h1)DkF (g2,h2) +
1

2
C̄jk
ī
DjDkF (g−1,h) −∆j

ī
DjF (g,h−1). (5.22)

Assuming linear independence of C̄jk
ī

, ∆j
ī

and Gīi the equation splits into three equations

∂F (g,h)

∂Sij
=

1

2

∑
g1+g2=g
h1+h2=h

DiF (g1,h1)DjF (g2,h2) +
1

2
DiDjF (g−1,h), (5.23)

∂F (g,h)

∂∆i
= −DiF (g,h−1), (5.24)

0 =
∂F (g,h)

∂Ki

+ Si
∂F (g,h)

∂S
+ Sij

∂F (g,h)

∂Sj
+ ∆i∂F (g,h)

∂∆
. (5.25)

The last equation (5.25) can be rephrased as the condition that F (g,h) does not depend
explicitly on Ki by making a suitable change of generators

S̃ij = Sij, (5.26)

S̃i = Si − SijKj, (5.27)

S̃ = S − SiKi +
1

2
SijKiKj, (5.28)

∆̃i = ∆i, (5.29)

∆̃ = ∆−∆iKi, (5.30)

K̃i = Ki, (5.31)

i.e. ∂F (g,h)/∂K̃i = 0 for F (g,h) as a function of the tilded generators. Let us now assign
a grading to the generators and covariant derivatives, which is naturally inherited from
the U(1) grading given by the background charge for the U(1) current inside the twisted
N = 2 superconformal algebra. The covariant holomorphic derivatives Di carry charge +1
as they represent the insertion of a chiral operator of U(1) charge +1. As Ki is part of the
connection, it is natural to assign charge +1 to Ki. From the definitions (5.7) and (5.8) one
may assign the charges 1/2, 1, 3/2, 2, 3 to the generators ∆i, Sij, ∆, Si, S, respectively. The

correlation functions F (g,h)
i1···in for small g and h are a polynomial of degree 3g− 3+3h/2+n

in the generators. By the recursion relations, it immediately follows that this holds for all
g and h.

5.2.5 Constructing the propagators

The application of the polynomial method requires the construction of the propagators
and determination of the holomorphic functions that appear in Eqs. (5.14-5.19). It should
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be noted that the discussion in the following holds in general and can be applied both
for compact and local models. First one starts by defining the propagators Sij, using the
special geometry relation Eq. (5.14). We pick therefore a coordinate z∗ for which C∗jk is
invertible as a n× n matrix, this yields:

Skl = (C−1
∗ )kj(δl∗Kj + δljK∗ − Γl∗j + sl∗j) . (5.32)

We begin by analyzing the freedom in the definition of the propagators which is related to
a choice of holomorphic slij which have to satisfy constraints coming from the symmetry
of Skl and from the special geometry relations Eq. (5.14) with i 6= ∗. A counting of
components of slij minus constraints gives

n2(n+ 1)

2︸ ︷︷ ︸
components of slij

− n(n− 1)

2︸ ︷︷ ︸
symmetry of Sij

− n2(n− 1)

2︸ ︷︷ ︸
remaining special geometry

=
n(n+ 1)

2
. (5.33)

This is equal to the number of components of a symmetric holomorphic E ij. This E ij can
be added to Sij while still satisfying the defining requirement ∂īS

ij = C̄ij
ī

. Two choices s̃lij
and slij are related by:

s̃lij = CijkEkl + slij . (5.34)

In the next step we tackle Eq. (5.16) where it is obvious that hjki for (i 6= j and i 6= k) can
already be computed with no freedom left, also the differences hiii − 2hjij for i 6= j can be
computed. This leaves us with n free holomorphic hiii . These are related to a freedom in
Si which we can define from Eq. (5.16)

Si =
1

2

(
DiS

ii + CimnS
miSni − hiii

)
. (5.35)

Moving on to Eq. (5.17) we can now compute hij with i 6= j and we obtain n− 1 relations

hii− h
j
j for i 6= j. This leaves the freedom to choose just one holomorphic hii. Again this is

related to a freedom in S which can be defined from Eq. (5.17)

S =
1

2

(
DiS

i + CimnS
mSni − hiki Kk − hii

)
. (5.36)

The remaining hij in Eq. (5.19) can now be computed from the choices already made. This
whole analysis of freedom in defining the propagators shows that given a set of propagators
one can always add holomorphic pieces to each one. Of course holomorphic shifts in Sij

affect Si and S.

Holomorphic freedom and simplification

Choosing a set of propagators amounts thus to choosing their holomorphic parts, their
non-holomorphic part is fixed by the defining Eqs. (5.7). The freedom one has in the
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construction can be summarized as follows

Sij → Sij + E ij , (5.37)

Si → Si + E ijKj + E i , (5.38)

S → S +
1

2
E ijKiKj + E iKi + E , (5.39)

all the holomorphic quantities in the polynomial setup change accordingly.

So E ij, E i and E contain all the freedom in this polynomial setup. One special choice
of propagators consistent with the Eqs. (5.16-5.19) is such that their holomorphic part
vanishes. In that case, given the holomorphic limit of the connection parts as analyzed by
BCOV [12]

Khol = − logX0, (Γkij)hol =
∂zk

∂ta
∂2ta

∂zi∂zj
, (5.40)

where ta denote special6 coordinates and X0 the period used to define these. All the
holomorphic quantities in the equations become trivial apart from slij of Eq. (5.14) and hij
of Eq. (5.19) which are expressed by

slij =
∂zl

∂ta
∂2ta

∂zi∂zj
+ δli∂j logX0 + δlj∂i logX0,

hij = −∂i∂j logX0 +
∂zm

∂ta
∂2ta

∂zi∂zj
∂m logX0 + ∂i logX0 ∂j logX0. (5.41)

This choice is of little use however as the polynomial part of the topological string am-
plitudes would be zero in the holomorphic limit and all the interesting information which
allows to compute invariants would be encoded in the ambiguity. The goal is thus to use the
insights of the polynomial structure coming from the non-holomorphic side of topological
string theory to organize the amplitudes in a tractable form. In particular this means that
we will try to absorb all the nontrivial series appearing in the holomorphic limit inside the
holomorphic part of the propagators so that all remaining purely holomorphic quantities
are simple closed expressions. Having done that the holomorphic ambiguity at every genus
becomes a simple closed expression.
The periods giving ta and X0 are computed patch-wise in the moduli space of complex
structures by solving the Picard-Fuchs system of differential equations. In general the
solutions are given in terms of series which have a finite radius of convergence and hence
slij and hij will not have a closed form as can be seen from Eq. (5.41). Our guideline for
choosing the holomorphic part of the propagators is to keep these expressions simple. We
note that there are cases where it is possible to both have propagators that vanish in the
holomorphic limit and simple expressions for slij and hij, namely in the cases where one
has a:

6Or, more generally, canonical [12].
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• Constant Period
In local models the constant period is a solution of the Picard-Fuchs system, accord-
ingly the holomorphic limit of derivatives of the Kähler potential vanish. If we take
Eq. (5.19) as a definition for the propagator Si

Sk = (C−1
∗ )jk(−D∗Kj −K∗Kj + C∗jkS

klKl + h∗j), (5.42)

we see from Eq. (5.40) that it is natural to choose its holomorphic limit to be zero
which leads to vanishing hij. In this case the holomorphic limit of the remaining
propagator S vanishes too. This fact is referred to in the literature as triviality
of these propagators for local models. We emphasize however that this actually
only means that it is natural to choose the holomorphic limit of these propagators
to be zero. The propagators are not zero as they still are local potentials for the
anti-holomorphic Yukawa couplings according to the definition Eq. (5.7). The full
topological string amplitudes expressed in terms of polynomials would still contain
these quantities. Doing the computations in order to fix the ambiguity and to extract
A-model invariants however does not require keeping track of these propagators.

• Special Mirror Map
In the two parameter local models that we study we encounter the situation where one
of the mirror maps just depends on one of the two parameters. From Eq. (5.40) we
see that in that case the holomorphic limit of the Christoffel connection with mixed
lower indices vanishes. The latter appears in the definition of the propagators (5.32)
if we pick as ∗ the coordinate on which the mirror map does not depend. Accordingly
a simple skij leads to a trivial holomorphic limit for the corresponding propagator. In
these cases we will later show that the corresponding propagators vanish identically
and the models reduce effectively to one parameter models as noted before in [64]
and in [107].

5.2.6 Holomorphic ambiguity and boundary conditions

To reconstruct the full topological string amplitudes we have to determine the purely
holomorphic part of the polynomial. This holomorphic ambiguity can be fixed by imposing
various boundary conditions at special points in the moduli space.

The leading behavior at large complex structure7 was computed in [13, 12, 116, 117, 67,
118]. In particular the contribution from constant maps is

F (g)|qa=0 = (−1)g
χ

2

|B2gB2g−2|
2g (2g − 2) (2g − 2)!

, g > 1, (5.43)

7We will use the term “large complex structure” to denote the expansion point in the moduli space of
the B-model which is mirror to large volume on the A-side.
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where qa denote the exponentiated mirror maps at large radius.

The leading singular behavior of the partition functions at a conifold locus has been de-
termined in [13, 12, 119, 120, 117, 67]

F (g)(tc) =
B2g

2g(2g − 2)t2g−2
c

+O(t0c), g > 1 (5.44)

Here tc ∼ ∆ is the canonical coordinate at the discriminant locus ∆ = 0 of a simple conifold.
In particular the leading singularity in (5.44) as well as the absence of sub-leading singular
terms follows from the Schwinger loop computation of [117, 67], which computes the effect
of the extra massless hyper-multiplet in the space-time theory [121]. The singular structure
and the “gap” of sub-leading singular terms have been also observed in the dual matrix
model [122] and were first used in [123, 104] to fix the holomorphic ambiguity to very high
genus.

