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Ac acetyl 
AcOH acetic acid 
aq aqueous 
Ar aryl 
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d doublet 
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1. Overview 

 

Heterocycles form one of the most important classes of organic molecules both in view of 

their economic importance and their mere production quantity. Pyrimidines, pyrazines, 

pyrazoles, indoles and purines are well-known N-heterocycles displaying a large spectrum of 

interesting properties in many fields, for instance medicinal chemistry, or increasingly gaining 

relevance in disciplines such as chemical biology and material science.  

The discovery of new active compounds often starts with the identification of a particular 

class of heterocycles showing a desired biological activity. The second part of the process 

deals with the functionalization of these heterocycles in order to create several libraries 

allowing an easy access to the preparation of several potential active drugs. 

The traditional methods available for the construction of polysubstituted aromatics and 

heteroaromatics can rapidly become very involved and can make the synthesis not only 

challenging to perform (e.g., through a growing number of steps), but also complicate since 

the sequence of steps must often be repeated to modify structures. Two different synthetic 

approaches for the functionalization of polysubstituted heterocycles can be highlighted. The 

first method corresponds to the construction of the heterocyclic scaffold when the substituents 

have been installed and properly functionalized. The reaction below illustrates an example of 

this methodology for the synthesis of the dihydropyrimidine derivative monastrol, 1  

considered as a lead for the development of new anticancer drugs (Scheme 1). 

 

Me

O

OEt

O

H2N NH2

S OHOHC

N
H

NH


Me

EtO2C

OH

S

1: Monastrol

Ln(OTf)3, L*

THF, 25 °C

 
 

Scheme 1: Modern asymmetric Biginelli three-component synthesis of monastrol (1). 

 

The second approach consists in directly using the heterocyclic scaffold to which different 

substituents are successively added. This methodology is very flexible concerning the choice 

                                                 
1 (a) Lampson, M. A.; Kapoor, T. M. Nat. Chem. Biol. 2006, 2, 19. (b) Huang, Y.; Yang, F.; Zhu, C. J. Am. 
Chem. Soc. 2005, 127, 16386. (c) Dondoni, A.; Massi, A.; Sabbatini, S. Tetrahedron Lett. 2002, 43, 5913. (c) 
Mayer, T. U.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.; Mitchison, T. J. Science 1999, 286, 
971. 
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of the substituents and allows a fast creation of numerous libraries. Organometallic chemistry 

turned out to be here an excellent tool with a broad applicability. 2  Over the years, 

considerable progress has been achieved in organometallic chemistry, especially with 

Grignard, copper and zinc reagents, which favoured the development of a considerable 

number of new synthetic methods for efficient and selective reactions and found powerful 

applications in industrial processes. However, the need to discover new more efficient 

organometallic methods and reagents in heterocyclic chemistry still exists and represents an 

exciting challenge.3 

                                                 
2 For general review, see: (a) Knochel, P.; Leuser, H.; Gong, L.-Z.; Perrone, S.; Kneisel, F. F in Handbook of 
Functionalized Organometallics; Knochel, P., Ed.; Wiley-VCH, Weinheim 2005: p. 251. (b) Knochel, P.; Millot, 
P.; Rodriguez, A. L.; Tucker, C. E. in Organic reactions; Overman, L. E., Ed.; Wiley & Sons Inc., New York, 
2001. 
3 Boudet , N. PhD Thesis, LMU München, 2007. 
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2. Direct Preparation and Applications of Magnesiated Aryl and 

Heteroaryl Compounds 

 

2.1. Introduction 

 

Since their first discovery at the beginning of the last century by Victor Grignard, 4  

organomagnesium reagents have occupied a privileged position in organic synthesis. In 1912, 

this pioneering work was honored with the Nobel Price “for the discovery of the so-called 

Grignard reagent, which in recent years has greatly advanced the progress in organic 

chemistry” and this statement still holds true today.3 Their easy preparation, good stability and 

their high reactivity make Grignard reagents one of the most powerful tools for carbon-carbon 

bond formation used in industry5 and academic laboratories. An illustration of the Grignard 

reaction is a key step in the industrial production of Tamoxifen6 (2), an antagonist of the 

estrogen receptor in breast tissue used in the treatment of breast cancer (Scheme 2).  In 2004, 

it was the world’s largest selling drug for that purpose. 

 

H3C
N

CH3

O
O

CH3

MgBr

THF

H3C N

CH3

O

CH3

2: Tamoxifen  

 
Scheme 2: Key step of the industrial production of the drug Tamoxifen (2). 
 

Another considerable advantage of the use of Grignard reagents is their capability to undergo 

transmetalation reactions with a variety of main group- and transition- metal salts, like 

copper7 or zinc providing a better control in terms of stability and chemoselectivity. 

 

                                                 
4 (a) Grignard, V. C. R. Acad. Sci. 1900, 130, 1322. (b) Grignard, V. Ann. Chim. 1901, 24, 433. 
5 Bush, F. R.; De Antonis, D. M. Grignard Reagents - New Developments; Richey, H. G., Jr., Ed.; Wiley, New 
York, 2000, pp.165-183. 
6 (a) Harper, M. J. K.; Walpole, A. L. Nature 1966, 212, 87. (b) Bedford, G. R.; Richardson, D. N. Nature 1966, 
212,733. For a review of the pharmacology, see: (c) Heel, R. C.; Brogdon, R. N.; Speight, T. M.; Avery, G. S. 
Drugs 1978, 16, 1. (d) Harper, M. J. K.; Richardson, D. N.; Walpole, A. L. GB1013907, 1965, Imperial 
Chemical Industries, Ltd.. (e) Robertson, D. W.; Katzenellenbogen, J. A. J. Org. Chem. 1982, 47, 2387. (f) 
McCague, R. J. Chem. Soc., Perkin Trans. 1 1987, 1011. 
7 Lipshutz B. H.; Sengupta S. Org. Reactions 1992, 41, 135. 
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2.2. Preparation of Grignard reagents by direct oxidative addition of magnesium to 

organic halides 

 

A useful method for their preparation consists in the direct oxidative addition of magnesium 

metal (turnings or powder) to organic halides in an aprotic solvent like THF or diethyl ether 

under inert atmosphere since Grignard reagents are sensitive to air and moisture. (Scheme 3, 

Eq. 1).  

2 RMgX

RX
Mg

R Mg

RMgX

MgX

Et2O or THF
(1)

(2)2 2

                                                

 

Scheme 3: Synthesis of Grignard reagents by oxidative addition (Eq. 1) and Schlenk-
equilibrium (Eq. 2). 
 

Although the detailed mechanism of this reaction is not yet fully clarified, a radical pathway 

is generally accepted.8 In solution, a Grignard reagent (RMgX) is in equilibrium (Schlenk 

equilibrium) with R2Mg and MgX2 (Scheme 3, Eq. 2), depending on temperature, solvent and 

the anion X−.9 

Such a direct insertion reaction has several advantages. It is atom economical and magnesium 

turnings are one of the cheapest reagents for the formation of organometallic species. 

Moreover, the low toxicity of magnesium makes organomagnesium reagents particularly 

environmentally friendly. 

However, the presence of sensitive functional groups like cyano-, nitro-, esters or keto- 

groups makes this insertion complicated. In pioneering studies, Rieke prepared (Mg*) 10  

highly activated magnesium powder using lithium in the presence of naphthalene with MgCl2. 

 
8 (a) Walborsky, H. M. Acc. Chem. Res. 1990, 23, 286. (b) Garst, J. F. Acc. Chem. Res. 1991, 24, 95. (c) Rogers, 
H. R.; Hill, C. L.; Fujuwara, Y.; Rogers, R. J.; Mitchell, H. L.; Whitesides, G. M. J. Am. Chem. Soc. 1980, 102, 
217. (d) Garst, J. F.; Ungvary, F. Grignard Reagents (Ed.: H. G. Richey, Jr.), Wiley, Chichester, 2000, p. 185. 
(e) Kharasch, M. S.; Reinmuth, O. Grignard Reactions of Nonmetallic Substances, Prentice-Hall, New York, 
1954. (f) Hamdouchi, C.; Walborsky, H. M. Handbook of Grignard-Reagents (Eds: Silverman, G. S.; Rakita, P. 
E.), Marcel Dekker, New York, 1995, p. 145. (g) Oshima, K. Main Group Metals in Organic Synthesis (Eds.: 
Yamamoto, H.; Oshima, K.), Wiley-VCH, Weinheim, 2004. 
9 Schlenk, W.; Schlenk Jr., W. Chem. Ber. 1929, 62, 920. 
10 (a) Lee, J.; Velarde-Ortiz, R.; Rieke, R. D. J. Org. Chem. 2000, 65, 5428. (b) Rieke, R. D.; Hanson, M. V. 
Tetrahedron 1997, 53, 1925. (c) Rieke, R. D. Aldrichim. Acta 2000, 33, 52. (d) Rieke, R. D.; Sell, M. S.; Klein, 
W. R.; Chen, T.-A.; Brown, J. D.; Hansen, M. U. Active Metals. Preparation, Characterization, Application, 
Fürstner, A. (Ed.), Wiley-VCH, Weinheim (Germany), 1996, p.1. 
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The highly activated generated magnesium species was used for the preparation of different 

functionalized aryl magnesium reagents at very low temperatures. 

Recently, Knochel et al. reported that aryl and heteroaryl magnesium halides can be readily 

obtained from aryl and heteroaryl halides by using magnesium powder in the presence of 

LiCl.11 This salt has a fundamental role and displays several functions. Firstly, it solubilizes 

the resulting organomagnesium compound and thus furnishes a constantly clean metal 

surface. Secondly, it promotes the initial electron transfert by the electrophilic activation of 

the aromatic ring through complexation. Finally, the high ionic strength of LiCl solutions 

facilitates charge separation and accelerates the metal insertion.12  This new methodology 

presents the advantage to prepare several aryl and heteroaryl magnesium reagents under 

milder conditions, even bearing sensitive functional groups (Scheme 4). 

 

TsO Br TsO MgBr·LiCl

DMF

N

Br

N

MgBr·LiCl 1) CuCN·2LiCl

CH3COCl

TsO CHO

N

CH3

O

Mg turnings, LiCl

THF, 0 °C, 2 h

77%

Mg turnings, LiCl

THF, 0 °C, 2 h 2)

90%

                                                

 

Scheme 4: Preparation of functionalized Grignard reagents using magnesium powder in the 

presence of LiCl. 

 

2.3. Preparation of Grignard reagents by halogen/magnesium exchange reaction 

 

The halogen-lithium exchange reaction discovered by Wittig 13  and Gilman 14  allows the 

preparation of a broad range of organolithium derivatives and has become of great importance 

for the preparation of aromatics and heteroaromatics, using commercially available 

alkyllithium reagents and the corresponding organic halides, mainly bromides and iodides.15  

 
11  Piller, F. M.; Appukkuttan, P.; Gavryushin, A.; Helm, M.; Knochel, P. Angew. Chem. Int. Ed. 2008, 47, 6802. 
12  Reichardt, C. Solvents and Solvent Effects in Organic Chemistry, Wiley-VCH, Weinheim, 2003, p. 46. 
13  Wittig, G.; Pockels, U.; Dröge, H. Chem. Ber. 1938, 71, 1903. 
14  (a) Jones, R. G.; Gilman, H. Org. Reactions 1951, 6, 339. (b) Gilman, H.; Langham, W.; Jacoby, Y. J. Am. 
Chem. Soc. 1939, 61, 106. 
15 (a) Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 1187. (b) Parham, W. E.; Jones, L. D.; Sayed, Y. J. 
Org. Chem. 1975, 40, 2394. (c) Parham, W. E.; Jones, L. D. J. Org. Chem. 1976, 41, 2704. (d) Parham, W. E.; 
Boykin, D. W. J. Org. Chem. 1977, 42, 260. (e) Parham, W. E.; Boykin, D. W. J. Org. Chem. 1977, 42, 257. (f) 
Tucker, C. E.; Majid T. N.; Knochel, P. J. Am. Chem. Soc. 1992, 114, 3983. 
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Although the reaction proceeds very fast, the main drawbacks with the use of lithium reagents 

are the very low temperatures required and the moderate functional groups tolerance. In 

contrast, the halogen-magnesium exchange turned out to be a very efficient method for the 

preparation of new functionalized reagents of great synthetic utility.16  

 

The halogen/magnesium exchange favors the formation of the more stable organomagnesium 

species (sp > sp2(vinyl) > sp2(aryl) > sp3(prim.)> sp3(sec.)). The mechanism of the exchange 

reaction is not yet fully clarified,17a,b,c but calculations show that it proceeds via a concerted 4-

centered mechanism, 17 d in contrast to the halogen-lithium exchange that goes via the 

formation of a halogenate complex. 

 

In 1971, Tamborski demonstrated the fundamental role of the electronic properties of both the 

halogen atom and the organic molecule in the formation rate of the new Grignard reagent.18 

The reactivity order (I > Br > Cl >> F) is also influenced by the halogen-carbon bond 

strength, by the electronegativity and polarizability of the halide.  

 
In 1998, Knochel reported the possibility to carry out I/Mg exchange reactions at low 

temperatures with aromatics and heteroaromatics, even bearing sensitive functional groups, 

for the preparation of functionalized aromatic Grignard reagents (Scheme 5).16, 19 Thus, the 

bis-imine 3 underwent an iodine-magnesium exchange with i-PrMgBr at –10 °C in 3 h 

providing the magnesium species 4. Transmetalation with CuCN·2LiCl and allylation with 2-

methoxyallyl bromide gave the bis-imine 5 in 68% yield. An oxygen-chelating functional 

group such as an ethoxymethoxy group in the aryl bromide 6 enhances the Br/Mg exchange 

rate, allowing the preparation of the magnesium derivative 7 at –30 °C within 2 h. Trapping 

with allyl bromide in the presence of CuCN·2LiCl furnished the aromatic nitrile 8 in 80% 

yield. Ortho-nitro groups can also be tolerated. Thus, the nitro-substituted aromatic 9 

underwent a smooth I/Mg exchange with phenylmagnesium chloride within 5 min at –40 °C, 

leading to the expected Grignard reagent 10. Quenching with benzaldehyde allowed the 

formation of the corresponding alcohol 11 in 90% yield. 

                                                 
16 For a review on functionalized organomagnesium reagents see: Knochel, P.; Dohle, W.; Gommermann, N.; 
Kneisel, F. F.; Kopp, F.; Korn, T.; Sapountzis, I.; Vu, V. A. Angew. Chem. Int. Ed. 2003, 42, 4302. 
17 (a) Bailey W. F.;  Patricia, J. J. J. Organomet. Chem. 1988, 352, 1. (b) Reich, H. J.; Phillips, N. H.;  Reich, I. 
L. J. Am. Chem. Soc. 1985, 107, 4101. (c) Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. 1986, 108, 2449.  
(d) Krasovskiy, A.; Straub, B. F.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 159. 
18  Tamborski, C.; Moore, G. J. J. Organomet. Chem. 1971, 26, 153. 
19 (a) Boymond, L.; Rottländer, M.; Cahiez, G.; Knochel, P. Angew. Chem. Int. Ed. 1998, 37, 1701. (b) Varchi, 
G.; Jensen, A. E.; Dohle, W.; Ricci, A.; Knochel, P. Synlett 2001, 477. 
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Scheme 5: Halogen-magnesium exchange reactions and trapping with electrophiles. 

 

This methodology could also be readily applied to heteroaromatics.20 The selective exchange 

at the position C5 of the dibromothiazole 12 using i-PrMgBr at –40 °C led to the magnesium 

species 13. Trapping with trimethylsilyl chloride provided the silylated thiazole 14 in 67% 

yield. 

 

However, some unactivated aryl bromides or electron rich substrates do not react at a 

sufficient rate even at room temperature. A considerable improvement of this reaction was 

recently developed by Knochel and Krasovskiy using a stochiometric amount of LiCl, which 

dramatically enhances the reactivity of the Grignard reagent by breaking the aggregates of i-

PrMgCl. 21  The new mixed organometallic i-PrMgCl·LiCl (15) allows a faster Br/Mg 

exchange leading to the desired Grignard reagents in high yields under mild conditions 

(Scheme 6). 

                                                 
20 For review concerning the halogen/magnesium exchange on heterocycles, see: Hiriyakkanavar, I.; Baron, O.; 
Wagner, A. J.; Knochel, P. Chem. Commun. 2006, 583. 
21 Krasovskiy, A.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 3333. 
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with iPrMgCl (2 equiv) : 42%
with iPrMgCl·LiCl        : 89%
(15; 1.05 equiv)

15

 

 

Scheme 6: Br/Mg-exchange reaction with LiCl. 

 
 
2.4. Preparation of Grignard reagents by metalation reactions with magnesium amide 

bases 

 

The metalation of arenes and heteroarenes is one of the most useful transformations in organic 

synthesis since it allows the regioselective functionalization of various aryl and heteroaryl 

derivatives. Traditionally, strong bases such as alkyllithium reagents (RLi like sec-BuLi) and 

lithium amides (R2NLi) such as lithium 2,2,6,6-tetramethylpiperidyl (LTMP) have been 

extensively used for this kind of metalations, especially for the directed ortho-lithiation.22 

However, such bases are often complicated to handle since they often lead to undesirable side 

reactions as a result of their high reactivity, their strong nucleophilicity (e.g. Chichibabin 

addition) and their low functional group tolerance. Another serious drawback is the low 

stability of lithium amides in THF solutions at 25 °C. Furthermore, such deprotonation 

reactions have to be carried out at very low temperatures (–78 to –100 °C), which is not 

convenient for the reaction upscaling. Alternative methods have been developed using 

magnesium amides of type R2NMgCl, R2NMgR or (R2N)2Mg 23  to overcome these 

                                                 
22 (a) Schlosser, M. Angew. Chem. Int. Ed. 2005, 44, 376. (b) Turck, A.; Plé, N., Mongin, F.; Quéguiner,G. 
Tetrahedron 2001, 57, 4489. (c)  Schlosser, M. Eur. J. Org. Chem. 2001, 21, 3975. (d) Hodgson, D. M.; Bray, C. 
D.; Kindon, N. D. Org. Lett. 2005, 7, 2305. (e) Plaquevent, J.-C.; Perrard, T.; Cahard, D. Chem. Eur. J. 2002, 8, 
3300. (f) Chang, C.-C.; Ameerunisha,  M. S. Coord. Chem. Rev. 1999, 189, 199. (g) Clayden, J. Organolithiums: 
Selectivity for Synthesis (Hrsg.: J. E. Baldwin, R. M. Williams), Elsevier, 2002. (h)”The Preparation of 
Organolithium Reagents and Intermediates“: Leroux, F., Schlosser, M.; Zohar, E.; Marek, I. Chemistry of 
Organolithium Compounds (Hrsg.: Z. Rappoport, Marek, I.), Wiley, New York, 2004, Chapt.1, S. 435. (i) 
Whisler, M. C.; MacNeil, S.; Snieckus, V.; Beak, P. Angew. Chem. Int. Ed. 2004, 43, 2206. (j) Queguiner, G.; 
Marsais, F.; Snieckus, V.; Epsztajn, J. Adv. Heterocycl. Chem. 1991, 52, 187. (k) Veith, M.; Wieczorek, S.; 
Fries, K.; Huch, V. Z. Anorg. Allg. Chem. 2000, 626, 1237.  
23  (a) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. Chem. Int. Ed. 2007, 46, 3802. (b) 
Henderson, K. W.; Kerr, W. J. Chem. Eur. J. 2001, 7, 3430. (c) Hauser, C. R.; Walker, H. G. J. Am. Chem. Soc. 
1947, 69, 295. (d) Kobayashi, K.; Kitamura, T.; Nakahashi, R.; Shimizu, A.; Yoneda, K.; Konishi, H. 
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limitations. However, low kinetic basicity and low solubility were observed and it was usually 

necessary to use large amounts of bases to obtain high conversion rates. Recently, our group 

reported very efficient mixed Mg/Li-bases of type R2NMgCl·LiCl (16a and 16b, Scheme 7).24 

 

MgCl·LiCl

NH
R

R

THF, 25 °C, 1 - 24 h N

MgCl·LiCl

N

MgCl·LiCl

15 16a (ca 1.2 M in THF) 16b (ca 0.6 M in THF)

N

MgCl·LiCl

16a

or

 
 
Scheme 7: Preparation of Mg/Li amide bases of type R2NMgCl·LiCl and molecular structure 

of TMPMgCl·LiCl (16a) (hydrogen atoms ommited for clarity). 

 
The considerable advantages of these new bases are their excellent kinetic basicity, their very 

good solubility and excellent thermal stability in THF solution, and their long term storage. 

TMPMgCl·LiCl (16a) showed a better kinetic basicity than i-Pr2NMgCl·LiCl (16b) and 

afforded the magnesiation of numerous aromatics and heteroaromatics in high conversion 

rates with excellent regio- and chemoselectivity at convenient temperatures (Scheme 8). Thus, 

the metalation using TMPMgCl·LiCl (16a) of the isoquinoline 17 was readily achieved at 25 

°C within 2 h. Transmetalation of 18 with CuCN·2LiCl and quenching with benzoyl chloride 

furnished the keto-derivative 19 in 86% yield. 2,6-Dichloropyridine (20) underwent smooth 

deprotonation at 25 °C for 5 min to give the Grignard reagent 21. Trapping with benzaldehyde 

provided the corresponding alcohol 22 in 84% yield. Thiophene (23) could also be metalated 

                                                 
Heterocycles 2000, 53, 1021. (e) Westerhausen, M. Dalton Trans. 2006, 4768. (f) Zhang, M.-X. ; Eaton, P. E. 
Angew. Chem. Int. Ed. 2002, 41, 2169. (g) Kondo, Y.; Akihiro Y.; Sakamoto, T.  J. Chem. Soc., Perkin 
Trans.1996, 1, 2331. (h) Eaton, P. E.; Lee, C. H.; Xiong, Y. J. Am. Chem. Soc. 1989, 111, 8016. (i) Eaton, P. E.; 
Zhang, M.-X.; Komiya C.-G. N.; Yang, S., I.; Gilardi, R. Synlett. 2003, 1275. (j) Eaton, P. E.; Martin, R. M. J. 
Org. Chem. 1988, 53, 2728. (k) Shilai, M.; Kondo, Y.; Sakamoto, T. J. Chem. Soc., Perkin Trans. 1 2001, 442. 
24 (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 2958. (b) Garcia-Alvarez, 
P.; Graham, D. V.; Hevia, E.; Kennedy, A. R.; Klett, J.; Mulvey, R. E.; O’Hara, C. T.; Weatherstone, S. Angew. 
Chem. Int. Ed. 2008, 47, 8079. 
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at 25 °C for 24 h allowing the magnesium species 24. Quenching with DMF gave the 

aldehyde derivative 25 in 90% yield. 

N

NCl Cl

S S MgCl·LiCl

N ClCl

MgCl·LiCl

N

MgCl·LiCl

1) CuCN·2LiCl

PhCOCl

DMF

PhCHO
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N ClCl

CH(OH)Ph

S CHO

TMPMgCl·LiCl
(16a; 1.1 equiv)

THF, 25 °C, 2 h

19: 86%

2)

22: 84%

17 18

20 21

TMPMgCl·LiCl
(16a; 1.1 equiv)

TMPMgCl·LiCl
(16a; 1.1 equiv)

THF, 25 °C, 5 min

THF, 25 °C, 24 h

25: 90%23 24  

Scheme 8: Magnesiation of arenes and heteroarenes using TMPMgCl·LiCl (16a) and trapping 

with electrophiles. 

 

This methodology has been successfully extended to arenes through successive direct 

magnesiations of highly functionalized aromatics bearing an ester, a nitrile or a ketone.  

 

CO2Et

Cl

CO2Et

CN

Cl

CO2Et

CN

Cl

EtO2C

EtO2C

COPh

CO2Et

Cl

CNEtO2C

CO2Et

Cl

CNEtO2C

EtO2C

1) TMPMgCl·LiCl
    (16a; 1.2 equiv),
    THF, 0 °C, 6 h

2) TsCN

1) TMPMgCl·LiCl
    (16a; 1.5 equiv),
    THF/Et20, -20 °C, 5 h
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Scheme 9: Succesive regio- and chemoselective magnesiations of 3-chlorobenzoate. 
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Trapping the magnesium species with electrophiles provided highly functionalized benzene 

derivatives in good to excellent yields (Scheme 9).25 However, some moderatery activated 

arenes such as tert-butyl benzoate gave unsatisfactory results (Scheme 10).  

 

CO2tBu

CO2tBu

CO2tBu

MgCl·LiCl

CO2tBu

Mg(TMP)·2LiCl

I2

I2

CO2tBu

I

CO2tBu

I

 TMPMgCl·LiCl
    (16a; 1.1 equiv),
    THF, 25 °C, 1 h

7%

    TMP2Mg·2LiCl
    (26; 1.1 equiv),
    THF, 25 °C, 1 h

80%  

 

Scheme 10: Comparison between TMPMgCl·LiCl (16a) and TMP2Mg·2LiCl (26). 
 
 
Our group recently reported a new class of mixed Li/Mg bases: magnesium bisamides 

complexed with lithium chloride of type ((R2N)2Mg·2LiCl) such as TMP2Mg·2LiCl (26) 

(Scheme 11).26  

 

O

O

O

Mg(TMP)

O

O

O

I

O

O

O

HO

HO

O

    TMP2Mg·2LiCl
    (26; 1.1 equiv),
    -40 °C, 10 min

77%

28: 89%

1) ZnCl2, -40 °C, 15 min
    Pd(PPh3)4 (5 mol%)

2)

-40 °C to 25 °C, 12 h

1) H2, Pd/C
    MeOh, 24 h
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    water, reflux,
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27 >98%

 

 

 

Scheme 11: Preparation of 6-hexylsalicylic acid (28) via regio- and chemoselective 

magnesiation using TMP2Mg·2LiCl (26). 

                                                 
25 Lin, W.; Baron, O. Org. Lett. 2006, 8, 5673. 
26 (a) Clososki, G. C.; Rohbogner, C. J.; Knochel, P. Angew. Chem. Int. Ed. 2007, 46, 7681. (b) Rohbogner, C. 
J.; Clososki, G. C.; Knochel, P. Angew. Chem. Int. Ed. 2008, 47, 1503. 
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These new bases display a superior magnesiation capability affording an easy access to new 

polyfunctional aromatic or heteroaromatic reagents even bearing sensitive functional groups 

such as esters, nitriles or ketones. This methodology could readily be used for the synthesis of 

natural products as shown in the example above with the metalation of dimethyl-1,3-

benzodioxan-4-one (27) using TMP2Mg·2LiCl (26) (Scheme 11). A transmetalation with 

ZnCl2 allowing a Negishi cross-coupling, an hydrogenation and a deprotection led to 6-

hexylsalicylic acid (28), a natural product found in essential oil of Pelargonium sidoides DC. 
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3. Direct Preparation and Applications of Zincated Aryl and Heteroaryl 

Compounds 

 

3.1 Introduction 

 

Organozinc reagents have been known since the preparation of diethylzinc by Frankland in 

1849 in Marburg.27  These organometallic reagents were often used to form new carbon-

carbon bonds until Grignard4 discovered in 1900 a convenient preparation of 

organomagnesium compounds. These reagents turned out to be more reactive species toward 

electrophiles and generally gave higher yields in comparison to zinc reagents. However, some 

reactions were still carried out using zinc organometallics like the Reformatsky reaction28 or 

the Simmons-Smith cyclopropanation.29 The intermediate organometallics (zinc enolate and 

zinc carbenoid) were easier to handle and more selective than the corresponding magnesium 

organometallics. In 1943, Hunsdiecker reported that the preparation of organozinc reagents 

bearing a long carbon chain terminated by an ester is possible,30 but it was only recently that 

Knochel proved that these reagents represent a powerful synthetic tool.31  A considerable 

advantage with the use of organozincs is their excellent group tolerance and their ability to 

undergo a broad range of transmetalations due to the presence of empty low-lying p-orbitals 

which readily interact with the d-orbitals of many transition metal salts, leading to more 

reactive species such as organocopper32 or palladium intermediates33 (Scheme 12). 

 

RCu·ZnX2
CuX

RZnX

ArPdX

R-Pd-Ar

 

 

Scheme 12: Transmetalation of organozincs reagents. 

                                                 
27 Frankland, E. Liebigs Ann. Chem. 1849, 71, 171 and 173. 
28 (a) Reformatsky, S. Chem. Ber. 1887, 20, 1210; 1895, 28, 2842. (b) Fürstner, A. Angew. Chem. Int. Ed. 1993, 
32, 164. 
29 Simmons, H. E.; Smith, R. D. J. Am. Chem. Soc. 1958, 80, 5323. (b) Nakamura, M.; Hirai, A.; Nakamura, E. 
J. Am. Chem. Soc. 2003, 125, 2341. 
30 Hunsdiecker, H.; Erlbach, H., Vogt, E. 1942, German patent 722467; Chem. Abstr. 1943, 37, 5080. 
31 (a) Knochel, P.; Singer, R. D. Chem. Rev. 1993, 93, 2117. (b) Knochel, P.; Almena, J.; Jones, P. Tetrahedron 
1998, 54, 8275. 
32 (a) Knochel, P. Synlett 1995, 393. (b) Knochel, P.; Vettel, S.; Eisenberg, C. Applied Organomet. Chem. 1995, 
9, 175. (c) Knochel, P.;  Jones, P. Organozinc reagents. A Practical Approach, Oxford University Press, 1999. 
(d) Knochel, P.; Millot, N.; Rodriguez, A. L.; Tucker, C. E. Org. React. 2001, 58, 417. (e) Boudier, A.; Bromm, 
L. O.; Lotz, M.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 4415. 
33 (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298. (b) Kobayashi, M.; Negishi, 
E. J. Org. Chem. 1980, 45, 5223. (c) Negishi, E. Acc. Chem. Res. 1982, 15, 340. 
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Another advantage of great importance is the highly covalent character of the carbon-zinc 

bond which makes organozinc species stable at temperatures which would lead to 

decomposition for the corresponding organomagnesiums and organolithiums. These typical 

features make organozincs extremely interesting reagents for organic synthesis. The reactivity 

order of organozinc halides strongly depends on the electronegativity of the carbon attached 

to zinc (alkynyl < alkyl < alkenyl ≤ aryl < benzyl < allyl). A stabilization of the negative 

carbanionic charge by inductive or mesomeric effects leads to a more ionic carbon-zinc bond 

and to a higher reactivity. Different ways to prepare organozinc reagents are possible by an 

insertion of zinc dust into organic halides, by an I/Zn exchange of iodinated alkyl and aryl 

substrates, or by direct deprotonation reactions using Zn bases. 

 

3.2 Preparation of zinc reagents by direct oxidative addition of zinc to aryl and 

heteroaryl halides 

 

The oxidative addition of zinc dust to functionalized organic halides allows the preparation of 

a broad range of polyfunctional organozinc iodides of type 29 (Scheme 13). This method of 

preparation tolerates several functionalities and is sensitive to the reaction conditions (solvent, 

concentration, temperature), the nature of the halide and the method of zinc activation.  
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29b: >90%
(THF, 30 °C, 2 h)

29c: >98%
(THF, 25 °C, 1 h)
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(THF, 30 °C, 4 h)
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Scheme 13: Functionalized organozinc compounds of type 29 prepared by oxidative addition. 

 

A specific feature of zinc is the slow oxidation in air and the resulting oxide layer on its 

surface. To activate zinc, it is possible to employ 1,2-dibromoethane in THF (reflux, 1-2 min), 
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followed by the addition of TMSCl (1-2 mol%; reflux, 1 min).2a, 31a, 32d Another possibility is 

the use of Rieke zinc (Zn*)34 prepared by the direct reduction of zinc chloride with lithium 

naphthalenide in THF. These methods allowed the preparation of a wide range of 

functionalized organozinc iodides.2 In general, the zinc insertion into a sp2 C-I(Br) bond is 

more difficult than into a sp3 C-I(Br) bond and requires either the use of polar solvents35 or 

the use of Rieke zinc (Zn*). However, the use of Zn* has the drawback that the activity 

decreases with time. Our group has recently reported a new convenient procedure for the zinc 

insertion, which allows, in the presence of LiCl, a considerable improvement for the 

preparation of highly functionalized zinc compounds as shown by the example of ethyl 4-

iodobenzoate (30) furnishing the corresponding zinc derivative (31) (Scheme 14).36 

 

I

EtO2C

ZnI·LiCl

EtO2C

allyl bromide

CuCN·2LiCl EtO2C

    Zn, THF

94%

by using Zn (2 equiv) at 70 °C, 24 h : < 5%
by using Zn·LiCl (1.4 equiv) at 25 °C, 24 h : > 98%

30 31

 

 

Scheme 14: Insertion of Zn in the presence and absence of LiCl. 

 

The scope of this method was extended to a new approach for the preparation of highly 

functionalized aryl and heteroaryl zinc reagents using directed ortho insertion37 (DoI) and 

highly benzylic zinc chlorides (Scheme 15).38  Thus, the tri- iodo-substituted aromatic 32 

readily reacts with Zn dust in the presence of LiCl in THF at 0 °C and furnishes after 30 min 

the ortho-zincated intermediate 33. Trapping with benzoyl chloride after transmetalation with 

CuCN·2LiCl gives the corresponding ketoester in 79% yield. A further insertion is possible 

affording in the same conditions the zinc reagent 34. The ketone group plays now the role of 

an ortho-directing group. Quenching with 3-iodocyclohexenone provides the substitution 

product in 73% yield. 

                                                 
34 (a) Organozinc Reagents, Editors: P. Knochel, P. Jones, Oxford University Press, New York, 1999. (b) Rieke, 
R. D.;  Li, P. T.; Burns, T. P.; Uhm, S. T. J. Org. Chem. 1981, 46, 4323. (c) Arnold, R. T.; Kulenovic, S. T. 
Synth. Commun. 1977, 7, 223.  
35 (a) Tagaki, K.; Hayama, N.; Inokawa, S. Bull. Chem. Soc. Jpn. 1980, 53, 3691. (b) Tagaki, K. Chem. Lett. 
1993, 469. (c) Tagaki, K.; Shimoishi, Y.; Sasaki, K. Chem. Lett. 1994, 2055. (d) Majid, T. N.; Knochel, P. 
Tetrahedron Lett. 1990, 31, 4413.  
36 Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 6040. 
37 Boudet, N.; Sase, S.; Sinha, P.; Liu, C.-Y.; Krasovskiy, A.; Knochel, P. J. Am. Chem. Soc. 2008, 129, 12358. 
38 Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107. 
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Scheme 15: Insertion of Zn in the presence and absence of LiCl. 

 

3.3 Preparation of zinc reagents by metalation reactions with zinc amide bases 

 

The directed metalation of arenes and heteroarenes is one of the most useful methods for the 

functionalization of these scaffolds. Lithium bases have been extensively used to ortho-

metalate various unsaturated systems.22 The use of magnesium bases such as mixed bases 

Mg/Li of the type R2NMgCl·LiCl24 like TMPMgCl·LiCl (16a) proved to be especially 

effective and is compatible with functional groups such as esters, aryl ketones and nitriles.25 

However, more sensitive functionalities such as aldehydes or nitro- groups are not tolerated. 