Note that the space-time derivation of [117, 67] is not restricted to the conifold case and
applies also to Calabi–Yau singularities which give rise to a different spectrum of extra
massless vector and hyper-multiplets in space-time. So more generally one expects the
singular structure

F (g)(tc) = b
B2g

2g(2g − 2)t2g−2
c

+O(t0c), g > 1 (5.45)

with tc ∼ ∆γ, γ > 0. The coefficient of the Schwinger loop integral is a weighted trace over
the spin of the particles [121, 120] leading to the prediction b = nH −nV for the coefficient
of the leading singular term. In section 5.4.3 we will consider an example with a singularity
that gives rise to a SU(2) gauge theory in space-time and find agreement with the singular
behavior and the generalized gap structure predicted by the Schwinger loop integral.

The singular behavior is taken into account by the local ansatz

hol.ambiguity ∼ p(z̃i)

∆(2g−2)
, (5.46)

for the holomorphic ambiguity near ∆ = 0, where p(z̃i) is a priori a series in the local
coordinates z̃i near the singularity. Patching together the local informations at all the
singularities with the boundary divisors zi →∞ for one or more i it follows however that
the nominator p(zi) is generically a polynomial of low degree in the zi. Here zi denote
the natural coordinates centered at large complex structure, zi = 0 ∀i. Generically the
F (g), g > 1 are regular at a boundary divisor zi →∞ from which it follows that the degree
of p(zi) in zi is smaller or equal to the maximum power of zi appearing in the discriminants
in the denominator.8

8It can also happen, that a boundary divisor zi = ∞ gives rise to a singularity of the type (5.44). For
compact manifolds one has to take into account the effect of gauge transformations between different
patches.
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The finite number of coefficients in p(zi) is constrained by (5.45). In the computations for
the local Calabi–Yau models considered below it turns out that the boundary conditions
described above are sufficient to fix the holomorphic ambiguities.

5.3 Application to the real quintic

As an example of our polynomial construction of the partition functions F (g,h) we consider
the real quintic

X := {P (x) = 0} ⊂ P4,

where P is a homogeneous polynomial of degree 5 in 5 variables x1, . . . , x5 with real coef-
ficients. The real locus

L = {xi = x̄i} ,

is a Lagrangian sub-manifold on which the boundary of the Riemann surface can be
mapped.

For the closed topological string the polynomial construction was discovered by Yamaguchi
and Yau in [23] and has been used in [104] to calculate F (g,0) up to g = 51. The open string
case was analyzed in [22, 79] where the real quintic is given as an example for solving the
extended holomorphic anomaly equation. We will follow the notation of these two papers.

The mirror quintic has one complex structure modulus, which will be denoted by z. To
parameterize the holomorphic ambiguities we introduce as a holomorphic generator the
inverse of the discriminant

P =
1

1− 55z
. (5.47)

The Yukawa coupling is given by

Czzz = 5P/z3. (5.48)

For computational convenience we use instead of the generators Szz, Sz, S, ∆z and ∆ the
generators

T zz = 5P
Szz

z2
, T z = 5P

Sz

z
, T = 5PS, Ez = P 1/2 ∆z

z
and E = P 1/2∆. (5.49)

To obtain explicit forms of the generators we start with the integrated special geometry
relation (5.14) and choose similar to [64]

szzz = −1/z (5.50)
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in order to cancel the singular term in the holomorhpic limit of Γzzz. In the language of
[13] this corresponds to a gauge choice of f = z−1/2 and v = 1. This choice of holomorhpic
ambiguities fixes the propagators T zz, T z and T as

T zz = 2θK − zΓzzz − 1, (5.51)

T z = (θK)2 − θ2K − 1

4
, (5.52)

T =

(
1

5
P − 9

20

)(
θK − 1

2

)
+

1

2
(θT z − (P − 1)T z) , (5.53)

with θ = z ∂
∂z

. This choice of generators leads to the following ambiguities in the derivative
relations of the generators (5.16)-(5.19)

5Phzzz /z = −2

5
P +

9

10
, (5.54)

5Phzz =
1

5
P − 9

20
, (5.55)

5Pzhz = − 101

1250
P +

2241

20000
, (5.56)

z2hzz = −1

4
. (5.57)

For the open string generators Ez and E we make the same choice as in [22] by setting

gzz = 0 and (5.58)

gzz = 0, (5.59)

which leads to

Ez = −1

5
P−1/2z2∆zz, (5.60)

E = −1

2
(P − 1)Ez + θEz − T zzEz + (θK)Ez. (5.61)

Finally, taking the holomorphic limit of (5.21) we obtain the last ambiguity in the derivative
relations

zgz = −3

4
z1/2. (5.62)

Next, we fix the ambiguities for the initial correlation functions (5.9), (5.10) and (5.12) as
in [22] and obtain

z2F (0,1)
zz = −5P 1/2Ez, (5.63)

zF (1,0)
z =

28

3
θK +

1

2
T zz +

1

12
P − 13

6
, (5.64)

zF (0,2)
z =

5(Ez)2

2
+
θK

2
+

3P

250
− 3

250
. (5.65)
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It is now straightforward to use our method to determine higher F (g,h) by writing the most
general polynomial of degree 3g−3+3h/2 in the generators T̃ zz, T̃ z, T̃ , Ẽz and Ẽ and using
the polynomial recursion relations. For F (2,0) and F (3,0) the gap condition at the conifold
point [104] and the known expressions for the contribution of constant maps is enough to
fix the holomorphic ambiguities and we give the explicit expressions in Appendix B.1. For
F (1,1) and F (0,3) the vanishing of the first two instanton numbers fixes the ambiguities and
read

F (1,1) =
28Ẽ
3
√
P

+
13Ẽz

6
√
P
− Ẽz

√
P

12
− ẼzT̃ zz

2
√
P
− 9

√
zP

40
+

211
√
z

10
, (5.66)

F (0,3) =
1887

√
z

2500
+

Ẽ
2
√
P

+
3Ẽz

250
√
P
− 5(Ẽz)3

6
√
P
− 3Ẽz

√
P

250
− 3

√
zP

625
. (5.67)

In Appendix B.1 we also give the solution of F (1,2) and F (2,1) up to the holomorphic
ambiguities. It would be interesting to fix this ambiguities by some further input.

5.4 Application to local mirror symmetry

Mirror symmetry in topological string theory refers to the equivalence of the A-model on
a family of target spaces Xt which are related by deformations of Kähler structure on
one side and the B-model on the family of target spaces Yz which are related by defor-
mations of complex structure on the other side. The mirror map t(z), which represents
the matching between the deformation spaces (moduli spaces) was first found at the large
Kähler/Complex Structure expansion point [6]. This matching between the theories on
both sides is believed to exist everywhere in the moduli space which has generically dif-
ferent phases [7, 9, 8]. The precise matching between the A-model and the B-model has
to be found for each point in the moduli [12]. We will do this for special points in the
case of some non-compact, i.e., local models. Local mirror symmetry has been developed
in [124, 125, 126, 127, 128]. For reviews of many subsequent developments and a list of
references see [38, 37].

The models we consider are described torically on the A-side. The A-side is most compactly
described by giving the set of charge vectors l(a) with a = 1, . . . , dimh(1,1)(X). The number
of components of each vector corresponds to the number of homogeneous coordinates on
the toric variety. The B-model moduli space is described by the secondary fan which is
obtained from the columns of the matrix of charge vectors. This description is very useful
for obtaining the right coordinates describing each phase. For the polynomial construction
we analyze the information that can be obtained from each phase.
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5.4.1 Local P2

Local P2 denotes the anti-canonical bundle over P2, O(−3) → P
2, which can be obtained

by taking one Kähler parameter of a two parameter compact Calabi-Yau to infinity. The
compact CY is a torus fibration which is described by the charge vectors

l(a) =

(
0 0 0 −3 1 1 1
−6 3 2 1 0 0 0

)
. (5.68)

We will denote by t1 and t2 the Kähler parameters of the base and the fiber respectively.
The limit t2 → i∞ corresponds to the decompactification. To take this limit we must
find a linear combination of dual periods Fti which remains finite in this limit [127]. This
combination is9

(∂t1 −
1

3
∂t2)F = −1

6
t21 + . . . . (5.69)

After the change of coordinates

t = t1 , s = t2 +
1

3
t1 , (5.70)

this dual period is rephrased as ∂tF (0) = −1
6
t2 + . . . , which can be integrated to give the

prepotential of the local model. The “classical intersection” numbers in the basis given by
t and s are then

C
(0)
ttt = −1

3
, C(0)

sss = 9 , and C
(0)
sst = C

(0)
stt = 0 . (5.71)

With the expression for the Kähler potential in special coordinates10

e−K = i|X0|2
(
2(F − F)− (ta − ta)(Fa + Fa)

)
, (5.72)

we find for the inverse tt∗ metric

gab := eKGab =

(
gtt gts

gst gss

)
s→i∞−→ 1

2Imτ

(
1 0
0 0

)
, (5.73)

where τ := Ftt. The tt∗ metric appears in the definition of the propagators, here in special
coordinates

∂āS
bc = C̄bc

ā = C āb̄c̄g
bb̄gcc̄, (5.74)

which shows that in that limit the propagators Sts and Sss vanish. We can describe local
P

2 torically by the charge vector l = (−3, 1, 1, 1).

9We analyzed the leading terms coming from classical intersection numbers which can be computed from
the toric data.

10Fa := ∂F
∂ta

.
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a3

a2

a1a0

(a) A-model.

1− 3
a1 , a 2 , a 3a0

(b) B-model.

Figure 5.1: Fan and secondary fan for local P2.