Also some classes of heterocycles, for example 1,3- and 1,2-oxazoles and 1,2,5- and 1,3,4-

oxadiazoles, provide unstable lithiated or magnesiated intermediates, which are prone to ring 

opening.39 Therefore, a range of zinc amides have been reported that provide after metalation 

organozinc reagents compatible with most functionalities. In a pioneer work, lithium di-tert-

butyl-(2,2,6,6-tetramethylpiperidino)zincate (t-Bu2Zn(TMP)Li) was reported by Kondo to be 

an excellent base for the zincation of sensitive aromatics and heteroaromatics.40 The use of 

highly reactive zincates or relative ate-bases is sometimes not compatible with sensitive 

functions such as an aldehyde or a nitro group.41 Recently, Wunderlich and Knochel reported 

                                                 
39 (a) Micetich, R. G. Can. J. Chem. 1970, 48, 2006. (b) Meyers, A. I.; Knaus, G. N. J. Am. Chem. Soc. 1974, 95, 
3408. (c) Knaus, G. N.; Meyers, A. I. J. Org. Chem. 1974, 39, 1189. (d) Miller, R. A.; Smith, M. R.; Marcune, B. 
J. Org. Chem. 2005, 70, 9074. (e) Hilf, C.; Bosold, F.; Harms, K.; Marsch, M.; Boche, G. Chem. Ber. Rec. 1997, 
130, 1213. 
40 (a) Kondo, Y.; Shilai, H.; Uchiyama, M.; Sakamoto, T. J. Am. Chem. Soc. 1999, 121, 3539. (b) Imahori, T.; 
Uchiyama, M.; Kondo, Y. Chem. Commun. 2001, 2450. (c) Schwab, P. F. H.; Fleischer, F.; Michl, J. J. Org. 
Chem. 2002, 67, 443. (d) Uchiyama, M.; Miyoshi, T.; Kajihara, Y.; Sakamoto, T.; Otami, Y.; Ohwada, T.; 
Kondo, Y. J. Am. Chem. Soc. 2002, 124, 8514. 
41 (a) Uchiyama, M.; Matsumoto, Y.; Nobuto, D.; Furuyama, T.; Yamaguchi, K.; Morokuma, K. J. Am. Chem. 
Soc. 2006, 128, 8748. (b) Clegg, W.; Dale, S. H.; Drummond, A. M.; Hevia, E.; Honeyman, G. W.; Mulvey, R. 
E. J. Am. Chem. Soc. 2006, 128, 7434. (c) Hevia, E.; Honeyman, G. W.; Mulvey, R. E. J. Am. Chem. Soc. 2005, 
127, 13106. (d) Armstrong, D. R.; Clegg, W.; Dale, S. H.; Hevia, E.; Hogg, L. M.; Honeyman, G. W.; Mulvey, 
R. E. Angew. Chem. Int. Ed. 2006, 45, 3775. (e) Clegg, W.; Dale, S. H.; Harrington, R. W.; Hevia, E.; 
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the preparation of the highly chemoselective base TMP2Zn·2MgCl2·2LiCl 42  (35) for the 

direct zincation of sensitive aromatics and heteroaromatics (LiCl21 leads to a high solubility 

and MgCl2
43

 enhances the base reactivity) (Scheme 16). The presence of these Lewis salts 

with TMP2Zn44 turned out to be very effective for the metalation of sensitive arenes and 

heteroarenes like N-tosyl-1,2,4-triazole (36), that underwent a smooth deprotonation 

providing the zincated compound 37. Trapping with allyl bromide led to the allylated pyridine 

38 in 85%. A considerable advantage of the zinc base 35 is that very sensitive functional 

groups such as nitro groups can also be tolerated as shown in the example of nitrobenzofuran 

39. 45  Quenching the zinc species 40 with 3-bromocyclohexene in the presence of 

CuCN·2LiCl provided the new substituted benzofuran 41 in 80% yield. Aldehydes can be 

metalated as well.45,46 The formylbenzothiophene 42 was zincated at 25 °C furnishing the 

intermediate 43, that could then undergo a Negishi cross-coupling to afford the 

benzothiophene derivative 44 in 67% yield. 
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Scheme 16: Zincation of sensitive arenes and heteroarenes using TMP2Zn·2MgCl2·2LiCl (35) 

and trapping with electrophiles. 

                                                 
Honeyman, G. W.; Mulvey, R. E. Angew. Chem. Int. Ed. 2006, 45, 2374. (f) Naka, H.; Uchiyama, M.; 
Matsumoto, Y.; Wheatly, A. E. H.; McPartlin, M.; Morey, J. V.; Kondo, Y. J. Am. Chem. Soc. 2007, 129, 1921. 
42 Wunderlich, S. H.; Knochel, P. Angew. Chem. Int. Ed. 2007, 46, 7685. 
43 Kneisel, F. F.; Dochnahl, M.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 1017. 
44 (a) Hlavinka, M. L.; Hagadorn J. R. Tetrahedron Lett. 2006, 47, 5049. (b) Hlavinka, M. L.; Hagadorn J. R. 
Organometallics 2007, 26, 4105. 
45 Sapountzis, I.; Knochel, P. Angew. Chem. Int. Ed. 2002, 41, 1610. 
48 Gong, L.-Z.; Knochel, P. Synlett 2005, 267. 
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Over the last decades, microwave irradiation has been used to accelerate numerous organic 

reactions47 including organometallic reactions.48 Since organozinc reagents of the type RZnX 

display a good thermal stability and tolerate functional groups even at elevated 

temperatures, 49  Wunderlich and Knochel extended the scope of metalations by forcing 

TMP2Zn-mediated zincations using microwave irradiation.50 For example, the direct zincation 

of ethyl 4-chlorobenzoate (45) at 25 °C usually requires 110 h for completion. By applying 

microwave irradiation, a complete metalation was achieved within 2 h at 80 °C leading to the 

expected bis-aryl zinc species 46 in >90% yield (Scheme 17). Additionally, ethyl benzoate 

(47), which could not be metalated at 25 °C, reacted with TMP2Zn·2MgCl2·2LiCl (35) under 

microwave irradiation leading to the corresponding zinc reagent 48 in > 90% yield (Scheme 

17). 
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Scheme 17: Zincation of 45 and 47 with and without microwave irradiation.  

                                                 
47 (a) Gedye, R.; Smith, F.; Westaway, K.; Ali, H.; Baldisera, L.; Laberge, L.; Rousell, R. Tetrahedron Lett. 
1986, 27, 279. (b) Giguere, R. J.; Bray, T. L.; Duncan, S. M.; Majetich, G. Tetrahedron Lett. 1986, 27, 4945. (c) 
Hayes, B. L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, NC, 2002. (d) 
Microwave-Assisted Organic Synthesis; Lidström, P.; Tierney, J. P. Eds.; Blackwell Publishing: Oxford, 2005. 
(e) Microwaves in Organic Synthesis, 2nd ed.; Loupy, A. Ed.; Wiley-VCH: Weinheim, 2006. (f) Microwave 
Methods in Organic Synthesis; Larhed, M.; Olofsson, K. Eds.; Springer: Berlin, 2006. 
48 (a) Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107 , 2563. (b) Kappe, C. O. Angew. Chem. Int. Ed. 2004, 
43, 6250. (c) Tsukamoto, H.; Matsumoto, T.; Kondo, Y. J. Am. Chem. Soc. 2008, 130, 388. (d) Shore, G.; Morin, 
S.; Organ, M. G. Angew. Chem. Int. Ed. 2006, 45, 2761. (e) Lewis, J. C.; Wu, J. Y.; Bergman, R. G.; Ellman, J. 
A. Angew. Chem. Int. Ed. 2006, 45, 1589. (f) Fustero, S.; Jimenez, D.; Sanchez-Rosello, M.; del Pozo, C. J. Am. 
Chem. Soc. 2007, 129, 6700. (g) Constant, S.; Tortoioli, S. ; Müller, J. ; Linder, D.; Buron, F.; Lacour, J. Angew. 
Chem. Int. Ed. 2007, 46, 8979. 
49 (a) Walla, P.; Kappe, C. O. Chem. Commun. 2004, 564. (b) Zhu, L.; Wehmeyer, R. M.; Rieke, R. D. J. Org. 
Chem. 1991, 56, 1445. 
50 Wunderlich, S.; Knochel, P. Org. Lett. 2008, 10, 4705. 
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4. Objectives 

 
 

We envision in this work to apply the newly developed methods of preparation of organo-

magnesium and zinc reagents for the synthesis of various N-heterocyclic magnesium and zinc 

intermediates. Our goal was to carry out selective functionalizations of N-heterocycles, and 

apply our methodology to the synthesis of biologically active compounds. 

 

 

In a first project, our work dealt with the total functionalization of the pyrimidine scaffold and 

was then mainly focused on two important pyrimidine families: protected uracils and 

thiouracils, and chloropyrimidines. Both represent two main classes of biological importance 

and where metalation and subsequent functionalization are still unexplored.   

 

 

More precisely, our objectives were:  

 

 

 The total functionalization of the pyrimidine core using successive sequences (regio- 

and chemoselective magnesiations and trapping with different electrophiles) at 

positions 4, 5 and 6 using Mg bases (Scheme 18).  
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Scheme 18: Multiple regio- and chemoselective functionalizations of pyrimidine derivatives 
via magnesiations. 
 

 

 The selective magnesiation of 2,4-dimethoxypyrimidine and 2,4-

bis(methylthio)pyrimidine as a synthetic route to polyfunctionalized protected uracils 

and thiouracils using magnesium bases (Scheme 19). 
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Scheme 19: Regio- and chemoselective functionalization of uracil and thiouracil derivatives. 
 
 

 The regio- and chemoselective metalation of chloropyrimidine derivatives at all 

positions (2, 4, 5 and 6) at convenient temperatures and applications to the synthesis of 

biologically active compounds using zinc and magnesium bases (Scheme 20). 
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Scheme 20: Regio- and chemoselective functionalization of chloropyrimidine derivatives. 
 

 

In the second project, we planned to prepare a more active chemoselective Zn base of type 

TMPZnCl·LiCl for the directed zincation of sensitive arenes and heteroarenes (Scheme 21). 
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Scheme 21: Preparation of a new active chemoselective Zn base of type TMPZnCl·LiCl. 
 
 
In the third project, we envisioned to perform the functionalization of the pyrazine ring 

toward regio- and chemoselective multiple functionalizations of chloropyrazine derivatives 
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using Mg and Zn bases with a direct application to the total synthesis of the bioluminescent 

natural product Coelenterazine isolated from the jellyfish Aequorea victoria (Scheme 22). 
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Scheme 22: Regio- and chemoselective multiple functionalizations of chloropyrazine 

derivatives and application to the synthesis of Coelenterazine. 
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1. Functionalization of Pyrimidine Derivatives via Regio- and 

Chemoselective Magnesiations 

 

1.1 Introduction 

 

Azaheterocycles constitute a very important class of biologically active compounds. In 

particular, pyrimidine derivatives are present in a large number of natural products, 

pharmaceuticals, and functional materials. 51  The functionalization of pyrimidines and its 

derivatives is therefore of great interest since many examples of pharmaceutically important 

compounds include trimethoprim 52  (49a, antibiotic), sulfadiazine 53  (49b, antibiotic), 

Gleevec54 (49c, imatinib mesylate, anti-cancer), Xeloda55 (49d, capecitabine, anti-cancer) and 

pyrimethamine56 (49e, antimalarial) as well as other natural (49f, adenine)51 and unnatural 

compounds57 (Scheme 23).  
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Scheme 23: Biologically active compounds containing a pyrimidine scaffold. 

 

 

                                                 
51 (a) Hurst, D. T. An Introduction to the Chemistry and Biochemistry of Pyrimidines, Purines and Pteridines; 
Wiley: Chichester, 1980. (b) Brown, D. J. The Pyrimidines; Wiley: New York, 1994. (c) Katrizky, A. R.; Rees, 
C. W.; Scriven, E. F. V. Comprehensive Heterocyclic Chemistry II; Pergamon: Oxford, 1996. (d) Gribble, G.; 
Joule, J. Progress in Heterocyclic Chemistry, 18; Elsevier: Oxford, 2007. (e) Lagoja, I. M. Chem. Biodiversity 
2005, 2, 1. (f) Michael, J. P. Nat. Prop. Rep. 2005, 22, 627. 
52 Joffe, A. M.; Farley, J. D.; Linden, D.; Goldsand, G. Am. J. Med. 1989, 87, 332. 
53 Petersen, E.; Schmidt, D. R. Expert Rev. Anti-Infect. Ther. 2003, 1, 175. 
54 Nadal, E.; Olavarria, E. Int. J. Clin. Pract. 2004, 58, 511. 
55 Blum, J. L. Oncologist 2001, 6, 56. 
56 Roper, C.; Pearce, R.; Nair, S.; Sharp, B.; Nosten F.; Anderson, T. Science 2004, 305, 1124. 
57 Köytepe, S.; Pasahan, A.; Ekinci, E.; Seçkin, T. Eur. Polym. J. 2005, 41, 121. 
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1.2 Total functionalization of the pyrimidine scaffold using successive regio- and 

chemoselective magnesiations 

 

1.2.1 Functionalization of 5-bromopyrimidine (50) and 2-chloropyrimidine (53) 

using lithium bases 

 

The direct functionalization of pyrimidines by lithiation is difficult due to the electrophilic 

character of the ring, which readily undergoes the addition of various organometallics at the 

positions 4 and 6. 58  This also implies that very low temperatures are mandatory for the 

metalation of pyrimidines.59 Thus, the metalation of 5-bromopyrimidine (50) using LDA as 

metalating agent in Et2O at –100 °C for 2 h furnishes the lithium species that can be then 

trapped with aldehydes to give 4-substituted pyrimidines 51 in moderate yields. In the 

absence of electrophile, the dihydropyrimidylpyrimidine 52 was isolated in 32% yield 

(Scheme 24).60 
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Scheme 24: Deprotonative functionalization of 5-bromopyrimidine using LDA (34). 

 

Similar results were observed with 2-chloropyrimidine (53) using LTMP as metalating 

agent.61  

 

1.2.2  Successive regio- and chemoselective functionalizations of 2-

bromopyrimidine (55) using mixed Mg/Li amide bases 

                                                 
58 (a) Eicher, T.; Hauptmann, S.; Speicher, A. The Chemistry of Heterocycles; Wiley: Weinheim, 2003. (b) Plé, 
N.; Turck, A.; Couture, K.; Quéguiner, G. Synthesis 1996, 838. (c) Plé, N.; Turck, A.; Heynderickx, A.; 
Quéguiner, G. Tetrahedron 1998, 54, 9701. (d) Plé, N.; Turck, A.; Heynderickx, A.; Quéguiner, G. J. 
Heterocycl. Chem. 1997, 34, 551. 
59 (a) Turck, A.; Plé, N.; Mongin, F.; Quéguiner, G. Tetrahedron Lett. 2001, 57, 4489. (b) Schlosser, M.; 
Lefebvre, O.; Ondi, L. Eur. J. Org. Chem. 2006, 6, 1593. 
60 Kress, T. J. J. Org. Chem. 1979, 44, 2081. 
61 Plé, N.; Turck, A.; Couture, K.; Quéguiner, G. J. Org. Chem. 1995, 60, 3781. 
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The use of the mixed Mg/Li amide TMPMgCl·LiCl (16a; 1.1 equiv) can solve the above 

mentionned problems; thus, the metalation of the chloropyrimidine 53 becomes possible at 

temperatures between –55 and –40 °C and subsequent trapping with typical electrophiles 

leads to 4-substituted pyrimidines 54 without any traces of dihydropyrimidylpyrimidine 

(Scheme 25).26 
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Scheme 25: Magnesiation of 2-chloropyrimidine (53) using TMPMgCl·LiCl (16a) and 

trapping with electrophiles. 

 

Since the functionalization of pyrimidines is of great importance, we focused our attention on 

the total functionalization of this scaffold, starting from commercially available  

2-bromopyrimidine (55), by performing successive regio- and chemoselective magnesiations 

using TMPMgCl·LiCl (16a) (Scheme 26).  
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Scheme 26: Successive regio- and chemoselective magnesiations of 2-bromopyrimidine (55) 

using TMPMgCl·LiCl (16a). 

 

Thus, the treatment of 2-bromopyrimidine (55) with TMPMgCl·LiCl (16a; 1.1 equiv, –55 °C, 

1.5 h) leads to the 4-magnesiated pyrimidine (56) which can be trapped by various 

electrophiles such as MeSO2SMe, PhSO2SPh, I2, BrCCl2CCl2Br,  FCCl2CClF2 and TMSCN 

leading to the expected products of type 57a-f in 68 - 85% (Scheme 27). The formation of a 
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new carbon-carbon bond is readily performed by a Negishi 62  cross-coupling or a 

Sonogashira63 reaction of in situ generated 2-bromo-4-iodopyrimidine (57c) providing the 4-

substituted heterocycles 57g-j in 67 - 81% (Scheme 27). 
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Scheme 27: Magnesiation of 2-bromopyrimidine (55) at position 4 using TMPMgCl·LiCl 

(16a; 1.1 equiv) and trapping with electrophiles. 

 

A subsequent magnesiation is readily achieved at position 6 by the addition of 

TMPMgCl·LiCl (16a) to various 4-substituted 2-bromopyrimidines. Thus, the 2-bromo-4-

(methylthio)pyrimidine64 57a is converted within 5 min at 20 °C to the 6-magnesiated species 

which is chlorinated by reaction with FCl2CCF2Cl leading to the chloropyrimidine 58a in 

76% yield (entry 1 of Table 1). Reaction with BrCl2CCCl2Br furnishes the bromo-pyrimidine 

58b in 81% yield (entry 2). An iodolysis using I2 leads to the 2-bromo-4-iodopyrimidine 

derivative 58c in 78% yield (entry 3). Similarly, the 4-arylated-2-bromopyrimidine 57g is 

magnesiated quantitatively with TMPMgCl·LiCl (16a; 1.1 equiv, –40 °C, 45 min) and reacted 

with FCl2CCF2Cl, TMSCN or MeSO2SMe affording the expected 4,6-disubstituted 2-

bromopyrimidines 58d-f in 72 - 91% yield (entries 4-6). 

 
62 (a) Negishi, E.; Valente, L. F.; Kobayashi, M. J. Am. Chem. Soc. 1980, 102, 3298. (b) Negishi, E.; Kobayashi, 
M. J. Org. Chem. 1980, 45, 5223. (c)  Negishi, E. Acc. Chem. Res. 1982, 15, 340. (d) Milne, J. E.; Buchwald, S. 
L. J. Am. Chem. Soc. 2004, 126, 13028. 
63 (a) Benderitter, P.; de Araujo, J. X. Jr.; Schmitt, M.; Bourguignon, J.-J. Tetrahedron 2007, 63, 12465. (b) Kim, 
J. T.; Gevorgyan, V. Org. Lett. 2002, 4, 4697. (c) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 
1975, 50, 4467. (d) Sonogashira, K. Comprehensive Organic Synthesis Pergamon Press: New York, 1991, Vol. 
3. 
64 The thiomethyl group can serve as a leaving group in cross-coupling reactions: Liebeskind, L. S.; Srogl, J. 
Org. Lett. 2002, 4, 979. 
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Table 1: Products obtained by regioselective magnesiation of pyrimidines of type 57 and 58 

with TMPMgCl·LiCl (16a) and quenching with electrophiles. 

FCl2CCF2Cl

I2

substrate of 
type 57 and 58

Cl

N

N BrMeS

N

N BrMeS

Br

N

N BrMeS

I

N

N

SiMe3

F3C
Br

N

N

SMe

F3C
Br

N

N BrMeS

N

N BrI

N

N BrI

SiMe3

(BrCl2C)2

Me3SiCN

MeSO2SMe

Me3SiCN

N

N

Cl

F3C
Br

FCl2CCF2Cl

N

N Br

CF3

electrophile product yield, %aentry

1

3

5

6

7

58a

58c

58e

58f

58g

76

78

72

76

93

2 58b 81

57a

57a

57a

4

58d

91

57g

57g

57g

57c

N

N

Ph

Br

N

N

Ph

Br

Cl

FCl2CCF2Cl

N

NMeS

Cl

Br

N

N

O

Ph

MeS

Cl

Br

PhCOClb

8 58h 84

57j

9 59a 81

58a

a Isolated, analytically pure product. b Transmetalation with 1.1 equiv of CuCN·2LiCl.  
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substrate of 
type 57 and 58

electrophile product yield, %aentry

I2

N

N

MeS

MeS

Cl

Br
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N
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N
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N
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   allyl 

bromidec

11 59c 9258a
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59d

59e

71
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58h

58h

14 59f 6758h

a Isolated, analytically pure product. b Transmetalation with 1.1 equiv of CuCN·2LiCl. c Catalyzed with 5 mol% of
 CuCN·2LiCl.
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Ph

MeS

Cl

Br
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Other 2-bromopyrimidines substituted at position 4 with an alkynyl group or an iodine (57c, 

57j) are magnesiated under mild conditions. Quenching with typical electrophiles furnishes 

the polyfunctional pyrimidines 58g and 58h in 84% and 93% yields (entries 7 and 8). The last 

position (position 5) can be magnesiated as well between –5 °C and 20 °C within 20 - 30 min 

with TMPMgCl·LiCl (16a; 1.1 equiv). Trapping with iodine, PhCOCl (after transmetalation 

with CuCN·2LiCl65 (1.1 equiv)), allyl bromide, PhCHO or MeSO2SMe provides the fully 

substituted pyrimidines 59a-f in 67 - 92% yields (entries 9-14). The bromine attached at 

position 2 can be readily substituted using a Negishi62 or a Sonogashira63 reaction giving the 

2-substituted pyrimidines 60a-c in 85 - 91% yields (Scheme 28). 

 

 

                                                 
65 Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390. 
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Scheme 28: Negishi and Sonogashira cross-coupling reactions at position 2 leading to fully 

substituted pyrimidines 60a-c. 

 

1.3 Total functionalization of protected uracils and thiouracils using successive regio- 

and chemoselective magnesiations 

 

1.3.1 Functionalization of protected uracils and thiouracils using lithium bases 

 

Uracil derivatives are present in many natural products, for instance the marine alkaloid 

rigidin66 (61), and represent a priviledge structure in drug discovery51 (Scheme 29).  
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Scheme 29: Biologically relevant uracil derivatives. 

 

The functionalization of these heterocycles is therefore of great interest for the preparation of 

bio-relevant molecules, especially with antiviral properties.58a For example, emivirine67 (62), 

                                                 
66 Sakamoto, T.; Kondo, Y.; Sato, S.; Yamanaka, H. J. Chem. Soc., Perkin Trans. 1. 1996, 5, 459. (b) Lagoja, I. 
M. Chemistry & Biodiversity 2005, 2, 1. 
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a non-nucleoside reverse transcriptase inhibitors (NNRTIs), targets the retrovirus HIV-1. 5-

Fluorouracil68 (63), an anti-cancer agent has been in use for about more than 40 years. 

 

Wada69 and Quéguiner70 have investigated the lithiation of 2,4-dimethoxypyrimidine (64) 

using LTMP in Et2O at 0 °C and observed a regioselective lithiation at the position 5 

furnishing the lithium species 65. The chelating effect of the methoxy- group in the 

intermediate species 65 led to the thermodynamically most stable species71 (Scheme 30). The 

main limitation with the use of lithium reagents is their very high reactivity due to the ionic 

character of the C-Li bond. For this reason, the choice of potential electrophiles is strongly 

limited and the 5-functionalized uracil derivatives were obtained in low to moderate yields (4 

- 65%). The lithiation of the pyrimidine 64 using LDA as metalating agent led to very low 

yields and with recovery of the starting materials.70 
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N OMeMeO
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PhCHO
N

N OMMeO

HO

Ph
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Scheme 30: Ortho-directed lithiation of 2,4-dimethoxypyrimidine (64) using LTMP. 

 

1.3.2  Successive regio- and chemoselective functionalizations of protected uracils 

and thiouracils using Mg/Li bases 

 

Whereas the lithiation of dimethoxyuracil (64) with LTMP (Et2O, 0 °C, 10 min) produces 

exclusively the 5-lithiated pyrimidine 65, we have found that the treatment of 64 with 

TMPMgCl·LiCl (16a; 1.1 equiv, THF, 25 °C, 15 min) furnishes exclusively the 6-

magnesiated uracil derivative 67 (Scheme 31). No trace of 5-magnesiated uracil could be 

detected after 1 h at 25 °C. Thus, the quenching of 67 with various electrophiles such as I2, 

Me3SiCN, 4-ethyl iodobenzoate62 (after transmetalation with ZnCl2 followed by the addition 

of Pd(dba)2 and P(o-furyl)3), t-BuCOCl (after transmetalation with CuCN·2LiCl)65 and ethyl 

cyanoformate provides a range of polyfunctional uracil derivatives (68a-e) in 70 - 75% yields 

 
67 (a) Tanaka, H.; Takashima, H.; Ubasawa, M.; Sekiya, K.; Inouye, N.; Baba, M.; Shigeta, S.; Walker, R. T.; De 
Clercq, E.; Miyasaka, T. J. Med. Chem. 1995, 38, 2860. (b) Pedersen, O. S.; Pedersen, E. B. Antiviral Chem. 
Chemother. 1999, 10, 2860. 
68 Cai, T. B.; Tang, X.; Nagorski, J.; Brauschweiger, P. G.; Wang, P. G. Bioorg. & Med. Chem. 2003, 11, 4971. 
69 Wada, A.; Yamamoto, J.; Kanatomo, S. Heterocycles 1987, 26, 585. 
70 Plé, N. ; Turck, A. ; Fiquet, E. ; Quéguiner, G. J. Heterocyclic Chem. 1991, 28, 283. 
71 Turck, A.; Plé, N.; Quéguiner, G. Heterocycles 1994, 3, 2149. 
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(Scheme 31 and Table 2, entries 1-5). Subsequent magnesiation of selected uracils 68 allows a 

further functionalization in position 5 leading to the 5,6-disubstituted uracils 69a and 69b in 

81% and 74% (entries 6 and 7). 
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Scheme 31: Successive regio- and chemoselective magnesiations of 2,4-dimethoxypyrimidine 

(64) at the positions 6 and 5 using TMPMgCl·LiCl (16a; 1.1 equiv) and trapping with 

electrophiles. 

 

We have extended our approach to the thiouracil derivatives, and have treated 2,4 

bis(methylthio)pyrimidine (70) with TMP2Mg·2LiCl (26; 1.1 equiv, THF, –20 °C, 1 h) which 

provides the 6-magnesiated pyrimidine derivative 71 (Scheme 32).  
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Scheme 32: Successive regio- and chemoselective magnesiations of 

bis(methylthio)pyrimidine (70) at the positions 6 and 5 with TMP2Mg·2LiCl (26; 1.1 equiv) 

and trapping with electrophiles. 
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Table 2: Products obtained by regioselective magnesiation of pyrimidines of type 64 and 70 

with TMPMgCl·LiCl (16a) and with TMP2Mg·2LiCl (26) quenching with electrophiles. 

I2

ethyl 4-iodobenzoateb

substrate

I

N

N OMeMeO

N

N OMeMeO

SiMe3

N

N OMeMeO

Me3SiCN

NCCO2Et

4-fluorobenzoyl

PhCOClc

t-BuCOClc

N

NI SMe

SMe

I2

N

NBr

SMe

SMe

(BrCCl2)2

N

N

EtO2C

OMe

OMe

N

N

OMe

OMe
t-Bu

O

N

N OMe

OMe

EtO

O

N

NMeO OMe

I

N

N

I

MeO OMe

O

F

N

N

CO2Et

MeO OMe

O

N

N SMe

SMe

N

NMeO OMe

CO2Et

electrophile product yield, %aentry

1

3

5

6

7

68a

68c

68e

69a

74

75

70

81

74

2
68b

70

8
72a

76

64

64

64

4

68d

7264

64

68a

70

9
72b

8170

a Isolated, analytically pure product. b The Grignard reagent was transmetalated with 1.1 or 2.2 equiv of ZnCl2 in THF and
then undergoes a Negishi cross-coupling using Pd(dba)2 and P(o-furyl)3. c Transmetalation with 1.1 equiv of CuCN·2LiCl.

chloridec

69b
68e
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3-iodobenzotrifluorideb

substrate

N

N

O

Ph

Cl

SMe

SMe

N

N

I

Cl

SMe

SMe

ethyl 4-iodobenzoateb

I2

PhCOClc

ClF2CCCl2F

PhCHO
N

N

OH

Ph

Cl

SMe

SMe

N

N SMe

SMe

EtO2C

N

N SMe

SMe

F3C

N

NCl

SMe

SMe

electrophile product yield, %aentry

10
72c

7870

12

13

72e

73a

80

61

70

72c

14 73b 6572c

11
72d

7170

15 73c 6672c

a Isolated, analytically pure product. b The Grignard reagent was transmetalated with 1.1 or 2.2 equiv of ZnCl2 in THF and
then undergoes a Negishi cross-coupling using Pd(dba)2 and P(o-furyl)3. c Transmetalation with 1.1 equiv of CuCN·2LiCl.  

 

No trace of 5-magnesiated thiouracil could be detected. Thus, trapping of 71 with typical 

electrophiles furnishes the new 6-substituted thiouracils 72a-c in 76 - 81% yields (Scheme 32 

and Table 2, entries 8-10). The formation of a new carbon-carbon bond is also readily 

performed by a Negishi62 cross-coupling providing the 6-arylpyrimidines 72d and 72e in 71 

and 80% (Table 1, entries 11 and 12). A further metalation with TMP2Mg·2LiCl (26, 1.1 

equiv, THF, –5 °C, 45 min) can be performed at the position 5. Quenching with electrophiles 

such as I2, PhCOCl (after transmetalation with CuCN·2LiCl (1.1 equiv))65 or PhCHO 

provides the fully substituted pyrimidines 73a-c in 61 - 66% yield (entries 13-15). 
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1.4 Functionalization of chloropyrimidine derivatives using successive regio- and 

chemoselective metalations.  

 

1.4.1  Functionalizations of chloropyrimidine derivatives using lithium bases 

 

Chloropyrimidines are important heterocyclic scaffolds and their derivatives occupy a 

priviledge position among substances with pharmaceutical or agrochemical applications.51 

Quéguiner and Radinov72 have reported the regioselective lithiation of polychloropyrimidines 

using classical lithium amide bases (Scheme 33). 4,6-Dichloropyrimidine (74) was metalated 

in THF at –80 °C for 30 min using LDA. The addition order is very important (substrates to 

metalating agents in order to secure thereby an excess of the latter in the reaction mixture) to 

avoid decomposition. Trapping with typical electrophiles furnished the new substituted 

pyrimidines 75 in moderate yields (44 - 66%). 
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1) LDA, -80 °C, THF

74

N

N

Cl

Cl

Me3Si

75a: 44%

2) Me3SiCl

 
 

Scheme 33: Lithiation of 4,6-dichloropyrimidine (74) using LDA and trapping with Me3SiCl. 

 

The sole example of a pyrimidine deprotonation at the C2 position was reported by 

Kanamoto; 73  4-(tert-butoxycarbonyl)amino-2-(trimethylsilyl)-pyrimidine (76) was obtained 

in 14% yield after deprotonation with n-BuLi and trapping with TMSCl (Scheme 34). 
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Scheme 34: Lithiation at position 2 using n-BuLi and trapping with Me3SiCl. 

 

                                                 
72 (a) Turck, A.; Plé, N.;  Quéguiner, G. Heterocycles 1994, 37, 2149. (b) Radinov, R.; Chanev, C.; Haimova, M. 
J. Org. Chem. 1991, 56, 4793. 
73 Wada, A.; Yamamoto, J.; Hamaoka, Y.; Ohki, K.; Nagai, S.; Kanatomo, S. J. Heterocycl. Chem. 1990, 27, 
1831. 
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1.4.2  Regio- and chemoselective functionalizations of chloropyrimide derivatives 

using mixed Mg/Li bases 

 

Recently, our group reported a new neutral mixed-metal base TMP2Zn·2MgCl2·2LiCl42 (35), 

which turned out to be very efficient for the metalation of aromatics and heteroaromatics 

bearing sensitive functionalities under mild conditions. 

 

We first investigated the direct zincation of inexpensive starting materials such as 4,6-

dichloropyrimidine (74) and 2,4,6-trichloropyrimidine (77) using TMP2Zn·2MgCl2·2LiCl 

(35; 0.55 equiv, 25 °C) (Scheme 35). 
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N XCl
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E
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74: X = H
77: X = Cl
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80: X = Cl

79a-d: X = H; 72 - 91%
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Scheme 35: Regio- and chemoselective metalation of 4,6-dichloropyrimidine (74) and 2,4,6-

trichloropyrimidine (77) at the C5 position using TMP2Zn·2MgCl2·2LiCl (35; 0.55 equiv) and 

trapping with electrophiles. 

 

Treatment of 4,6-dichloropyrimidine (74) with TMP2Zn·2MgCl2·2LiCl (35; 0.55 equiv) 

provides the corresponding zinc reagent (78) after 45 min at 25 °C. Trapping with I2, PhCOCl 

(after transmetalation with CuCN·2LiCl),65 3-bromocyclohexene (after the addition of a 

catalytic amount of CuCN·2LiCl) and chloranil74 affords the 5-functionalized pyrimidines 

79a-d in 72 - 91% (entries 1-4 of Table 3). Smooth deprotonation of 2,4,6-trichloropyrimidine 

(77) can also be carried out under mild conditions using TMP2Zn·2MgCl2·2LiCl (35; 0.55 

equiv) and gives the zinc species (80) at 25 °C within 60 min. Quenching with typical 

electrophiles (I2, allyl bromide (after the addition of a catalytic amount of CuCN·2LiCl) and 

propionyl chloride (after transmetalation with CuCN·2LiCl)65) furnishes 5-substituted 

pyrimidines 81a-c in 83 - 90% yields (entries 5-7). A further metalation is also achieved at the 

position C2 by the addition of TMP2Zn·2MgCl2·2LiCl (35; 0.55 equiv) to 5-substituted 

pyrimidines (Scheme 36). Thus, 4,6-dichloro-5-iodopyrimidine (79a) was converted at 55 °C 

                                                 
74 (a) Krasovskiy, A.; Tishkov, A.; del Amo, V.; Mayr, H.; Knochel, P. Angew. Chem. Int. Ed. 2006, 45, 5010. 
(b) Iwanaga, H. U.S. Pat. Appl. US 20040062950, 2004; Chem Abstr. 2004, 140, 312117. 
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within 1 h to the 2-zincated species and was iodinated by reaction with I2 leading to the 2-

iodopyrimidine 82a in 61% yield (entry 8). Reaction with allyl bromide (after the addition of 

a catalytic amount of CuCN·2LiCl) furnishes the allyl derivative 82b in 51% yield (entry 9) 

(Scheme 36).  
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I
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Scheme 36: Chemoselective metalation and trapping of 5-iodo-4,6-dichloropyrimidine (79a) 

at the C2 position using TMP2Zn·2MgCl2·2LiCl (35; 0.55 equiv). 

 

The metalation of 2,5-dichloropyrimidine (83) can also be easily performed. Thus, treatment 

of 83 with TMP2Zn·2MgCl2·2LiCl (35; 0.55 equiv) provides the corresponding zinc reagent 

84 after 45 min at 25 °C. Trapping with I2 provides the iodopyrimidine 85a in 72% (entry 10). 