Local mirror symmetry associates to this non-compact toric variety a one dimensional local
geometry [125, 126] described by

P = a0u1u2u3 + a1u
3
1 + a2u

3
2 + a3u

3
3 = 0 , (5.75)

where u1, u2 and u3 are projective coordinates. The rescaling ui → λiui induces a (C∗)3

action on ai
(a0, a1, a2, a3) → (λ1λ2λ3a0, λ

3
1a1, λ

3
2a2, λ

3
3a3) . (5.76)

Invariant combinations of ai under this action parameterize the moduli space of complex
structures of the mirror geometry. Different phases on the B-side are encoded in the sec-
ondary fan which is one dimensional and shows that the moduli space of complex structures
has two patches. These correspond on the A-model side to the C3/Z3 orbifold phase and
to the blown up phase. The Picard Fuchs system in homogeneous coordinates is given by11

L = θa1θa2θa3 −
a1a2a3

a3
0

θa0(θa0 − 1)(θa0 − 2) . (5.77)

We refer to the literature for a complete discussion of solutions of the Picard-Fuchs system
for local P2, see for example [129]. We will rather focus on the ingredients that we use for
applying the polynomial method. We fix the choices of the holomorphic quantities in the
polynomial procedure at large complex structure.

Large complex structure

We use the induced (C∗)3 action on ai to set a2, a3, a0 → 1, a1 → a1a2a3

a3
0

. The good

coordinate in this patch is hence given by z = a1a2a3

a3
0

. Our choice of data for Eqs. (5.14-

11θa := a ∂
∂a .
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5.19) which completely fixes the polynomial construction is given by

szzz = − 4

3z
, hzzz = −z

3
, and hzz, hz, hzz = 0 . (5.78)

We further need the starting amplitudes of the recursion

Czzz = − 1

3z3
P , where P :=

1

∆
, ∆ = 1 + 27z , (5.79)

zF1
z =

1

12
(P − 1)− 1

6
P
Szz

z2
+

1

12
. (5.80)

We need to supplement the polynomial part with the holomorphic ambiguity at every genus,
which we determine by moving to other patches in the moduli space of the B-model.

Orbifold

We use the (C∗)3 action to set a1, a2, a3 → 1, a0 → a0

(a1a2a3)1/3
. The good invariant coor-

dinate to parameterize this patch is given by x = a0

(a1a2a3)(1/3)
, we find solutions for the

Picard-Fuchs system

ω0 = 1 ,

ω1 = x− x4

648
+

4x7

229635
− 49x10

159432300
+ . . . ,

ω2 = x2 − 2x5

405
+

25x8

367416
− 160x11

122762871
+ . . . . (5.81)

Monodromy around large complex structure z → e2πiz induces a transformation of the
solutions as (ω0, ω1, ω2) → (α3ω0, αω1, α

2ω2) with α = e
−2πi

3 .This describes an orbifold in
the moduli space of the B-model and corresponds to a C3/Z3 target space on the A-side.
Now we need to write these periods in the form (1, to, ∂toF) such that F is monodromy
invariant. This is possible by identifying to = ω1 and ∂toF = 1

6
ω2. We introduced the factor

1/6 in order to reproduce the genus zero Orbifold Gromov-Witten invariants that appeared
in [107, 44]. Higher genus Orbifold invariants are only sensitive to the normalization of
to which we find to be 1. Our actual purpose for moving to this patch is to examine the
behavior of the polynomial and to restrict the ansatz we have to make at large complex
structure for the holomorphic ambiguity.

To do that we first note that the full expression for F (g) does not transform under a
coordinate change in the complex structure moduli space12. To clarify this we look at a
typical expression appearing in the BCOV Feynman graph expansion at genus g which
would have the form

F (g)
i1...in

Si1i2 . . . Sin−1in ,

12They transform as sections of L(2−2g) but in local models this transformation is trivial due to the
constant period.
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where all indices are contracted. Hence, the whole expression does not transform. In the
polynomial formalism all quantities in F (g)

i1...in
coming from the connections would also be

expressed in terms of polynomial building blocks. We therefore only have to express the
building blocks that we found at large complex structure in the new coordinates without
worrying about tensor transformations of the indices. The only polynomial building block
which survives when taking the holomorphic limit has the following expansion in to

Szz

z2
(to) =

1

2
+

1

540
t3o +O(t6o) . (5.82)

We further check that the polynomial part at every genus has a regular expansion in to.
The regularity of the polynomial expression depends on the choice of szzz. Being sure that
we have made an appropriate choice we can make an ansatz for the holomorphic ambiguity
at large complex structure which is also regular at the orbifold and has the right singular
behavior at the conifold,

f (g)(z) = ∆2−2g

2g−2∑
i=0

aiz
i. (5.83)

One of the 2g − 1 coefficients in the ansatz is determined by the contribution of constant
maps at large radius Eq. (5.43), the other 2g−2 are determined by the gap condition at the
conifold. To implement the gap condition we need to go to a patch where the coordinate
is the discriminant.

Conifold

The coordinate on complex structure moduli space in this patch is given by

y = 1 + 27z .

We solve the Picard-Fuchs system in terms of y and obtain the mirror map

tc(y) =
1√
3

(
y +

11 y2

18
+

109 y3

243
+

9389 y4

26244
+ . . .

)
. (5.84)

The normalization is such that F (g)(tc) has the behavior described in Eq. (5.44). Once
the normalization is fixed a simple counting of conditions vs. unknowns shows that the
recursion is completely determined up to arbitrary genus. We list some low genus Orbifold
Gromov-Witten invariants in the Appendix C.

5.4.2 Local F0

Local F0 denotes the anti-canonical bundle over P1×P1, which is obtained by taking one
Kähler parameter of a three parameter compact Calabi-Yau to infinity. The compact CY
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is a torus fibration which is described by the charge vectors

l(a) =

 0 0 0 −2 1 1 0 0
0 0 0 −2 0 0 1 1
−6 3 2 1 0 0 0 0

 . (5.85)

We denote by t1 and t2 the Kähler parameters of the base and by t3 the Kähler parameter
of the fiber. The limit t3 → i∞ corresponds to the decompactification. Again, to take this
limit we must find a linear combination of dual periods Fti which remains finite in this
limit. This combination is

(∂t1 + ∂t2 −
1

2
∂t3)F = −1

2
t1t2 + . . . . (5.86)

After the change of coordinates

t = t1 , u = t2 − t1 , s = t3 +
1

2
t1 , (5.87)

this dual period becomes

∂tF = −1

2
t(u+ t) + . . . . (5.88)

Integrating this we obtain for the prepotential

F = −1

6
t3 − 1

4
t2u+

a

6
u3 + . . . , (5.89)

where a denotes an arbitrary constant which drops out in constructing the propagators
but nevertheless affects the classical term when we determine the Yukawa couplings13. We
set this constant to zero. The nonzero “classical intersections” in the new coordinates are

C
(0)
ttt = −1 , C(0)

sss = 8 , C(0)
uss = 2 , and C

(0)
ttu = −1

2
. (5.90)

We can redo the analysis of taking s to infinity. We find in this case the following inverse
tt∗ metric

gab =

 gtt gtu gts

gut guu gus

gst gsu gss

 s→i∞−→ 1

2ImFtt
.

 1 0 0
0 0 0
0 0 0

 . (5.91)

This shows that all propagators containing s vanish in that limit. More interestingly the
propagators Sut and Suu also vanish. It was already observed in [64] that local F0 is a two
parameter problem which effectively reduces to a one parameter problem. In [107] it was
argued that only the Kähler parameters that correspond to 2-cycle classes which are dual
to 4-cycles which remain compact are true parameters of the theory. This limit shows this

13This explains why different classical data for local models lead to the same results.
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(b) B-model.

Figure 5.2: Fan and secondary fan for local F0.

from a different point of view. Only one propagator Stt survives the decompactification.
It should be noted that we could still choose some non-zero holomorphic limit for the
vanishing propagators as this analysis only shows the vanishing of their anti-holomorphic
derivative, this would however be redundant.

Now we can examine which holomorphic anomaly equations survive the decompactification.
We find that ∂t̄F (g) and ∂ūF (g) give the same equation. As was proven in [24] the non-
holomorphic dependence of F (g) comes from the polynomial building blocks. The chain rule
shows that the anomaly equation ∂ūF (g) reduces to ∂t̄F (g). Only one non-trivial anomaly
equation survives.
Local F0 is described by the charge vectors

l(a) =

 a0 a1 a2 a3 a4

−2 1 1 0 0
−2 0 0 1 1

 . (5.92)

The mirror geometry is given by,

P = a0u1u2u3u4 + a1u
2
1u

2
2 + a2u

2
3u

2
4 + a3u

2
1u

2
4 + a4u

2
2u

2
3 = 0 . (5.93)

The rescaling ui → λiui, λi ∈ C∗ induces a (C∗)3-action

(a0, a1, a2, a3, a4) → (λ1λ2λ3λ4a0, λ
2
1λ

2
2a1, λ

2
3λ

2
4a2, λ

2
1λ

2
4a3, λ

2
2λ

2
3a4) , (5.94)

as only three rescalings are independent. The Picard-Fuchs system is given by

L1 = θa1θa2 −
a1a2

a2
0

θa0(θa0 − 1) ,

L2 = θa3θa4 −
a3a4

a2
0

θa0(θa0 − 1) . (5.95)
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Large complex structure, region I

We use the induced (C∗)3 action to set a0, a2, a4 → 1, a1 → a1a2

a2
0

and a3 → a3a4

a2
0

. Good

coordinates are therefore z1 = a1a2

a2
0

, z2 = a3a4

a2
0

with mirror maps14

t1 = log z1 + 2z1 + 2z2 + 3z2
1 + 12z1z2 + 3z2

2 + · · · , (5.96)

t2 = log z2 + 2z1 + 2z2 + 3z2
1 + 12z1z2 + 3z2

2 + · · · . (5.97)

To make contact with our previous discussion we change t1 and t2 to t = t1 and u = t2− t1
by an SL(2,Z) transformation, which changes the coordinates on the complex structure
moduli space to

y1 = z1 , y2 =
z2

z1

, (5.98)

indeed we now find a mirror map which only depends on y2

t(y1, y2) = t1 = log y1 + 2y1 + 3y2
1 + 2y1y2 + · · · , (5.99)

u(y2) = t2 − t1 = log y2 . (5.100)

Calculating the holomorphic limit of the Christoffel connections we find the following simple
expressions15

Γ2
12|hol = Γ2

21|hol = Γ2
11|hol = 0 and Γ2

22|hol = − 1

y2

. (5.101)

The data we choose for constructing the polynomial building blocks is16

s2
22 = − 1

y2

, s1
11 = − 3

2y1

, s1
12 = s1

21 = − 1

4y2

, (5.102)

and all the other skij zero. With this data only the propagator S11 survives in the holomor-
phic limit but we know from the preceding discussion that also non-holomorphically there
exists just one propagator with two indices. We further find for the data of Eqs. (5.16-5.19)

h11
1 = −y1

4
(5.103)

out of all the other holomorphic data only h11
2 is not zero in this setup but is not needed

for the recursion. Now we still need the initial correlation functions to start the recursion.
We only need one Yukawa coupling, namely

C111 = −(y3
1∆)−1 , where ∆ = 1− 8y1(1 + y2) + 16y2

1(1− y2)
2. (5.104)

14We absorb factors of 2π in the definition of t1, t2.
15Γk

ij |hol = ∂yk

∂ta

∂2ta

∂yi∂yj
16sk

ij := syk
yiyj

.
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And we further need F (1)
1 to completely determine all the polynomials

F (1)
1 =

1

6y1

− 1

2

S11

y3
1∆

− 1

12∆

(
32y1(1− y2)

2 − 8(1 + y2)
)
. (5.105)

To obtain a bound on the maximal powers of y1 and y2 that we have to allow in the ansatz
of the ambiguity we move on to region II.

Region II

This is the orbifold expansion point in[122]. It is an orbifold in the moduli space of complex
structures but does not correspond to C3/Zn target space on the A-model side. We find
the right invariant coordinates in this patch to be x1 = a0√

a1a2
= 1√

y1
and x2 = a1a2

a3a4
= y2.

The mirror maps are given by

t1(x1, x2) = x1 +
1

4
x1x2 +

(
x3

1

24
+

9

64
x2

2x1

)
+ . . . ,

t2(x2) = log x2 . (5.106)

We find that the propagator S11(t1, t2) is not regular on its own. We check however that
the whole polynomial part of the amplitudes is regular. Here we show this for F (2) which
is expressed in terms of t1 and q2 = et2

F (2)(t1, t2) =
1

360
+

1

480
q2 +

(
31q2

2

3840
+

t21
1920

)
+ . . . . (5.107)

Now we have enough information to make an ansatz for the ambiguity in terms of large
complex structure coordinates. The discussion is more transparent in terms of the right
coordinates at large complex structure z1 and z2. The problem is obviously symmetric in
these coordinates. From region II we learn that we can make an ansatz which has as its
highest degree monomials of the form zi1z

(n−i)
2 where n refers to the highest degree of z1 in

the denominator in order to ensure regularity of the ansatz in x1. In region III we get the
same statement with the degree of z2 in the denominator. So we can make a symmetric
ansatz in the coordinates z1 and z2 of maximal joint degree 2(2g−2). To fix the coefficients
of the ansatz we have to use the gap condition at the conifold locus.

Conifold

To parameterize the expansion around the conifold locus we pick the coordinates:

u1 = ∆ , and u2 = 1 + y2 , (5.108)
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the choice of the second coordinate is arbitrary, we only have to make sure that the coor-
dinate is transverse to the discriminant. We solve the Picard-Fuchs equations and find the
mirror maps

t1(u1, u2) = u1 +
5

8
u2

1 +

(
89u3

1

192
+

3

32
u2

2u1

)
+ . . . ,

t2(u2) = log(1 + u2) . (5.109)

The propagator in the conifold coordinates now reads

Sy1y1

y2
1

(t1, t2) =
1

4
t1 −

1

8
t21 +

1

768

(
43t31 − 6t1t

2
2

)
+ . . . . (5.110)

A counting of independent conditions for the free parameters in the ambiguity ansatz is
more involved in this case. One would think that there are infinitely many conditions as
we can move in the u2 direction. This fact has also another manifestation. Requiring the
vanishing of all but the leading singularity in the conifold coordinate involves setting series
in the other coordinates to zero. It turns out that the conditions are not unrelated. Once
the correct normalization of the mirror map at the conifold is chosen we find that the gap
conditions with the contribution from constant maps are enough to fix the ambiguity up
to genus 4. We assume but cannot prove rigorously that this holds up to arbitrary genus.17

5.4.3 Local F2

Local F2 denotes the anti-canonical bundle over F2, which is obtained from

l(a) =

 0 0 0 −2 1 1 0 0
0 0 0 0 0 −2 1 1
−6 3 2 1 0 0 0 0

 . (5.111)

by decompactification. Much of the discussion here will follow the last example. The finite
dual period in this case is

(∂t1 −
1

2
∂t3)F = −1

2
t1t2 −

1

2
t21 + . . . . (5.112)

After the change of coordinates

t = t1 , u = t2 , s = t3 +
1

2
t1 , (5.113)

the dual period becomes

∂tF = −1

2
t(u+ t) + . . . (5.114)

17This was also found in [115].
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Figure 5.3: Fan and secondary fan for local F2.

Integrating this we obtain for the prepotential

F = −1

6
t3 − 1

4
t2u+

a

6
u3 + . . . , (5.115)

with a the arbitrary constant that we will set to zero. The nonzero “classical intersections”
are the same as in the last model when we changed the Kähler parameters

C
(0)
ttt = −1 , C(0)

sss = 8 , C(0)
uss = 2 , and C

(0)
ttu = −1

2
. (5.116)

The analysis of taking s to infinity also gives the same result and again there exists only
one non-trivial propagator Stt and one holomorphic anomaly equation for the non-compact
model.
Local F2 is described by the charge vectors

l(a) =

 a0 a1 a2 a3 a4

−2 1 1 0 0
0 0 −2 1 1

 , (5.117)

which represents a P1 fibered over P1. t1 will denote the Kähler parameter corresponding
to the fiber and t2 corresponds to the base. The mirror geometry is given by,

P = a0u1u2u3 + a1u
2
1 + a2u

2
2u

2
3 + a3u

4
3 + a4u

4
2 = 0 . (5.118)

The rescaling ui → λiui, λi ∈ C∗ induces a (C∗)3-action

(a0, a1, a2, a3, a4) → (λ1λ2λ3a0, λ
2
1a1, λ

2
2λ

2
3a2, λ

4
3a3, λ

4
2a4) . (5.119)
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The Picard-Fuchs operators are

L1 = θa1θa2 −
a1a2

a2
0

θa0(θa0 − 1) , (5.120)

L2 = θa3θa4 −
a3a4

a2
2

θa2(θa2 − 1) . (5.121)

Large complex structure, region I

In this region of the secondary fan we use the C∗3-action to set a0, a2, a4 → 1 and a1 →
a−2

0 a1a2, a3 → a−2
2 a3a4 (alternatively a0, a2, a3 → 1 and a1 → a−2

0 a1a2, a4 → a−2
2 a3a4). In

both cases the good C∗3-invariant coordinates are given by

z1 =
a1a2

a2
0

, z2 =
a3a4

a2
2

. (5.122)

We find for the mirror maps

t1(z1, z2) = log(z1) + (2z1 − z2) +

(
3z2

1 −
3z2

2

2

)
+

(
20z3

1

3
+ 6z2z

2
1 −

10z3
2

3

)
+ . . .

t2(z2) = log(z2) + 2z2 + 3z2
2 +

20

3
z3
2 + . . . . (5.123)

As the second mirror map only depends on z2, the holomorphic limit of Christoffel con-
nections with upper index 2 and mixed lower indices vanish. We choose as holomorphic
data

s1
11 = − 3

2z1

, s1
12 = s1

21 = − 1

4z2

. (5.124)

It is also possible to choose s2
22 and s1

22 such that only the propagator S11 survives. This
is due to the special form of the mirror map. We will not need these for the recursion. All
other skij are set to zero. We find for the other holomorphic quantities

h11
1 = −z1

4
, (5.125)

also h11
2 is nonzero but again not needed in the following. All the other holomorphic

quantities are zero. The only Yukawa coupling relevant for the setup is given by

C111 = −(z3
1∆1)

−1, ∆1 = (1− 4z1)
2 − 64z2

1z2. (5.126)

There are however two discriminants, the second is given by ∆2 = 1−4z2. We will examine
the locus where ∆2 = 0 later on.

F1
1 =

1

6z1

− S11

2∆1z3
1

+
8

∆1

((1− 4z1) + 16z1z2) . (5.127)
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From arguments in sect. 5.2.6 and equation (5.45) it follows that the holomorphic ambi-
guity has the form

f (g)(z1, z2)

∆2g−2
1 ∆g−1

2

,

see below for a careful study of the local expansions at the singular loci. Furthermore the
regularity of the polynomial part of the amplitudes at the orbifold expansion point in region
III allows us again to put some bounds on the monomials that appear in f g(z1, z2). We

find that the monomial of maximal degree at genus g has the form z
4(g−1)
1 z

3(g−1)
2 moreover

every monomial zn1 z
m
2 has to satisfy m ≤ n

2
+ g − 1.