The formation of a new C-C bond is readily achieved by the Negishi62 cross-coupling giving 

the 4-aryled pyrimidines 85b and 85c in 78% and 73% (entries 11 and 12) (Scheme 37). 
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Scheme 37: Chemoselective metalation of 2,5-dichloropyrimidine (83) at the C4 position 

using TMP2Zn·2MgCl2·2LiCl (35; 0.55 equiv) and trapping with electrophiles. 
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Table 3: Products obtained by regio- and chemoselective zincation of chloropyrimidines of 

type 74, 77 and 83 with TMP2Zn·2MgCl2·2LiCl (35) and quenching with electrophiles. 

I2

bromocyclohexenec

substrate

PhCOClb

I2

allyl bromidec

EtCOClb

chloranil

I2

allyl bromidec

N

NCl Cl

Cl

N

N

Cl

N

N Cl

Cl
Cl

N

NCl

Cl

N

NCl

Cl

I

N

NCl

ClO

N

NCl

Cl

N

NCl

Cl

Cl

O

N

NCl

Cl

Cl

I

N

NCl

Cl

Cl

N

N

Cl

I

ICl

N

NCl

Cl

I

N

N

Cl

I

Cl

electrophile product yield, %aentry

1

3

5

6

7

79a

79c

81a

81b

91

72

83

90

86

2

79b

86

8
82a

61

74

74

74

4
79d

8274

77

77

79a

9
82b

5179a

a Isolated, analytically pure product. b  Transmetalation with 1.1 equiv of CuCN·2LiCl. c Catalyzed with 5 mol% of 
CuCN·2LiCl.
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3-iodobenzotrifluorideb

substrate

ethyl 4-iodobenzoateb

I2

N

N

Cl

Cl

EtO2C

N

N

Cl

Cl

N

N

Cl

Cl
F3C

N

N

Cl

I Cl

electrophile product yield, %aentry

10

85a

72

83

12
85c

7383

11
85b

7883

a Isolated, analytically pure product. b Negishi cross-coupling using Pd(dba)2 (3 mol%) and P(o-furyl)3 (6 mol%) .  

 

We have then extended this approach to the functionalization of other polychloropyrimidines 

and have investigated the metalation of 4,6-dichloro-2-(methylthio)pyrimidine (86). Thus, the 

treatment of (86) with TMPMgCl·LiCl (16a; 1.1 equiv, 25 °C, 30 min) leads to the 5-

magnesiated pyrimidine (87) (Scheme 38). Trapping with various electrophiles such as I2, 

PhCHO, NCCO2Et, CH3I, Me3SiCN or iodomethyl pivalate leads to the 5-substituted 

pyrimidines 88a-f in 76 - 92% yields (entries 1-6 of Table 4). Acylations can also be readily 

performed after transmetalation with CuCN·2LiCl.65 Quenching of the metalated species with 

4-fluorobenzoyl chloride, 3,3-dimethylbutanoyl chloride, PhCOCl and furan-2-carbonyl 

chloride furnishes 5-ketopyrimidine derivatives 88g-j in 84 - 93% yields (entries 7-10). 
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Scheme 38: Chemoselective magnesiation of 4,6-dichloro-2-(methylthio)pyrimidine (86) at 

the C5 position using TMPMgCl·LiCl (16a; 1.1 equiv) and trapping with electrophiles. 
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The metalation of 2-chloro-4-(methylthio)pyrimidine (89) can also be selectively achieved at 

the position 6 with TMPMgCl·LiCl (16a; 1.1 equiv, 25 °C, 5 min) providing the magnesium 

reagent 90 (Scheme 39). 
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Scheme 39: Chemoselective magnesiation of 2-chloro-4-(methylthio)pyrimidine (89) at the 

C6 position using TMPMgCl·LiCl (16a; 1.1 equiv) and trapping with electrophiles. 

 

Iodination by reaction with I2 leads to the iodopyrimidine derivative 91a in 71% yield (entry 

11). Reaction with (BrCCl2)2 furnishes the bromopyrimidine 91b in 79% yield (entry 12). A 

chlorination using F2ClCCCl2F gives the chloropyrimidine 91c in 72% yield (entry 13). 

 

Table 4: Products obtained by the magnesiation of 4,6-dichloro-2-(methylthio)pyrimidine 

(86) and 2-chloro-4-(methylthio)pyrimidine (89) with TMPMgCl·LiCl (16a) and reactions 

with electrophiles. 
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N

NCl

Cl

SMe

H3C

electrophile product yield, %aentry
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a Isolated, analytically pure product.  
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a Isolated, analytically pure product. b  Transmetalation with 1.1 equiv of CuCN·2LiCl.
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1.5 Application to the synthesis of biologically active compounds 

 

1.5.1  Preparation of pyrazolopyrimidines. Synthesis of the antiviral p38 kinase 

inhibitor (92d) 

 

This method is of great utility for the preparation of pharmaceutically active heterocycles such 

as pyrazolopyrimidines. 75  The treatment of 5-ketopyrimidine derivatives 88g-i with 

NH2NH2·H2O at 25 °C allows the formation of the pyrazolopyrimidines 92a-c in 73 - 83% 

yields (Scheme 40). 
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Scheme 40: Synthesis of the pyrazolopyrimidines 92a-c. 

 

As an application, we have prepared a p38 kinase inhibitor (useful as antiviral agent), recently 

patented by Roche, 76  starting from 4,6-dichloro-2-(methylthio)pyrimidine (86). The 

magnesiation of 86 with TMPMgCl·LiCl (16a) is complete within 30 min at 25 °C. 

Transmetalation with CuCN·2LiCl65 (1.1 equiv) and acylation with 2-chlorobenzoyl chloride 

(2 equiv, 25 °C, 1 h) provides the tetrasubstituted pyrimidine 88k in 90% yield. Subsequent 

treatment with NH2NH2·H2O furnished the p38 kinase inhibitor 92d in 79% yield (Scheme 

41). 

                                                 
75 (a) Smith, C. J.; Iglesias-Sigüenza, F. J.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 2758. (b) 
Gomtsyan, A.; Didomenico, S.; Lee, C.; Stewart, A. O.; Bhagwat, S. S.; Kowaluk, E. A.; Jarvis, M. F. Bioorg. 
Med. Chem. Lett. 2004, 14, 4165. (c) Revesz, L.; Blum, E.; Di Padova, F. E.; Buhl, T.; Feifel, R.; Gram, H.; 
Hiestand, P.; Manning, U.; Neumann, U.; Rucklin, G. Bioorg. Med. Chem. Lett. 2006, 16, 262. 
76 (a) Dewdney, N. J.; Gabriel, T.; McCaleb, K. L. WO 2007023115, 2007. (b) Arora, N.; Billedeau, R. J.; 
Dewdney, N. J.; Gabriel, T.; Goldstein, D. M.; O'Yang, C.; Soth, M.; Trejo-Martin, T. A. WO 2007023105, 
2007. (c) Arora, N.; Billedeau, R. J.; Dewdney, N. J.; Gabriel, T.; Goldstein, D. M.; O'Yang, C.; Soth, M. US 
2005197340, 2005. 
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Scheme 41: Application to the synthesis of a p38 kinase inhibitor (92d). 

 

1.5.2  Synthesis of the anti-inflammatory pyrrolopyrimidine sPLA2 (95) 

 

Similarly, we performed the synthesis of an sPLA2 inhibitor 95 having anti-inflammatory 

properties reported by Eli Lilly. 77  Iodination of the dichloropyrimidine 86 gives the 

iodopyrimidine derivative 88a in 90% yield. The substitution of the chlorine at position 6 

with benzylamine78 (1.7 equiv, THF, 25 °C, 20 min) leads to the aminopyrimidine 93 in 91% 

yield. The Sonogashira63 cross-coupling of the pyrimidine 93 with 1-butyne affords the 5-

alkynyl-6-aminopyrimidine 94 in 98% yield. Smooth cyclization with KOtBu79  (2 equiv, 

NMP, 25 °C, 1 h) finally provides the sPLA2 inhibitor 95 in 45% yield (Scheme 42).  
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Scheme 42: Synthesis of an sPLA2 inhibitor (95) by chemoselective magnesiation. 

 

 

 
                                                 
77 Hutchison, D. R.; Martinelli, M. J.; Wilson, T. M. WO 2000000201, 2000. 
78 Baindur, N.; Chadha, N.; Player, M. R. J. Comb. Chem. 2003, 5, 653. 
79 (a) Rodriguez, A. L.; Koradin, C.; Dohle, W.; Knochel, P. Angew. Chem. Int. Ed. 2000, 39, 2488. (b) Koradin, 
C.; Dohle, W.; Rodriguez, A. L.; Schmid, B.; Knochel, P. Tetrahedron 2003, 59, 1571. 
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1.5.3  Synthesis of the fungicide Mepanipyrim (100) 

 

To demonstrate the robustness of our metalation method, we also performed the synthesis of 

fungicide Mepanipyrim80  (100) (Scheme 43). 
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Scheme 43: Synthesis of the fungicide Mepanipyrim (100). 

 

Treatment of commercially available 2-chloropyrimidine (53) with TMPMgCl·LiCl (16a; 1.1 

equiv, –60 °C, 2 h) leads after transmetalation with ZnCl2 and quenching with I2 to 4-

iodopyrimidine (96) in 91% yield. A subsequent magnesiation of 96 at the position 6 can be 

readily achieved using TMPMgCl·LiCl (16a; 1.1 equiv, –60 °C, 1 h) and provides after 

trapping with (BrCCl2)2 2-chloro-4-bromo-6-iodopyrimidine (97) in 96%. The Negishi62 

cross-coupling furnishes the 4-methylpyrimidine derivative 98 in 58% yield. The 

Sonogashira63 reaction of 98 then affords the 6-alkynylpyrimidine 99 in 97%. Finally, a 

Buchwald-Hartwig Pd-catalyzed amination81 allows the substitution of the chlorine at the 

position 2 to give Mepanipyrim (100) in 81% yield. 

 

 

 

                                                 
80  (a) Nishide, H.; Nishimura, S.; Mitani, S.; Minamida, K.; Kanamori, F.; Ogawa, M.; Kanbayashi, S.; 
Tanimura, T.; Higuchi, K.; Kominami, H.; Okomoto, T.; Nishimura, A. PCT Int. Appl. WO  2005041663, 2005. 
(b) Nagata, T.; Masuda, K.; Maeno, S.; Miura, I. Pest Manag. Sci. 2004, 60, 399. (c) Nakamura, M.; Kono, Y.; 
Takatsuki, A. Biosci. Biotechnol. Biochem. 2003, 67, 139. (d) Ito, S.; Masuda, K.; Kusano, S.; Nagata, T.; 
Kojima, Y.; Sawai, N.; Maeno, S. Eur. Pat. Appl. EP 224339, 1987. 
81 (a) Garnier, E.; Audoux, J.; Pasquinet, E.; Suzenet, F.; Poullain, D.; Lebret, B.; Guillaumet, G. J. Org. Chem. 
2004, 69, 7809. (b) Hartwig, J. F. Acc. Chem. Res. 1998, 31, 852. (c) Hartwig, J. F. Pure Appl. Chem. 1999, 67, 
805. (d) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem. Res. 1998, 31, 805. 
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2.  Preparation of a New Active Selective Base for the Functionalization of 

Sensitive Aromatics and Heteroaromatics  

 

2.1. Introduction 

 

Directed metalation of aromatic and heterocyclic compounds is an important method for the 

functionalization of these scaffolds. Lithium bases have been extensively used for performing 

the ortho-metalation of various unsaturated systems.22 The use of magnesium bases, 

pioneered by Eaton,82 has found a renewed interest.83 Recently, lithium magnesiates24b,84,85 

have found useful synthetic applications. Mixed Mg/Li-bases of type R2NMgCl·LiCl such as 

2,2,6,6-tetramethylpiperidyl magnesium chloride - lithium chloride (TMPMgCl·LiCl; Turbo-

Hauser base) proved to be an especially effective metalating agent, compatible with functional 

groups such as an ester, a nitrile or an aryl ketone.24,25,26 However, more sensitive 

functionalities such as an aldehyde or a nitro group are not tolerated. Also, sensitive 

heterocycles may undergo fragmentation.39 Therefore, a range of zinc amides have been 

reported which provide after metalation organozinc reagents compatible with most 

functionalities. In a pioneer work, lithium di-tert-butyl-(2,2,6,6-tetra-methylpiperidino)zincate 

(t-Bu2Zn(TMP)Li) was reported by Kondo to be an excellent base for the zincation of various 

aromatics.40 However, the use of highly reactive zincates or related ate-bases41 is sometimes 

not compatible with sensitive functions such as an aldehyde or a nitro group. 

 

 

 

 

                                                 
82 (a) Eaton, P. E.; Martin, R. M. J. Org. Chem. 1988, 53, 2728. (b) Eaton, P. E.; Lee, C.-H.; Xiong, Y. J. Am. 
Chem. Soc. 1989, 111, 8016. (c) Eaton, P. E.; Lukin, K. A. J. Am. Chem. Soc. 1993, 115, 11370. (d) Zhang, M.-
X.; Eaton, P. E. Angew. Chem. Int. Ed. 2002, 41, 2169. 
83 (a) Hevia, E.; Honeyman, G. W.; Kennedy, A. R.; Mulvey, R. E.; Sherrington, D. C. Angew. Chem. Int. Ed. 
2005, 44, 68. (b) Andrikopolous, P. C.; Armstrong, D. R.; Graham, D. V.; Hevia, E.; Kennedy, A. R.; Mulvey, R. 
E.; O’Hara, C. T.; Talmard, C.  Angew. Chem. Int. Ed. 2005, 44, 3459. (c) Kondo, Y.; Akihiro, Y.; Sakamoto, T. 
J. Chem. Soc., Perkin Trans. 1 1996, 2331. (d) Shilai, M.; Kondo, Y.; Sakamoto, T. J. Chem. Soc., Perkin 
Trans. 1 2001, 442. (e) Bayh, O.; Awad, H.; Mongin, F.; Hoarau, C.; Bischoff, L.; Trécourt, F.; Quéguiner, G.; 
Marsais, F.; Blanco, F.; Abarca, B.; Ballesteros, R. J. Org. Chem. 2005, 70, 5190. (f) Eaton, P. E.;  Zhang, M.-X.; 
Komiya, N.; Yang, C.-G.; Steele, I.; Gilardi, R. Synlett 2003, 1275. 
84 (a) Kitagawa, K.; Inoue, A.; Shinokubo, H.; Oshima, K. Angew. Chem. Int. Ed. 2000, 39, 2481. (b) Farkas, J.; 
Stoudt, S. J.; Hannawalt, E. M.; Pajeski, A. D.; Richey, H. G. Organometallics 2004, 23, 423. (c) Awad, H.; 
Mongin, F.; Trécourt, F.; Quéguiner, G.; Marsais, F.; Blanco, F.; Abarca, B.; Ballesteros, R. Tetrahedron Lett. 
2004, 45, 6697. 
85 (a) Mulvey, R. E. Organometallics 2006, 25, 1060. (b) Mulvey, R. E. Chem. Commun. 2001, 1049. (c) 
Westerhausen, M. Dalton Trans. 2006, 4755. (e) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew. 
Chem. Int. Ed. 2007, 46, 3802. 
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2.2. Preparation of the active selective base TMPZnCl·LiCl (101) 

 

Recently, we have reported the preparation of a highly chemoselective base 

TMP2Zn·2MgCl2·2LiCl (35) for the directed zincation of sensitive aromatics and 

heteroaromatics, with a great tolerance for functionalities such as aldehydes or nitro groups.42 

However, some electron-poor functionalized arenes and heteroarenes still give with this 

reagent, unsatisfactory results in terms of yields and reaction selectivity. Moreover, several 

activated aromatics or heteroaromatics like nitro derivatives or pyridazines require 

metalations below –50 °C, which is not convenient for the reaction upscaling.42,86 Thus, we 

have explored the preparation of a more selective zinc base, which would allow 

chemoselective metalations at 25 °C, for the directed zincation of sensitive aryl and heteroaryl 

substrates. The treatment of 2,2,6,6-tetramethylpiperidine (TMPH) with n-BuLi (1.0 equiv, –

40 to –10 °C, 1 h) followed by the addition of ZnCl2 (1.1 equiv, –10 °C, 30 min) provides a 

ca. 1.3 M solution of TMPZnCl·LiCl (101) in THF, stable at room temperature (Scheme 44).87 

In contrast to TMP2Zn·2MgCl2·2LiCl (35), this complex base showed a very good 

chemoselectivity for the zincation at 25 °C of various sensitive aromatics and 

heteroaromatics. 
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Scheme 44: Preparation of 2,2,6,6-tetramethylpiperidyl zinc chloride lithium chloride 

(TMPZnCl·LiCl) (101). 

 

 

 

 

 

 

                                                 
86 Wunderlich, S. H.; Knochel, P. Chem. Commun. 2008, 47, 6387. 
87 In the absence of LiCl, the zinc base was much less soluble. 
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2.3. Regio- and chemoselective zincations of chlorodiazines and purines 

 

Several sensitive heteroarenes such as pyrimidines,72 pyridazines86 and pyrazines 88  are 

cleanly zincated at 25 °C using the base TMPZnCl·LiCl (101; Scheme 45 and Table 5). 

 

NCl
N Cl

NCl

E
N Cl

NCl

LiCl·ClZn

N Cl

TMPZnCl·LiCl (101)
(1.1 equiv), THF, 
25 °C, 30-45 min E

74, 103, 106 102, 104, 107 > 95% 79a,e,f, 105a-c, 
108a-c:  71-96% 

 

Scheme 45: Zincation of 4,6-dichloropyrimidine (74), 3,6-dichloropyridazine (103) and 2,6-

dichloropyrazine (106) using TMPZnCl·LiCl (101; 1.1 equiv; 25 °C) and trapping with 

electrophiles. 

 

Thus, the treatment of 4,6-dichloropyrimidine (74) with 101 converted it within 30 min at 25 

°C to the 5-zincated species 102. Trapping with I2 furnishes the iodopyrimidine 79a in 83% 

yield (entry 1 of Table 5). Reaction with furoyl chloride (after transmetalation with 

CuCN·2LiCl)65 provides the 5-ketopyrimidine 79e in 71% (entry 2). An allylation (after 

addition of CuCN·2LiCl) leads to the allylated derivative 79f in 89% (entry 3). Zincations of 

other sensitive heteroaromatics can be readily achieved by the addition of TMPZnCl·LiCl 

(101). Deprotonation of 3,6-dichloropyridazine (103)  with TMPZnCl·LiCl (101; 1.1 equiv, 

25 °C, 45 min) gives the zincated species (104), which can be trapped with I2, 4-

fluorobenzoyl chloride (after transmetalation with CuCN·2LiCl)65 or undergoes a Negishi62 

cross-coupling leading to the expected products 105a-c in 83-96% yield (entries 4-6). 

Similarly, 2,6-dichloropyrazine (106) is zincated quantitatively with TMPZnCl·LiCl (101; 1.1 

equiv, 25 °C, 30 min) and reacted with iodine or is subjected to the Negishi62 cross-coupling 

or an allylation with ethyl 2-(bromomethyl)acrylate 89  (after addition of CuCN·2LiCl) 

affording the expected products 108a-c in 72 - 90% yields (entries 7-9).  

 

 

 

 

 

                                                 
88 Turck A.; Trohay, D.; Mojovic, L.; Plé, N.; Quéguiner, G. J. Organomet. Chem. 1991, 412, 301. 
89 Villiéras, J.; Rambaud, M. Org. Synth. 1988, 66, 220. 
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Table 5: Products obtained by regio- and chemoselective zincation of diazines of type 74, 103 

and 106 with TMPZnCl·LiCl (101; 1.1 equiv; 25 °C) and quenching with electrophiles. 
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Other sensitive heterocycles such as purines90 can be metalated as well under mild conditions 

(Scheme 46). Caffeine (109)91 undergoes a smooth zincation using TMPZnCl·LiCl (101; 1.1 

equiv, 25 °C, 5 min) furnishing the zinc species 110. Negishi62 cross-coupling  provides the 

arylated caffeine 111a in 74% yield. Trapping with ethyl 2-(bromomethyl)acrylate89 (after 

addition of a catalytic amount of CuCN·2LiCl) leads to the purine derivative 111b in 69% 

yield. 
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Scheme 46: Zincation of caffeine (109) using TMPZnCl·LiCl (101; 1.1 equiv; 25 °C) and 

trapping with electrophiles. 

 

2.4. Regio- and chemoselective zincations of sensitive aromatics and heteroaromatics 

bearing aldehydes and nitro groups  

 

A unique advantage of the zinc base 101 is that very sensitive functional groups such as a 

nitro group can be tolerated at 25 °C (Schemes 47  and 48).45 Thus, 2,4-difluoronitrobenzene 

(112) was converted to the corresponding zinc reagent 113 by treatment with TMPZnCl·LiCl 

(101; 1.1 equiv, 25 °C, 45 min). The Negishi62 cross-coupling can be readily performed to 

furnish the aryl derivative 114a in 92% yield (Scheme 47). Trapping with benzoyl chloride 

(after transmetalation with CuCN·2LiCl)65 provides the ketone 114b in 84% yield. After 

quenching with I2, the iodobenzene derivative 114c was obtained in 90% yield.  

                                                 
90 (a) Boudet, N; Dubbaka, S. R.; Knochel, P. Org. Lett. 2007, 10, 1715. (b) Tobrman, T.; Dvořák, D. Org. Lett. 
2006, 8, 1291. 
91 Do, H.-Q.; Kashif-Khan, R. M.; Daugulis, O. J. Am. Chem. Soc. 2008, 130, 15185. 
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Scheme 47: Zincation of 2,4-difluoronitrobenzene (112) using TMPZnCl·LiCl (101; 1.1 

equiv; 25 °C) and trapping with electrophiles. 
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Scheme 48: Zincation of 2-chloro-3-nitropyridine (115), 4-fluoro-1-methoxy-2-nitrobenzene 

(118) and methyl 5-nitrofuran-2-carboxylate (121) using TMPZnCl·LiCl (101; 1.1 equiv, 25 

°C) and trapping with electrophiles. 
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Other sensitive electron-poor arenes and heteroarenes are metalated as well using the new 

base 101. Accordingly, 2-chloro-3-nitropyridine (115) undergoes a smooth metalation with 

TMPZnCl·LiCl (101; 1.1 equiv, 25 °C, 45 min) furnishing the zinc species 116. Trapping 

with 3-bromocyclohexene (after addition of CuCN·2LiCl) provides the pyridine 117 in 73% 

yield. Similarly, 4-fluoro-1-methoxy-2-nitrobenzene (118) was converted within 6 h at 25 °C 

to the corresponding zinc reagent 119. Quenching with ethyl 2-(bromomethyl)acrylate89 (after 

addition of CuCN·2LiCl) leads to the allyled derivative 120 in 67% yield. Zincation of methyl 

5-nitrofuran-2-carboxylate (121) can also be readily carried out using 101 (1.1 equiv) and 

furnishes the zinc species 122 in 30 min at 25 °C. Allylation with 3-bromocyclohexene (after 

addition of CuCN·2LiCl) gives the furan 123 in 72% yield (Scheme 48). 

 

An aldehyde is also well tolerated.43,46 Thus, benzo[b]thiophene-3-carbaldehyde (124) was 

converted to the zinc species 125 at 25 °C using TMPZnCl·LiCl (101; 1.1 equiv) within 30 

min reaction time (Scheme 49). The formation of a subsequent carbon-carbon bond is also 

easily carried out by a Negishi62 cross-coupling or after iodination, by a Sonogashira63 

reaction giving the arylated heterocycles 126a-c in 63 - 92% yield. 
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Scheme 49: Zincation of benzo[b]thiophene-3-carbaldehyde (124) using TMPZnCl·LiCl 

(101; 1.1 equiv; 25 °C) and trapping with electrophiles. 
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2.5. High temperature metalation of functionalized aromatics and heteroaromatics 

using TMPZnCl·LiCl (101) under microwave irradiation 

 

Over the last decades, microwave irradiation has been used to accelerate numerous organic 

reactions47 including organometallic reactions.48 Since organozinc reagents of the type RZnX 

display a good thermal stability and tolerate functional groups even at elevated 

temperatures,49 Wunderlich and Knochel extended the scope of metalations by forcing 

TMP2Zn-mediated zincations using microwave irradiation.50 We also applied microwave 

irradiation using TMPZnCl·LiCl (101) for the functionalization of arenes and heteroarenes. 

Thus, the direct zincation of the weakly activated arene 3-fluoroanisole (127) with 

TMPZnCl·LiCl (101; 1.1 equiv, 160 °C, 2 h) leads to the expected zinc species 128 in > 90% 

yield (Scheme 50). Negishi62 cross-coupling then furnishes the new substituted aromatic 129 

in 75% yield. The metalation of aromatics bearing sensitive functionalities such as an ester is 

also possible at high temperatures. Ethyl 3-fluorobenzoate (130) is zincated using 

TMPZnCl·LiCl (101; 1.1 equiv) at 160 °C within 2 h. The zinc intermediate 131 then 

undergoes a Negishi62 cross-coupling or an acylation using benzoyl chloride (after addition of 

CuCN·2LiCl)65 giving the substituted aromatics 132a and 132b in 76% and 72% respectively. 
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Scheme 50: Zincation of 3-fluoroanisole (127) and ethyl 3-fluorobenzoate (130) using 

TMPZnCl·LiCl (101; 1.1 equiv; 160 °C) with and without microwave and trapping with 

electrophiles. 
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Microwave irradiation is essential since heating of 127 and 130 using an oil bath at 160 °C 

provides only low conversions after 5 h of the zinc reagents 128 and 131. The metalation of 

sensitive heteroarenes can also be performed. Thus, coumarin (133) is zincated using 

TMPZnCl·LiCl (101; 1.1 equiv) and microwave irradiation at 80 °C within 1 h (Scheme 51). 

Negishi62 cross-couplings then provide the arylated coumarins 135a and 135b in 85% and 

71% respectively. 
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Scheme 51: Zincation of coumarin (133) using TMPZnCl·LiCl (101; 1.1 equiv) with and 

without microwave and trapping with electrophiles. 
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Scheme 52: Zincation of 2-chloropyrazine (136) using TMPZnCl·LiCl (101; 1.1 equiv; 70 

°C) and microwave irradiation and trapping with electrophiles. 
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2-Chloropyrazine (136) also undergoes a zincation using TMPZnCl·LiCl (101; 1.1 equiv) 

under microwave irradiation at 80 °C affording the zinc species 137. Negishi cross-

couplings,62, 92 and Sonogashira63 cross-coupling leads to the new pyrazine derivatives 138a-c 

in 67 - 82% yields (Scheme 52). 

 

As an application, we also prepared a JNK kinase inhibitor (139; JNK (Jun N-terminal 

kinase)) which is a stress-activated protein kinase that modulates pathways implicated in a 

variety of disease states).93, 94  Thus, the treatment of 138b with hydrazine in THF at 70 °C is 

complete within 30 min and furnishes the pyrazolopyrazine 139 in 70% yield (Scheme 53). 
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Scheme 53: Preparation of the JNK kinase inhibitor 139. 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
92 Negishi, E.; Bagheri, V.; Chatterjee, S.; Luo, F. T.; Miller, J. A.; Stoll, A. T. Tetrahedron Lett. 1983, 24, 5181. 
93 (a) Counceller, C. M.; Eichman, C. C.; Wray, B. C.; Stambuli, J. P. Org. Lett. 2008, 10, 1021. (b) Bhagwat, S. 
S.; Satoh, Y.; Sakata, S. T. WO 2002010137, 2002. 
94 Stebbins, J. L.; De, S. K.; Machleidt, T.; Becattini, B.; Vazquez, J.; Kuntzen, C.; Chen, L.-H.; Cellitti, J. F.; 
Riel-Mehan, M.; Emdadi, A.; Solinas, G.; Karin, M.; Pellecchia, M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 
16809.  
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3. Functionalization of Chloropyrazine Derivatives via Regio- and 

Chemoselective Metalations 

 

3.1. Introduction 

 

Pyrazines are important scaffolds that are highly active and widely distributed flavour 

compounds, formed either thermally like alkylpyrazines present in coffee, meat and potatoes 

or biosynthetically like 2-alkyl-3-methoxypyrazines present in wines such as Cabernet-

Sauvignon or like some other natural products such as Coelenterazine (140), a naturally 

occurring bioluminescent imidazolopyrazine of a marine origin bearing a trisubstituted 

pyrazine unit, isolated from the jellyfish Aequorea Victoria (Scheme 54).95  
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Scheme 54: Natural products containing a pyrazine scaffold. 

 

3.2. Functionalization of chloropyrazines using lithium bases 

 

The direct functionalization of these heterocycles by lithiation is difficult due to the 

electrophilic character of the ring, which readily undergoes the addition of various 

organometallics. This implies that low temperatures are quite often required for the metalation 

of pyrazines. 96  The metalation/functionalization sequence was already applied to a few 

                                                 
95 (a) Steglich, W.; Fugmann, B.; Lang-Fugmann, S. RÖMPP Encyclopedia Natural Products; Stuttgart; New 
York: Thieme 2000. (b) Vance, E. Nature 2008, 455, 726. (c) Knight, M. R.; Campbell, A. K.; Smith, S. M.; 
Trewavas, A. J. Nature 1991, 352, 524. 
96 (a) Zhang, C. Y.; Tour, J. M. J. Am. Chem. Soc. 1999, 121, 8783. (b) Liu W.; Wise, D. S.; Townsend, L. B. J. 
Org. Chem. 2001, 66, 4783. (c) Chevallier, F.; Mongin, F. Chem. Soc. Rev. 2008, 37, 595. 
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dichloropyrazines such as 2,6-dichloropyrazine (141) to obtain the compounds of type 142 in 

moderate to good yields. Nevertheless, the outcome of the reaction depends on the amount of 

base used since the formation of 3,5-difunctionalized products of type 143 could not be 

avoided using an excess of metalating agent and electrophiles, compatible with in situ 

trapping such as benzaldehyde, iodine or chlorotributylstannane (Scheme 55).97, 98 

 

N

N

Cl N

N

141 142

2) Electrophile

1) LTMP, THF, -70 °C, 2 h

Cl Cl Cl

E

N

N

Cl Cl

EE

143

44 - 70%

E = I, Me3Sn, CH(OH)Et, CH(OH)Ph, CHO  

 

Scheme 55: Lithiation of 2,6-dichloropyrazine (144) and trapping with electrophiles. 

 

Turck also reported as a key step the metalation of 2,3-dichloropyrazine (144) using LTMP 

for the synthesis of natural products such as compounds from Botryllus leachi.99 Thus, 144 

was metalated with LTMP at –75 °C and the lithium species was then trapped with p-

methoxybenzaldehyde to afford the corresponding alcohol 145 in 81% yield. 
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Scheme 56: Lithiation of 2,3-dichloropyrazine (144) and trapping with electrophiles. 

 

3.3. Total functionalization of the pyrazine scaffold using regio- and chemoselective 

metalations 

 

TMPMgCl·LiCl (16a) and TMPZnCl·LiCl (101) allow an easy access for the metalation of 

simple dichloropyrazines in good to excellent yields under mild conditions. Thus, 2,6-

                                                 
97 (a) Turck, A.; Mojovic L.; Quéguiner, G. Synthesis 1988, 881. (b) Turck, A.; Plé, N.; Dognon, D.; Harmoy, 
C.; Quéguiner, G. J. Heterocycl. Chem. 1994, 31, 1449. (c) Liu, W.; Walker, J. A.; Chen, J. J.; Wise D. S.; 
Townsend, B. L. Tetrahedron Lett. 1996, 37, 5325. 
98 (a) Ward J. S.; Merritt, L. J. Heterocycl. Chem. 1991, 28, 765. (b) Turck, A.; Trohay, D.; Mojovic, L.; Plé, N.; 
Quéguiner, G. J. Organomet. Chem. 1991, 412, 301. 
99 Buron, F.; Plé, N.; Turck, A.; Quéguiner, G. J. Org. Chem. 2004, 70, 2616. 
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dichloropyrazine (141) is zincated quantitatively with TMPZnCl·LiCl (101; 1.1 equiv, 25 °C, 

30 min) giving the zinc species 146, which undergoes Negishi62 cross-couplings providing the 

3-substituted heterocycles 147a-d in 81 - 86% yields (Scheme 57, entries 1-4 of Table 6). An 

allylation with allyl bromide (after the addition of a catalytic amount of CuCN·2LiCl) gives 

the allylated pyrazine 147e in 78% (entry 5). Trapping with iodine provides the iodopyrazine 

147f in 91% (entry 6). Sonogashira63 cross-coupling of in situ generated 147f allows the 

pyrazine derivative 148g in 83% yield (entry 7). Subsequent metalation of the arylpyrazine 

147a using TMPMgCl·LiCl (16a; 1.1 equiv, –40 °C, 60 min) provides the magnesium reagent 

148, which affords after transmetalation with CuCN·2LiCl65 and trapping with benzoyl 

chloride or furoyl chloride, the ketopyrazines 149a and 149b in 94% and 84% yields (entries 

8 and 9). Quenching with 3-bromocyclohexene gives the fully substituted pyrazine 149c in 

93% yield (entry 10). Negishi62 cross-coupling using ethyl 4-iodobenzoate provides the 

substituted heterocycle 149d in 94% yield (entry 11).  
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Scheme 57: Successive metalation of 2,6-dichloropyrazine (141) at positions 3 and 5 using 

TMPZnCl·LiCl (101) and TMPMgCl·LiCl (16a) and trapping with electrophiles. 

 

Other dichloropyrazines are metalated as well under mild conditions. Thus, the treatment of 

2,3-dichloropyrazine (144) with TMPMgCl·LiCl (16a; 1.1 equiv, 25 °C, 15 min) leads to the 

5-magnesiated pyrazine (150), which is trapped by electrophiles such as MeSO2SMe and 3-

bromocyclohexene (after transmetalation with ZnCl2 and addition of a catalytic amount of 

CuCN·2LiCl) leading to the expected pyrazines of type 151a and 151b in 67% and 72% 

(Scheme 58, entries 12 and 13 of Table 6). The formation of a new carbon-carbon bond is 

readily performed by a Negishi62 cross-coupling or a Sonogashira63 reaction of in situ 

generated 2,3-dichloro-5-iodopyrazine providing the 5-substituted heterocycles 151c and 

151d in 78% and 77% yields (entries 14 and 15). A further magnesiation was achieved at the 

last position by the addition of TMPMgCl·LiCl (16a; 1.1 equiv). Thus, 2,3-dichloro-5-
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(methylthio)pyrazine 151a is converted within 30 min at –40 °C to the 6-magnesiated species 

152. Reaction with 4-fluorobenzoyl chloride (after transmetalation with CuCN·2LiCl)65 

furnishes the ketopyrazine 153 in 72% yield (entry 16). 
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Scheme 58: Successive metalation of 2,3-dichloropyrazine (144) at positions 5 and 6 using 

TMPMgCl·LiCl (16a) and trapping with electrophiles. 

 

Table 6: Products obtained by regio- and chemoselective metalation of chloropyrazines of 

type 141 and 144 with TMPZnCl·LiCl (101; 1.1 equiv) and TMPMgCl·LiCl (16a; 1.1 equiv) 

and trapping with electophiles. 