Orbifold, region III

In region III (orbifold region) of the secondary fan, i.e. a1, a3, a4 6= 0 we use the C∗3-action

to set a1, a3, a4 → 1 and a0 → a0a
−1/2
1 (a3a4)

−1/4, a2 → a2(a3a4)
−1/2. Therefore the good

C
∗3-invariant coordinates are given by

x1 =
a0

a
1/2
1 (a3a4)1/4

=
1

z
1/2
1 z

1/4
2

, x2 =
a2

(a3a4)1/2
=

1

z
1/2
2

. (5.128)

Under monodromy at large complex structure z1 → exp(2πi)z1 we have x1 → αx1 and
x2 → x2 with α = exp(−2πi/2). Under z2 → exp(2πi)z2 we have x1 → βx1 and x2 → β2x2

with β = exp(−2πi/4). We fix the basis of solutions to the Picard-Fuchs equations

w0 = 1 , (5.129)

w1 = x1 +
1

32
x1x

2
2 −

1

192
x3

1x2 +
1

2560
x5

1 +
25

6144
x1x

4
2 + · · · , (5.130)

w2 = x2 +
1

24
x3

2 +
3

640
x5

2 + · · · , (5.131)

w3 = x1x2 −
1

12
x3

1 +
3

32
x1x

3
2 −

3

128
x3

1x
2
2 + · · · , (5.132)

such that they transform under the monodromy as

w0 → w0 , (5.133)

w1 → αβw1 , (5.134)

w2 → β2w2 , (5.135)

w3 → αβ3w3 . (5.136)

We want to write this set of solutions in the form (1, t1, t2, ∂t1F) such that F is monodromy
invariant. The only possibility is given by t1 ∝ w1, t2 ∝ w2 and ∂t1F ∝ w3. We normalize
the mirror maps as

t1 = w1 , t2 = w2 , (5.137)
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with inverse

x1 = t1 −
1

32
t1t

2
2 +

1

192
t31t2 −

1

2560
t51 −

1

2048
t1t

4
2 + · · · . (5.138)

x2 = t2 −
1

24
t32 +

1

1920
t52 + · · · , (5.139)

and we normalize the prepotential as

∂t1F =
1

4
w3 , (5.140)

to obtain the correct Orbifold Gromov-Witten invariants at genus zero which were com-
puted in [113, 112]. We read off the orbifold Gromov-Witten invariants at genus g from
the expansion of the topological string amplitudes on the A-model side in the two mirror
maps t1 and t2 according to the formula

F (g) =
∞∑

n1n2=0

1

n1!n2!
Norb
g,(n1,n2)t

n1
1 t

n2
2 ,

where Norb
g,(n1,n2) denote the orbifold Gromov-Witten invariants. The results agree for genus

0 and 1 with [112, 113]. The higher genus invariants are new results of our analysis. We
list these invariants up to genus 4 in the Appendix C.

Conifold, ∆1 = 0

We take coordinates
y1 = ∆1 and y2 = z2 − 1 (5.141)

and find the mirror maps

t1(y1, y2) = y1 +

(
87y2

1

128
− 1

4
y1y2

)
+

(26217y3
1 − 8736y2y

2
1 + 9728y2

2y1)

49152
+ . . .(5.142)

t2(y2) = y2 −
5

6
y2

2 +
7

9
y3

2 + . . . .

As we can again move in the y2 direction we could implement the gap condition at infinitely
many different points. In this model we furthermore have a second discriminant. We will
examine the behavior of the amplitudes at the locus where that discriminant vanishes in
the following.

Singularity at ∆2 = 0

We choose as coordinates
u1 = z1, u2 = ∆2 (5.143)
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and find the mirror maps

t1 = log(u1) +
(
2u1 −

u2

2

)
+

(
9u2

1

2
− u2

2

4

)
+

1

6

(
100u3

1 − 9u2u
2
1 − u3

2

)
+ . . .

t2 =
√
u2 +

1

3
u

3/2
2 +

1

5
u

5/2
2 + . . . . (5.144)

corresponding to γ = 1/2 in (5.45). At the singular locus ∆2 = 0 the space-time spectrum
contains extra massless states from an enhanced SU(2) gauge symmetry with one adjoint
hyper-multiplet [130, 131]. According to eq.(5.45) the theory is regular due to the can-
cellation of the effects of the equal number of extra massless hyper and vector multiplets,
b = 0. We find that the expansion of the polynomial part of the amplitudes is already
regular in t2; this allows us to further restrict the ansatz of the holomorphic ambiguity to
be of the form

f (g)(z1, z2)

∆2g−2
1

.

Regularity at the orbifold expansion point requires the monomials to be of the type zn1 z
m
2

with m ≤ n
2

and maximal degree of n = 2(2g − 2).
Once we have normalized the mirror map at the conifold locus to obtain the prefactor of
Eq. (5.44) we find that the conditions obtained from implementing the gap are enough to
supplement the polynomial part of the amplitudes with the correct holomorphic ambigui-
ties. We refer to the Appendix C for the results. Since the gap conditions hold at infinitely
many points, it is plausible that these boundary conditions might be sufficient for arbitrary
genus. This finishes our analysis of the examples of the polynomial construction on local
models.

5.5 Conclusion

In this chapter we have shown that the polynomial structure of the topological string
partition function found by Yamaguchi and Yau for the quintic holds for an arbitrary
Calabi-Yau manifold with any number of moduli. We have furthermore generalized these
results to the open topological string partition function. We applied the method to the
quintic with a D-brane fixed at the real locus and to local Calabi-Yau manifolds without
D-branes. The polynomials provide expressions for the topological string amplitudes ev-
erywhere in moduli space. This can be used to study the topological string at different
expansion points. In particular we analyzed the freedom in choosing the polynomial build-
ing blocks and how to exploit this freedom elaborately to maximize the information that
can be obtained from various expansion points. We further clarified which simplifications
can occur in the formalism on the computational side when local models are studied. As
examples we studied local P2, local F0 and local F2. An immediate application of the
construction is the possibility to extract Orbifold Gromov-Witten invariants which have
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been already computed for C3/Z3 and to make predictions for higher genus Orbifold GW
invariants for C3/Z4.

A simple counting for local P2 shows that the information coming from the boundary
conditions is enough to supplement the polynomials with the right holomorphic ambiguity
at every genus. For the other two models we argue that the information coming from
boundary conditions is enough for all genera but we cannot demonstrate this rigorously.
However it appears that the boundary conditions at the various boundary divisors and
divisors with extra massless states should provide enough information in general. Further
information can be obtained by studying intersections of the singular divisors which are
often described also by eq. (5.44), with extra massless states at the intersection point.

Having a powerful alternative computation method could help pushing forward the un-
derstanding in some directions which have been explored recently. As the polynomial
construction of topological string amplitudes applies also to compactifications with back-
ground D-branes [22, 24, 111], it should be possible to work out the corresponding boundary
conditions also for this case and fix the holomorphic ambiguity along the lines of the above
arguments.
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A Toric Branes

A.1 One parameter models

In the following we discuss the toric GKZ systems associated to brane families connected
to the involution brane in one parameter compact models.1 At the critical value of the
superpotential we recover the results of [81, 82].

A.1.1 Sextic X
(2,1,1,1,1)
6

We consider the charge vectors

l1 = (−4, 0, 1, 1, 1, 1; 2,−2), l2 = (−1, 1, 0, 0, 0, 0;−1, 1) .

Large volume

This region in moduli space is parameterized by local variables

z1 =
a2a3a4a5a

2
6

a4
0a

2
7

, z2 = −a1a7

a0a6

.

We obtain the differential operators

L1 = (θ4
1 − z1

4∏
i=1

(4θ1 + θ2 + i))(2θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(2θ1 − θ2) ,

L′1 = θ4
1

1∏
i=0

(θ2 − i)− z1z
2
2

6∏
i=1

(4θ1 + θ2 + i) .

Switching to coordinates which are centered around the critical point z2 = −1 of the
superpotential

u = z
−1/4
1 (z2 + 1) , v = z

1/4
1 ,

1See [132] for a discussion of closed string mirror symmetry in these models.
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we obtain the superpotential

cW(u, v) =
u2

24
+ 24v2 +

u3v

24
− 24uv3 +

u6

138240
+
v2u4

24
+

143360v6

3
+ . . . (A.1)

At the critical point u = 0, we can express v in terms of the closed string modulus z = z1z
2
2

as
v|crit = z1/4 .

We find for the superpotential at the minimum

cWcrit = 24
√
z +

143360

3
z3/2 +

5510529024

25
z5/2 +

334766662483968

245
z7/2 + . . . ,

This expression satisfies the differential equation

LbulkWcrit =
3

2c

√
z ,

where Lbulk = θ4 − 9z
∏4

i=1(6θ + i) denotes the Picard-Fuchs operator of the sextic. The
above agrees with the results of [81] for the choice of constant c = 1.

Small volume

To study the Landau-Ginzburg phase of the B-model we change to the local coordinates

x1 =
a0

(a2a3a4a5)1/4

(
−a7

a6

)1/2

, x2 =
a1

(a2a3a4a5)1/4

(
−a7

a6

)3/2

.

The differential operators obtained by a transformation of variables are (θi = θxi)

L1 = (x4
1(θ1 + θ2)

4 − 44

4∏
i=1

(θ1 − i))(θ1 + 3θ2) ,

L2 = (x2(θ1 − 1)− x1θ2)(θ1 + 3θ2) ,

L′1 = x6
1(θ1 + θ2)

4θ2(θ2 − 1)− 44x2
2

6∏
i=1

(θ1 − i) .

We obtain the superpotential

W = − 1

12
x2

1−
1

24
x2x1−

x6
1

69120
− x2x

5
1

18432
− x2

2x
4
1

11520
− x3

2x
3
1

13824
− x4

2x
2
1

32256
− x5

2x1

184320
+ . . . (A.2)

which has its critical value at x2 = −x1. We can express x1 in terms of the closed string
variable x = −x1x

−1/3
2 of the geometry in the Landau-Ginzburg phase as

x1|crit = −x3/2
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which gives the following critical value for the superpotential

Wcrit = −x
3

24
− x9

3870720
− x15

137763225600
− 5x21

16403566461714432
+ . . .

This expression satisfies the equation

LbulkWcrit =
3

2
x3 ,

with Lbulk = 6−4x6θ4 − 9(θ − 1)(θ − 2)(θ − 4)(θ − 5) .

A.1.2 Octic

We consider the charge vectors

l1 = (−4, 0, 1, 1, 1, 1; 4,−4), l2 = (−1, 1, 0, 0, 0, 0;−1, 1) .

Large volume

This region in moduli space is parameterized by local variables

z1 =
a2a3a4a5a

4
6

a4
0a

4
7

, z2 = −a1a7

a0a6

.