2-iodothiopheneb

3-iodo-

substrate

N

S
N

Cl Cl

1-chloro-4-iodo

4-iodoanisoleb
N

N

Cl Cl

N

N

Cl Cl

OMe

N

N

Cl Cl

CF3

N

N

Cl Cl

Cl

electrophile product yield, %aentry

1

3

2

147a141

147b

141

4

a Isolated, analytically pure product. b Negishi cross-coupling using Pd(dba)2 and P(o-furyl)3.

141

141 benzotrifluorideb

86

83

81

83

147c

147d

-benzeneb

 

  



B: Results and Discussion  59 
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substrate electrophile product yield, %aentry

15

16

a Isolated, analytically pure product. b Obtained by Pd- catalyzed cross-coupling using Pd(dba)2, (o-furyl)3P, CuI and NEt3. c 
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3.4. Application to the synthesis of the marine bioluminescent natural product 

Coelenterazine 

 

As an application, we have carried out the total synthesis of Coelenterazine (140) 95a,100 in 9 

steps using a metalation step in 7% overall yield. Thus, a Negishi62 cross-coupling using 2,5-

dichloropyrazine101 (154) as electrophile provides the arylpyrazine 155 in 64% yield (Scheme 

60). A magnesiation using TMPMgCl·LiCl (16a; 1.1 equiv, –45 °C, 1 h) gives after 

transmetalation with ZnCl2 and acylation92 with benzoyl chloride the ketopyrazine 156 in 

71% yield. The chlorine substitution is then achieved using NH3 in BuOH102 furnishing the 

aminopyrazine 157 in 94% yield. Cleavage of the methyl ether with sodium thioethanolate in 

DMF103 yields the corresponding alcohol 158 in 72%. The reduction of the ketone is finally 

carried out using a Wolff-Kishner104 reduction affording Coelenteramine (159) in 93% yield.  

 

                                                 
100 (a) Kishi, Y.; Tanino, H.; Goto, T. Tetrahedron Lett. 1972, 27, 2747. (b) Inoue, S.; Sugiura, S.; Kakoi, H.; 
Hashizume, K.; Goto, T.; Iio, H. Chem. Lett. 1975, 141. (c) Inoue, S.; Kakoi, H.; Murata, M.; Goto, T.; 
Shimomura, O. Chem. Lett. 1979, 249. (d) Shimomura, O.; Johnson, F. H.; Morise, H. Biochemistry 1974, 13, 
3278. (e) Shimomura, O.; Musicki, B.; Kishi, Y. Biochem. J. 1989, 261, 913. (f) Gonzalez-Trueba, G.; Paradisi, 
C.; Zoratti, M. Anal. Biochem. 1996, 240, 308. (g) Jones, K.; Keenan, M.; Hibbert, F. Synlett 1996, 509. (h) 
Keenan, M.; Jones, K.; Hibbert, F. Chem. Commun. 1997, 3, 323. (i) Kakoi, H Chem. Pharm. Bull. 2002, 50, 
301. 
101 For the preparation of 2,5-dichloropyrazine, see: Klein, B.; Hetman, N. E.; O'Donnell, M. E. J. Org. Chem. 
1963, 28, 1682. 
102 Turck, A.; Mojovic, L.; Quéguiner, G. Synthesis 1988, 881. 
103 Burton, M.; De Tollenaere, C.; Dussart, F.; Marchand, C.; Rees, J. F.; Marchand-Brynaert, J. Synthesis 2001, 
768. 
104 Lehr, M. J. Med. Chem. 1997, 40, 3381. 
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Scheme 60: Synthesis of Coelenteramine (159). 

 

The preparation of the second moiety is presented as followed (Scheme 61).  
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Scheme 61: Synthesis of Coelenterazine (140). 

 

The addition of 4-(chloromethyl)phenyl acetate (160) to commercial Zn dust (2.5 equiv) in 

the presence of LiCl (2.5 equiv) at 25 °C is complete within 24 h. 105  Trapping with 

bromoacetyl chloride (after transmetalation with CuCN·2LiCl)65 furnishes the acylated 

                                                 
105 Metzger, A.; Schade, M. A.; Knochel, P. Org. Lett. 2008, 10, 1107. 
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derivative 161 in 61% yield. Addition of silver nitrate at 25 °C gives after 18 h the new 

substituted aromatic 162 in 82% yield. 106 Subsequent reaction of 162 with NaOAc in DMSO 

affords the corresponding acetoxy –keto aldehyde 163 in 68%.106 Finally, the condensation 

of 163 with Coelenteramine (159) provides the bioluminescent natural product Coelenterazine 

(140) in 64%.100h,106 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
106 Chen, F.-Q.; Zheng, J.-L.; Hirano, T.; Niwa, H.; Ohmiya, Y.; Ohashi, M. J. Chem. Soc., Perkin Trans. 1 1995, 
17, 2129. 
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4. Summary and Outlook.  

 

4.1. Functionalizations of Pyrimidine Derivatives via Regio- and Chemoselective 

Metalations 

 

In summary, we have described the full functionalization of the pyrimidine scaffold via 

successive regio- and chemoselective magnesiations using TMPMgCl·LiCl starting from 

simple commercially available starting materials (Scheme 61). 
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Scheme 61: Total functionalization of the pyrimidine scaffold. 
 

We then performed successive magnesiations of protected uracils and thiouracils using 

TMPMgCl·LiCl and TMP2Mg·2LiCl (Scheme 62). 
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Scheme 62: Total functionalization of the protected uracils and thiouracils. 
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We finally extended our methodology to the functionalization under mild conditions of 

polychloropyrimidines for the preparation of kinase inhibitors such as pyrrolo- and 

pyrazolopyrimidines and the fungicide Mepanipyrim (5 steps, 40%) (Scheme 63). 
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Scheme 63: Regio- and chemoselective functionalization of chloropyrimidine derivatives. 

 

4.2. Preparation of a New Active Selective Base for the Direct Zincation of Sensitive 

Aromatics and Heteroaromatics  

 

We have developed a new active selective base, which allows chemoselective zincations of 

sensitive heterocycles (pyridazines, pyrimidines, pyrazines and purines) at room temperature 

and tolerating sensitive functions such as an aldehyde or a nitro group. Especially, the 

compatibility with nitro groups opens new avenues in metalations of aromatic and 

heterocyclic substrates (Scheme 64). 
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Scheme 64: Regio- and chemoselective zincation of sensitive arenes and heteroarenes using 

TMPZnCl·LiCl (101). 

 

We have also extended the scope of our methodology with TMPZnCl·LiCl (101) by using 

microwave irradiation with unactivated substrates (Scheme 65). 
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Scheme 65: Zincation of arenes and heteroarenes using TMPZnCl·LiCl (101) under 

microwave irradiation. 
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4.3. Functionalizations of Pyrazine Derivatives via Regio- and Chemoselective 

Metalations  

 

 

 

  

e have described the multiple regio- and chemoselective functionalization of the pyrazine 

caffold using TMPMgCl·LiCl and TMPZnCl·LiCl as effective bases (Scheme 66). 

W

s

 

 

 

N

NCl Cl
1) TMPZnCl·LiCl,
     1.1 equiv

N

N

Cl Cl

OMe

N

N

Cl Cl

OMe
O

O

N

NCl

Cl

1) TMPMgCl·LiCl,
     1.1 equiv

N

NCl

Cl

Ph

N

NCl Cl

E1

N

NCl

Cl

E1

N

NCl

Cl

SMe

O

F

1) TMPZnCl·LiCl,
     1.1 equiv

1) TMPMgCl·LiCl,
     1.1 equiv

N

NCl Cl

E1 E2

N

NCl

Cl

E1

E2

147a: 86% 149b: 84%

2) E1 2) E2

141: 2,6-dichloropyrazine 147a-b: 75 - 83% 149a-d: 74 - 94%

2) E1 2) E2

144: 2,3-dichloropyrazine 151a-d: 67 - 78% 153: 72%

151d: 77% 153: 72%

 

Scheme 66: Regio- and chemoselective successive metalations of chloropyrazine derivatives.

 

e reported as a direct application the synthesis of Coelenteramine (159), the precursor of the 

ioluminescent natural product Coelenterazine (140) (Scheme 67). 

 

 

W
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N

N Cl

Cl

N

N NH2

HO

MeO

ZnCl

N

N Cl

MeO

N

N NH2

HO

O

N

N Cl

O

MeO

N

N NH2

O

MeO

1) TMPMgCl·LiCl
    (1.1 equiv),
    THF, -45 °C, 1 h
2) ZnCl2 (1.1 equiv)

64% 71%

(0.8 equiv)

Pd(dba)2 (2 mol %),
tfp (4 mol %), THF,
25 °C, 1.5 h

3) PhCOCl
    (1.5 equiv)
    Pd(PPh3)4

    (4 mol %)

NH3, BuOH,
180 °C, 12 h

72% 94%
Coelenteramine (159): 93%

EtSH, NaH,
DMF, 100 °C,
15 h

NH2NH2·H2O,
KOH, ethanediol,
240 °C, 3 h

 

 

Scheme 67: Synthesis of Coelenteramine (159). 

 

e finally performed the preparation of the 1,2-ketoaldehyde 163 to afford the synthesis of 

oelenterazine (140) (Scheme 68). 

 

W

C

 

 

OAc

O2NO
O

OAc

O
O

H

OAc

O

Br

N
H

N

HO

N

O OH

OAc

Cl 61% 82%

NaOAc·3H2O
DMSO, 25 °C, 
40 min

163: 68%140: 64%

159, EtOH, HCl,
80 °C, 4.5 h

1) Zn (2.5 equiv),
    LiCl (2.5 equiv),
    THF, 25 °C, 24 h

2) CuCN·2LiCl
3) bromoacetyl
    chloride

AgNO3, MeCN,
25 °C, 18 h

 

 

Scheme 68: Synthesis of Coelenterazine (140). 
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1. eneral Considerations 

 

All reactions were carried out with magnetic stirring and, if air or moisture sensitive, in 

flame-dried glassware under argon. Syringes were used to transfer reagents, and solvents were 

purged with argon prior to use.  

 

Solvents

G

 

 
Solvents were dried according to standard methods by distillation from drying agents as stated 

below and were stored under argon. 

CH2Cl2 and toluene were predried over CaCl2(  and distilled from CaH2(s).  

Diethyl ether and THF were continuously refluxed and freshly distilled from sodium 

benzophenone ketyl under nitrogen. 

Dimethylformamide (DMF) was heated to reflux for 14 h over CaH2(s) and distilled from 

CaH2(s). 

Ethanol was treated with phthalic anhydride (25 g/L) and sodium, heated to reflux for 6 h and 

distilled. 

Methanol was treated with , heated to reflux for 6 h 

nd distilled. 

riethylamine was dried over KOH(s) and distilled from KOH(s).  

eagents: Metal salts solution

s)

 magnesium turnings (20 g/L) and sodium

a

T

 

R   

uCN·2LiCl solution (1.0 M/THF) was prepared by drying CuCN (869 mg, 10 mmol) and 

iCl (848 mg, 20 mmol) in a Schlenk flask under vacuum for 5 h at 140 °C. After cooling to 

5 °C, dry THF (10 mL) was added and stirred continuously until the salts were dissolved.  

 

ZnCl2 solution (1.0 M/THF) was prepared by drying ZnCl2 (20.45 g, 150 mmol) under 

vacuum for 5 h at 150 °C. After cooling to 25 °C, dry THF (150 mmol) was added and stirred 

continuously until the salts were dissolved.  

 

Lithiated reagents

 

C

L

2

 

 
n-Butyllithium was used as a 1.5 M solution in hexane purchased from Chemetall. 
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Magnesiated reagents 

 
i-PrMgCl·LiCl: A dry three-necked flask equipped with an argon inlet, a dropping funnel 

 THF (50 mL) was added dropwise, keeping the temperature 

f the mixture below 30 °C (water bath). After the addition was complete, the reaction 

as stirred for 12 h at 25 °C. The grey solution of i-PrMgCl·LiCl was cannulated to 

ined and the i-PrMgCl·LiCl solution was titrated prior to 

itrogen-flushed 250 mL Schlenk flask, equipped with a 

T , 120 mmol). 2,2,6,6-Tetramethylpiperidine (TMPH) (17.8 g, 126 mmol, 1.05 equiv.) 

leted (ca. 48 h).  The solution of TMPMgCl·LiCl was titrated by using benzoic 

o ure.26 

and a thermometer was charged with magnesium turnings (110 mmol) and anhydrous LiCl 

(100 mmol). A small amount of THF was added to cover the magnesium, and a solution of 

isopropyl chloride (100 mmol) in

o

mixture w

another flask under argon and removed in this way from excess of magnesium. A yield of ca. 

95-98 % of i-PrMgCl·LiCl was obta
107 use according to reported literature.

 

TMPMgCl·LiCl (16a): A dry and n

magnetic stirrer and a septum, was charged with freshly titrated i-PrMgCl·LiCl (100 mL, 1.2 

M in HF

was added dropwise at 25 °C. The reaction mixture was stirred at 25 °C until gas evolution 

was comp 24

acid in dry THF and 4-(phenylazo)diphenylamine as an indicator. 

 

TMP2Mg·2LiCl (26): was prepared according to the known pr ced

 

Zincated reagents 

 

TMP2Zn·2MgCl2·2LiCl (35): was prepared according to the known procedure.  

 

TMPZnCl·LiCl (101): A dry and argon flushed 250 mL Schlenk-flask, equipped with

42

 a 

agnetic stirrer and a septum, was charged with freshly 2,2,6,6-tetramethylpiperidine (10.22 

owly to –10 °C for 1 h. ZnCl2 (1.0 M in THF, 66 

L, 66 mmol) was dropwise added and the resulting solution was stirred for 30 min at –10 °C 

n at 25 °C. The solvents were then removed under vacuum affording a 

ellowish solid. Freshly distilled THF was then slowly added under vigorous stirring until the 

m

mL, 60 mmol) dissolved in THF (60 mL). This solution was cooled to –40 °C and n-BuLi (2.4 

M in hexane, 25 mL, 60 mmol) was dropwise added. After the addition was complete, the 

reaction mixture was allowed to warm up sl

m

and then for 30 mi

y

                                                 
107

8
 (a) Lin, H. S.; Paquette, L. Synth. Commun. 1994, 24, 2503. (b) Krasovskiy, A.; Knochel, P. Synthesis 2006,  

90. 
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salts were completely dissolved.108 The freshly prepared TMPZnCl·LiCl (101) solution was 

trated prior to use at 25 °C with benzoic acid using 4-(phenylazo)diphenylamine as ti

indicator. 

 

Others reagents 

 

The following reagents were prepared according to literature procedures:  

palladium(II)bis(dibenzylidenacetone),  tri-(2-furyl)phosphine,  ethyl 2-(bromomethyl)-

acrylate,89 and S-phenyl benzenesulfonothioate.

109 110

111 

 

Chromatography 

4 2 2SO4 (12.0 mL) in water 

(230 mL). 

atography was performed using SiO2 60 (0.04-0.063 mm, 230-400 mesh 

inium oxide 90 active neutral (0.063-0.200 mm, 70-230 mesh 

STM), grade III,112 from Merck. 

ed using PSC-Plates 20 x 20 cm, Kieselgel 60 F , 2 mm, from 

 
Thin layer chromatography (TLC) was performed using aluminium plates coated with SiO2 

(Merck 60, F-254). The spots were visualized by UV light and/or by staining of the TLC plate 

with the solution bellow followed, if necessary, by heating with a heat gun: 

 KMnO4 (0.3 g), K2CO3 (20 g), KOH (0.3 g) in water (300 mL) 

 Neat iodine absorbed on silica gel 

 Phosphormolybdic acid (5.0 g), Ce(SO )  (2.0 g), conc. H

 

Flash column chrom

ASTM) from Merck or alum

A

 

Preparative TLC were perform 254

Merck. 

 

The diameters of the columns and the amount of silicagel were calculated according to the 

recommendation of W. C. Still.113 

 

                                                 
108 Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837. 
109 Takahashi, Y.; Ito, T.; Sakai, S. Chem. Commun. 1970, 1065. 
110 Allen, D. W.; Hutley, B. G.; Mellor, M. T. J. J. Chem. Soc. Perkin Trans. II 1972, 63. 
111 Fujiki, K.; Tanifuji, N.; Sasaki, Y.; Yokoyama, T. Synthesis 2002, 343. 

ll, W. C.; Khan, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923. 

112 Brockmann, H.; Schodder, H. Ber. Deut. Chem. Ges. 1941, 74, 73. 
113 Sti
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Analytical Data 

 
NMR-spectra were recorded on Bruker ARX 200, AC 300, WH 400 or AMX 600 

instruments. Chemical shifts are reported as δ–values in ppm relative to the deuterated solvent 

eak: CDCl  (δ 3 H = 7.25; δ C (ppm) = 77.0), DMSO-d6 (δ 6 H = 2.49; δ C(ppm) = 39.5).  

tion of the observed signal multiplicities, the following abbreviations were 

sed: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), td (doublet of triplets), q 

elting points are uncorrected and were measured on a Büchi B.540 apparatus. 

Smiths Detection 

bers (cm ). For the band characterization, the 

(weak).

 10 m, diameter: 0.25 mm; film thickness: 0.25 μm). The 

as accomplished using a flame ionization detector. Depending on the retention 

ectra were recorded on a Finnigan MAT 95Q or Finnigan MAT90 instrument for 

tron impact ionization (EI). High resolution mass spectra (HRMS) were recorded on the 

atography with mass spectroscopic detection, a GC-MS of 

e type Hewlett-Packard 6890 / MSD 5793 networking was used (column: HP 5-MS,  

Hewlett-Packard; 5% phenylmethylpolysiloxane; length: 15 m, diameter 0.25 mm; film 

μm). 

p 3

For the characteriza

u

(quartet), quint (quintet), sext (sextet), sept (septet), br (broad). If not otherwise noted, the 

coupling constants given are (CH)- coupling constants. 

 

M

 

Infrared spectra were recorded from 4000-400 cm-1 on a Nicolet 510 FT-IR or a Perkin- 

Elmer 281 IR spectrometer. Samples were measured either as film between potassium 

bromide plates (film), as potassium bromide tablets (KBr), or neat (

DuraSampl IR II Diamond ATR). 
-1The absorption bands are reported in wavenum

following abbreviations were used: br (broad), vs (very strong), s (strong), m (medium), w 

 

 

Gas chromatography (GC) was performed with machines of the types Hewlett-Packard 

6890 or 5890 Series II, using a column of the type HP 5 (Hewlett-Packard, 5% 

phenylmethylpolysiloxane; length:

detection w

time of the substrate, decane or tetradecane were used as internal standards. 

Mass Sp

elec

same instrument. 

For the combination of gas chrom

th

thickness: 0.25 
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2. Functionalizations of Pyrimidine Derivatives via Regio- and 

),

Chemoselective Magnesiations 

 

2.1. General procedure for the deprotonation using TMPMgCl·LiCl (16a  

TMP2Mg·2LiCl (26) or TMP2Zn·2MgCl2·2LiCl (35) as metalating agents 

(GP1) 

 

A dry and argon flushed 10 mL Schlenk-flask, equipped with a magnetic stirrer and a septum, 

as charged with TMPMgCl·LiCl (16a) (1.1 equiv) or TMP2Mg·2LiCl (26) (1.1 equiv) or 

in THF was 

ropwise added at the temperature T1. The completion of the metalation was checked by GC 

ith sat. aqueous NH4Cl solution . The aqueous layer was 

2.2. General procedure for the reaction with acyl chlorides (GP2)

w

TMP2Zn·2MgCl2·2LiCl (35) (1.1 equiv). The pyrimidine substrate (1.0 equiv) 

d

analysis of reaction aliquots quenched with a solution of I2 in THF. The electrophile or its 

solution in THF was added at the temperature T2. After the completion of the reaction 

(checked by GC analysis of reaction aliquots quenched with sat. aqueous NH4Cl solution), the 

reaction mixture was quenched w

extracted with diethyl ether. The combined organic extracts were dried with Na2SO4 and 

concentrated in vacuo. The crude residue was purified by filter column chromatography. 

 

 

h sat. aq. NH4Cl 

 

According to GP1, the freshly prepared magnesium or zinc reagent was cooled to −30 °C, and 

CuCN·2LiCl65 (1.1 equiv, 1.00 M in THF) was added and stirred for 30 min. Thereafter, acyl 

chloride (2.0 equiv) was added at −30 °C, and the reaction mixture was warmed to 25 °C and 

stirred for the appropriate time. The reaction mixture was quenched wit

solution extracted with Et2O and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated in vacuo. The crude residue was purified by filter column chromatography. 

 

2.3. Starting material synthesis 

 

Synthesis of 2,4-bis(dimethylthio)pyrimidine (70): 

 

N

NS S
CH3H3C
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A solution of sodium methanethiolate (5.05 g, 72 mmol, 3 equiv) and 2,4-dichloropyrimidine 

(3.58 g, 24 mmol) in 50 mL THF was heated at 80 °C for 4 h. A sat. aq. NH4Cl solution (100 

L) was added and the crude was then extracted with ether (3 x 150 ml), dried over Na2SO4, 

H N

2.51
13C NMR (CDCl3, 75 MHz): δ (ppm) = 171.9, 170.4, 153.9, 113.7, 13.9, 12.2. 

+

m

filtrated and concentrated in vacuo to furnish the pure colourless oil 70 in a quantitative yield. 
1 MR (CDCl3, 300 MHz): δ (ppm) = 8.07 (d, 1 H, J = 5.6 Hz), 6.78 (d, 1 H, J = 5.6 Hz), 

 (s, 6 H).  

MS (EI, 70 eV) m/z (%): 172 (M , 100), 157 (43), 139 (44), 125 (31), 111 (50), 47 (13). 

IR (neat)  (cm-1): 3087 (w), 3003 (w), 2929 (w), 1523 (s), 1478 (s), 1431 (m), 1407 (m), 

1354 (m), 1312 (w), 1288 (w), 1251 (s), 1170 (m), 1098 (m), 977 (w), 964 (w), 832 (w), 816 

(w), 769 (s), 750 (w), 603 (w). 

HRMS (EI) for C6H8N2S2 (172.0129): 172.0122. 

 

2.4. Preparation of polyfunctionalized pyrimidines 

 

Synthesis of 2-bromo-4-(methylthio)pyrimidine (57a): 

 

N Br

N

MeS

 

er 

ltration, the solvent was evaporated in vacuo. Purification by flash chromatography 

nd 57a as a colourless solid (981 mg, 81%). 

.p.: 50.8 – 53.2 °C. 

 H), 7.09 (d, J = 5.3 Hz, 1 H), 2.54 (s, 3 

). 
13C-NMR (CDCl3, 75 MHz) δ: 173.6, 155.7, 152.5, 117.4, 12.7. 

MS (EI, 70 eV) m/z (%): 206 (97), 204 (100) [79Br-M+], 158 (8), 124 (19), 79 (5).  

 

2-Bromopyrimidine (55) (960 mg, 6.0 mmol) dissolved in THF (6 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a) (1.00 M in THF, 6.6 mL, 6.6 mmol) at −55 oC for 1.5 h 

according to GP1. S-Methyl methanethiolsulfonate (1.136 g, 9.0 mmol) was added dropwise 

at −55 °C, the resulting mixture was allowed to warm up fast at −30 °C and then slowly to 

room temperature. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 

mL), then extracted with diethyl ether (5 × 50 mL) and dried over anhydrous Na2SO4. Aft

fi

(CH2Cl2/pentane 1:3) furnished the compou

m
1H-NMR (CDCl3, 300 MHz) δ: 8.09 (d, J = 5.3 Hz, 1

H
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IR (ATR) 
~

 (cm-1): 3060, 3002, 2925, 1546, 1499, 1396, 1318, 1199, 1171, 1150, 1083, 

972, 830, 791, 752, 721, 672. 

HRMS (EI) for C5H5BrN2S (203.9357): 203.9351. 

 

Synthesis of 2-bromo-4-(phenylthio)pyrimidine (57b): 

 

NPhS Br

N
 

 

2-Bromopyrimidine (55) (960 mg, 6.0 mmol) dissolved in THF (6 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a) (1.00 M in TH

according to GP1. S-Phenyl benzenethiolsulfonate 

F, 6.6 mL, 6.6 mmol) at −55 oC for 1.5 h 

(2.253 g, 9.0 mmol) dissolved in 9 mL 

−55 °C, the resulting mixture was allowed to warm up fast at -30 

nched with a sat. aq. 

Cl solution (50 mL), then extracted with diethyl ether (5 × 50 mL) and dried over 

2 4 in vacuo. Purification by flash 

atography (CH2Cl2/pentane 1:3) furnished the compound 57b as a colourless solid 

(1.232 g, 77%). 

m.p.: 83.7 – 85.0 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 8.09 (d, J = 5.4 Hz, 1 H), 7.45 − 7.60 (m, 5 H), 6.64 (d, J = 

THF was added dropwise at 

°C and then

NH

 slowly to room temperature. The reaction mixture was que

4

anhydrous Na SO . After filtration, the solvent was evaporated 

chrom

5.4 Hz, 1 H). 
13C-NMR (CDCl3, 75 MHz) δ: 172.6, 157.3, 151.9, 135.4, 130.5, 130.1, 126.7, 115.5. 

MS (EI, 70 eV) m/z (%): 267 (100), 265 (96) [79Br-M+], 187 (79), 109 (17).  

IR (ATR) 
~

 (cm-1): 3060, 3021, 1542, 1509, 1473, 1443, 1396, 1314, 1158, 1144, 1092, 

1067, 1020, 1001, 974, 828, 790, 757, 691, 675. 

HRMS (EI) for C10H7BrN2S (265.9513): 265.9505. 

 

Synthesis of 2-bromo-4-iodopyrimidine (57c): 

 

N

NI Br
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2-Bromopyr midine (55) (960 mg, 6.0 mmol) dissolved in THF (6 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a

i

) (1.00 M in THF, 6.6 mL, 6.6 mmol) at −55 oC for 1.5 h 

1.00 M in THF, 6.6 mL, 6.6 mmol) was 

erformed and the resulting mixture was allowed to warm up slowly to rt. Iodine (2.284 g, 9.0 

wise and the resulting mixture was 

tirred for 45 min at rt. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 

mL) and sat. aq. Na2S2O3 (30 mL) was added, extracted with diethyl ether (5 × 50 mL) and 

dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography on silica (CH2Cl2 pound 

7c as a coulourless solid (1.327 g, 85%). 

according to GP1. A transmetalation using ZnCl2 (

p

mmol) dissolved in dry THF (9 mL) was then added drop

s

/pentane 1:4) furnished the com

5

m.p.: 103.5 – 104.7 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.05 (d, J = 5.1 Hz, 1 H), 7.74 (d, J = 5.1 Hz, 1 H).  
13C-NMR (75 MHz, CDCl3) δ: 157.7, 151.2, 131.5, 129.9. 

MS (70 eV, EI) m/z (%): 286 (73), 284 (73) [79Br-M+], 157 (100), 127 (26).  

IR (ATR) 
~

 (cm-1): 3090, 3006, 1513, 1388, 1312, 1180, 1150, 976, 832, 750, 662. 

HRMS (EI) for C4H2BrIN2 (283.8446): 283.8438. 

 

Synthesis of 2,4-dibromopyrimidine (57d): 

 

N

NBr Br

 

 

2-Bromopyrimidine (55) (960 mg, 6.0 mmol) dissolved in THF (6 mL) was reacted with a 

 (2.931 g, 9.0 mmol) dissolved in dry THF 

ng mixture was stirred for 1 h at −30 °C 

nd then allowed to warm up slowly to rt. The reaction mixture was quenched with a sat. aq. 

ther (5 × 50 mL) and dried over anhydrous 

a2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:1) furnished the compound 57d as a colourless solid 

(1.008 g, 71%). 

m.p.: 67.7 – 68.9°C.  

, CDCl3) δ: 8.30 (d, J = 5.3 Hz, 1 H), 7.50 (d, J = 5.3 Hz, 1 H).  
13C-NMR (150 MHz, CDCl3) δ: 159.0, 153.2, 151.7, 124.6. 

solution of TMPMgCl·LiCl (16a) (1.00 M in THF, 6.6 mL, 6.6 mmol) at −55 oC for 1.5 h 

according to GP1. 1,2-Dibromotetrachloroethane

(9 mL) was then added dropwise at −55 °C, the resulti

a

NH4Cl solution (50 mL), extracted with diethyl e

N

1H-NMR (600 MHz
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MS (70 eV, EI) m/z (%): 238 (97), 236 (48) [79Br-M+], 157 (100), 124 (19), 79 (5).  

IR (ATR) 
~

 (cm-1): 3101, 3020, 1522, 1397, 1317, 1191, 1160, 1135, 978, 826, 752, 670. 

HRMS (EI) for C4H2Br2N2 (235.8585): 235.8576. 

 

Synthesis of 2-bromo-4-chloropyrimidine (57e): 

 

N

NCl Br

 

 

2-Bromopyrimidine (55) (1.60 g, 10 mmol) dissolved in THF (10 mL) was reacted with a 
o

−60 °C, then the 

e 

temperature. After filtration, the solvent was evaporated in vacuo. Purification by flash 

%) as a 

 46.5 – 47.7 °C. 

3 .3 Hz, 1 H), 7.35 (d, J = 5.3 Hz, 1 H). 

C-NMR (CDCl3, 75 MHz) δ: 162.1, 159.7, 152.2, 120.7. 

MS (EI, 70 eV) m/z (%): 194 (62), 192 (49) [79Br-M+], 157 (10), 115 (37).  

IR (ATR) 

solution of TMPMgCl·LiCl (16a) (1.10 M in THF; 10 mL, 11 mmol) at −55 C for 1.5 h 

according to GP1. FCl2CCClF2 (2.81 g, 15 mmol) was dropwise added at 

mixture was allowed to warm up slowly to −45 °C and was stirred overnight at the sam

chromatography (pentane/CH Cl  1:1) afforded the pyrimidine 57e (1.381 g, 712 2

yellowish solid. 

m.p.:
1H-NMR (CDCl , 300 MHz) δ: 8.44 (d, J = 5
13

~  (cm-1): 3090, 3048, 1720, 1526, 1404, 1318, 1189, 1161, 1092, 979, 859, 815, 

89, 755, 680. 7

HRMS (EI) for C4H2BrClN2 (191.9090): 191.9075. 

 

Synthesis of 2-bromo-4-trimethylsilanyl-pyrimidine (57f): 

 

N

NMe3Si Br

 

 

2-Bromopyrimidine (55) (480 mg, 3.0 mmol) dissolved in THF (3 mL) was reacted with a 

16a) (1.20 M in THF, 2.75 mL, 3.3 mmol) at −55 oC for 1.5 h 

°C. The reaction mixture 

solution of TMPMgCl·LiCl (

according to GP1. Trimethylsilyl cyanide (893 mg, 9.0 mmol) was then slowly added 
odropwise at −78 C, the resulting mixture was stirred for 1 h at –55 
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was quenched with a sat. aq. NH4Cl solution (25 mL), extracted with diethyl ether (5 × 25 

o. 

ne 1:3) furnished the compound 57f as a 

ellow oil (471 mg, 68%). 

, 1 H), 7.41 (d, J = 4.8 Hz, 1 H), 0.32 (s, 9 

).  
13C-NMR (75 MHz, CDCl3) δ: 183.5, 157.2, 153.8, 124.8, -2.5. 

MS (70 eV, EI) m/z (%): 232 (20), 230 (20) [79Br-M+], 215 (41), 151 (100), 137 (56), 73 

(73).  

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacu

Purification by flash chromatography (CH2Cl2/penta

y
1H-NMR (300 MHz, CDCl3) δ: 8.41 (d, J = 4.8 Hz

H

IR (ATR) 
~

 (cm ): 2961, 2895, 1550, 1503, 1396, 1317, 1251, 1152, 837, 771, 749, 667. 

HRMS (EI) for C7H11BrN2Si (229.9875) 229.9851. 

 

Synthesis of 2-bromo-4-(3-(trifluoromethyl)phenyl)pyrimidine (57g): 

 

-1

: 

CF3

N
 

N Br

s reacted with a 

T

P1. A transmetalation using ZnCl2 (1.00 M in THF, 6.6 mL, 6.6 mmol) was 

arm up slowly to rt. Pd(dba)2 (102 mg, 

 mol%) and P(o-furyl)3 (84 mg, 6 mol%) dissolved in THF (6 mL), and mixed with  the 

quiv) were then transferred via 

annula to the reaction mixture. The resulting mixture was stirred at 50 °C for 1 h and then 

quenched with a sat. aq. NH4Cl solution (50 mL), extracted with diethyl ether (5 × 50 mL) 

and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

atography (CH2Cl2/pentane 1:2) furnished the compound 57g 

J

 

2-Bromopyrimidine (55) (960 mg, 6.0 mmol) dissolved in THF (6 mL) wa

solution of MPMgCl·LiCl (16a) (1.00 M in THF, 6.6 mL, 6.6 mmol) at −55 oC for 1.5 h 

according to G

performed and the resulting mixture was allowed to w

3

addition of 3-iodobenzotrifluoride (2.122 g, 7.8 mmol, 1.3 e

c

Purification by flash chrom

(1.309 g, 72%) as a colourless solid. 

m.p.: 92.9 – 94.3 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.58 (d,  = 5.1 Hz, 1 H), 8.19 – 8.26 (m, 2 H), 7.69 (d, J = 

5.1 Hz, 1 H), 7.57 – 7.74 (m, 2 H).  
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13C-NMR (75 MHz, CDCl3) δ: 165.1, 159.9, 153.6, 135.6, 131.5 (q, J (C-F) = 32.6 Hz), 

130.4, 129.6, 128.2 (q, J (C-F) = 3.6 Hz), 124.0 (q, J (C-F) = 3.6 Hz), 123.6 (q, J (C-F) = 

272.6 Hz), 115.5. 

MS (70 eV, EI) m/z (%): 304 (50), 302 (56) [79Br-M+], 223 (100), 203 (45), 171 (17), 151 

TR)

(14).  

IR (A  
~

 (cm-1): 3040, 1615, 1560, 1533, 1419, 1335, 1271, 1156, 1110, 1092, 1064, 

999, 924, 848, 840, 808, 761, 703. 

HRMS (EI) for C11H6BrF3N2 (301.9666): 301.9659. 

 

Synthesis of ethyl 4-(2-bromopyrimidin-4-yl)benzoate (57h): 

 

EtO2C

N

N Br

 

 

2-Bromopyrimidine (55) (960 mg, 6.0 mmol) dissolved in THF (6 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a) (1.00 M in THF, 6.6 mL, 6.6 mmol) at −55 oC for 1.5 h 

according to GP1. A transmetalation using ZnCl2 (1.00  in THF, 6.6 mL, 6.6 mmol) was 

performed and the resulting mixture was allowed to warm up slowly to rt. Pd(dba)2 (102 mg, 

.7, 159.9, 153.7, 138.7, 133.3 130.2, 127.3, 116.0, 61.4, 

54 (20), 127 (17).  

M

3 mol%) and P(o-furyl)3 (84 mg, 6 mol%) dissolved in THF (6 mL), followed by the addition 

of ethyl 4-iodobenzoate (2.386 g, 7.8 mmol, 1.3 equiv) were then transferred via cannula to 

the reaction mixture. The resulting mixture was stirred at 50 °C for 1 h and then quenched 

with a sat. aq. NH4Cl solution (50 mL), extracted with diethyl ether (5 × 50 mL) and dried 

over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

flash chromatography (CH2Cl2/pentane, 1:3) furnished the compound 57h (1.492 g, 81%) as a 

colourless solid. 

m.p.: 128.9 – 130.1 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.60 (d, J = 5.3 Hz, 1 H), 8.15 (d, J = 6.2 Hz, 2 H), 8.11 (d, J 

= 6.2 Hz, 2 H), 7.71  (d, J = 5.3 Hz, 1 H), 4.40 (q, J = 7.1 Hz, 2 H), 1.40 (t, J = 7.1 Hz, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 165

14.3. 

MS (70 eV, EI) m/z (%): 308 (31), 306 (25) [79Br-M+], 280 (48), 278 (49), 263 (84), 261 

(100), 235 (19), 233 (20), 199 (29), 1
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IR (ATR) 
~

 (cm-1): 3135, 3083, 2992, 2903, 1711, 1612, 1563, 1531, 1503, 1476, 1430, 

1364, 1347, 1277, 1164, 1129, 1117, 1102, 1062, 1019, 984, 874, 850, 800, 780, 754, 712. 

HRMS (EI) for C13H11BrN2O2 (306.0004): 305.9975. 

sis of 2-bromo-4-(4-chloro-phenyl)pyrimidine (57i):  

 

Synthe

 

Cl

N

Br

2-Bromopyrimidine (55) (1.60 g, 10 mmol) dissolved in THF (10 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a) (1.10 M in THF; 10 mL, 11 mmol) at −55 oC for 1.5 h 

according to GP1. ZnCl2 (1.0 M in THF; 12 mL, 12 mmol) was dropwise added at −60 °C and 

the resulting mixture was allowed to warm up slowly to 25 °C for 3 h. Pd(dba)2 (115 mg, 

 mol %) and P(o-furyl)3 (93 mg, 4 mol %) dissolved in THF (10 mL) and mixed with 1-

N

 

 

2

chloro-4-iodobenzene (2.86 g, 12 mmol) were then transferred via cannula to the reaction 

mixture. The resulting mixture was stirred at 50 °C for 1 h. Purification by flash 

chromatography (pentane/CH2Cl2 2:1) furnished the pyrimidine 57i (1.810 g, 67%) as a 

yellowish solid. 

m.p.: 130.9 – 132.7 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.56 (d, J = 5.3 Hz, 2 H), 8.02 (d, J = 8.6 Hz, 1 H), 7.63 (d, J 

= 5.3 Hz, 1 H), 7.47 (d, J = 8.6 Hz, 2 H).  
13C-NMR (75 MHz, CDCl3) δ: 165.6, 159.7, 153.6, 138.3, 133.4, 129.6, 128.7, 115.2. 

MS (70 eV, EI) m/z (%): 270 (100), 268 (73) [79Br-M+], 191 (50), 137 (17).  

IR (ATR) 
~

 (cm-1): 3094, 1594, 1561, 1523, 1488, 1423, 1397, 1337, 1167, 1088, 1060, 

1010, 982, 817, 802, 763, 723, 660, 628. 

ClN2 (267.9403): 267.9412. HRMS (EI) for C10H6Br

 

Synthesis of 2-bromo-4-(phenylethynyl)pyrimidine (57j): 

 

N

N Br

Ph
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To the solution of generated in situ 2-bromo-4-iodopyrimidine 57c (starting from 2-

bromopyrimidine (55) for 2 mmol scale), NEt3 (14 mL), CuI (16 mg, 4 mol%), Pd(dba)2 (34 

mg, 3 mol%) and P(o-furyl)3 (28 mg, 6 mol%) in THF (2 mL) and phenylacetylene (205 mg, 

.00 mol, 1.0 equiv) were successively slowly added. The reaction mixture was stirred at rt 

q. NH4Cl solution (25 mL), 

xtracted with diethyl ether (5 × 25 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

1:1) furnished the compound 57j as a colourless solid (366 mg, 71%). 

m.p.: 109.5 – 110.9 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.52 (d, J = 4.9 Hz, 1 H), 7.58 – 7.61 (m, 2 H), 7.38 – 7.44 

, 3 H), 7.40 (d, J = 4.9 Hz, 1 H). 

2

for 0.5 h. The resulting mixture was quenched with a sat. a

e

(m
13C-NMR (75 MHz, CDCl3) δ: 159.0, 153.1, 153.0, 132.5, 130.4, 128.6, 122.0, 120.6, 96.3, 

88.8. 

MS (70 eV, EI) m/z (%): 260 (68), 258 (70) [79Br-M+], 180 (16), 179 (100), 152 (14), 127 

(39), 77 (15).  

IR (ATR) 
~

 (cm-1): 3050, 2923, 2227, 2195, 1549, 1512, 1489, 1325, 1170, 1156, 1083, 

1072, 1025, 974, 916, 890, 916, 890, 848, 748, 684, 553. 

HRMS (EI) for C12H7BrN2 (257.9793): 257.9795. 

 

Synthesis of 2-bromo-4-chloro-6-(methylthio)pyrimidine (58a): 

 

N

N BrMeS

Cl  

 

2-Bromo-4-(methylthio)pyrimidine (57a) (205 mg, 1.0 mmol) dissolved in THF (2 mL) was 

i M in THF, 1.24 mL, 1.1 mmol) at rt for 

in according to GP1. 1,2,2-Trichlorotrifluoroethane (281 mg, 1.5 mmol) was added 

s temperature for 30 min. The 

action mixture was quenched with a sat. aq. NH4Cl solution (10 mL), then extracted with 

diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:5) furnished 

the compound 58a as a colourless solid (181 mg, 76%). 

m.p.: 89.0 – 91.5 °C. 

reacted with a solut on of TMPMgCl·LiCl (16a) (0.89 

5 m

dropwise at rt and the resulting mixture was stirred at thi

re
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1H-NMR (CDCl3, 300 MHz) δ: 7.13 (s, 1 H), 2.56 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 175.0, 159.2, 151.2, 116.4, 13.0. 

MS (EI, 70 eV) m/z (%): 240 (100), 238 (75) [79Br-M+], 115 (16), 113 (53), 44 (32).  

IR (ATR) 
~

 (cm-1): 3094, 3003, 2927, 1531, 1483, 1371, 1323, 1268, 1210, 1101, 970, 849, 

809, 745. 

HRMS (EI) for C5H4BrClN2S (237.8967): 237.9023. 

 

Synthesis of 2,4-dibromo-6-(methylthio)pyrimidine (58b): 

 

N

NMeS Br

Br  

ethylthio)pyrimidine (57a) (205 mg, 1.0 mmol) dissolved in THF (2 mL) was 

reacted with a solution of TMPMgCl·LiCl (16a) (0.89 M in THF, 1.24 mL, 1.1 mmol) at rt for 

 

e was stirred at this temperature for 

a sat. aq. NH4Cl solution (10 mL), then 

xtracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, 

tography (CH2Cl2/pentane 

:4) furnished the compound 58b as a colourless solid (230 mg, 81%). 

m.p.: 101.3 – 102.8 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.31 (s, 1 H), 2.56 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 174.8, 151.2, 150.5, 120.7, 13.3. 

S (EI, 70 eV) m/z (%): 284 (100), 282 (47) [79Br-M+], 238 (7), 159 (8).  

 

2-Bromo-4-(m

5 min according to GP1. 1,2-Dibromotetrachloroethane (489 mg, 1.5 mmol) dissolved in THF 

(2 mL) was added dropwise at rt and the resulting mixtur

30 min. The reaction mixture was quenched with 

e

the solvent was evaporated in vacuo. Purification by flash chroma

1

M

IR (ATR) 
~

 (cm-1): 3085, 3003, 2925, 1522, 1468, 1359, 1248, 1197, 1093, 964, 843, 804, 

768. 

HRMS (EI) for C5H4Br2N2S (281.8462): 281.8437. 
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Synthesis of 2-bromo-4-iodo-6-(methylthio)pyrimidine (58c): 

 

NMeS Br

N

I  

-Bromo-4-(methylthio)pyrimidine (57a) (205 mg, 1.0 mmol) dissolved in THF (2 mL) was 

F, 1.24 mL, 1.1 mmol) at rt for 

 min according to GP1. Iodine (381 mg, 1.5 mmol) dissolved in THF (2 mL) was added 

dropwise at rt and the resulting mixture was stirred at this temperature for 30 min. The 

reaction mixture was quenched with a sat. aq. NH4Cl solution (10 mL) and sat. aq. Na2S2O3 

solution (10 mL) was added, extracted with diethyl ether (5 × 20 mL) and dried over 

nhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

 

2

reacted with a solution of TMPMgCl·LiCl (16a) (0.89 M in TH

5

a

chromatography (CH2Cl2/pentane 1:3) furnished the compound 58c as a colourless solid (254 

mg, 78%). 

m.p.: 122.5 – 124.0 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.56 (s, 1 H), 2.53 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 174.0, 150.5, 127.9, 126.3, 13.1. 

MS (EI, 70 eV) m/z (%): 332 (97), 330 (100) [79Br-M+], 206 (54), 178 (22), 127 (61), 98 

(65), 83 (41).  

IR (ATR) 
~

 (cm-1): 3121, 3075, 3013, 2930, 1553, 1484, 1290, 1230, 1194, 1117, 964, 868, 

 (58d): 

827, 804, 747. 

HRMS (EI) for C5H4BrIN2S (329.8323): 329.8321. 

 

Synthesis of 2-bromo-4-chloro-6-(3-(trifluoromethyl)-phenyl)pyrimidine

 

N

N B

CF3

Cl  

r
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2-Bromo-4-(3-(trifluoromethyl)phenyl)pyrimidine (57g) (1.213 g, 4.0 mmol) dissolved in 

HF (8 mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in THF, 4 mL, 4.4 

mmol) at −40 oC for 45 min according to GP1. 1,1,2-Trichlorotrifluoroethane (1.124 g, 6.0 

mmol) was then slowly added dropwise at −40 °C, the resulting mixture was then allowed to 

warm up slowly to rt. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 

L), extracted with diethyl ether (5 × 50 mL) and dried over anhydrous Na2SO4. After 

z (%): 338 (48), 336 (37) [ Br-M ], 259 (35), 257 (100), 196 (21), 176 

T

m

filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:5) furnished the compound 58d as a colourless solid (1.221 g, 91%). 

m.p.: 93.9 – 96.6 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.23 – 8.30 (m, 2 H), 8.80 – 8.83 (m, 1 H), 7.73 (s, 1 H), 

7.63 – 7.69 (m, 1 H).  
13C-NMR (75 MHz, CDCl3) δ: 166.2, 162.9, 152.5, 134.9, 131.9 (q, J (C-F) = 33 Hz), 130.7, 

129.9, 128.8 (q, J (C-F) = 3.6 Hz), 124.4 (q, J (C-F) = 3.6 Hz), 123.6 (q, J (C-F) = 272.7 Hz), 

115.9. 

MS (70 eV, EI) m/ 79 +

(19), 145 (21), 87 (27).  

IR (ATR) 
~

 (cm-1): 3131, 3070, 2961, 2930, 2868, 1724, 1615, 1551, 1517, 1478, 1452, 

0, 998, 977, 926, 895, 861, 

r C11H5BrClF3N2 (335.9277): 335.9273. 

phenyl)-6-(trimethylsilyl)pyrimidine (58e): 

1437, 1383, 1336, 1307, 1295, 1277, 1241, 1161, 1122, 1096, 107

807, 755, 690, 667, 636. 

HRMS (EI) fo

 

Synthesis of 2-bromo-4-(3-(trifluoromethyl)

 

N

N B

CF3

SiMe3  

r

 

2-Bromo-4-(3-(trifluoromethyl)phenyl)pyrimidine (57g) (304 mg, 1.0 mmol) dissolved in 

THF (2 mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in THF, 1 mL, 1.1 

mmol) at −40 oC for 45 min according to GP . Trimethylsilyl cyanide (149 mg, 1.5 mmol) 

was then slowly added dropwise at −40 °C, the resulting mixture was then allowed to warm 

up slowly to rt. The reaction mixture was quenched with a sat. aq. NH4Cl solution (10 mL), 

1
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extracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

1:4) furnished the compound 58e as a colourless solid (271 mg, 72%). 

m.p.: 82.2 – 83.2 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.23 – 8.29 (m, 2 H), 7.81 (s, 1 H), 7.75 – 7.77 (m, 1 H), 

7.60 – 7.65 (m, 1 H), 0.38 (s, 9 H).  
13C-NMR (75 MHz, CDCl3) δ: 184.0, 163.1, 154.2, 136.5, 131.6 (q, J (C-F) = 32.5 Hz), 

130.6, 129.6, 129.2, 127.9 (q, J (C-F) = 4.1 Hz), 124.4 (q, J (C-F) = 4.1 Hz), 123.8 (q, J (C-F) 

= 272.7 Hz), -2.4. 

MS (70 eV, EI) m/z (%): 376 (36), 374 (33) [79Br-M+], 361 (35), 359 (32), 295 (100), 285 

(24), 283 (21), 139 (29), 137 (28), 73 (64).  

IR (ATR) 
~

 (cm-1): 2961, 2899, 1553, 1499, 1473, 1437, 1341, 1313, 1272, 1251, 1220, 

1661, 1119, 1096, 1068, 838, 807, 789, 752, 688, 665, 623. 

HRMS (EI) for C14H14BrF3N2Si (374.0062): 374.0049. 

(methylthio)-6-(3-(trifluoromethyl)-phenyl)pyrimidine (58f): 

 

Synthesis of 2-bromo-4-

 

N

CF3

N Br

SMe  

2-Bromo-4-(3-(trifluoromethyl)phenyl)pyrimidine (57g) (304 mg, 1.0 mmol) dissolved in 

THF (2 mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in THF, 1 mL, 1.1 

mmol) at −40 oC for 45 min according to GP1. S-Methyl methanethiol sulfonate (189 mg, 1.5 

mmol) was then slowly added dropwise at −40 °C, the resulting mixture was then allowed to 

warm up slowly to rt. The reaction mixture was quenched with a sat. aq. NH4Cl solution (10 

L), extracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After 

 

m

filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:8) furnished the compound 58f as a colourless solid (265 mg, 76%). 

m.p.: 85.9 – 87.2 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.14 – 8.22 (m, 2 H), 7.71 – 7.74 (m, 1 H), 7.55 – 7.61 (m, 1 

H), 7.47 (s, 1 H), 2.60 (s, 3 H).  
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13C-NMR (75 MHz, CDCl3) δ: 174.3, 162.0, 152.8, 135.8, 131.4 (q, J (C-F) = 32.4 Hz), 

130.4, 129.5, 127.8 (q, J (C-F) = 3.6 Hz), 124.0 (q, J (C-F) = 3.6 Hz), 123.7 (q, J (C-F) = 

272.7 Hz), 112.8, 12.9. 

%): 351 (100), 349 (99) [79Br-M+], 317 (22), 241 (9), 239 (25).  MS (70 eV, ESI) m/z (

IR (ATR) 
~

 (cm-1): 1615, 1558, 1504, 1491, 1476, 1447, 1429, 1385, 1339, 1313, 1292, 

1230, 1184, 1168, 1117, 1096, 1070, 969, 923, 897, 853, 807, 758, 716, 690, 665, 636. 

mo-4-iodo-6-(trimethylsilyl)pyrimidine (58g): 

HRMS (ESI) for C12H8BrF3N2S (348.9622 (M+ + H)): 348.9621. 

 

Synthesis of 2-bro

 

I N Br

N

SiMe3  

 

2–Bromo-4-iodopyrimidine (57c) (285 mg, 1.0 mmol) dissolved in THF (2 mL) was reacted 

M

according to GP1. Trimethylsilyl cyanide (149 mg, 1.5 mmol) was then slowly added 

dropwise at −55 °C, the resulting mixture was stirred for 1 h at the same temperature. The 

reaction mixture was quenched with a sat. aq. NH4Cl solution (10 mL), extracted with diethyl 

ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:3) furnished 

the compound 58g as a colourless solid (330 mg, 93%). 

.p.: 64.3 – 66.6 °C. 

with a solution of TMPMgCl·LiCl (16a) (1.10  in THF, 1.0 mL, 1.1 mmol) at −55 oC for 1 h 

m
1H-NMR (400 MHz, THF-d8) δ: 8.03 (s, 1 H), 0.31 (s, 9 H).  
13C-NMR (100 MHz, THF-d8) δ: 182.8, 151.9, 137.1, 131.0, –2.7. 

MS (70 eV, EI) m/z (%): 358 (13), 356 (11) [79Br-M+], 340 (22), 338 (15), 276 (62), 231 

(100), 229 (98), 139 (41), 137 (39).  

IR (ATR) 
~

 (cm-1): 2957, 2898, 1518, 1449, 1250, 1218, 1168, 1134, 1120, 1078, 970, 837, 

776, 744, 728, 625. 

HRMS (EI) for C7H10BrIN2Si (355.8841): 355.8829. 
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Synthesis of 2-bromo-4-chloro-6-(phenylethynyl)pyrimidine (58h): 

 

N Br

N

Cl  

Ph

-Bromo-4-(phenylethynyl)pyrimidine (57j) (1.554 g, 6.0 mmol) dissolved in THF (12 mL) 

HF, 6.00 mL, 6.6 mmol) 

HF at -20 oC for 30 min according to GP1. 1,1,2-Trichlorotrifluoroethane (1.686 g, 9.0 

mmol) was then slowly added at -20 °C, the resulting mixture was then allowed to warm up 

slowly to rt. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 mL), 

extracted with diethyl ether (5 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

lvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

], 215 (23), 213 (80), 153 (17), 152 

 

2

was reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in T

T

the so

1:3) furnished the compound 58h as a white solid (1.471 g, 84%). 

m.p.: 105.7 – 106.9 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.58 – 7.61 (m, 2 H), 7.36 – 7.46 (m, 3 H), 7.44 (s, 1 H).  
13C-NMR (75 MHz, CDCl3) δ: 161.9, 153.5, 151.9, 132.6, 130.7, 128.7, 122.1, 120.2, 97.6, 

85.1. 

MS (70 eV, EI) m/z (%): 294 (100), 292 (64) [79Br-M+

(43), 126 (16).  

IR (ATR) 
~

 (cm-1): 3062, 2209, 1539, 1494, 1483, 1442, 1394, 1346, 1324, 1244, 1226, 

9, 1026, 998, 973, 925, 912, 864, 812, 756, 741, 686, 590, 570. 1180, 1172, 1008, 106

HRMS (EI) for C12H6BrClN2 (291.9403): 291.9391. 

 

Synthesis of (2-bromo-4-chloro-6-(methylthio)pyrimidin-5-yl)(phenyl)methanone (59a): 

 

Br

N

NMeS

Cl

O

 

-Bromo-4-chloro-6-(methylthio)pyrimidine (58a) (240 mg, 1.0 mmol) dissolved in THF (2 

L) was reacted with a solution of TMPMgCl·LiCl (16a) (0.89 M in THF, 1.24 mL, 1.1 

mol) at rt for 20 min according to GP1. The reaction mixture was cooled to –30 oC, 

Ph

 

2

m

m
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CuCN·2LiCl (1.00 M solution in THF, 1.1 mL, 1.1 mmol) was added and the reaction mixture 

as stirred for 30 min according to GP2. Then, benzoyl chloride (281 mg, 2.0 mmol) was 

added dropwise at –30 °C and the resulting mixture was stirred at rt for 45 min. The reaction 

mixture was quenched with a sat. aq. NH4Cl solution (10 mL), then extracted with diethyl 

ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:4) furnished 

e compound 59a as a colourless solid (276 mg, 81%). 

w

th

m.p.: 120.5 – 121.2 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.79 – 7.82 (m, 2 H), 7.62 – 7.68 (m, 1 H), 7.47 – 7.52 (m, 2 

H), 2.55 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 190.4, 172.2, 155.4, 150.5, 135.0, 134.5, 129.4, 129.2, 127.8, 

13.5. 

MS (EI, 70 eV) m/z (%): 344 (99), 342 (71) [79Br-M+], 329 (16), 327 (16), 311 (90), 309 

(71), 267 (24), 265 (20), 253 (47), 251 (35), 105 (94), 77 (100).  

IR (ATR) 
~

 (cm-1): 3018, 2922, 2851, 1674, 1596, 1485, 1450, 1284, 1233, 1204, 1177, 

. 

esis of (2-bromo-4-chloro-6-(methylthio)pyrimidin-5-yl)(phenyl)methanol (59b): 

1101, 922, 829, 710, 687

HRMS (EI) for C12H8BrClN2OS (341.9229): 341.9182. 

 

Synth

 

NMeS B

N

Cl

r

HO

Ph  

 

2-Bromo-4-chloro-6-(methylthio)pyrimidine (58a) (240 mg, 1.0 mmol) dissolved in THF (2 

 

mol) at rt for 20 min according to GP1. Benzaldehyde (159 mg, 1.5 mmol) was added 

dropwise at rt and the resulting mixture was stirred at this temperature for 45 min. The 

reaction mixture was quenched with a sat. aq. NH4Cl solution (10 mL), then extracted with 

diethyl ether (5 × 20 mL) and dried over anhydrous Na 4. After filtration, the solvent was 

vaporated in vacuo. Purification by flash chromatography (CH2Cl2) furnished the compound 

mL) was reacted with a solution of TMPMgCl·LiCl (16a) (0.89 M in THF, 1.24 mL, 1.1

m

2SO

e

59b as a colourless solid (257 mg, 75%). 

m.p.: 116.8 – 118.4 °C. 
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1H-NMR (CDCl3, 300 MHz) δ: 7.30 – 7.36 (m, 5 H), 6.41 (d, J = 6.8 Hz, 1 H), 3.12 (d, J = 

7.1 Hz, 1 H), 2.52 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 174.0, 158.2, 148.9, 138.8, 129.3, 128.5, 128.0, 125.6, 70.4, 

14.4. 

MS (EI, 70 eV) m/z (%): 346 (100), 344 (75) [79Br-M+], 331 (85), 329 (67), 281 (54), 279 

(40), 255 (23), 253 (53).  

IR (ATR) 
~

 (cm-1): 3327, 3027, 2906, 1526, 1475, 1311, 1255, 1210, 1127, 1053, 882, 844, 

814, 768, 713. 

HRMS (EI) for C12H10BrClN2OS (343.9386): 343.9375. 

 

Synthesis of 2-bromo-4-chloro-5,6-bis(methylthio)pyrimidine (59c): 

 

N

NMeS Br

MeS

Cl  

g, 1.0 mmol) dissolved in THF (2 

L) was reacted with a solution of TMPMgCl·LiCl (16a) (0.89 M in THF, 1.24 mL, 1.1 

g, 

resulting mixture was stirred at the same 

temperature for 45 min and was quenched with a sat. aq. NH4Cl solution (10 mL), then 

extracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

:9) furnished the compound 59c as a colourless solid (260 mg, 92%). 

 

2-Bromo-4-chloro-6-(methylthio)pyrimidine (58a) (240 m

m

mmol) at rt for 20 min according to GP1. Then, S-methyl methanethiol sulfonate (252 m

2.0 mmol) was added dropwise at rt and the 

1

m.p.: 90.3 – 92.2°C. 
1H-NMR (CDCl3, 300 MHz) δ: 2.51 (s, 3 H), 2.37 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 179.6, 163.4, 149.6, 125.5, 16.8, 14,9. 

MS (EI, 70 eV) m/z (%): 286 (28), 284 (21) [79Br-M+], 269 (74), 251 (12), 189 (34).  

IR (ATR) 
~

 (cm-1): 3200, 3018, 2927, 1498, 1465, 1321, 1283, 1258, 1202, 1043, 968, 834, 

816, 798, 761. 

HRMS (EI) for C6H6BrClN2S2 (283.8844): 283.8816. 
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Synthesis of 2-bromo-4-chloro-5-iodo-6-(phenylethynyl)-pyrimidine (59d): 

 

Ph

N
I

N

Cl

Br

 

ro-6-(phenylethynyl)pyrimidine (58h) (294 mg, 1.0 mmol) dissolved in THF 

(16a) (1.10 M in THF, 1 mL, 1.1 

mol) at –5 °C for 30 min according to GP1. Iodine (381 mg, 1.5 mmol) dissolved in THF (2 

ing mixture was then 

llowed to warm up slowly to rt. The reaction mixture was quenched with a sat. aq. NH4Cl 

solution (10 mL) and sat. aq. Na2S2O3 (10 mL) was added, extracted with diethyl ether (5 × 

20 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in 

vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:4) furnished the compound 

9d as a colourless solid (297 mg, 71%). 

 

2-Bromo-4-chlo

(2 mL) was reacted with a solution of TMPMgCl·LiCl 

m

mL) was then slowly added dropwise at the same temperature, the result

a

5

m.p.: 194.6 – 196.5 °C. 
1H-NMR (600 MHz, CDCl3) δ: 7.66 – 7.68 (m, 2 H), 7.46 – 7.49 (m, 1 H), 7.40 – 7.42 (m, 2 

H).  
13C-NMR (150 MHz, CDCl3) δ: 165.8, 158.5, 150.5, 132.7, 131.0, 128.7, 120.2, 100.9, 98.9, 

88.9. 

MS (70 eV, EI) m/z (%): 420 (100), 418 (78) [79Br-M+], 341 (10), 339 (31), 212 (21), 177 

(43), 151 (36).  

IR (ATR) 
~

 (cm-1): 3055, 2923, 2206, 1496, 1483, 1452, 1441, 1380, 1267, 1227, 1183, 

 816, 753, 684, 553. 

anone 

1167, 1011, 924, 911,

HRMS (EI) for C12H5BrClIN2 (417.8369): 417.8348.  

 

Synthesis of (2-bromo-4-chloro-6-(phenylethynyl)pyrimidin-5-yl)(phenyl)meth

(59e): 

 

Ph

N

N

Cl

Br

O

Ph  
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2-Bromo-4-chloro-6-(phenylethynyl)pyrimidine (58h) (294 mg, 1.0 mmol) dissolved in THF 

 mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in THF, 1 mL, 1.1 

mmol) at –5 °C for 30 min according to GP1. The reaction mixture was cooled to –30 oC, 

CuCN·2LiCl (1.00 M solution in THF, 1.1 mL, 1.1 mmol) was added and the reaction mixture 

was stirred for 30 min according to GP2. Then, benzoyl chloride (281 mg, 2.0 mmol) was 

added dropwise at –30 °C and the resulting mixture was stirred at rt for 45 min. The reaction 

ixture was quenched with a sat. aq. NH4Cl solution (10 mL), then extracted with diethyl 

6 (75) [79Br-M+], 369 (40), 367 (25), 361 (19), 359 

252 (46), 227 (39), 151 (36), 105 (45), 77 (95).  

(2

m

ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:2) furnished 

the compound 59e as a colourless solid (274 mg, 69%). 

m.p.: 155.6 – 157.9 °C. 
1H-NMR (CDCl3, 600 MHz) δ: 7.88 (m, 2 H), 7.66 – 7.69 (m, 1 H), 7.52 – 7.55 (m, 2 H), 

7.34 – 7.36 (m, 1 H), 7.22 – 7.25 (m, 2 H), 7.13 – 7.15 (m, 2 H). 
13C-NMR (CDCl3, 150 MHz) δ: 190.0, 158.4, 151.5, 150.6, 135.0, 134.8, 132.7, 132.5, 

130.9, 129.6, 129.3, 128.5, 119.6, 102.6, 84.1. 

MS (EI, 70 eV) m/z (%): 397 (100), 39

(16), 281 (63), 254 (90), 

IR (ATR) 
~

 (cm-1): 3330, 3055, 2918, 2850, 2211, 1670, 1594, 1581, 1520, 1491, 1475, 

1438, 1378, 1338, 1307, 1264, 1222, 1167, 1098, 1069, 1024, 995, 940, 914, 829, 800, 779, 

S (EI) for C19H10BrClN2O (395.9665): 395.9650. 

llyl-2-bromo-4-chloro-6-(phenylethynyl)-pyrimidine (59f): 

756, 708, 687, 579. 

HRM

 

Synthesis of 5-a

 

N

N

Ph

Br

Cl  

 

2-Bromo-4-chloro-6-(phenylethynyl)pyrimidine (58h) (294 mg, 1.0 mmol) dissolved in THF 

(2 mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in THF, 1 mL, 1.1 

mmol) at –5 °C for 30 min according to GP1. The reaction mixture was cooled to –78 oC, 

CuCN·2LiCl (1.00 M solution in THF, 5 drops) was added and the reaction mixture was 

stirred for 5 min. Then, allyl bromide (242 mg, 2.0 mmol) was added dropwise at –78 °C and 
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the resulting mixture was allowed to warm up slowly at –30 °C. The reaction mixture was 

quenched with a sat. aq. NH4Cl solution (10 mL), then extracted with diethyl ether (5 × 20 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:3) furnished the compound 59f as a 

colourless solid (230 mg, 67%). 

m.p.: 112.5 – 114.5 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.57 – 7.61 (m, 2 H), 7.36 – 7.47 (m, 3 H), 5.83 – 5.96 (m, 1 

H), 5.13 – 5.20 (m, 2 H), 3.67 (dt, 3 J = 6.4 Hz, 4 J = 1.4 Hz, 2 H). 
13C-NMR (CDCl3, 75 MHz) δ: 162.0, 153.1, 148.6, 132.4, 131.8, 131.3, 130.6, 128.7, 120.4, 

118.1, 99.9, 84.5, 34.0. 

MS (EI, 70 eV) m/z (%): 333 (100), 332 (29) [79Br-M+], 331 (90), 253 (21), 252 (12), 251 

(21), 218 (18), 217 (23), 216 (38), 191 (15), 190 (38), 165 (21), 103 (17), 44 (33), 43 (19).  

IR (ATR) 
~

 (cm-1): 3061, 2908, 2844, 2211, 1636, 1525, 1486, 1444, 1431, 1383, 1320, 

1262, 1212, 1180, 1170, 1114, 1088, 1069, 1025, 990, 938, 924, 880, 845, 787, 758, 687, 616, 

603, 574. 

HRMS (EI) for C15H10BrClN2 (331.9716): 331.9722. 

 

Synthesis of (2-(4-(tert-butyldimethylsilyloxy)phenyl)-4-chloro-6-(methylthio)pyrimidin-

5-yl)-(phenyl)methanone (60a): 

 

N

NMeS

Cl

O

Ph

O
Si

Me

Me

Me Me
Me

 

 

This compound was prepared from 2-bromo-4-chloro-6-(methylthio)pyrimidin-5-

yl)(phenyl)methanone (59a). Tert-butyl(4-iodophenoxy)dimethylsilane (401 mg, 1.2 mmol, 

1.2 equiv) was charged with freshly titrated i-PrMgCl·LiCl (1.20 M in THF, 1 mL,  1.2 

ixture was stirred at –20 °C for 45 min. After completion of the mmol). The reaction m

reaction, a solution of zinc chloride (1.2 mL, 1.00 M, 1.2 mmol) was added and the resulting 

mixture was stirred at –20 °C until –10 °C and finally warmed up to rt for 15 min. Pd(dba)2 

(17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), followed by the 

addition of 59a (344 mg, 1.0 mmol) dissolved in THF (2 mL), were then transferred via 

cannula to the reaction mixture. The resulting mixture was stirred at 25 °C for 45 min and 
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then quenched with a sat. aq. NH4Cl solution (10 mL), extracted with diethyl ether (3 × 20 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane, 1:5) furnished the compound 60a 

(425 mg, 91%) as a colourless solid. 

m.p.: 124.3 – 126.2 °C.  
1H-NMR (300 MHz, CDCl3) δ: 8.40 (d, J = 8.8 Hz, 2 H), 7.86 – 7.89 (m, 2 H), 7.61 – 7.67 

.3, 25.6, 18.3, 13.2, –4.4. 

(m, 1 H), 7.47 – 7.52 (m, 2 H), 6.95 (d, J = 8.8 Hz, 2 H), 2.66 (s, 3 H), 1.01 (s, 9 H), 0.25 (s, 6 

H). 
13C-NMR (75 MHz, CDCl3) δ: 192.1, 169.5, 163.3, 159.5, 155.6, 135.4, 134.5, 130.6, 129.5, 

129.0, 128.9, 125.9, 120

MS (70 eV, EI) m/z (%): 470 (18) [M+], 413 (100), 105 (55), 77 (18). 

IR (ATR) 
~

 (cm-1): 3068, 2952, 2922, 2886, 2851, 1662, 1599, 1578, 1533, 1483, 1394, 

methylthio)-pyrimidin-2-yl)furan-2-

arboxylate (60b): 

1316, 1260, 1233, 1162, 1119, 1005, 922, 904, 859, 826, 781, 712, 687. 

HRMS (ESI) for C24H27ClN2O2SSi (471.1329 (M+ + H)): 471.1328. 

 

Synthesis of ethyl 5-(5-benzoyl-4-chloro-6-(

c

 

O

CO2Et

N

NMeS

Cl

O

Ph  

 

This compound was prepared from 2-bromo-4-chloro-6-(methylthio)pyrimidin-5-

ethanone (59a). 5-Bromofuran-2-carboxylic acid ethyl ester (263 mg, 1.2 mmol, yl)(phenyl)m

1.2 equiv) was treated with freshly titrated i-PrMgCl·LiCl (1.20 M in THF, 1 mL, 1.2 mmol). 

The reaction mixture was stirred at –30 °C for 45 min. After completion of the reaction, a 

solution of zinc chloride (1.2 mL, 1.00 M, 1.2 mmol) was added and the resulting mixture was 

stirred at –20 °C until –10 °C and finally warmed up to rt for 15 min. Pd(dba)2 (17 mg, 

3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), followed by the addition 

of 59a (344 mg, 1.0 mmol) dissolved in THF (2 mL) were then transferred via cannula to the 

reaction mixture. The resulting mixture was stirred at 25 °C for 3 h and then quenched with a 

sat. aq. NH4Cl solution (10 mL), extracted with diethyl ether (3 × 20 mL) and dried over 
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anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane, 1:2) furnished the compound 60b (351 mg, 88%) as a 

colourless solid. 

m.p.: 101.3 – 104.0 °C.  
1H-NMR (300 MHz, CDCl3) δ: 7.82 – 7.85 (m, 2 H), 7.62 – 7.67 (m, 1 H), 7.47 – 7.52 (m, 2 

NMR (75 MHz, CDCl3) δ: 191.3, 170.5, 158.2, 155.7, 155.4, 152.8, 146.7, 135.0, 134.8, 

, 369 (98), 311 (100), 105 (63), 77 (65). 

H), 7.44 (d, J = 3.8 Hz, 1 H), 7.30 (d, J = 3.8 Hz, 1 H), 4.41 (q, J = 7.3 Hz, 2 H), 2.64 (s, 3 H), 

1.40 (t, J = 7.3 Hz, 3 H). 
13C-

129.5, 129.1, 127.2, 119.2, 116.4, 61.4, 14.3, 13.2. 

MS (70 eV, EI) m/z (%): 402 (43) [M+], 294 (81)

IR (ATR) 
~

 (cm-1): 3124, 3058, 3003, 2982, 1702, 1669, 1584, 1530, 1490, 1450, 1397, 

ynthesis of (4-chloro-6-(methylthio)-2-(phenylethynyl)-pyrimidin-5-yl)(phenyl)-

1366, 1288, 1240, 1152, 1016, 922, 829, 763, 710, 685. 