The differential operators are

L1 = (θ4
1 − z1

4∏
i=1

(4θ1 + θ2 + i))(4θ1 − θ2) ,

L2 = (θ2 + z2(4θ1 + θ2 + 1))(4θ1 − θ2) ,

L′1 = θ4
1

3∏
i=0

(θ2 − i)− z1z
4
2

8∏
i=1

(4θ1 + θ2 + i) .

Switching to u = z
−1/4
1 (z2 + 1) and v = z

1/4
1 , we obtain

W(u, v) =
u2

16
+ 48v2 +

u3v

12
− 96uv3 +

u6

92160
+

5v2u4

48
+ 48v4u2 +

1576960v6

3
+ . . . (A.3)

At u = 0, we can express v in terms of the classical coordinate z = z1z
4
2 as v|crit = −z1/4 .

We find for the superpotential at the minimum

cWcrit = 48
√
z +

1576960

3
z3/2 +

339028738048

25
z5/2 +

23098899711393792

49
z7/2 + . . . ,

which satisfies the differential equation

LbulkWcrit =
3

c

√
z ,

where Lbulk = θ4 − 16z
∏4

i=1(8θ + 2i − 1) denotes the Picard-Fuchs operator of the octic.
Setting c = 1 reproduces the disk invariants of [81, 82].
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Small volume

We switch to local coordinates

x1 =
−a0a7

a6(a2a3a4a5)1/4
, x2 =

a1a
2
7

a2
6(a2a3a4a5)1/4

.

The differential operators are (θi = θxi)

L1 = (x4
1(θ1 + θ2)

4 − 44x2
2

4∏
i=1

(θ1 − i))(θ1 + 2θ2) ,

L2 = (x2(θ1 − 1)− x1θ2)(θ1 + 2θ2) ,

L′1 = x8
1(θ1 + θ2)

4

3∏
i=0

(θ2 − i)− 44x2
2

8∏
i=1

(θ1 − i) .

We obtain the superpotential

W = − 1

16
x2

1−
1

24
x2x1−

x6
1

92160
− x2x

5
1

21504
− x2

2x
4
1

12288
− x3

2x
3
1

13824
− x4

2x
2
1

30720
− x5

2x1

168960
+ . . . (A.4)

At the critical value x2 = −x1, we have x1|crit = −x2 , where x = −x1x
−1/2
2 . This gives the

following expansion for the superpotential

Wcrit = −x
4

48
− x12

42577920
− x20

8475718451200
− x28

1131846085858295808
+ . . .

which satisfies the equation

LbulkWcrit = 3x4 ,

with

Lbulk = 8−4x8θ4 − 16(θ − 1)(θ − 3)(θ − 5)(θ − 7) .

These results are in agreement with [83], where this phase of the moduli space has been
previously studied.

A.2 Invariants for X1,1,1,3,3
9

The compactification of the local brane in O(−3)P2 is described by the charge vectors

l1 = (−3, 1, 1, 1, 0, 0, 0, 0, 0), l2 = (0, 0, 0,−2, 0, 1, 1,−1, 1), l3 = (0, 0, 0,−1, 1, 0, 0, 1,−1) .
(A.5)

Some invariants for this geometry are
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k=0
l\m 0 1 2 3 4 5
0 * 3 0 0 0 0
1 3 * -3 -3 -3 -3
2 -3 -6 * 15 21 27
3 3 12 36 * -120 -183
4 -6 -30 -96 -312 * 1197
5 15 84 306 978 3255 *
6 -39 -252 -1032 -3480 -11124 -37980
7 105 792 3600 13080 42822 137166

k=1 k=2
l\m 0 1 2 3 0 1 2 3
0 * 27 0 0 * 81 -108 0
1 -72 * 90 90 -1269 * -1539 -1377
2 72 234 * -684 -684 -2808 * 13554
3 -144 -612 -1980 * 2268 11232 42336
4 360 1890 6624 22320 -7848 -46656 -182916 -671922
5 -1008 -6300 -24660 -82908 27972 194832 835758 3020382
6 3024 21924 95760 340200 -102024 -813456 -3844512 -14554242
7 -9504 -78408 -379512 -1445472 377784 3390336 17598600 70975872

Table A.1: Invariants Nk,l,m for the geometry (A.5).

The invariants for k = 0 are three times the invariants in table 4.3, where the overall
factor comes from the three global sections of the elliptic fibration X9. It appears that the
invariants for k = 1, l 6= 0 are generally 3/10 times the invariants in table 4.4.

Some invariants for the geometry (4.41) in the large volume phase are

l=0
l\m 0 1 2 3 4 5
0 * 54 0 0 0 0
1 -36 * 54 -18 0 0
2 18 -54 * 36 0 0
3 0 0 -54 * 54 0
4 0 0 0 -36 * 54
5 0 0 0 18 -54 *
6 0 0 0 0 0 -54
7 0 0 0 0 0 0

l=1 l=2
l\m 0 1 2 3 4 0 1 2 3
0 * 0 0 0 0 * 0 0 0
1 72 * -108 36 0 -180 * 270 -90
2 -36 -1728 * 2772 -1026 108 7020 * -11160
3 -1224 17280 -80460 * 243756 -108 -5832 -97686 *
4 5508 -64800 340092 -1075140 * -10944 133488 -588276 2643372

Table A.2: Invariants Nk,l,m for the geometry (4.41).

It would be interesting to check some of these predictions by an independent computation.
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B The Real Quintic

B.1 The polynomials

Using the method described in this work we obtained polynomial expression for the topo-
logical string partition functions. In this appendix we give the explicit expressions of some
of these polynomials in terms of the transformed generators.

F(2,0) = −
1473

2000
−

139

375P
−

43P

9000
+

P 2

1200
+

140T̃

9P
−

5T̃ z

36
+

65T̃ z

18P
−

29T̃ zz

450

+
253T̃ zz

900P
+

13PT̃ zz

1440
−

5T̃ zT̃ zz

6P
+

(T̃ zz)2

30
−

29(T̃ zz)2

120P
+

(T̃ zz)3

24P
, (B.1)

F(3,0) = −
2507719933

22680000000
−

1208767

30000000P 2
−

10405909

90000000P
−

1936909P

2835000000
+

4661P 2

5040000
−

29P 3

90000

+
P 4

25200
+

2021T̃

67500
+

13066T̃

5625P 2
+

23077T̃

5000P
−

47PT̃

9000
−

1316T̃ 2

27P 2
−

12319T̃ z

360000
+

14437T̃ z

45000P 2

+
26201T̃ z

27000P
+

1067PT̃ z

90000
−
P 2T̃ z

480
−

611T̃ T̃ z

27P 2
+

47T̃ T̃ z

54P
+

1603(T̃ z)2

21600
−

105539(T̃ z)2

27000P 2

−
2621(T̃ z)2

27000P
−

209(T̃ z)3

81P 2
−

7573T̃ zz

720000
−

10231T̃ zz

360000P 2
+

118493T̃ zz

2160000P
+

48631PT̃ zz

4320000

−
4453P 2T̃ zz

1080000
+

19P 3T̃ zz

36000
−

611T̃ T̃ zz

10800
−

11891T̃ T̃ zz

6750P 2
+

1363T̃ T̃ zz

3375P
+

2547T̃ zT̃ zz

20000

−
187013T̃ z T̃ zz

135000P 2
−

30983T̃ zT̃ zz

135000P
−

1613PT̃ zT̃ zz

72000
+

47T̃ T̃ z T̃ zz

9P 2
−

3997(T̃ z)2T̃ zz

2700P 2

+
2719T̃ zT̃ zz

5400P
+

61019(T̃ zz)2

1080000
−

385429(T̃ zz)2

2160000P 2
−

15577(T̃ zz)2

360000P
−

48557P (T̃ zz)2

2160000

+
1307P 2(T̃ zz)2

432000
+

1363T̃ (T̃ zz)2

900P 2
−

47T̃ (T̃ zz)2

225P
−

251T̃ z(T̃ zz)2

2700
−

14857T̃ z(T̃ zz)2

54000P 2

+
26227T̃ z(T̃ zz)2

54000P
+

293(T̃ z)2(T̃ zz)2

360P 2
−

7123(T̃ zz)3

108000
+

29(T̃ zz)3

8100P 2
+

29761(T̃ zz)3

216000P

+
2539P (T̃ zz)3

259200
−

47T̃ (T̃ zz)3

180P 2
+

19T̃ z(T̃ zz)3

30P 2
−

131T̃ z(T̃ zz)3

720P
+

7(T̃ zz)4

360
+

203(T̃ zz)4

1500P 2

−
3797(T̃ zz)4

36000P
−

3T̃ z(T̃ zz)4

20P 2
−

3(T̃ zz)5

40P 2
+

11(T̃ zz)5

480P
+

(T̃ zz)6

80P 2
, (B.2)

F(1,2) =
(Ẽ)(Ẽz)

12
−

17(Ẽz)2

120
−

14(Ẽ)2

3P
−

13(Ẽ)(Ẽz)
6P

−
113(Ẽz)2

120P
−

211(Ẽ)
√
z

10
√
P

−
71(Ẽz)

√
z

20
√
P

+
9

40
(Ẽ)
√
z
√
P −

9

80
(Ẽz)

√
z
√
P +

(Ẽz)2P
24

+
9

40
(Ẽz)

√
zP 3/2 +

53T̃

30P

−
17(T̃ z)

600
+

71(T̃ z)

300P
−

25(Ẽz)2(T̃ z)

6P
−

33(T̃ zz)

5000
+

7(Ẽz)2(T̃ zz)

24
−

73(T̃ zz)

10000P
+

(Ẽ)(Ẽz)(T̃ zz)
2P

−
4(Ẽz)2(T̃ zz)

3P
+

7P (T̃ zz)

5000
−

(T̃ z)(T̃ zz)

20P
+

3(T̃ zz)2

2500
−

3(T̃ zz)2

2500P
+

(Ẽz)2(T̃ zz)2

2P

+a
(1,2)
−1 P−1 + a

(1,2)
0 + a

(1,2)
1 P + a

(1,2)
2 P 2. (B.3)
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F(2,1) =
278(Ẽ)