HRMS (EI) for C19H15ClN2O4S (402.0441): 402.0428. 

 

S

methanone (60c): 

 

N

NMeS

Cl

O

Ph

Ph

 

 

This compound was prepared from 2-bromo-4-chloro-6-(methylthio)pyrimidin-5-

l)(phenyl)methanone (59a). To a solution of NEt3 (6 mL) and CuI (8 mg, 4 mol%) were y

added Pd(dba)2 (17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) in THF (2 mL), followed 

by 59a (344 mg, 1.0 mmol) dissolved in THF (2 mL) and phenylacetylene (123 mg, 1.2 mol, 

1.2 equiv). The reaction mixture was stirred at rt for 3 h and then quenched with a sat. aq. 

NH4Cl solution (10 mL), extracted with diethyl ether (3 × 20 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane, 1:3) furnished the compound 60c (310 mg, 85%) as a 

colourless solid. 

m.p.: 133.0 – 134.8 °C.  
1H-NMR (400 MHz, CDCl3) δ: 7.35 – 7.85 (m, 10 H), 2.59 (s, 3 H). 
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13C-NMR (100 MHz, CDCl3) δ: 191.1, 170.2, 155.0, 151.5, 134.8, 134.7, 132.7, 130.1, 

129.4, 129.1, 128.4, 127.6, 120.7, 89.8, 87.3, 13.3. 

MS (70 eV, EI) m/z (%): 364 (19) [M+], 331 (41), 273 (44), 128 (27), 105 (44), 87 (16), 77 

(100). 

IR (ATR) 
~

 (cm-1): 3058, 2931, 2213, 1669, 1599, 1518, 1475, 1397, 1321, 1270, 1233, 

1175, 1111, 930, 831, 758, 715, 687. 

HRMS (ESI) for C20H13ClN2OS (365.0515 (M+ + H)): 365.0506. 

otected uracils and thiouracils

 

2.5. Preparation of polyfunctionalized pr  

 

Synthesis of 4-iodo-2,6-dimethoxypyrimidine (68a): 

 

N

NH3CO OCH3

 

,4-Dimethoxypyrimidine (64) (140 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a 

solution of TMPMgCl·LiCl (16a) (1.1 M in THF, 1.0 mL, 1.1 mmol) at 25 oC for 15 min 

according to GP1. Iodine (381 mg, 1.5 mmol, 1.5 equiv) was then added to the resulting 

mixture at –15 °C for 1 h. The reaction mixture was quenched with sat. aq. Na2S2O3 solution 

at –15 °C, followed by the addition of sat. aq. NH4Cl and extracted with ether (3 x 50 mL). 

he combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

I

 

2

T

Purification by flash chromatography (CH2Cl2/pentane 1:2) afforded 68a (196 mg, 74%) as a 

colourless solid. 

m.p.: 100.5 – 101.9 °C. 
1H-NMR (300 MHz, CDCl3) δ: 6.85 (s, 1 H), 3.96 (s, 3 H), 3.92 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 170.6, 163.6, 127.8, 112.5, 55.3, 54.1. 

MS (EI, 70 eV) m/z (%): 265 (100) [M+], 264 (26), 235 (23), 139 (19), 124 (10), 82 (9). 

IR (ATR) 
~

 (cm-1): 3108 (m), 3020 (m), 2956 (m), 1542 (vs), 1458 (vs), 1392 (m), 1360 

(vs), 1336 (s), 1232 (s), 1198 (s), 1116 (m), 1088 (s), 1006 (m), 972 (s), 926 (m),  830 (m), 

808 (m), 776 (m). 

65.9552): 265.9560. 

 

 

HRMS for C6H7IN2O2 (2
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Synthesis of 2,4-dimethoxy-6-(trimethylsilyl)pyrimidine (68b): 

 

N

NH3CO OCH3

SiMe3

 

 

F (2 mL) was added to a 

olution of TMPMgCl·LiCl (16a) (1.1 M in THF, 1.0 mL, 1.1 mmol) at 25 oC for 15 min 

resulting 

ixture at 25 °C for 30 min. The reaction mixture was quenched with sat. aq. NH4Cl solution 

anic extracts were dried over Na2SO4 

nd concentrated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:1) 

afforded 68b (149 mg, 70%) as a colourless oil. 
1H-NMR (300 MHz, CDCl3) δ: 6.53 (s, 1 H), 3.95 (s, 3 H), 3.90 (s, 3 H), 0.23 (s, 9 H). 
13C-NMR (75 MHz, CDCl3) δ: 179.2, 170.5, 164.7, 107.2, 54.4, 53.3, –2.6. 

S (EI, 70 eV) m/z (%): 212 (10) [M+], 197 (30), 92 (11), 80 (11), 44 (100). 

2,4-Dimethoxypyrimidine (64) (140 mg, 1.0 mmol) dissolved in TH

s

according to GP1. TMSCN (1.5 mmol, 149 mg, 1.5 equiv) was then added to the 

m

and extracted with ether (3 x 50 ml). The combined org

a

M

IR (ATR) 
~

 (cm-1): 2954 (m), 2899 (w), 1742 (s), 1570 (s), 1543 (s), 1470 (m), 1361 (m), 

1327 (vs), 1247 (m), 1218 (w), 1200 (m), 1095 (m), 1030 (w), 881 (m), 835 (m), 820 (m), 755 

(m). 

HRMS for C9H16N2O2Si (212.0981): 212.0969. 

 

Synthesis of ethyl 4-(2,6-dimethoxypyrimidin-4-yl)benzoate (68c): 

 

N

NH3CO OCH3

CO2Et  

 

2,4-Dimethoxypyrimidine (64) (140 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a 

HF, 1.0 mL, 1.1 mmol) at 25 oC for 15 min 

ccording to GP1. Transmetalation with ZnCl2 (1.2 mL, 1.2 equiv, 1.00 M in THF) was then 

erformed at 25 °C for 20 min. In another flame-dried round bottom flask, Pd(dba)2 (17 mg, 3 

solution of TMPMgCl·LiCl (16a) (1.1 M in T

a

p
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mol%) and P(o-furyl)3 (14 mg, 6 mol%) were dissolved in dry THF (2 mL) and stirred for 5 

in followed by the addition of ethyl 4-iodobenzoate (331 mg, 1.2 mmol, 1.2 equiv). The 

resulting solution was then transferred to the zinc reagent flask and refluxed for 2 h. The 

reaction mixture was quenched with sat. aq. NH4Cl solution and extracted with ether (3 x 50 

mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 3:2) afforded 68c (216 mg, 75%) as a 

, 4 H), 6.82 (s, 1 H), 4.41 (q, 

m

colourless solid. 

m.p.: 116.0 – 118.2 oC 
1H-NMR (300 MHz, CDCl3) δ: 8.11 (m J = 7.05 Hz, 2 H), 4.09 

(s, 3 H), 4.02 (s, 3 H), 1.41 (t, J = 7.05, 3 H) . 
13C-NMR (75 MHz, CDCl3) δ: 172.7, 166.1, 165.6, 164.8, 140.7, 132.2, 129.9, 126.9, 98.0, 

61.2, 54.9, 54.1, 14.3. 

MS (EI, 70 eV) m/z (%): 288 (100) [M+], 258 (49), 243 (30), 143 (10), 99 (10). 

IR (ATR) 
~ -1 (cm ): 1714 (m), 1597 (m), 1578 (m), 1559 (s), 1467 (m), 1350 (s), 1274 (s), 

 

1217 (m), 1104 (s), 1013 (m), 825 (s), 771 (s), 703 (s). 

HRMS (EI) for C15H16N2O4 (288.1110): 288.1097. 

Synthesis of 1-(2,6-dimethoxypyrimidin-4-yl)-2,2-dimethylpropan-1-one (68d): 

 

N

NH3CO OCH3

 

2,4-Dimethoxypyrimidine (64) (140 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a 

solution of TMPMgCl·LiCl (16a) (1.1 M in THF, 1.0 mL, 1.1 mmol) at 25 oC for 15 min 

according to GP1. Transmetalation with CuCN·2LiCl (1.0 mL, 1.0 equiv, 1.00 M in THF) 

was then performed at –30 °C and stirred at the same temperature for 30 min according to 

GP2. Pivaloyl chloride (241 mg, 2.0 mmol, 2.0 equiv) was added to the resulting mixture at –

30 °C and stirred at the same temperature for 6 h. The reaction mixture was quenched with 

at. aq. NH4Cl solution and extracted with ether (3 x 50 mL). The combined organic extracts 

Ot-Bu  

s

were dried over Na2SO4 and concentrated in vacuo. Purification by flash chromatography 

(pentane/ethyl acetate 9:1) afforded 68d (161 mg, 72%) as a colourless solid. 

m.p.: 67.8 – 69.0 °C.  
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1H-NMR (300 MHz, CDCl3) δ: 6.76 (s, 1 H), 4.01 (s, 3 H), 3.97 (s, 3 H), 1.39 (s, 9 H). 
13C-NMR (75 MHz, CDCl3) δ: 205.1, 172.7, 164.7, 163.4, 101.1, 55.1, 54.2, 44.0, 26.9. 

MS (EI, 70 eV) m/z (%): 224.1 (7) [M+], 209.0 (7), 140.0 (100), 82.0 (9), 57.0 (23), 41.1 

(18).  

IR (ATR) 
~

 (cm-1): 2962 (w), 1689 (m), 1578 (s), 1560 (s), 1476 (s), 1459 (s), 1372 (s), 

1344 (s), 1253 (w), 1196 (m), 1096 (m), 1030 (m), 978 (s), 939 (s), 857 (m), 772 (m), 679 

(w). 

HRMS for C11H16N2O3 (224.1161): 224.1142. 

4-carboxylate (68e): 

 

Synthesis of ethyl 2,6-dimethoxypyrimidine-

 

N

NH3CO OCH3

 

,4-Dimethoxypyrimidine (64) (140 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a 

r 15 min 

ccording to GP1. Ethyl cyanoformate (198 mg, 2 mmol, 2.0 equiv) was then added to the 

resulting mixture at –60 °C and stirred at the same  temperature for 10 h. The reaction mixture 

was quenched with sat. aq. NH4Cl solution and extracted with ether (3 x 50 mL). The 

combined organic extracts were dried over Na2SO4 and concentrated in vacuo. Purification by 

flash chromatography (pentane/ethyl acetate 4:1) afforded 8e (147 mg, 70%) as a colourless 

solid. 

OEtO

 

2

solution of TMPMgCl·LiCl (16a) (1.1 M in THF, 1.0 mL, 1.1 mmol) at 25 oC fo

a

6

m.p.: 67.2 – 68.9 °C 
1H-NMR (300 MHz, CDCl3) δ: 7.03 (s, 1 H), 4.40 (q, J = 7.0 Hz, 2 H), 4.04 (s, 3 H), 4.00 (s, 

3 H), 1.39 (t, J = 7.0 Hz, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 172.8, 165.9, 163.9, 157.2, 103.1, 62.2, 55.1, 54.1, 14.1. 

MS (EI, 70 eV) m/z (%): 212 (21) [M+], 211 (10), 182 (15), 167 (11), 140 (100), 139 (13), 

125 (31), 82 (9). 

IR (ATR) 
~

 (cm-1): 3104 (w), 2988 (w), 2956 (w), 2940 (w), 2868 (w), 1720 (m), 1600 (s), 

1564 (s), 1484 (s), 1404 (s), 1352 (vs), 1264 (s), 1200 (s), 1100 (s), 1028 (vs), 880 (s), 776 

(vs). 

HRMS  (EI) for C9H12N2O4 (212.0797): 212.0794. 
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Synthesis of (4-fluorophenyl)(4-iodo-2,6-dimethoxypyrimidin-5-yl)methanone (69a): 

 

N

NH3CO OCH3

I

O

 

v) dissolved in dry THF 

.0 mL) was added dropwise to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF, 1.0 mL, 

1.1 mmol) at 0 °C according to GP1. CuCN·2LiCl (1 mL, 1 mmol, 1.00 M in THF) was added 

at –30 °C and stirred for 30 min according to GP2. Thereafter, 4-fluorobenzoyl chloride (316 

mg, 2.0 mmol, 2.0 equiv) was added at –30 °C, and the reaction mixture was warmed to 25 °C 

within 5 h.  The resulting mixture was quenched with sat. aq. NH4Cl solution, extracted with 

tOAc (3 x 30 ml), the organic layer was washed with brine, dried over Na2SO4 and 

I, 70 eV) m/z (%): 388 (66) [M+], 358 (5), 293 (31), 261 (10), 136 (25), 123 (100), 95 

F

 

4-Iodo-2,6-dimethoxypyrimidine (68a) (1.0 mmol, 266 mg, 1.0 equi

(2

E

concentrated in vacuo. Purification by flash chromatography (pentane/Et2O 1:1) afforded 69a 

(313 mg, 81%) as a colourless solid. 

m.p.: 151.9 – 157.1 oC 
1H-NMR (300 MHz, CDCl3) δ: 7.83 – 7.77 (m, 2 H), 7.12 – 7.05 (m, 2 H), 3.98 (s, 3 H), 

3.83 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 191.4, 166.4 (d, J = 257.1 Hz), 167.2, 163.5, 132.4 (d, J = 9.7 

Hz), 132.1 (d, J = 2.8 Hz), 126.7, 120.9, 116.2 (d, J = 22.1 Hz), 55.7, 54.8. 

MS (E

(80), 75 (24). 

IR (ATR) 
~

 (cm-1): 1669 (m), 1595 (m), 1566 (s), 1525 (s), 1506 (m), 1475 (m), 1455 (m), 

1381 (s), 1364 (s), 1312 (s), 1255 (s), 1245 (s), 1225 (s), 1158 (s), 1076 (s), 1015 (s), 920 (s). 

HRMS (EI) for C13H10FIN2O3 (387.9720): 387.9722. 
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Synthesis of ethyl 5-benzoyl-2,6-dimethoxypyrimidine-4-carboxylate (69b) 

 

N

NH3CO OCH3

CO2Et

O

 

 

thyl 2,6-dimethoxypyrimidine-4-carboxylate (68e) (1.0 mmol, 212 mg, 1.0 equiv) dissolved 

 7.3 Hz, 2 H), 4.11 (s, 3 H), 3.95 (s, 3 H), 1.08 (t, J = 7.1 Hz, 3 H).  

62), 139 (24), 118 (12), 109 (12), 105 (100), 82 (17), 77 (83), 51 (14).   

E

in dry THF (2.0 mL) was added dropwise to a solution of TMPMgCl·LiCl (16a) (1.1 M in 

THF, 1.0 mL, 1.1 mmol) at –40 °C according to GP1. The reaction mixture was stirred for 2 h 

at this temperature. CuCN·2LiCl (1 mL, 1 mmol, 1.00 M in THF) was added at –40 °C and 

stirred for 1 h according to GP2. Thereafter, benzoyl chloride (210 mg, 1.5 mmol, 1.5 equiv) 

was added at –40 °C, and the reaction mixture was warmed to 25 °C for 12 h.  The resulting 

mixture was quenched with sat. aq. NH4Cl solution, extracted with EtOAc (3 x 10 mL), the 

organic layer was washed with brine, dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (pentane/ Et2O 1:1) afforded 69b (233 mg, 74%) as a 

colourless solid. 

m.p.: 98.4 – 100.4 oC 
1H-NMR (300 MHz, CDCl3) δ: 7.80 – 7.77 (m, 2 H), 7.60 – 7.54 (m, 1 H), 7.47 – 7.41 (m, 2 

H), 4.17 (q, J =
13C-NMR (75 MHz, CDCl3) δ: 192.0, 169.9, 165.2, 163.3, 155.3, 137.0, 133.6, 128.9, 128.9, 

128.7, 128.7, 116.1, 62.6, 55.5, 55.0, 13.5. 

MS (EI, 70 eV) m/z (%): 316 (45) [M+], 272 (67), 243 (55), 239 (54), 215 (19), 211 (27), 

186 (12), 167 (

IR (ATR) 
~

 (cm-1): 3067 (w), 2962 (w), 2925 (w), 1727 (s), 1668 (s), 1571 (s), 1556 (s), 

1463 (m), 1447 (m), 1380 (s),1254 (s), 1229 (s), 1176 (m), 1082 (s), 1035 (s), 929 (m), 903 

RMS (EI): for C16H16N2O5 (316.1059): 316.1036. 

(s), 776 (s), 691 (s). 

H
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Synthesis of 4-iodo-2,6-bis(methylthio)pyrimidine (72a): 

 

N

NMeS SMe

I  

 

ethylthio)pyrimidine (70) (172 mg, 1.0 mmol) dissolved in THF (2 mL) was added 

n of TMP Mg·2LiCl (26) (0.6  in THF, 1.83 mL, 1.1 mmol) at –20 oC for 1 h 

, CDCl3) δ: 171.9, 170.5, 126.2, 123.5, 14.3, 12.5. 

 (%): 298 (100) [M+],  283 (14), 265 (26), 98 (50), 83 (15). 

2,4-Bis(m

to a solutio 2 M

according to GP1. Iodine (381 mg, 1.5 mmol, 1.5 equiv) was then added to the resulting 

mixture at –20 °C for 1 h. The reaction mixture was quenched with sat. aq. Na2S2O3 solution 

at –20 °C, followed by the addition of sat. aq. NH4Cl solution and extracted with ether (3 x 50 

mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:4) afforded 72a (226 mg, 76%) as a 

colourless solid. 

m.p.: 122.8 – 123.5 oC  
1H-NMR (300 MHz, CDCl3) δ: 7.25 (s, 1 H), 2.51 (s, 3 H), 2.50 (s, 3 H).  
13C-NMR (75 MHz

MS (EI, 70 eV) m/z

IR (ATR) 
~

 (cm ): 2998 (w), 2921 (w), 1516 (s), 1505 (s), 1474 (m), 1434 (m), 1406 (s), 

1348 (m), 1323 (w), 1283 (w), 1247 (s), 1205 (m), 1164 (m), 1096 (m), 975 (s), 96

-1

1 (s), 821 

7.9072. 

 

(m), 754 (s), 748 (s). 

HRMS (EI) for C6H7IN2S2 (297.9095): 29

 

Synthesis of 4-bromo-2,6-bis(methylthio)pyrimidine (72b): 

N

NMeS SMe

Br  

 

,4-Bis(methylthio)pyrimidine (70) (172 mg, 1.0 mmol) dissolved in THF (2 mL) was added 

 a solution of TMP2Mg·2LiCl (26) (0.6 M in THF, 1.83 mL, 1.1 mmol) at –20 oC for 1 h 

ccording to GP1. (BrCCl2)2 (488 mg, 1.5 mmol, 1.5 equiv) dissolved in THF (2 mL) was 

en added to the resulting mixture at –20 °C for 1 h. The reaction mixture was quenched with 

2

to

a

th
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sat. aq. NH4Cl solution at –20 °C and extracted with ether (3 x 50 mL). The combined organic 

xtracts were dried over Na2SO4 and concentrated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:3) afforded 72b (203 mg, 81%) as a colourless solid. 

m.p.: 93.0 – 94.8 oC 
1H-NMR (300 MHz, CDCl3) δ: 7.00 (s, 1 H), 2.53 (s, 6 H).  
13C-NMR (75 MHz, CDCl3) δ: 172.5, 171.6, 149.9, 116.4, 14.3, 12.6. 

79 +

e

MS (EI, 70 eV) m/z (%): 250 (100) [ Br-M ], 235 (36), 217 (83), 149 (35), 98 (69). 

IR (ATR) 
~

 (cm-1): 3087 (w), 2997 (w), 2923 (w), 1520 (s), 1481 (s), 1430 (m), 1404 (w), 

1357 (m), 1325 (w), 1291 (w), 1254 (s), 1170 (m), 1098 (s), 974 (w), 959 (s), 832 (m), 816 

(w), 774 (s), 748 (m). 

HRMS (EI) for C6H7BrN2S2 (249.9234): 249.9230. 

 

Synthesis of 4-chloro-2,6-bis(methylthio)pyrimidine (72c): 

 

NMeS

N

SMe

2CCFCl2 (281 mg, 1.5 mmol, 1.5 equiv) was then added to the resulting 

xture was quenched with sat. aq. NH4Cl 

olution at –20 °C and extracted with ether (3 x 50 mL). The combined organic extracts were 

n by flash chromatography 

H2Cl2/pentane 1:4) afforded 72c (161 mg, 78%) as a colourless solid. 

m.p.: 85.0 – 86.7 oC 
1H-NMR (300 MHz, CDCl3) δ: 6.83 (s, 1 H), 2.54 (s, 6 H).  
13C-NMR (75 MHz, CDCl3) δ: 172.7, 172.1, 158.7, 112.5, 14.2, 12.7. 

MS (EI, 70 eV) m/z (%): 206 (100) [M+], 191 (21), 173 (40), 145 (21). 

Cl  

 

2,4-Bis(methylthio)pyrimidine (70) (172 mg, 1.0 mmol) dissolved in THF (2 mL) was added 

to a solution of TMP2Mg·2LiCl (26) (0.6 M in THF, 1.83 mL, 1.1 mmol) at –20 oC for 1 h 

according to GP1. ClF

mixture at –35 to –20 °C for 3 h. The reaction mi

s

dried over Na2SO4 and concentrated in vacuo. Purificatio

(C

IR (ATR) 
~

 (cm ): 3093 (w), 2998 (w), 2925 (w), 1530 (s), 1491 (s), 1433 (m), 1410 (w), 

1360 (m), 1324 (w), 1312 (w), 1259 (s), 1175 (m), 1097 (s), 966 (w), 809 (s), 748 (m). 

HRMS (EI) for C6H7ClN2S2 (205.9739): 205.9721. 

 

-1
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Synthesis of 4-(2,6-bis(methylthio)pyrimidin-4-yl)-benzoic acid ethyl ester (72d): 

 

N

NMeS SMe

CO2Et  

 

2,4-Bis(methylthio)pyrimidine (70) (172 mg, 1.0 mmol) dissolved in THF (2 mL) was added 

 1.83 mL, 1.1 mmol) at –20 oC for 1 h 

ccording to GP1. Transmetalation with ZnCl2 (1.2 mL, 1.2 equiv, 1.00 M in THF) was then 

nd bottom flask, Pd(dba)2 (17 

g, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) were dissolved in dry THF (2 mL) and stirred 

for 5 min followed by the addition of ethyl 4-iodobenzoate (331 mg, 1.2 mmol, 1.2 equiv). 

The resulting solution was then transferred to the zinc reagent flask and refluxed for 2 h. The 

reaction mixture was quenched with sat. aq. NH4Cl solution and extracted with ether (3 x 50 

mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

urification by flash chromatography (CH Cl /pentane 1:4) afforded 72d (227 mg, 71%) as a 

to a solution of TMP2Mg·2LiCl (26) (0.6 M in THF,

a

performed at –60 to 25 °C for 3 h. In another flame-dried rou

m

P 2 2

colourless solid. 

m.p.: 108.7 – 110.2 oC 
1H-NMR (300 MHz, CDCl3) δ: 8.09 (d, J = 8.7 Hz, 2 H), 8.05 (d, J = 8.7 Hz, 2 H), 7.22 (s, 1 

H), 4.38 (q, J = 7.2 Hz, 2 H), 2.61 (s, 3 H), 2.58 (s, 3 H), 1.39 (t, J = 7.2 Hz, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 172.1, 171.1, 166.0, 160.1, 140.3, 132.2, 129.8, 127.0, 109.7, 

61.1, 14.3, 14.1, 12.4. 

MS (EI, 70 eV) m/z (%): 320 (100) [M+], 305 (21), 287 (28), 275 (13), 213 (11). 

IR (ATR) 
~ -1 (cm ): 2981 (m), 2920 (w), 1709 (s), 1575 (w), 1544 (s), 1505 (s), 1491 (s), 

), 1148 (w), 1120 (w), 

HRMS (EI) for C H N O S  (320.0653): 320.0642. 

1471 (m), 1427 (w), 1407 (w), 1363 (w), 1307 (m), 1268 (s), 1248 (s

1100 (s), 1078 (w), 1013 (w), 969 (w), 868 (w), 837 (s), 815 (m), 779 (s), 756 (s), 700 (s). 

15 16 2 2 2
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Synthesis of 2,4-bis(methylthio-6-(3-trifluoromethyl-phenyl))pyrimidine (72e): 

 

N

NMeS SMe

F3C  

 

,4-Bis(methylthio)pyrimidine (70) (172 mg, 1.0 mmol) dissolved in THF (2 mL) was added 

 oC 

DCl3) δ: 8.27 (s, 1 H), 8.17 (d, 1 H, J = 7.7 Hz), 7.70 (d, 1 H, J = 7.7 

z), 130.2, 

1

): 316 (100) [M+], 301 (18), 283 (27), 269 (13). 

2

to a solution of TMP2Mg·2LiCl (26) (0.6 M in THF, 1.83 mL, 1.1 mmol) at –20 oC for 1 h 

according to GP1. Transmetalation with ZnCl2 (1.2 mL, 1.2 equiv, 1.00 M in THF) was then 

performed at –60 to 25 °C for 3 h. In another flame-dried round bottom flask, Pd(dba)2 (17 

mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) were dissolved in dry THF (2 mL) and stirred 

for 5 min followed by the addition of 3-iodobenzotrifluoride (327 mg, 1.2 mmol, 1.2 equiv). 

The resulting solution was then transferred to the zinc reagent flask and refluxed for 2 h. The 

reaction mixture was quenched with sat. aq. NH4Cl solution and extracted with ether (3 x 50 

mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:5) afforded 72e (251 mg, 80%) as a 

colourless solid. 

m.p.: 85.9 – 87.1
1H-NMR (300 MHz, C

Hz), 7.56 (t, 1 H, J = 7.7 Hz), 7.20 (s, 1 H), 2.62 (s, 3 H), 2.58 (s, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 172.2, 171.3, 159.6, 137.1, 131.2 (q, J = 32.5 H

29.2, 127.2 (q, J = 3.6 Hz), 123.9 (q, J = 272.4 Hz), 123.8 (q, J = 3.9 Hz), 109.3, 14.1, 12.4. 

MS (EI, 70 eV) m/z (%

IR (ATR) 
~

 (cm-1): 2929 (w), 1559 (s), 1516 (s), 1492 (m), 1437 (m), 1336 (s), 1313 (m), 

1291 (s), 1252 (s), 1197 (s), 1180 (s), 1142 (s), 1113 (s), 1090 (s), 1074 (s), 964 (m), 926 (m), 

919 (w), 876 (w), 836 (m), 802 (s), 761 (w), 690 (s), 670 (s). 

HRMS (EI) for C13H11F3N2S2 (316.0316): 316.0305. 
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Synthesis of 4-chloro-5-iodo-2,6-bis(methylthio)pyrimidine (73a): 

 

N

NMeS SMe

Cl

I

 

 

4-Chloro-2,6-bis(methylthio)pyrimidine (72c) (207 mg, 1.0 mmol) dissolved in THF (2 mL) 

was added to a solution of TMP2Mg·2LiCl (26 M in THF, 1.83 mL, 1.1 mmol) at –5 oC ) (0.6 

for 45 min according to GP1. Iodine (381 mg, 1.5 mmol, 1.5 equiv) was then added to the 

resulting mixture at –5 °C for 1 h. The reaction mixture was quenched with sat. aq. Na2S2O3 

solution at –5 °C, followed by the addition of sat. aq. NH4Cl solution and extracted with ether 

(3 x 50 mL). The combined organic extracts were dried over Na2SO4 and concentrated in 

vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:8) afforded 73a (202 mg, 

61%) as a colourless solid. 

m.p.: 100.9 – 102.5 oC 
1H-NMR (300 MHz, CDCl3) δ: 2.54 (s, 3 H), 2.53 (s, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 175.7, 171.0, 162.0, 86.8, 16.4, 14.5. 

MS (EI, 70 eV) m/z (%): 332 (100) [M+], 205 (38), 159 (10). 

IR (ATR) 
~

 (cm-1): 2919 (m), 1486 (s), 1461 (s), 1405 (m), 1321 (m), 1273 (s), 1257 (s), 

 (m), 843 (m), 801 (s), 742 (m). 

H

S

1187 (s), 994 (m), 966

RMS (EI) for C6H6ClIN2S2 (331.8706): 331.8709. 

 

ynthesis of (4-chloro-2,6-bis(methylthio)pyrimidin-5-yl)-phenyl-methanone (73b): 

 

N

NMeS SMe

Cl

O

 

 

-Chloro-2,6-bis(methylthio)pyrimidine (72c) (207 mg, 1.0 mmol) dissolved in THF (2 mL) 

as added to a solution of TMP2Mg·2LiCl (26) (0.6 M in THF, 1.83 mL, 1.1 mmol) at –5 oC 

r 45 min according to GP1. Transmetalation with CuCN·2LiCl (1.0 mL, 1.0 equiv, 1.00 M 

 THF) was then performed at –30 °C for 30 min according to GP2. Benzoyl chloride (282 

4

w

fo

in
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mg, 2.0 mmol, 2.0 equiv) was added to the resulting mixture at –30 °C to 25 °C for 12 h. The 

action mixture was quenched with sat. aq. NH4Cl solution and extracted with ether (3 x 50 

mL). The combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:3) afforded 73b (201 mg, 65%) as a 

colourless solid. 

.p.: 108.0 – 109.6 oC 

re

m
1H-NMR (300 MHz, CDCl3) δ: 7.45 – 7.84 (m, 5 H), 2.60 (s, 3 H), 2.53 (s, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 191.7, 172.5, 169.6, 154.9, 135.3, 134.6, 129.5, 129.0, 123.9, 

14.3, 13.2. 

MS (EI, 70 eV) m/z (%): 310 (100) [M+], 295 (24), 277 (63), 241 (14), 233 (38), 219 (57), 

105 (77), 77 (87). 

IR (ATR) 
~

 (cm-1): 3061 (w), 3003 (w), 2929 (w), 1665 (s), 1594 (m), 1576 (w), 1533 (s), 

1470 (s), 1446 (m), 1417 (m), 1346 (m), 1307 (m), 1278 (s), 1225 (s), 1188 (m), 1172 (m), 

1101 (m), 1072 (w), 961 (w), 916 (s), 845 (w), 821 (s), 769 (w), 706 (m), 684 (m). 

2OS2 (310.0001): 310.0002. 

yl-methanol (73c): 

HRMS (EI) for C13H11ClN

 

Synthesis of (4-chloro-2,6-bis-methylsulfanyl-pyrimidin-5-yl)-phen

 

N

NMeS SMe

HO

Cl

 

 

4-Chloro-2,6-bis(methylthio)pyrimidine (72c) (207 mg, 1.0 mmol) dissolved in THF (2 mL) 

was added to a solution of TMP2Mg·2LiCl (26) (0.6 M in THF, 1.83 mL, 1.1 mmol) at –5 oC 

for 45 min according to GP1. PhCHO (212 mg, 2.0 mmol, 2.0 equiv) was then added to the 

resulting mixture at –5 °C for 30 min. The reaction mixture was quenched with sat. aq. NH4Cl 

solution and extracted with ether (3 x 50 mL). The combined organic extracts were dried over 

Na2SO4 and concentrated in vacuo. Purification by flash chromatography (CH2Cl2) afforded 

73c (206 mg, 66%) as a colourless solid. 

m.p.: 117.0 – 119.3 oC 
1H-NMR (300 MHz, CDCl3) δ: 7.29 – 7.41 (m, 5 H), 6.40 (s, 1 H), 3.02 (bs, 1 H), 2.57 (s, 3 

H), 2.52 (s, 3 H).  
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13C-NMR (75 MHz, CDCl3) δ: 171.0, 170.3, 157.7, 139.8, 128.3, 127.6, 125.5, 125.1, 70.4, 

14.2, 13.9. 

MS (EI, 70 eV) m/z (%): 312 (82) [M+], 297 (100), 247 (49), 219 (35), 105 (65), 77 (47). 

IR (ATR) 
~

 (cm-1): 3303 (bs), 3061 (w), 2997 (w), 2923 (w), 1602 (w), 1525 (s), 1470 (s), 

1449 (m), 1415 (m), 1328 (w), 1304 (s), 1259 (s), 1220 (w), 1185 (w), 1117 (m), 1043 (m), 

w), 882 (m), 837 (w), 814 (m), 776 (w), 719 (m), 695 (m). 

Preparation of polyfunctionalized chloropyrimidines

1027 (m), 964 (w), 919 (

HRMS (EI) for C13H13ClN2OS2 (312.0158): 312.0156. 

 

2.6.  

ichloro-5-iodo-pyrimidine (79a): 

 

Synthesis of 4,6-d

 

N

NCl

Cl

I

 

,6-Dichloropyrimidine (74) (745 mg, 5.0 mmol) dissolved in dry THF (10 mL) was added 

2 2

mol) and stirred at the same temperature for 45 min according to GP1. Iodine (1.78 g, 7.0 

mmol) dissolved in dry THF (5 mL) was then slowly added at 25 °C and the resulting mixture 

was stirred for 1 h. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 

mL) and a sat. aq. Na2S2O3 solution (20 mL), extracted with diethyl ether (5 × 50 mL) and 

dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

atography (CH2Cl2/pentane 1:4) furnished 79a as a colourless 

4

dropwise at 25 °C to a solution of TMP Zn·2MgCl ·2LiCl (35) (0.79 M in THF; 6.96 mL, 5.5 

m

Purification by flash chrom

solid (1.25 g, 91%). 

m.p : 134.9 – 136.5 oC. 
1H NMR (300 MHz, CDCl3) δ: 8.65 (s, 1 H). 
13C NMR (75 MHz, CDCl3) δ: 166.6, 156.8, 98.9. 

MS (70 eV, EI) m/z (%): 274 [35Cl-M+]  (100), 239 (27), 97 (12), 83 (12), 57 (21). 

IR (ATR) 
~

 (cm-1): 2923, 2855, 1900, 1499, 1386, 11341, 1296, 1214, 1080, 1014, 790, 

763, 745. 
35HRMS (EI) for C4H Cl2IN2 (273.8561): 273.8565. 
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Synthesis of (4,6-dichloropyrimidin-5-yl)(phenyl)methanone (79b):  

 

NCl

N

Cl

O

 

 

HF (2 mL) was added 

ropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 1.1 

 according to GP1. CuCN·2LiCl (1.0 M 

 THF; 1.1 mL, 1.1 mmol) was then slowly added at –20 °C and the mixture was stirred at 

the same temperature for 30 min according to GP2. Benzoyl chloride was then slowly added 

at –20 °C and the resulting mixture was stirred at 25 °C for 1 h. The reaction mixture was 

quenched with a sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (5 × 30 mL) 

and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

4,6-Dichloropyrimidine (74) (149 mg, 1.0 mmol) dissolved in dry T

d

mmol) and stirred at the same temperature for 45 min

in

Purification by flash chromatography (CH2Cl2/pentane 1:4) furnished 79b as a colourless 

solid (215 mg, 86%). 

m.p.: 106.0 – 108.9 oC. 
1H NMR (300 MHz, CDCl3) δ: 8.90 (s, 1 H), 7.51 – 7.82 (m, 5 H). 
13C NMR (75 MHz, CDCl3) δ: 188.7, 158.6, 158.3, 135.2, 134.3, 132.0, 129.5, 129.4. 

MS (70 eV, EI) m/z (%): 252 [35Cl-M+]  (21), 167 (11), 149 (100), 105 (40), 77 (39). 

IR (ATR) 
~

 (cm-1): 3329, 3061, 2957, 1726, 1668, 1593, 1581, 1531, 1511, 1453, 1404, 

1386, 1348, 1317, 1256, 1242, 1236, 1184, 1162, 1071, 999, 924, 826, 794, 766, 698, 681, 

674, 605. 

HRMS (EI) 11 6 2 2 for C H 35Cl N O (251.9857): 251.9850. 

Synthesis of 4,6-dichloro-5-(cyc

 

lohex-2-enyl)pyrimidine (79c): 

 

N

NCl

Cl
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4,6-Dichloropyrimidine (74) (149 mg, 1.0 mmol) dissolved in dry THF (2 mL) was added 

ropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 1.1 

mmol) and stirred at the same temperature for 45 min according to GP1. CuCN·2LiCl (1 M in 

THF; 0.05 mL, 5 mol %) was then slowly added at -20 °C. 3-Bromocyclohexene (322 mg, 2.0 

mmol) was then slowly added at –30 °C. The resulting mixture was then allowed to warm up 

slowly to 0 °C for 4 h. The reaction mixture was quenched with a sat. aq. NH4Cl solution (20 

mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After 

filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

d

(CH2Cl2/pentane 1:4) furnished 79c as a colourless oil (165 mg, 72%). 
1H NMR (600 MHz, CDCl3) δ: 8.59 (s, 1 H), 5.85 – 5.87 (m, 1 H), 5.50 – 5.52 (m, 1 H), 5.15 

– 5.19 (m, 1 H), 4.14 – 4.20 (m, 2 H), 2.13 – 2.09 (m, 3 H), 1.85 – 1.97 (m, 1 H). 
13C NMR (150 MHz, CDCl3) δ: 155.3, 135.4, 128.6, 126.2, 38.4, 25.7, 24.2, 22.5. 

MS (70 eV, EI) m/z (%): 230 (55), 228 [35Cl-M+]  (81), 215 (26), 213 (44), 202 (19), 200 

(29), 193 (20), 139 (31), 112 (21), 54 (100). 

IR (ATR) 
~

 (cm-1): 3025, 2933, 2861, 2836, 2363, 2340, 1531, 1509, 1447, 1408, 1377, 

1351, 1329, 1307, 1214, 1162, 1127, 1046, 980, 882, 848, 809, 779, 721, 617, 560. 

HRMS (EI) for C10H10
35Cl2N2 (228.0221): 228.0226. 

 

Synthesis of 4,4',6,6'-tetrachloro-5,5'-bipyrimidine (79d): 

 

N

NCl
Cl

Cl

N

N Cl  

 

4,6-Dichloropyrimidine (74) (149 mg, 1.0 mmol) dissolved in dry THF (2 mL) was added 

ropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 1.1 

o GP1. Chloranil (295 mg, 

.2 mmol) dissolved in dry THF (7 mL) was then slowly added at –40 °C. The resulting 

mixture was then allowed to warm up slowly to 25 °C. The reaction mixture was quenched 

with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (5 × 30 mL) and dried 

over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

flash chromatography (CH2Cl2) furnished 79d as a colourless solid (121 mg, 82%). 

.p.: 149.0 – 150.7 oC. 

d

mmol) and stirred at the same temperature for 45 min according t

1

m
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1H NMR (300 MHz, CDCl3) δ: 8.93 (s, 2 H). 
13C NMR (75 MHz, CDCl3) δ: 161.4, 158.9, 126.6. 

MS (70 eV, EI) m/z (%): 296 (100), 294 [35Cl-M+]  (86), 207 (19), 205 (18), 149 (35), 57 

(14). 

IR (ATR) 
~

 (cm-1): 3382, 3303, 2928, 1692, 1531, 1507, 1402, 1370, 1288, 1228, 1164, 

988, 811, 771, 727, 571. 

HRMS (EI) for C8H2
35Cl4N4 (293.9034): 293.9045. 

 

Synthesis of 4,6-dichloro-2,5-diiodo-pyrimidine (82a): 

 

NCl I

N
I

Cl  

 

2 HF; 1.39 

GP1. Iodine (508 mg, 2.0 mmol) 

issolved in dry THF (4 mL) was then slowly added at 25 °C and the resulting mixture was 

aq. NH4Cl solution (30 mL) and 

2S2O3 solution (20 mL), extracted with diethyl ether (5 × 50 mL) and dried over 

anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:4) furnished 82a as a colourless solid (241 mg, 61%). 

m.p.: 148.4 – 150.0 oC. 
13C NMR (75 MHz, CDCl3) δ: 165.7, 123.6, 98.7. 

35 +  

4,6-Dichloro-5-iodo-pyrimidine (79a) (275 mg, 1.0 mmol) dissolved in dry THF (3 mL) was 

added dropwise at 25 °C to a solution of TMP Zn·2MgCl ·2LiCl (35) (0.79 M in T2

mL, 0.55 mmol) and stirred at 55 °C for 1 h according to 

d

stirred for 1 h. The reaction mixture was quenched with a sat. 

a sat. aq. Na

MS (70 eV, EI) m/z (%): 400 [ Cl-M ]  (100), 273 (71), 127 (14). 

IR (ATR) 
~

 (cm-1): 2950, 2913, 2850, 2628, 2417, 1739, 1460, 1344, 1264, 1249, 1196, 

1172, 1001, 806, 745. 

HRMS (EI) for C4
35Cl2I2N2 (399.7528): 399.7529. 
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Synthesis of 5-allyl-4,6-dichloro-2-iodopyrimidine (82b): 

 

N

NCl

Cl  

I

 

mol) dissolved in dry THF (3 mL) was 

dded dropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 

 GP1. CuCN·2LiCl (1.0 M solution 

 THF, 5 drops) was added at –20 °C, followed by the slow addition of allyl bromide (242 

mg, 2.0 mmol) at –78 °C and the resulting mixture was allowed to slowly warm up to –10 °C 

and stirred for 4 h. The reaction mixture was then quenched with a sat. aq. NH4Cl solution (30 

mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After 

ltration, the solvent was evaporated in vacuo. Purification by flash chromatography 

4,6-Dichloro-5-iodo-pyrimidine (79a) (275 mg, 1.0 m

a

mL, 0.55 mmol) and stirred at 55 °C for 1 h according to

in

fi

(CH2Cl2/pentane 1:3) furnished 82b as a colourless solid (160 mg, 51%). 

m.p.: 74.3 – 75.6 oC. 
1H NMR (300 MHz, CDCl3) δ: 5.75 – 5.88 (m, 1 H), 5.08 – 5.18 (m, 2 H), 3.56 (dt, 3 J = 6.4 

Hz, 4 J = 1.4 Hz, 2 H). 
13C NMR (75 MHz, CDCl3) δ: 161.2, 130.1, 130.0, 121.8, 118.5, 33.7. 

MS (70 eV, EI) m/z (%): 314 [35Cl-M+]  (100), 187 (59), 151 (13), 99 (12), 58 (30), 43 (69). 

IR (ATR) 
~

 (cm-1): 3087, 3018, 2971, 2923, 2855, 1739, 1726, 1636, 1528, 1478, 1433, 

1370, 1341, 1325, 1283, 1228, 1206, 1185, 1156, 1114, 1093, 985, 922, 904, 853, 808, 785, 

. 

777, 558. 

HRMS (EI) for C7H5
35Cl2IN2 (313.8874): 313.8869

 

Synthesis of 2,4,6-trichloro-5-iodo-pyrimidine (81a): 

 

N

NCl Cl

Cl

I

 

,4,6-Trichloropyrimidine (77) (186 mg, 1.0 mmol) dissolved in dry THF (2 mL) was added 

ropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 

 

2

d
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0.55 mmol) and stirred at the same temperature for 1 h according to GP1. Iodine (381 mg, 1.5 

mol) dissolved in dry THF (2 mL) was then dropwise added at 25 °C and the resulting 

mixture was stirred for 1 h. The reaction mixture was quenched with a sat. aq. NH4Cl solution 

(30 mL) and a sat. aq. Na2S2O3 solution (10 mL), extracted with diethyl ether (5 × 30 mL) and 

dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2C /pentane 1:7) furnished 81a as a colourless 

m

l2

solid (256 mg, 83%). 

m.p.: 97.0 – 98.0 oC. 
13C NMR (75 MHz, CDCl3) δ: 167.6, 159.3, 96.5. 

MS (70 eV, EI) m/z (%): 308 [35Cl-M+]  (100), 273 (25), 127 (18), 85 (11). 

IR (ATR) 
~

 (cm-1): 1477, 1270, 1208, 1182, 1009, 851, 806, 752. 

HRMS (EI) for C4
35Cl3IN2 (307.8172): 307.8162. 

 

Synthesis of 5-allyl-2,4,6-trichloro-pyrimidine (81b): 

 

N

NCl

Cl

Cl

 

 THF, 5 drops) was added at –20 °C, followed by the slow addition of allyl 

ting mixture was allowed to warm up 

lowly to –20 °C. The reaction mixture was then quenched with a sat. aq. NH4Cl solution (30 

ried over anhydrous Na2SO4. After 

ltration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:6) furnished 81b as a colourless solid (201 mg, 90%). 

m.p.: 39.2 – 40.3 oC. 
1H NMR (300 MHz, CDCl3) δ: 5.75 – 5.88 (m, 1 H), 5.08 – 5.18 (m, 2 H), 3.61 (dt, 3 J = 6.4 

4 J = 1.4 Hz, 2 H). 

 

2,4,6-Trichloropyrimidine (77) (186 mg, 1.0 mmol) dissolved in dry THF (2 mL) was added 

dropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 

0.55 mmol) and stirred at the same temperature for 1 h according to GP1. CuCN·2LiCl (1.0 M 

solution in

bromide (242 mg, 2.0 mmol) at –60 °C and the resul

s

mL), extracted with diethyl ether (5 × 30 mL) and d

fi

Hz, 
13C NMR (75 MHz, CDCl3) δ: 163.0, 157.1, 130.2, 129.3, 118.5, 33.5. 

MS (70 eV, EI) m/z (%): 222 [35Cl-M+]  (100), 187 (33), 151 (62), 125 (35), 90 (43). 
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IR (ATR) 
~

 (cm-1): 3087, 2934, 1635, 1533, 1501, 1435, 1330, 1287, 1215, 1185, 1123, 

1095, 993, 930, 907, 875, 790. 

HRMS (EI) for C7H5
35Cl3N2 (221.9518): 221.9494. 

 

Synthesis of 1-(2,4,6-trichloro-pyrimidin-5-yl)-propan-1-one (81c): 

 

N

NCl

Cl

Cl

O  

 

y THF (2 mL) was added 

2 l2·2LiCl (35) (0.79 M in THF; 1.39 mL, 

.55 mmol) and stirred at the same temperature for 1 h according to GP1. CuCN·2LiCl (1.0 M 

 and the reaction mixture was stirred 

r 30 min at the same temperature according to GP2. Then, propionyl chloride (0.231 g, 2.5 

mmol) was added dropwise at –20 °C and the resulting mixture was stirred at 25 °C for 1 h. 

The reaction mixture was then quenched with a sat. aq. NH4Cl solution (30 mL), extracted 

with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

as evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:5) 

2,4,6-Trichloropyrimidine (77) (186 mg, 1.0 mmol) dissolved in dr

dropwise at 25 °C to a solution of TMP Zn·2MgC

0

solution in THF; 1.2 mL, 1.2 mmol) was added at –20 °C

fo

w

furnished 81c as a colourless solid (205 mg, 86%). 

m.p.: 74.3 – 75.0 oC. 
1H NMR (300 MHz, CDCl3) δ: 2.83 (q, 2 H, J = 7.2 Hz), 1.19 (t, 3 H, J = 7.2 Hz). 
13C NMR (75 MHz, CDCl3) δ: 198.2, 159.2, 158.3, 131.7, 36.8, 7.2. 

MS (70 eV, EI) m/z (%): 238 [35Cl-M+]  (2), 209 (100), 120 (8). 

IR IR (ATR) 
~

 (cm-1): 2987, 2941, 2894, 1718, 1538, 1501, 1403, 1305, 1210, 1155, 1065, 

946, 835, 657. 

HRMS (EI) for C7H5
35Cl3N2O (237.9467): 237.9482. 

 

Synthesis of 2,5-dichloro-4-iodopyrimidine (85a): 

 

N

NI Cl

 

Cl  
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2,5-Dichloropyrimidine 83 (149 mg, 1.0 mmol) dissolved in dry THF (2 mL) was added 

dropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 

 min according to GP1. Iodine (381 mg, 

.5 mmol) dissolved in dry THF (2 mL) was then dropwise added at 25 °C and the resulting 

with a sat. aq. NH4Cl 

olution (30 mL) and a sat. aq. Na2S2O3 solution (10 mL), extracted with diethyl ether (5 × 30 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:5) furnished 85a as a colourless 

solid (203 mg, 72%). 

m.p.: 118.8 – 120.2 oC. 

H NMR (300 MHz, CDCl ) δ: 8.39 (s, 1 H). 

0.55 mmol) and stirred at the same temperature for 45

1

mixture was stirred for 30 min. The reaction mixture was quenched 

s

1
3

13C NMR (75 MHz, CDCl3) δ: 156.8, 155.4, 137.5, 134.0. 

MS (70 eV, EI) m/z (%): 274 [35Cl-M+]  (100), 149 (61), 147 (90), 120 (31), 43 (30). IR IR 

(ATR) 
~

 (cm-1): 3075, 3018, 2992, 1883, 1721, 1537, 1514, 1494, 1470, 1362, 1336, 1284, 

1192, 1171, 1135, 1034, 944, 812, 752, 659. 

HRMS (EI) for C4H
35Cl2IN2 (273.8561): 273.8554. 

 

Synthesis of ethyl 4-(2,5-dichloropyrimidin-4-yl)benzoate (85b): 

 

EtO2C

N
Cl

N Cl

 

9 ry THF (2 mL) was added 

 stirred at the same temperature for 45 min according to GP1. Pd(dba)2 (17 

- ved in THF (2 mL), followed by the 

ddition of ethyl 4-iodobenzoate (359 mg, 1.3 mmol, 1.3 equiv) were then transferred via 

re was stirred at 65 °C for 45 min and 

en quenched with a sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (5 × 30 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:1) furnished 85b as a yellowish solid 

32 mg, 78%). 

 

2,5-Dichloropyrimidine 83 (14  mg, 1.0 mmol) dissolved in d

dropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 

0.55 mmol) and

mg, 3 mol%) and P(o furyl)3 (14 mg, 6 mol%) dissol

a

cannula to the reaction mixture. The resulting mixtu

th

(2
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m.p.: 86.4 – 87.9 oC. 
1H-NMR (300 MHz, CDCl3) δ: 8.67 (s, 1 H), 8.16 (d, J = 8.2 Hz, 2 H), 7.94 (d, J = 8.2 Hz, 2 

H), 4.41 (q, J = 7.2 Hz, 2 H), 1.41 (t, J = 7.1 Hz, 3 H). 
13C NMR (75 MHz, CDCl3) δ: 165.7, 164.1, 160.0, 159.0, 138.1, 132.6, 129.5 (2), 127.9, 

61.4, 14.3. 

MS (70 eV, EI) m/z (%): 296 [35Cl-M+]  (29), 268 (64), 253 (100), 223 (34), 126 (13). 

IR (ATR) 
~

 (cm-1): 3033, 2992, 2935, 2915, 1718, 1610, 1574, 1545, 1520, 1499, 1486, 

1463, 1442, 1401, 1362, 1336, 1315, 1272, 1194, 1170, 1130, 1106, 1095, 1037, 1016, 944, 

861, 840, 786, 763, 724, 701, 652. 
5Cl2N2O2 (296.0119): 296.0117. 

rimidine (85c): 

HRMS (EI) for C13H10
3

 

Synthesis of 2,5-dichloro-4-(3-(trifluoromethyl)phenyl)py

 

N

N

Cl

Cl
F3C

 

,5-Dichloropyrimidine 83 (149 mg, 1.0 mmol) dissolved in dry THF (2 mL) was added 

dropwise at 25 °C to a solution of TMP2Zn·2MgCl2·2LiCl (35) (0.79 M in THF; 1.39 mL, 

0.55 mmol) and stirred at the same temperature for 45 min according to GP1. Pd(dba)2 (17 

mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), followed by the 

addition of 3-iodobenzotrifluoride (354 mg, 1.3 mmol, 1.3 equiv) were then transferred via 

annula to the reaction mixture. The resulting mixture was stirred at 65 °C for 45 min and 

 

2

c

then quenched with a sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (5 × 30 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:4) furnished 85c as a colourless 

solid (232 mg, 73%). 

m.p.: 45.2 – 46.6 oC. 
1H-NMR (300 MHz, CDCl3) δ: 8.69 (d, J = 5.1 Hz, 1 H), 7.62 – 8.16 (m, 4 H). 
13C-NMR (75 MHz, CDCl3) δ: 163.4, 160.1, 159.1, 135.0, 132.7 (2), 131.1 (q, J(C-F) = 32.3 

Hz), 129.1, 127.8 (q, J(C-F) = 3.7 Hz), 126.4 (q, J(C-F) = 3.7 Hz), 123.7 (q, J(C-F) = 272.5 

Hz). 
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): 292 [35Cl-M+] (84), 257 (100), 231 (24), 204 (15), 149 (15), 44 (24). MS (70 eV, EI) m/z (%

IR (ATR) 
~

 (cm-1): 3090, 3048, 1616, 1547, 1524, 1486, 1449, 1401, 1336, 1324, 1310, 

1252, 1198, 1166, 1103, 1071, 1036, 1000, 946, 909, 882, 810, 791, 776, 699, 656, 630. 

HRMS (EI) for C11H5
35Cl2F3N2 (291.9782): 291.9786. 

 

Synthesis of 4,6-dichloro-5-iodo-2-(methylthio)pyrimidine (88a): 

 

N

N SMeCl

I

Cl  

in THF (2 mL) 

as reacted with a solution of TMPMgCl·LiCl (16a) (1.10 M in THF, 1.0 mL, 1.1 mmol) at rt 

for 20 min according to GP1. Then, iodine (381 mg, 1.5 mmol) dissolved in THF (2 mL) was 

added dropwise at rt and the resulting mixture was stirred at the same temperature for 30 min. 

The reaction mixture was quenched with a sat. aq. NH4Cl solution (10 mL) and a sat. aq. 

a2S2O3 (10 mL), then extracted with diethyl ether (5 × 20 mL) and dried over anhydrous 

 

4,6-Dichloro-2-(methylthio)pyrimidine (86) (195 mg, 1.0 mmol) dissolved 

w

N

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:7) furnished the compound 88a as a colourless solid (289 

mg, 90%). 

m.p.: 104.4 – 105.3 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 2.51 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 172.5, 165.4, 90.1, 14.6. 

MS (EI, 70 eV) m/z (%): 322 (68), 320 (100) [35Cl-M+], 276 (74), 274 (21), 239 (14).  

IR (ATR) 
~

 (cm-1): 3003, 2930, 2636, 2450, 1501, 1463, 1326, 1264, 1176, 1000, 997, 848, 

804, 747. 

HRMS (EI) for C5H3
35Cl2IN2

32S (319.8439): 319.8429. 
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Synthesis of 4,6-dichloro-2-(methylthio)pyrimidin-5-yl)-phenyl-methanol (88b): 

 

N

NCl SMe

HO

Cl

 

 

4,6-Dichloro-2-(methylthio)pyrimidine 86 (292 mg, 1.5 mmol) dissolved in dry THF (3 mL) 

was added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.14 M in THF; 1.45 mL, 

1.65 mmol) and stirred at the same temperature for 30 min according to GP1. Benzaldehyde 

39 mg, 2.25 mmol) dissolved in dry THF (3 mL) was then slowly added at 25 °C and the 

 EI) m/z (%): 300 [35Cl-M+]  (100), 223 (29). 

(2

resulting mixture was stirred for 30 min. The reaction mixture was quenched with a sat. aq. 

NH4Cl solution (30 mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:3) furnished 88b as a colourless solid (405 mg, 90%). 

m.p.: 83.9 – 84.6 oC. 
1H NMR (300 MHz, CDCl3) δ: 7.30 – 7.36 (m, 5 H), 6.52 (s, 1 H), 3.48 (bs, 1 H), 2.57 (s, 3 

H). 
13C NMR (75 MHz, CDCl3) δ: 172.0, 160.8, 139.5, 128.2, 127.5, 126.7, 125.0, 70.2, 14.2. 

MS (70 eV,

IR (ATR) 
~

 (cm-1): 3561, 3447, 2925, 1538, 1478, 1339, 1308, 1259, 1171, 1111, 1021, 

876, 814, 727, 711, 639. 

 C H 35Cl N O32S (299.9891): 299.9878. HRMS (EI) for 12 10 2 2

 

Synthesis of 4,6-dichloro-2-(methylthio)pyrimidine-5-carboxylic acid ethyl ester (88c): 

 

N

N SMeCl

EtO2C

Cl  

,6-Dichloro-2-(methylthio)pyrimidine 86 (292 mg, 1.5 mmol) dissolved in dry THF (3 mL) 

as added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.14 M in THF; 1.45 mL, 

.65 mmol) and stirred at the same temperature for 30 min according to GP1. Ethyl 

 

4

w

1
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cyanoformate (298 mg, 3 mmol) was then slowly added at 25 °C and the resulting mixture 

as stirred for 20 min. The reaction mixture was quenched with a sat. aq. NH4Cl solution (30 

mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After 

filtration, the solvent was evaporated in vacuo. Purification by fast flash chromatography 

(CH2Cl2/pentane 1:5) furnished 88c as a colourless solid (345 mg, 86%). 

m.p.: 63.6 – 65.5 oC. 
1H NMR (300 MHz, CDCl3) δ: 4.42 (q, 2 H, J = 6 Hz), 2.56 (s, 3 H), 1.38 (t, 3 H, J = 6 Hz). 

C NMR (75 MHz, CDCl3) δ: 174.3, 162.5, 157.9, 121.9, 62.9, 14.5, 13.9. 

w

13

MS (70 eV, EI) m/z (%): 266 [35Cl-M+]  (100), 238 (55), 221 (53). 

IR (ATR) 
~

 (cm-1): 2982, 2932, 1735, 1550, 1479, 1374, 1346, 1320, 1293, 1217, 1067, 

1008, 860, 825, 780. 

HRMS (EI) for C8H8
35Cl2N2O2

32S (265.9684): 265.9689. 

 

Synthesis of 4,6-dichloro-5-methyl-2-(methylthio)pyrimidine (88d): 

 

N

N SMeCl

Me

Cl  

mol) dissolved in dry THF (3 mL) 

e temperature for 30 min according to GP1. Iodomethane 

ixture was stirred for 20 

in. The reaction mixture was quenched with a sat. aq. NH4Cl solution (30 mL), extracted 

in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:1) 

furnished 88d as a colourless solid (287 mg, 92%). 

m.p.: 60.2 – 62.1 oC. 
1H NMR (300 MHz, CDCl3) δ: 2.48 (s, 3 H), 2.32 (s, 3 H). 
13C NMR (75 MHz, CDCl3) δ: 169.8, 161.1, 122.7, 15.4, 14.2. 

S (70 eV, EI) m/z (%): 208 [35Cl-M+]  (100), 162 (31), 127 (20). 

 

4,6-Dichloro-2-(methylthio)pyrimidine 86 (292 mg, 1.5 m

was added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.14 M in THF; 1.45 mL, 

1.65 mmol) and stirred at the sam

(426 mg, 3 mmol) was then slowly added at 25 °C and the resulting m

m

with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated 

M

IR (ATR) 
~

 (cm-1): 2930, 2480, 1545, 1480, 1383, 1343, 1316, 1292, 1222, 1190, 1116, 

1010, 973, 862, 792, 756, 694. 

HRMS (EI) for C6H6
35Cl2N2O2

32S (207.9629): 207.9620. 
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Synthesis of 4,6-dichloro-2-(methylthio)-5-trimethylsilanyl-pyrimidine (88e): 

 

N

N

Me3Si

SMeCl

Cl  

4,6-Dichloro-2-(m

was added dropwise at 25 °C to a solution of TMPMgCl·LiCl ( L, 

ng to GP1. Trimethylsilyl 

he reaction mixture was quenched with a sat. aq. NH4Cl solution (30 

e d over anhydrous Na2SO4. After 

ltration, the solvent was evaporated in vacuo. Purification by flash chromatography 

 

.p.: 82.5 – 84.0 oC. 
1H NMR (300 MHz, CDCl3) δ: 2.52 (s, 3 H), 0.46 (s, 9 H). 
13C NMR (75 MHz, CDCl3) δ: 173.4, 166.9, 124.0, 14.0, 1.8. 

MS (70 eV, EI) m/z (%): 266 [35Cl-M+]  (56), 251 (100), 178 (18), 166 (23), 95 (24). 

R (ATR)

 

ethylthio)pyrimidine 86 (292 mg, 1.5 mmol) dissolved in dry THF (3 mL) 

16a) (1.14 M in THF; 1.45 m

1.65 mmol) and stirred at the same temperature for 30 min accordi

cyanide (179 mg, 1.8 mmol) was then slowly added at 25 °C and the resulting mixture was 

stirred for 20 min. T

mL), extracted with diethyl eth r (5 × 30 mL) and drie

fi

(CH2Cl2/pentane 1:3) furnished 88e as a colourless solid (317 mg, 79%).

m

 
~

 (cm-1): 2956, 2930, 2894, 1509, 1455, 1323, 1284, 1246, 1163, 1034, 845, 799, I

778, 701, 636. 

HRMS (EI) for C8H12
35Cl2N2

32SSi (265.9867): 265.9825. 

 

Synthesis of (4,6-dichloro-2-(methylthio)pyrimidin-5-yl)methyl pivalate (88f): 

 

N

N SMeCl

Cl

Ot-Bu

O  

4 ol) dissolved in dry THF (2 mL) 

was added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF; 1.0 mL, 

ding to GP1. Iodomethyl 

y to 25 °C for 3 h. The reaction mixture was quenched with a 

 

,6-Dichloro-2-(methylthio)pyrimidine 86 (195 mg, 1.0 mm

1.1 mmol) and stirred at the same temperature for 30 min accor

pivalate (339 mg, 1.4 mmol) was then slowly added at –15 °C and the resulting mixture was 

then allowed to warm up slowl
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sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (5 × 30 mL) and dried over 

nhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:3) furnished 88f as a colourless solid (235 mg, 76%). 

m.p.: 58.3 – 60.7 oC. 
1H NMR (300 MHz, CDCl3) δ: 5.20 (s, 2 H), 2.56 (s, 3 H), 1.19 (s, 9 H). 
13C NMR (75 MHz, CDCl3) δ: 177.9, 173.6, 162.5, 120.8, 60.1, 39.0, 27.1, 14.5. 

35 +  

a

MS (70 eV, EI) m/z (%): 308 [ Cl-M ]  (100), 210 (62), 208 (53), 57 (76). 

IR (ATR) 
~

 (cm-1): 2976, 2928, 2873, 1723, 1552, 1481, 1458, 1426, 1397, 1382, 1369, 

1339, 1317, 1302, 1280, 1227, 1189, 1142, 1122, 1032, 993, 974, 916, 868, 793, 770. 

HRMS (EI) for C11H14
35Cl2N2O2

28S (308.0153): 308.0135. 

 

Synthesis of (4,6-dichloro-2-(methylthio)pyrimidin-5-yl)(4-fluorophenyl)methanone 

(88g): 

 

N

NCl SMeF

wise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.14 M in THF; 1.45 mL, 

ing to GP1. CuCN·2LiCl 

.0 M solution in THF, 1.7 mL, 1.7 mmol) was slowly added at –20 °C and the reaction 

oride (476 

g, 3 mmol) was added dropwise at –20 °C and the resulting mixture was allowed to warm 

up slowly to 25 °C overnight. The reaction mixture was quenched with a sat. aq. NH4Cl 

solution (30 mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. 

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

2Cl2/pentane 1:5) furnished 88g as a colourless solid (441 mg, 93%). 

ClO  

 

4,6-Dichloro-2-(methylthio)pyrimidine 86 (292 mg, 1.5 mmol) dissolved in dry THF (3 mL) 

was added drop

1.65 mmol) and stirred at the same temperature for 30 min accord

(1

mixture was stirred at the same temperature for 30 min. Then, 4-fluorobenzoyl chl

m

(CH

m.p.: 133.5 – 135.0 °C. 
1H NMR (600 MHz, CDCl3) δ: 7.85 – 7.88 (m, 2 H), 7.18 – 7.20 (m, 2 H), 2.61 (s, 3 H). 
13C NMR (150 MHz, CDCl3) δ: 187.7, 174.6, 166.8(d, J (C-F) = 258.6 Hz), 157.9, 132.4 (d, 

J (C-F) = 9.7 Hz), 131.4 (d, J (C-F) = 3.0 Hz), 125.4, 116.7 (d, J (C-F) = 22.2 Hz), 14.4. 

MS (70 eV, EI) m/z (%): 316 [35Cl-M+] (68), 221 (10), 123 (100), 95 (36), 75 (10). 
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IR (ATR) 
~

 (cm-1): 3071, 2929, 2469, 2359, 1668, 1591, 1547, 1502, 1475, 1409, 1351, 

1320, 1291, 1233, 1220, 1185, 1154, 1104, 1093, 969, 919, 848, 814, 774, 750, 684, 663, 637, 

624. 

HRMS (EI) for C12H7
35Cl2FN2O

32S (315.9640): 315.9632. 

utan-1-one 

 

Synthesis of 1-(4,6-dichloro-2-(methylthio)pyrimidin-5-yl)-3,3-dimethylb

(88h): 

 

NCl SMe

NO

Cl

,6-Dichloro-2-(methylthio)pyrimidine 86 (975 mg, 5 mmol) dissolved in dry THF (5 mL) 

was added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF; 5.0 mL, 

5.5 mmol) and stirred at the same temperature for 30 min according to GP1. CuCN·2LiCl 

(1.0 M solution in THF, 5.5 mL, 5.5 mmol) was slowly added at –20 °C and the reaction 

mixture was stirred at the same temperature for 30 min. Then, 3,3-dimethylbutanoyl chloride 

(1.35 g, 10 mmol) was added dropwise at –20 °C and the resulting mixture was stirred at 25 

t-Bu  

 

4

°C for 60 min. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 mL), 

extracted with diethyl ether (5 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

1:7) furnished 88h as a colourless solid (1.23 g, 84%). 

m.p.: 95.0 – 96.0 oC. 
1H NMR (300 MHz, CDCl3) δ: 2.75 (s, 2 H), 2.57 (s, 3 H), 1.12 (s, 9 H). 
13C NMR (75 MHz, CDCl3) δ: 197.6, 173.7, 156.6, 128.0, 55.9, 31.0, 29.3, 14.4. 

MS (70 eV, EI) m/z (%): 292 [35Cl-M+] (7), 238 (23), 236 (35), 223 (66), 221 (100), 57 (10). 

IR (ATR) 
~

 (cm-1): 2955, 2929, 2897, 2871, 1715, 1541, 1475, 1425, 1380, 1359, 1327, 

1304, 1275, 1249, 1217, 1180, 1154, 1127, 996, 906, 853, 806, 777. 
35HRMS (EI) for C11H14 Cl2N2O S (292.0204): 292.0201. 32
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Synthesis of 4,6-dichloro-2-methyl(thiopyrimidin-5-yl)-phenyl-methanone (88i): 

 

NO

NCl SMe

Cl

 

4,6-Dichloro-2-(methylthio)pyrimidine 86 (292 mg, 1.5 mmol) dissolved in dry THF (3 mL) 

was added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.14 M in THF; 1.45 mL, 

1.65 mmol) and stirred at the same temperature for 30 min according to GP1. CuCN·2LiCl 

(1.0 M solution in THF, 1.6 mL, 1.6 mmol) was slowly added at –20 °C and the reaction 

ixture was stirred at the same temperature for 30 min. Then, benzoyl chloride (421 mg, 3 

, 105 (78), 77 (33). 

 

m

mmol) was dropwise added at –20 °C and the resulting mixture was stirred at 25 °C for 60 

min. The reaction mixture was quenched with a sat. aq. NH4Cl solution (30 mL), extracted 

with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:6) 

furnished 88i as a colourless solid (402 mg, 90%). 

m.p.: 135.1 – 136.2 oC. 
1H NMR (300 MHz, CDCl3) δ: 7.81 – 7.83 (m, 2 H), 7.62 – 7.66 (m, 1 H), 7.46 – 7.52 (m, 2 

H), 2.59 (s, 3 H). 
13C NMR (75 MHz, CDCl3) δ: 189.2, 174.2, 157.8, 134.8, 129.5, 129.1, 125.7, 14.4. 

MS (70 eV, EI) m/z (%): 298 [35Cl-M+] (100), 221 (26)

IR (ATR) 
~

 (cm-1): 3318, 3060, 2925, 1667, 1594, 1535, 1473, 1450, 1344, 1308, 1284, 

1230, 1173, 1096, 915, 848, 822, 771, 706, 680. 

HRMS (EI) for C12H8
35Cl2N2O

32S (297.9734): 297.9739. 

 

Synthesis of (4,6-dichloro-2-(methylthio)pyrimidin-5-yl)(furan-2-yl)methanone (88j): 

 

N

NCl SMe

Cl

O

O
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4,6-Dichloro-2-(methylthio)pyrimidine 86 (390 mg, 2.0 mmol) dissolved in dry THF (3 mL) 

as added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF; 2.0 mL, 

2.2 mmol) and stirred at the same temperature for 30 min according to GP1. CuCN·2LiCl 

(1.0 M solution in THF, 2.2 mL, 2.2 mmol) was slowly added at –20 °C and the reaction 

mixture was stirred at the same temperature for 30 min. Then, furan-2-carbonyl chloride (522 

mg, 4 mmol) was dropwise added at –20 °C and the resulting mixture was allowed to warm 

up slowly to 25 °C overnight. The reaction mixture was quenched with a sat. aq. NH4Cl 

olution (30 mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. 

w

s

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:4) furnished 88j as a colourless solid (498 mg, 86%). 

m.p.: 122.8 – 124.4 oC. 
1H NMR (300 MHz, CDCl3) δ: 7.71 (m, 1 H), 7.28 (m, 1 H), 7.65 – 7.67 (m, 1 H), 2.63 (s, 3 

H). 
13C NMR (75 MHz, CDCl3) δ: 176.2, 174.6, 158.1, 151.3, 148.7, 124.9, 121.2, 113.3, 14.5. 

MS (70 eV, EI) m/z (%): 290 (62), 288 [35Cl-M+] (100), 221 (12), 95 (55). 

IR (ATR) 
~

 (cm-1): 3140, 3119, 2929, 2464, 1649, 1562, 1536, 1475, 1454, 1446, 1394, 

1344, 1320, 1265, 1264, 1222, 1183, 1154, 1122, 1109, 1075, 1030, 1014, 945, 887, 874, 832, 

819, 790, 766, 740, 661, 619, 584. 

HRMS (EI) for C10H6
35Cl2N2O2

32S (287.9527): 287.9530. 