375P 3/2
−

(Ẽz)
3000P 3/2

+
1473(Ẽ)

1000
√
P

+
979(Ẽz)
3600

√
P

+
43(Ẽ)

√
P

4500
−

157(Ẽz)
√
P

14400
−

1

600
(Ẽ)P 3/2

+
181(Ẽz)P 3/2

18000
−

1

600
(Ẽz)P 5/2 +

3
√
zT̃

4
−

280(Ẽ)T̃

9P 3/2
−

65(Ẽz)T̃
9P 3/2

−
211

√
zT̃

3P

+
5(Ẽz)T̃
18
√
P

+
341

√
z(T̃ z)

1200
−

65(Ẽ)(T̃ z)

9P 3/2
−

3331(Ẽz)(T̃ z)
900P 3/2

−
287

√
z(T̃ z)

20P
+

5(Ẽ)(T̃ z)

18
√
P

−
103(Ẽz)(T̃ z)

300
√
P

+
29

240
(Ẽz)

√
P (T̃ z) +

261
√
zP (T̃ z)

800
−

55(Ẽz)(T̃ z)2

9P 3/2
+

13
√
z(T̃ zz)

2400

−
253(Ẽ)(T̃ zz)

450P 3/2
−

1517(Ẽz)(T̃ zz)
1800P 3/2

−
239

√
z(T̃ zz)

240P
+

29(Ẽ)(T̃ zz)

225
√
P

−
419(Ẽz)(T̃ zz)

3600
√
P

−
13

720
(Ẽ)
√
P (T̃ zz) +

131(Ẽz)
√
P (T̃ zz)

1200
+

231
√
zP (T̃ zz)

1600
−

13

720
(Ẽz)P 3/2(T̃ zz)

−
39

800

√
zP 2(T̃ zz) +

5(Ẽz)T̃ (T̃ zz)

3P 3/2
−

9
√
z(T̃ z)(T̃ zz)

400
+

5(Ẽ)(T̃ z)(T̃ zz)

3P 3/2
−

313(Ẽz)(T̃ z)(T̃ zz)
90P 3/2

+
211

√
z(T̃ z)(T̃ zz)

100P
+

151(Ẽz)(T̃ z)(T̃ zz)
180

√
P

+
9
√
z(T̃ zz)2

800
+

29(Ẽ)(T̃ zz)2

60P 3/2
−

1537(Ẽz)(T̃ zz)2

3600P 3/2

+
299

√
z(T̃ zz)2

800P
−

(Ẽ)(T̃ zz)2

15
√
P

+
761(Ẽz)(T̃ zz)2

1800
√
P

−
109(Ẽz)

√
P (T̃ zz)2

1440
−

9

400

√
zP (T̃ zz)2

+
17(Ẽz)(T̃ z)(T̃ zz)2

12P 3/2
−

(Ẽ)(T̃ zz)3

12P 3/2
+

17(Ẽz)(T̃ zz)3

30P 3/2
−

3(Ẽz)(T̃ zz)3

20
√
P

−
(Ẽz)(T̃ zz)4

8P 3/2

+
√
z

“
a
(2,1)
−1 P−1 + a

(2,1)
0 + a

(2,1)
1 P + a

(2,1)
2 P 2 + a

(2,1)
3 P 3

”
(B.4)

B.2 Ooguri-Vafa invariants

Replacing the generators by their holomorphic limits we can extract the Ooguri-Vafa [55]
invariants from the partition functions. We used for that the conjectured formula in [22].

It should be noted however that in our formalism the disk invariants n
(0,1)
d are extracted

from 1
2
F (0,1) and the invariants n

(1,1)
d are extracted from 2F (1,1) in order to reproduce the

numbers given in [22]. The clarification of these factors and a better understanding of the
multicover formula remains for future work.

d n
(0,1)
d

1 30
3 1530
5 1088250
7 975996780
9 1073087762700

11 1329027103924410
13 1781966623841748930
15 2528247216911976589500
17 3742056692258356444651980
19 5723452081398475208950800270
21 8986460098015260183028517362890
23 14415044640432226873354788580437780
25 23538467987973866346057268850924917500

d n
(0,2)
d

2 0
4 26700
6 38569640
8 58369278300

10 93028407124632
12 153664503936698600
14 260548631710304201400
16 450589019788320352336020
18 791322110332876233623166320
20 1406910190370608901650146628380
22 2526625340233528751485600411725000
24 4575532116961071429530804693412171800
26 8344559227219651245031796423390078968320
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d n
(1,1)
d

1 0
3 0
5 −2742710
7 −6048504690
9 −12856992579490

11 −26585948324529250
13 −54291611312718557630
15 −110080893552894679282680
17 −222191364375273687227005740
19 −447094506460510952531302800200
21 −897635279681074059801246576212490
23 −1799147979326007629352167081015835920
25 −3601314439974327136341483249650915239910

d n
(0,3)
d

1 0
3 0
5 117240
7 230877000
9 462884815200

11 915855637274880
13 1804779141114184800
15 3550856539832617041600
17 6982400759593452862593000
19 13728998788327325796353771400
21 26997741895033909653348464555040
23 53102177883967748623102463313529200
25 104474620947846872117630548142256678000
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C Local Mirror Symmetry

C.1 Ambiguities

Using the method described in this work we obtained polynomial expression for the topo-
logical string partition functions. In this appendix we give the explicit expressions of some
of the holomorphic ambiguities fixed by the method discussed in the main part of this
paper.

C.1.1 Local P2

f (2) =
−216P 2 + 4P + 1

17280
,

f (3) =
P 4

112
−

29P 3

3360
+

2263P 2

1088640
−

13P

136080
−

1

4354560
,

f (4) = −
3

160
P 6 +

7639P 5

201600
−

32957P 4

1209600
+

1211911P 3

146966400
−

252559P 2

261273600
+

3121P

97977600
−

311

2351462400
.

C.1.2 Local F0

In the following all f (g) are multiplied by ∆2−2g to give the ambiguity at genus g.

Genus 2

f (2) = −
1

60
+

121

720
(1 + y2)y1 +

1

180
(−75− 338y2 − 75y22)y21 +

1

15
(−7 + 71y2 + 71y22 − 7y32)y31

+
4

45
(−1 + y2)2(23 + 50y2 + 23y22)y41 .
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Genus 3

f (3) =
10037

2903040
−

115

2268
(1 + y2)y1 +

1

22680
(1607 + 42269y2 + 1607y22)y21

+
1

5670
(16699− 91239y2 − 91239y22 + 16699y32)y31

+
1

5670
(−137695 + 142484y2 + 1218774y22 + 142484y32 − 137695y42)y41

+
16

2835
(14653 + 42763y2 − 147656y22 − 147656y32 + 42763y42 + 14653y52)y51

−
32

2835
(11000 + 95349y2 − 29772y22 − 337474y32 − 29772y42 + 95349y52 + 11000y62)y61

+
128

2835
(−1 + y2)2(803 + 28023y2 + 109414y22 + 109414y32 + 28023y42 + 803y52)y71

+
64

2835
(−1 + y2)4(2833 + 22172y2 + 42150y22 + 22172y322833y42)y81 .

Genus 4

f (4) = −
934993

696729600
+

1873

82944
(1 + y2)y1 +

1

21772800
(1805481− 35643448y2 + 1805481y22)y21

+
1

10886400
(−55395131 + 227680355y2 + 227680355y22 − 55395131y32)y31

+
1

226800
(12490827 + 343564y2 − 139937742y22 + 343564y32 + 12490827y42)y41

+
1

170100
(−48921165− 310982873y2 + 864161766y22 + 864161766y32 − 310982873y42 − 48921165y52)y51

+
2

42525
(14314083 + 327499585y2 − 71267327y22 − 1601136842y32 − 71267327y42 + 327499585y52 + 14314083y62)y61

+
2

14175
(3603345− 394817549y2 − 1102751935y22 + 2494798139y32 + 2494798139y42 − 1102751935y52

−394817549y62 + 3603345y72)y71

−
4

42525
(82804869− 778119160y2 − 8753666580y22 + 1161603000y32 + 26815280030y42 + 1161603000y52

−8753666580y62 − 778119160y72 + 82804869y82)y81

+
128

42525
(7059047 + 32956639y2 − 493715972y22 − 1075054388y32 + 1776480754y42 + 1776480754y52 − 1075054388y62

−493715972y72 + 32956639y82 + 7059047y92)y91

−
128

14175
(−1 + y2)2(2818187 + 50363322y2 + 78760776y22 − 644284250y32 − 1452576870y42 − 644284250y52

+78760776y62 + 50363322y72 + 2818187y82)y101

+
256

4725
(−1 + y2)4(168629 + 6546911y2 + 54108709y22 + 145614151y32 + 145614151y42 + 54108709y52

+6546911y62 + 168629y72)y111

+
2048

42525
(−1 + y2)6(85909 + 1579674y2 + 7561563y22 + 12511468y32 + 7561563y42 + 1579674y52 + 85909y62)y121 .

C.1.3 Local F2

In the following all f (g) are multiplied by ∆2−2g
1 to give the ambiguity at genus g.

Genus 2

f (2) = −
1

60
+

121

720
z1 −

5

12
z21 −

7

15
z31 −

47

45
z2z

2
1 +

92z41
45

+
92

15
z2z

3
1 −

352

45
z41z2 −

64

45
z41z

2
2 .
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Genus 3

f (3) =
10037

2903040
−

115z1

2268
+

1607z21
22680

+
16699z31

5670
+

7811z2z21
4536

−
27539z41

1134
−

7852

315
z2z

3
1 +

234448z51
2835

+

115544

945
z2z

4
1 −

70400

567
z61 −

488032z2z51
2835

+
109736

945
z22z

4
1 +

102784z71
2835

−
34784

105
z2z

6
1 −

72064

63
z22z

5
1

+
181312z81

2835
+

887296

945
z2z

7
1 +

3329792

945
z22z

6
1 −

756736z2z81
2835

−
948224

315
z22z

7
1 +

3495424z32z
6
1

2835
−

161792

189
z22z

8
1

−
3006464

567
z32z

7
1 +

9322496z81z
3
2

2835
+

507904

405
z81z

4
2 .

Genus 4

f (4) = −
934993

696729600
+

1873z1

82944
+

200609z21
2419200

−
55395131z31
10886400

−
3925441z2z21

2177280
+

4163609z41
75600

+
98466437z2z31

2721600

−
120793

420
z51 −

3101234z2z41
14175

+
1363246z61

2025
−

16594262z2z51
42525

−
7227701z22z

4
1

14175
+

480446z71
945

+
69032882z2z61

6075

+
25875076z22z

5
1

2835
−

1752484

225
z81 −

120011704z2z71
2025

−
55663952

945
z22z

6
1 +

903558016z91
42525

+
823176064z2z81

6075

+
122904352

945
z22z

7
1 −

1664462368z32z
6
1

42525
−

360727936z101

14175
−

3913572352z2z91
42525

+
647694464z22z

8
1

2835
+

7607485568z32z
7
1

14175

+
43169024z111

4725
−

235307776z2z101

1575
−

22776242176z22z
9
1

14175
−

12377030656z32z
8
1

4725
+

175941632z121

42525
+

1028473856z2z111

4725

+
1017880576

405
z22z

10
1 +

210322817024z32z
9
1

42525
−

34826355712z42z
8
1

42525
+

22740992z2z121

14175
−

281583616

315
z22z

11
1

−
14985371648z32z

10
1

14175
+

302835073024z42z
9
1

42525
−

129335296

405
z22z

12
1 −

22828384256z32z
11
1

4725
−

89728712704z42z
10
1

4725

+
8916041728z32z

12
1

8505
+

66821619712z42z
11
1

4725
−

52007469056z52z
10
1

14175
+

3297247232z42z
12
1

2835
+

20264517632z52z
11
1

1575

−
75765907456z121 z52

14175
−

7038042112z121 z62
6075

.

C.2 Gopakumar-Vafa and orbifold Gromov-Witten
invariants

Replacing the generators by their holomorphic limits we can extract the Gopakumar-Vafa
invariants from the partition functions.

C.2.1 Local P2

Orbifold Gromov-Witten invariants

g\d 0 1 2 3 4

0 0 1
3

− 1
27

1
9

− 1093
729

1 0 0 1
243

− 14
243

13007
6561

2 1
17280

1
19440

− 13
11664

20693
524880

− 12803923
4723920

3 − 1
4354560

− 31
2449440

11569
22044960

− 2429003
66134880

871749323
198404640

4 − 311
2351462400

313
62985600

− 1889
5038848

115647179
2550916800

− 29321809247
3401222400



108 Local Mirror Symmetry

C.2.2 Local F0

Gopakumar-Vafa invariants

Genus 0

d1\d2 0 1 2 3 4 5 6 7
0 0 -2 0 0 0 0 0 0
1 -2 -4 -6 -8 -10 -12 -14 -16
2 0 -6 -32 -110 -288 -644 -1280 -2340
3 0 -8 -110 -756 -3556 -13072 -40338 -109120
4 0 -10 -288 -3556 -27264 -153324 -690400 -2627482
5 0 -12 -644 -13072 -153324 -1252040 -7877210 -40635264
6 0 -14 -1280 -40338 -690400 -7877210 -67008672 -455426686
7 0 -16 -2340 -109120 -2627482 -40635264 -455426686 -3986927140

Genus 1

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 9 68 300 988 2698 6444
3 0 0 68 1016 7792 41376 172124 599856
4 0 0 300 7792 95313 760764 4552692 22056772
5 0 0 988 41376 760764 8695048 71859628 467274816
6 0 0 2698 172124 4552692 71859628 795165949 6755756732
7 0 0 6444 599856 22056772 467274816 6755756732 73400088512

Genus 2

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 -12 -116 -628 -2488 -8036
3 0 0 -12 -580 -8042 -64624 -371980 -1697704
4 0 0 -116 -8042 -167936 -1964440 -15913228 -99308018
5 0 0 -628 -64624 -1964440 -32242268 -355307838 -2940850912
6 0 0 -2488 -371980 -15913228 -355307838 -5182075136 -55512436778
7 0 0 -8036 -1697704 -99308018 -2940850912 -55512436778 -754509553664

Genus 3

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 15 176 1130 5232
3 0 0 0 156 4680 60840 501440 3059196
4 0 0 15 4680 184056 3288688 36882969 300668468
5 0 0 176 60840 3288688 80072160 1198255524 12771057936
6 0 0 1130 501440 36882969 1198255524 23409326968 319493171724
7 0 0 5232 3059196 300668468 12771057936 319493171724 5485514375644
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Genus 4

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 -18 -248 -1842
3 0 0 0 -16 -1560 -36408 -450438 -3772316
4 0 0 0 -1560 -133464 -3839632 -61250176 -662920988
5 0 0 -18 -36408 -3839632 -144085372 -2989287812 -41557026816
6 0 0 -248 -450438 -61250176 -2989287812 -79635105296 -1400518786592
7 0 0 -1842 -3772316 -662920988 -41557026816 -1400518786592 -30697119068800

C.2.3 Local F2

Gopakumar-Vafa invariants

d1 and d2 denote the degrees of the fiber and base classes respectively.1

Genus 0

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 -2 -2 0 0 0 0 0 0
2 0 -4 0 0 0 0 0 0
3 0 -6 -6 0 0 0 0 0
4 0 -8 -32 -8 0 0 0 0
5 0 -10 -110 -110 -10 0 0 0
6 0 -12 -288 -756 -288 -12 0 0
7 0 -14 -644 -3556 -3556 -644 -14 0
8 0 -16 -1280 -13072 -27264 -13072 -1280 -16

Genus 1

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 9 0 0 0 0 0
5 0 0 68 68 0 0 0 0
6 0 0 300 1016 300 0 0 0
7 0 0 988 7792 7792 988 0 0
8 0 0 2698 41376 95313 41376 2698 0

1Note that the correct genus zero data gives a value n
(0)
0,1 = 0 which is different from the naive result

n
(0)
0,1 = − 1

2 obtained from local mirror symmetry in [127].
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Genus 2

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 -12 -12 0 0 0 0
6 0 0 -116 -580 -116 0 0 0
7 0 0 -628 -8042 -8042 -628 0 0
8 0 0 -2488 -64624 -167936 -64624 -2488 0

Genus 3

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 15 156 15 0 0 0
7 0 0 176 4680 4680 176 0 0
8 0 0 1130 60840 184056 60840 1130 0

Genus 4

d1\d2 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 -16 0 0 0 0
7 0 0 -18 -1560 -1560 -18 0 0
8 0 0 -248 -36408 -133464 -36408 -248 0

Orbifold Gromov-Witten invariants for C3/Z4

Genus 0

n2\n1 2 4 6 8 10

0 0 − 1
8

0 − 9
64

0

1 1
4

0 7
128

0 1083
1024

2 0 − 1
32

0 − 143
512

0

3 1
32

0 3
32

0 85383
16384

4 0 − 11
256

0 − 159
128

0

5 1
32

0 47
128

0 360819
8192

6 0 − 147
1024

0 − 157221
16384

0

7 87
1024

0 20913
8192

0 73893099
131072
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Genus 1

n2\n1 2 4 6 8 10

0 0 1
128

0 441
4096

0

1 − 1
192

0 − 31
1024

0 − 71291
32768

2 0 35
3072

0 235
512

0

3 − 5
768

0 − 485
4096

0 − 2335165
131072

4 0 485
12288

0 458295
131072

0

5 − 39
2048

0 − 40603
49152

0 − 58775443
262144

6 0 2025
8192

0 10768885
262144

0

7 − 2555
24576

0 − 293685
32768

0 − 522517275
131072

Genus 2

n2\n1 2 4 6 8 10

0 0 − 61
30720

0 − 9023
81920

0

1 41
46080

0 6061
245760

0 36213661
7864320

2 0 − 647
92160

0 − 1066027
1310720

0

3 257
92160

0 168049
983040

0 887800477
15728640

4 0 − 65819
1474560

0 − 18530321
1966080

0

5 23227
1474560

0 43685551
23592960

0 62155559923
62914560

6 0 − 437953
983040

0 − 9817250341
62914560

0

7 418609
2949120

0 452348269
15728640

0 5851085490887
251658240

Genus 3

n2\n1 2 4 6 8 10

0 0 6439
6193152

0 123167
786432

0

1 − 353
1032192

0 − 724271
24772608

0 − 342268673
29360128

2 0 82823
12386304

0 468858317
264241152

0

3 − 2759
1376256

0 − 41583137
132120576

0 − 211129850593
1056964608

4 0 416779
6193152

0 15342735559
528482304

0

5 − 914639
49545216

0 − 3864359207
792723456

0 − 2178379136683
469762048

6 0 257963189
264241152

0 2719587683017
4227858432

0

7 − 48988931
198180864

0 − 18042606251
176160768

0 − 336935310613399
2415919104

Genus 4

n2\n1 2 4 6 8 10

0 0 − 2244757
2477260800

0 − 283653643
943718400

0

1 865427
3715891200

0 272614087
5662310400

0 11457822706721
317089382400

2 0 − 91054037
9909043200

0 − 10649523253
2202009600

0

3 9329603
4246732800

0 117628391911
158544691200

0 2091862017662453
2536715059200

4 0 − 590227019
4404019200

0 − 4806828087037
45298483200

0

5 1775895397
59454259200

0 4224848667521
271790899200

0 7773454487649391
317089382400

6 0 − 421624177657
158544691200

0 − 7687488828890201
2536715059200

0

7 116460407
209715200

0 76868168176019
181193932800

0 1772672261344760983
1932735283200
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