 

S hanone 

 

ynthesis of (2-chlorophenyl)(4,6-dichloro-2-(methylthio)-pyrimidin-5-yl)met

(88k): 

 

NCl

NO

ClCl

SMe

 

 

4,6-Dichloro-2-(methylthio)pyrimidine (86) (585 mg, 3.0 mmol) dissolved in THF (3 mL) 

was reacted with a solution of TMPMgCl·LiCl (16a) (0.89 M in THF, 3.72 mL, 3.3 mmol) at 

rt for 20 min according to GP1. The reaction mixture was cooled to –30 oC, CuCN·2LiCl 

ol) was added and the reaction mixture was stirred (1.00 M solution in THF, 3.3 mL, 3.3 mm
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for 30 min. Then, 2-chlorobenzoyl chloride (1.050 g, 6.0 mmol) was added dropwise at –30 

°C and the resulting mixture was stirred at rt for 45 min. The reaction mixture was quenched 

with a sat. aq. NH4Cl solution (30 mL), then extracted with diethyl ether (5 × 50 mL) and 

dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:5) furnished the compound 88k as a 

colourless solid (897 mg, 90%). 

m.p.: 130.0 – 132.2 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.77 – 7.80 (m, 1 H), 7.36 – 7.54 (m, 3 H), 2.59 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 188.1, 174.1, 157.8, 134.6, 134.4, 133.8, 132.1, 131.4, 127.3, 

127.0, 14.5. 

MS (EI, 70 eV) m/z (%): 334 (89), 332 (87) [35Cl-M+], 223 (27), 221 (31), 141 (28), 139 

ATR)

(100), 111 (31), 75 (18).  

IR (  
~

 (cm-1): 3354, 3064, 3013, 2930, 1682, 1587, 1538, 1473, 1429, 1344, 1321, 

1290, 1228, 1132, 1109, 1055, 1037, 964, 920, 845, 822, 786, 768, 745, 703, 654. 

HRMS (EI) for C12H7Cl3N2OS (331.9345): 331.9336. 

  

Synthesis of 2-chloro-4-iodo-6-(methylthio)pyrimidine (91a): 

 

N

NMeS Cl

I

o-4-(methylthio)pyrimidine 89 (161 mg, 1.0 mmol) dissolved in dry THF (2 mL) was 

dded dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF; 1.0 mL, 1.1 

mmol) and stirred at the same temperature for 5 min according to GP1. Iodine (381 mg, 1.5 

mmol) dissolved in dry THF (2 mL) was then dropwise added at 25 °C and the resulting 

mixture was stirred for 45 min. The reaction mixture was quenched with a sat. aq. NH4Cl 

solution (30 mL) and a sat. aq. Na2S2O3 solution (10 mL), extracted with diethyl ether (5 × 30 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

atography (CH Cl /pentane 1:5) furnished 91a as a colourless 

3

 

 

2-Chlor

a

Purification by flash chrom 2 2

solid (203 mg, 71%). 

m.p.: 97.9 – 99.6 oC. 
1H NMR (300 MHz, CDCl3) δ: 7.53 (s, 1 H), 2.53 (s, 3 H). 
13C NMR (75 MHz, CDCl ) δ: 173.8, 158.7, 127.1, 126.4, 12.8. 
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MS (70 eV, EI) m/z (%): 286 [35Cl-M+]  (100), 123 (13), 98 (53), 83 (16). 

IR (ATR) 
~

 (cm-1): 3080, 3008, 2930, 1517, 1496, 1468, 1414, 1359, 1336, 1320, 1287, 

1241, 1194, 1117, 1098, 1031, 964, 946, 838, 822, 809, 750, 708, 659, 602. 

HRMS (EI) for C5H4
35ClIN2S (285.8828): 285.8812. 

 

Synthesis of 4-bromo-2-chloro-6-(methylthio)pyrimidine (91b): 

 

NMeS Cl

N

Br  

 

2-Chloro-4-(methylthio)pyrimidine 89 (161 mg, 1.0 mmol) dissolved in dry THF (2 mL) was 

2 )2 (429 mg, 

ise added at 25 °C and the resulting 

5 min. The reaction mixture was quenched with a sat. aq. NH4Cl 

ied over anhydrous Na2SO4. 

fter filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:4) furnished 91b as a colourless solid (189 mg, 79%). 

m.p.: 86.8 – 88.3 oC. 
1H NMR (300 MHz, CDCl3) δ: 7.28 (s, 1 H), 2.56 (s, 3 H). 
13C NMR (75 MHz, CDCl3) δ: 174.9, 159.5, 150.7, 120.0, 13.0. 

added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF; 1.0 mL, 1.1 

mmol) and stirred at the same temperature for 5 min according to GP1. (BrCl C

1.5 mmol) dissolved in dry THF (2 mL) was then dropw

mixture was stirred for 4

solution (30 mL), extracted with diethyl ether (5 × 30 mL) and dr

A

MS (70 eV, EI) m/z (%): 238 [35Cl-M+]  (28), 194 (11), 58 (69), 44 (12), 43 (100). 

IR (ATR) 
~

 (cm-1): 3090, 2997, 2925, 1529, 1481, 1416, 1367, 1321, 1261, 1207, 1189, 

1101, 967, 905, 848, 832, 778, 747, 708, 605. 

HRMS (EI) for C5H4
79Br35ClN2S (237.8967): 237.8958. 

 

Synthesis of 2,4-dichloro-6-(methylthio)pyrimidine (91c): 

 

N

NMeS Cl

Cl  
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2-Chloro-4-(methylthio)pyrimidine 89 (161 mg, 1.0 mmol) dissolved in dry THF (2 mL) was 

CCFCl2 (281 mg, 

wise added at 25 °C and the resulting 

ixture was stirred for 45 min. The reaction mixture was quenched with a sat. aq. NH4Cl 

 over anhydrous Na2SO4. 

fter filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:4) furnished 91c as a colourless solid (140 mg, 72%). 

m.p.: 80.1 – 81.8 °C. 
1H NMR (300 MHz, CDCl3) δ: 7.11 (s, 1 H), 2.57 (s, 3 H). 
13C NMR (75 MHz, CDCl3) δ: 175.3, 160.0, 159.8, 116.1, 13.0. 

 m/z (%): 194 [35Cl-M+]  (100), 148 (36), 113 (26), 87 (32). 

added dropwise at 25 °C to a solution of TMPMgCl·LiCl (16a) (1.1 M in THF; 1.0 mL, 1.1 

mmol) and stirred at the same temperature for 5 min according to GP1. FCl2

1.5 mmol) dissolved in dry THF (2 mL) was then drop

m

solution (30 mL), extracted with diethyl ether (5 × 30 mL) and dried

A

MS (70 eV, EI)

IR (ATR) 
~

 (cm-1): 3090, 3002, 2930, 1532, 1483, 1414, 1372, 1321, 1261, 1215, 1197, 

1099, 969, 889, 851, 820, 809, 750, 716, 683, 603. 

HRMS (EI) for C5H4
35Cl2N2S (193.9472): 193.9467. 

 

2.7. Preparation of pyrazolopyrimidines and application to the synthesis of the 

antiviral p38 kinase inhibitor 92d 

 

nyl)-6-(methylthio)-1H-pyrazolo[3,4-d]pyrimidine Synthesis of 4-chloro-3-(4-fluorophe

(92a): 

 

NCl SMe

NF

N NH  

ydrazine (64% in water; 0.12 mL, 2.4 mmol) was added to a solution of 88g (0.317 g, 1.0 

ixture was stirred at the same 

mperature for 10 min and was quenched with a sat. aq. Na2CO3 solution (10 mL), then 

extracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2) 

furnished 92a as a colourless solid (224 mg, 76%). 

m.p.: 225.7 – 227.2 oC. 

H NMR (400 MHz, DMSO-d6) δ: 7.77 (m, 2 H), 7.32-7.36 (m, 2 H), 2.58 (s, 3 H). 

 

H

mmol) dissolved in 2 mL THF at 25 °C. The resulting m

te

1
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13C NMR (100 MHz, DMSO-d6) δ: 168.6, 162.6 (d, J(C-F) = 246.2 Hz), 156.3, 153.0, 144.0, 

131.9 (d, J (C-F) = 8.6 Hz), 127.8, 115.2 (d, J (C-F) = 31.7 Hz), 106.9, 13.8. 

MS (70 eV, EI) m/z (%): 294 [35Cl-M+] (100), 213 (35). 

IR (ATR) 
~

 (cm-1): 3187, 3156, 3076, 3029, 2982, 2918, 1739, 1597, 1531, 1520, 1467, 

1420, 1399, 1367, 1322, 1304, 1267, 1217, 1156, 1151, 1098, 1069, 1022, 982, 972, 956, 869, 

832, 816, 806, 785, 740, 692, 645, 602, 561. 

HRMS (EI) for C12H8
35ClFN4

32S (294.0142): 294.0130. 

 

6-(methylthio)-3-neopentyl-1H-pyrazolo[3,4-d]pyrimidine (92b): Synthesis of 4-chloro-

 

NCl SMe

N

N NHt-Bu

 

 

88h (0.294 g, 1.0 

at 25 °C. The resulting mixture was stirred at the same 

2 3

2SO4. After filtration, 

lvent was evaporated in vacuo. Purification by flash chromatography (CH Cl ) 

oC. 

H NMR (400 MHz, DMSO-d6) δ: 2.88 (s, 2 H), 2.55 (s, 3 H), 0.94 (s, 9 H). 
13C NMR (100 MHz, DMSO-d6) δ: 168.1, 155.6, 152.9, 143.5, 108.5, 31.9, 29.3, 13.8. 

MS (70 eV, EI) m/z (%): 270 [35Cl-M+] (12), 214 (100), 57 (24). 

IR (ATR) 

Hydrazine (64% in water; 0.17 mL, 3.4 mmol) was added to a solution of 

mmol) dissolved in 2 mL THF 

temperature for 10 min and was quenched with a sat. aq. Na CO  solution (10 mL), then 

extracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na

the so 2 2

furnished 92b as a colourless solid (199 mg, 73%). 

m.p.: 130.9 – 132.4 
1

~  (cm-1): 3203, 3156, 3119, 2960, 2929, 2902, 2860, 2359, 2332, 1739, 1594, 

533, 1483, 1462, 1449, 1412, 1362, 1330, 1291, 1267, 1238, 1209, 1199, 1143, 1101, 1069, 1

1006, 969, 890, 856, 811, 774, 750, 632, 616, 553. 

HRMS (EI) for C11H15
35ClN4

32S (270.0706): 270.0703. 
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Synthesis of 4-chloro-6-(methylthio)-3-phenyl-1H-pyrazolo[3,4-d]pyrimidine (92c): 

 

NCl SM

N

N NH  

 

e

d to a solution of 88i (0.298 g, 1.0 

mol) dissolved in 2 mL THF at 25 °C. The resulting mixture was stirred at the same 

n 

xtracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2) 

furnished 92c as a colourless solid (229 mg, 83%). 

m.p.: 201.0–202.3 oC. 

, DMSO-d6) δ: 7.70-7.72 (m, 2 H), 7.46-7.50 (m, 3 H), 2.57 (s, 3 H). 

Hydrazine (64% in water; 0.17 mL, 3.4 mmol) was adde

m

temperature for 10 min and was quenched with a sat. aq. Na2CO3 solution (10 mL), the

e

1H NMR (400 MHz
13C NMR (100 MHz, DMSO-d6) δ: 168.5, 156.4, 153.1, 144.9, 131.3, 129.8, 129.0, 128.1, 

106.9, 13.9. 

MS (70 eV, EI) m/z (%): 276 [35Cl-M+] (100), 195 (40), 77 (11). 

IR (ATR) 
~

 (cm-1): 3101, 3023, 2977, 2853, 1612, 1532, 1509, 1463, 1408, 1367, 1321, 

1253, 1228, 1155, 1083, 1018, 977, 876, 863, 786, 765, 701, 636. 

HRMS (EI) for C12H9
35ClN4

32S (276.0236): 276.0215. 

4-d]pyrimidine 

 

Synthesis of 4-chloro-3-(2-chlorophenyl)-6-(methylthio)-1H-pyrazolo[3,

(92d): 

NCl SMe

N

N NH
Cl  

ydrazine 64% in water (169 mg, 3.4 mmol) was slowly added to a solution of (2-

hlorophenyl)(4,6-dichloro-2-(methylthio)-pyrimidin-5-yl)-methanone (88k) (334 mg, 1.0 

mol) dissolved in THF (2 mL) at rt. The resulting mixture was stirred at the same 

mperature for 10 min and was quenched with a sat. aq. Na2CO3 solution (10 mL), then 

xtracted with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, 

 

H

c

m

te

e

  



D: Appendix  129 
  

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2) 

rnished the compound 92d as a colourless solid (246 mg, 79%). 

m.p.: 188.9 – 190.1 °C. 
1H-NMR (400 MHz, DMSO-d6) δ: 7.45 – 7.63 (m, 4 H), 2.59 (s, 3 H). 
13C-NMR (100 MHz, DMSO-d6) δ: 169.0, 155.8, 153.2, 142.4, 133.5, 132.3, 131.1, 130.7, 

35 +

fu

129.3, 127.1, 108.1, 13.9. 

MS (EI, 70 eV) m/z (%): 312 (62), 310 (100) [ Cl-M ], 266 (11), 264 (17), 231 (13), 229 

(46), 193 (14).  

IR (ATR) 
~

 (cm-1): 3173, 2930, 1605, 1582, 1532, 1509, 1450, 1401, 1334, 1300, 1277, 

1189, 1161, 1132, 1073, 1013, 980, 951, 858, 786, 752, 729, 714, 631. 

HRMS (EI) for C12H8Cl2N4S (309.9847): 309.9824. 

 

2.8. Preparation of the anti-inflammatory sPLA2 kinase inhibitor 95 

 

Synthesis of N-benzyl-6-chloro-5-iodo-2-(methylthio)-pyrimidin-4-amine (93): 

 

N

NMeS N

Cl

I

H
 

enzylamine (980 mg, 9.1 mmol, 1.7 equiv) was added slowly to a solution of 4,6-dichloro-5-

ulting mixture was stirred at the same temperature for 10 min and was quenched with 

a sat. aq. Na2CO3 solution (50 mL), then extracted with diethyl ether (5 × 100 mL) and dried 

over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

flash chromatography (CH2Cl2/pentane 1:3) furnished the compound 93 as a white solid 

(1.960 g, 91%). 

.p.: 111.0 – 112.7 °C. 

B

iodo-2-(methylthio)-pyrimidine (88a) (1.765 g, 5.5 mmol) dissolved in THF (15 mL) at rt. 

The res

m
1H-NMR (CDCl3, 300 MHz) δ: 7.27 – 7.39 (m, 5 H), 5.87 (s, 1 H), 4.69 (d, J = 5.6 Hz, 2 H), 

2.45 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 171.6, 161.7, 161.2, 137.7, 128.8, 127.7, 127.5, 72.7, 46.2, 

14.4. 

MS (ESI, 70 eV) m/z (%): 394 (32), 392 (100) [35Cl-M+].  
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IR (ATR) 
~

 (cm-1): 3261, 2925, 1587, 1551, 1517, 1465, 1414, 1336, 1308, 1264, 1235, 

1192, 1104, 1073, 1024, 998, 928, 827, 760, 732, 690, 641. 

2N4S (391.9485 (M+ + H)): 391.9481. HRMS (ESI) for C12H8Cl

 

Synthesis of N-benzyl-5-(but-1-ynyl)-6-chloro-2-(methylthio)-pyrimidin-4-amine (94): 

 

N

Cl Et

NHMeS N

 

o a solution of NEt3 (52.5 mL) and CuI (60 mg, 4 mol%) were added Pd(dba)2 (127 mg, 3 

-chloro-5-

do-2-(methylthio)-pyrimidin-4-amine (93) (2.940 g, 7.5 mmol) and recondensed 1-butyne 

(811 mg, 15.0 mol, 2.0 equiv). The reaction mixture was stirred at 55 °C for 1.5 h and then 

quenched with a sat. aq. NH4Cl solution (50 mL), extracted with diethyl ether (3 × 100 mL) 

and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:3) furnished the compound 94 

(2.334 g, 98%) as a colourless solid. 

 (96), 65 (16).  

 

T

mol%) and P(o-furyl)3 (105 mg, 6 mol%) in THF (15 mL), followed by N-benzyl-6

io

m.p.: 97.5 – 99.2 °C. 
1H-NMR (CDCl3, 400 MHz) δ: 7.27 – 7.37 (m, 5 H), 5.94 (s, 1 H), 4.71 (d, J = 5.9 Hz, 2 H), 

2.48 (q, J = 7.4 Hz, 2 H), 2.46 (s, 3 H), 1.23 (t, J = 7.4 Hz, 3 H). 
13C-NMR (CDCl3, 100 MHz) δ: 169.7, 161.7, 158.4, 138.1, 128.7, 127.5, 127.4, 104.6, 96.5, 

70.7, 45.1, 14.2, 13.7, 13.6. 

MS (EI, 70 eV) m/z (%): 318 (21), 317 (49) [35Cl-M+], 303 (15), 302 (100), 288 (15), 266 

(20), 106 (12), 91

IR (ATR) 
~

 (cm-1): 3267, 2984, 2926, 1547, 1454, 1428, 1370, 1346, 1314, 1255, 1166, 

1

r C16H16ClN3S (317.0753): 317.0748. 

 

077, 1000, 963, 911, 833, 775, 754, 698, 615. 

HRMS (EI) fo
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Synthesis of 7-benzyl-4-chloro-6-ethyl-2-methylsulfanyl-7H-pyrrolo[2,3-d]pyrimidine 

(95): 

 

N
Et

Cl

MeS N N

 

 

This compound was prepared from 94. To a stirred solution of potassium tert-butoxide (224 

mg, 2.0 mmol) in 8 mL NMP, was added under argon N-benzyl-5-(but-1-ynyl)-6-chloro-2-

(methylthio)pyrimidin-4-amine (94) (317 mg, 1.0 mmol) in 2 mL NMP. The resulting mixture 

as then vigorously stirred at rt for 1.25 h. The reaction mixture was then quenched with 

1, 153.2, 150.2, 143.6, 136.7, 128.7, 127.6, 126.7, 113.6, 

11.5. 

w

water (1 mL), dichloromethane (100 mL) was added, washed with a sat. aq. NaCl solution (20 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:1) furnished the compound 95 as a 

colourless solid (142 mg, 45%). 

m.p.: 118.0 – 119.4 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.27 - 7.34 (m, 3 H), 7.11 - 7.08 (m, 2 H), 6.28 (s, 1 H), 5.42 

(s, 2 H), 2.63 (d, J = 7.5 Hz, 2 H), 2.61 (s, 3 H), 1.30 (t, J = 7.5 Hz, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 163.

95.9, 45.4, 20.0, 14.4, 

MS (EI, 70 eV) m/z (%): 319 (27), 317 (85) [35Cl-M+], 284 (16), 226 (25), 91 (100), 65 (10).  

IR (ATR) 
~

 (cm-1): 3134, 3066, 3036, 2967, 2925, 2875, 1727, 1582, 1557, 1526, 1496, 

1

, 699, 654. 

470, 1453, 1438, 1378, 1369, 1355, 1312, 1288, 1260, 1226, 1204, 1190, 1168, 1116, 1031, 

967, 937, 871, 795, 750, 735

HRMS (EI) for C16H16ClN3S (317.0753): 317.0748. 

 

2.9. Preparation of the fungicide Mepanipyrim (100) 

 

Synthesis 2-chloro-4-iodopyrimidine (96): 

 

N

NI C

 

l
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2-Chloropyrimidine (53) (684 mg, 6.0 mmol) dissolved in THF (6 mL) was reacted with a 

solution of TMPMgCl·LiCl (1) (1.1 M in THF, 6.0 mL, 6.6 mmol) at –60 oC for 2 h. A 

ansmetalation using ZnCl2 (1.0 M in THF, 6.6 mL, 6.6 mmol) was performed and the 

resulting mixture was allowed to warm up slowly to rt. Iodine (2.284 g, 9.0 mmol) dissolved 

in dry THF (9 mL) was then dropwise added and the resulting mixture was stirred for 1 h at 

25 °C. The reaction mixture was quenched with a sat. aq. NH4Cl solution (50 mL) and sat. aq. 

Na2S2O3 (30 mL) was added, extracted with diethyl ether (5 × 50 mL) and dried over 

anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

hromatography on silica (CH2Cl2/pentane 1:4) furnished the compound 96 as a colourless 

tr

c

solid (1.31 g, 91%). 

m.p.: 111.3 – 112.4 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.13 (d, J = 5.1 Hz, 1 H), 7.72 (d, J = 5.1 Hz, 1 H). 
13C-NMR (75 MHz, CDCl3) δ: 160.1, 158.0, 131.2, 130.2. 

MS (70 eV, EI) m/z (%):  240 (47) [35Cl-M+], 127 (17), 115 (22), 113 (64), 86 (16), 58 (39), 

52 (15), 43 (100). 

IR (ATR) 
~

 (cm-1): 3094, 1511, 1395, 1342, 1318, 1227, 1192, 1165, 1133, 979, 834, 776, 

758, 666, 578. 

HRMS (EI) for C4H2
35Cl127IN2 (239.8951): 239.8950. 

 

Synthesis of 4-bromo-2-chloro-4-iodopyrimidine (97): 

 

NI Cl

N

Br  

 

2-Chloro-4-iodopyrimidine 96 (1.21 g, 5.0 mmol) dissolved in THF (10 mL) was slowly 

.1 M in THF; 5.5 mL, 5 mmol) and the 

ixture was stirred at the same temperature for 1 h. (BrCl C)  (2.442 g, 7.5 mmol) was added 

o warm up slowly to –65 °C 

r 3 h. Purification by flash chromatography (pentane/CH2Cl2 3:1) afforded the pyrimidine 

 145.9 – 147.8 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.94 (s, 1 H). 
13C-NMR (75 MHz, CDCl3) δ: 159.0, 152.6, 134.5, 129.6. 

added at –60 °C to a solution of TMPMgCl·LiCl (1; 1

m 2 2

dropwise at –78 °C and the resulting mixture was then allowed t

fo

97 (1.53 g, 96%) as a colourless solid. 

 m.p.:
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MS (EI, 70 eV) m/z (%): 320 (44), 318 (33) [79Br-M+], 193 (67), 191 (51), 130 (20), 127 

(20), 86 (10), 14 (62), 62 (13), 58 (77), 43 (100). 

IR (ATR) 
~

 (cm-1): 3108, 1486, 1357, 1338, 1267, 1241, 1098, 977, 845, 806, 745, 587. 

HRMS (EI) for C4H
79Br35Cl127IN2 (317.8056): 317.8058. 

       

Synthesis of 4-bromo-2-chloro-6-methylpyrimidine (98): 

  

N

NH3C Cl

Br  

3MgCl 

 up slowly to 25 °C. Then, a solution of 97 (1.28 g, 4.0 mmol) 

and Pd(PPh3)  (200 mg, 4 mol %) in THF (8 mL) was added, and the resulting mixture was 

ution (50 mL), extracted with diethyl ether (5 × 50 mL) and dried over 

2 4 orated in vacuo. Purification by flash 

hromatography (pentane/CH Cl  4:1) afforded the pyrimidine 98 (483 mg, 58%) as a 

.p.: 80.6 – 82.0 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.34 (s, 1 H), 2.50 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 171.1, 160.0, 153.5, 123.5, 23.6. 

MS (EI, 70 eV) m/z (%): 208 (29), 206 (24) [79Br-M

4 (15), 62 (28), 55 (16), 51 (21), 43 (15). 

 

ZnCl2 (1.0 M in THF, 6 mL, 6 mmol) was dropwise added to a stirred solution of CH

(2.93 M in THF, 1.95 mL, 5.65 mmol) at –20 °C. After 15 min stirring at this temperature, the 

mixture was allowed to warm

4

stirred at 50 °C overnight. The resulting mixture was cooled to 25 °C and quenched with a sat. 

aq. NH Cl sol4

anhydrous Na SO . After filtration, the solvent was evap

c 2 2

colourless solid. 

m

+], 129 (29), 127 (81), 86 (28), 66 (100), 

6

IR (ATR) 
~

 (cm-1): 3124, 3082, 2955, 2918, 2850, 1721, 1552, 1515, 1462, 1430, 1404, 

1370, 1354, 1296, 1251, 1228, 1188, 1130, 1040, 1011, 974, 911, 893, 861, 795, 750, 692, 

600. 

HRMS (EI) for C5H4
79Br35ClN2 (205.9246): 205.9240. 
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Synthesis of 2-chloro-4-methyl-6-(prop-1-ynyl)pyrimidine (99): 

 

N

NH3C Cl

CH3  

 

To a solution of recondensed propyne (81 mg, 2.0 mol) were added a mixture of NEt3 (7 mL), 

CuI (12 mg, 4 mol %), Pd(dba)2 (25 mg, 2 mol %) and P(o-furyl)3 (21 mg, 4 mol %) in THF 

 mL)  and 98 (312 mg, 1.5 mmol). The reaction mixture was stirred at 25 °C for 1.5 h and (2

then quenched with a sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (pentane/CH2Cl2 3:1) afforded the pyrimidine 99 (241 

mg, 97%) as a colourless solid. 

m.p.: 127.4 – 128.8 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.07 (s, 1 H), 2.47 (s, 3 H), 2.08 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 170.5, 160.9, 153.0, 121.0, 93.8, 77.3, 23.8, 4.5. 

MS (EI, 70 eV) m/z (%): 168 (17), 166 (50) [35Cl-M+], 58 (37), 44 (17), 43 (100). 

IR (ATR) 
~

 (cm-1): 3066, 2971, 2923, 2248, 2227, 1562, 1502, 1417, 1386, 1351, 1246, 

, 916, 893, 811, 764, 568. 

1-ynyl)pyrimidin-2-amine (100; Mepanipyrim): 

1193, 1185, 1051, 982

HRMS (EI) for C8H7
35ClN2 (166.0298): 166.0297. 

  

 

Synthesis of 4-methyl-N-phenyl-6-(prop-

 

N

NH3C
H
N

CH3  
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A Schlenk flask was flushed with nitrogen and charged with xantphos (11 mg, 20 mol %) and 

ry dioxane (3 mL). After purging the flask with dry argon, Pd(OAc)2 (58 mg, 10 mol %) was 

charged, and the mixture was stirred under nitrogen for 10 min. In another Schlenk flask, 99 

(84 mg, 0.5 mmol), aniline (70 mg, 0.75 mmol), and K2CO3 (1.38 g, 10 mmol) were mixed 

with dry dioxane (4 mL). Then, the Pd(OAc)2/Xantphos solution was added via cannula. The 

resulting mixture was subsequently heated to 100 °C under argon with vigorous stirring for 

1.5 h. After cooling, the solid material was filtered off and washed with CH2Cl2. The solvent 

as evaporated, and the crude residue purified by flash chromatography (CH2Cl2) affording 

3) [35Cl-M+], 222 (100), 77 (8), 43 (11). 

d

w

the pyrimidine 100 (91 mg, 81%) as a colourless solid. 

m.p.: 125.5 – 127.0 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.61 – 7.64 (m, 2 H), 7.30 – 7.33 (m, 2 H), 7.21 (bs, 1 H), 

6.98 – 7.03 (m, 1 H), 6.63 (s, 1 H), 2.38 (s, 3 H), 2.07 (s, 3 H). 

 13C-NMR (75 MHz, CDCl3) δ: 168.1, 159.7, 151.3, 139.5, 128.8, 122.3, 119.0, 114.1, 89.9, 

78.5, 24.0, 4.4. 

MS (EI, 70 eV) m/z (%): 223 (5

IR (ATR) 
~

 (cm-1): 3266, 3193, 3124, 3066, 2960, 2908, 2850, 2237, 1602, 1576, 1539, 

969, 890, 864, 824, 

 

 

 

 

 

 

 

1494, 1457, 1136, 1380, 1365, 1338, 1246, 1199, 1183, 1069, 1030, 996, 

787, 750, 692, 621, 608, 590. 

HRMS (EI) for C14H13N3 (223.1109): 223.1109. 
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3. Functionalizations of Sensitive Aromatics and Heteroaromatics via 

Regio- and Chemoselective Zincations using Mixed Zn/Li Bases 

 

3.1 General procedure for the deprotonation of sensitive arenes and 

heteroarenes using TMPZnCl·LiCl (100) (GP3) 

A dry argon flushed 10 mL Schlenk-flask, equipped with a magnetic stirrer and a septum, was 

charged with TMPZnCl·LiCl (101) (1.1 equiv). The substrate (1.0 equiv) in THF was 

dropwise added at 25 °C. The completion of the metal

 

ation was checked by GC analysis of 

ed with a solution of I2 in THF. The electrophile or its solution in 

T

NH4Cl solution), the reaction 

combined organic extracts were dried over Na2SO4 and concentrated in vacuo. 

reaction aliquots quench

HF was added at the temperature T1. After the completion of the reaction (checked by GC 

analysis of reaction aliquots quenched with a sat. aqueous 

mixture was quenched with a sat. aqueous NH4Cl solution . The aqueous layer was extracted 

with ether. The 

The crude residue was purified by flash column chromatography. 

 

3.2 General procedure for the reaction with acyl chlorides (GP4) 

 

According to GP3, the freshly prepared magnesium or zinc reagent was cooled to −30 °C, and 

uCN·2LiCl65 (1.1 equiv, 1.00 M in THF) was added and stirred for 30 min. Thereafter, an 

cyl chloride (2.0 equiv) was added at −30 °C, the reaction mixture was warmed to 25 °C and 

tirred for the appropriate time. The reaction mixture was quenched with sat. aq. NH4Cl 

olution extracted with Et2O and dried over anhydrous Na2SO4. After filtration, the solvent 

as evaporated in vacuo. The crude residue was purified by flash column chromatography. 

3.3 General procedure for the deprotonation of sensitive arenes and 

C

a

s

s

w

 

heteroarenes using TMPZnCl·LiCl (100) under microwave irradiations 

(GP5) 

 dry argon flushed 10 mL Schlenk-flask, equipped with a magnetic stirrer and a septum, was 

harged with TMPZnCl·LiCl (101) (1.1 equiv). The substrate (1.0 equiv) in THF was 

ropwise added at 25 °C and submitted to microwave irradiation at the temperature T1. The 

ompletion of the metalation was checked by GC analysis of reaction aliquots quenched with 

 solution of I2 in THF. The electrophile or its solution in THF was added at the temperature 

 

A

c

d

c

a
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T2. After the completion of the reaction (checked by GC analysis of reaction aliquots 

quenched with sat. aqueous NH4Cl solution), the reaction mixture was quenched with sat. 

queous NH4Cl solution . The aqueous layer was extracted with ether. The combined organic 

extract

by flash colu

 

a

s were dried over Na2SO4 and concentrated in vacuo. The crude residue was purified 

mn chromatography. 

3.4 Functionalization of pyrimidines, pyridazines, pyrazines and purines 

 

Synthesis of 4,6-dichloro-5-iodo-pyrimidine (79a): 

 

N

NCl

I

Cl  

 

4,6-Dichloropyrimidine 74 (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

MPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

g, 1.5 mmol) 

issolved in dry THF (2 mL) was then dropwise added and the resulting mixture was stirred 

, CDCl3) δ: 8.65 (s, 1 H). 

MS 

IR (ATR)

T

was then stirred at this temperature for 45 min according to GP3. I2 (381 m

d

for 30 min. The reaction mixture was quenched with a sat. aq. Na2S2O3 solution (10 mL) and 

with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 50 mL) and dried 

over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

flash chromatography (CH2Cl2/pentane 1:4) furnished compound 79a (227 mg, 83%) as a 

colourless solid. 

m.p.: 134.9 – 136.5 oC. 
1H NMR (300 MHz
13C NMR (75 MHz, CDCl3) δ: 166.6, 156.8, 98.9. 

(70 eV, EI) m/z (%): 274 (100) [M+], 239 (27), 97 (12), 83 (12), 57 (21). 

 ~  (cm−1): 2923, 2855, 1900, 1499, 1386, 11341, 1296, 1214, 1080, 1014, 790, 

63, 745. 7

HRMS (EI) for C4HCl2IN2 (273.8561): 273.8565. 
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Synthesis of (4,6-dichloropyrimidin-5-yl)(furan-2-yl)methanone (79e):  

 

N

NCl

O

Cl
O

idine 74 (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

ol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 45 min according to GP3. CuCN·2LiCl (1.0 M 

solution in THF, 1.1 mL, 1.1 mmol) was slowly added at –30 °C and the reaction mixture was 

stirred at the same temperature for 30 min according to GP4. Then, furan-2-carbonyl chloride 

(261 mg, 2.0 mmol) was dropwise added at –30 °C ixture was allowed to 

arm up slowly to 25 °C overnight. The reaction mixture was quenched with a sat. aq. NH4Cl 

 

 

4,6-Dichloropyrim

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mm

and the resulting m

w

solution (30 mL), extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. 

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:1) furnished 79e as a colourless solid (172 mg, 71%). 

m.p.: 143.6 – 145.4 °C. 
1H NMR (400 MHz, CDCl3) δ: 8.88 (s, 1 H), 7.70 (m, 1 H), 7.28 (m, 1 H), 6.66 (m, 1 H). 
13C NMR (100 MHz, CDCl3) δ: 175.6, 158.8, 158.4, 150.8, 149.0, 130.9, 121.5, 113.5. 

MS (70 eV, EI) m/z (%): 242 (48) [M+], 167 (49), 95 (100), 58 (21), 43 (33). 

IR (ATR) ~  (cm−1): 3133, 2969, 2359, 2340, 1738, 1636, 1558, 1540, 1512, 1450, 1403, 

1375, 1361, 1297, 1230, 1216, 1168, 1123, 1083, 1032, 956, 904, 888, 878, 815, 789, 781, 

609. 

.9653. 

746, 738, 668, 626, 615, 

HRMS (EI) for C9H4Cl2N2O2 (241.9650): 241

 

Synthesis of 5-allyl-4,6-dichloropyrimidine (79f):  

 

N

NCl

Cl  
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4,6-Dichloropyrimidine 74 (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

MPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 45 min according to GP3. CuCN·2LiCl (1 M in THF; 

0.05 mL, 5 mol %) was then slowly added at –30 °C. Allyl bromide (242 mg, 2.0 mmol) was 

then slowly added at –60 °C. The resulting mixture was then allowed to warm up slowly to 0 

°C within 4 h. The reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), 

extracted with diethyl ether (5 × 30 mL) and dried over anhydrous Na2SO4. After filtration, 

lvent was evaporated in vacuo. Purification by flash chromatography (CH Cl /pentane 

T

the so 2 2

1:2) furnished 79f as a colourless oil (215 mg, 89%). 
1H NMR (300 MHz, CDCl3) δ: 8.64 (s, 1 H), 5.80 – 5.90 (m, 1 H), 5.09 – 5.18 (m, 2 H), 3.64 

(dt, 3 J = 6.4 Hz, 4 J = 1.4 Hz, 2 H). 
13C NMR (75 MHz, CDCl3) δ: 162.0, 155.8, 130.9, 130.6, 118.2, 34.0. 

MS (70 eV, EI) m/z (%): 188 (70) [M+], 125 (22), 117 (44), 90 (59), 64 (35), 49 (43), 41 

(100). 

IR (ATR) ~  (cm−1): 2969, 2360, 1739, 1639, 1539, 1513, 1435, 1406, 1375, 1348, 1313, 

1290, 1200, 1162, 1129, 1090, 989, 929, 906, 839, 777, 687, 668, 627, 621, 616. 

HRMS (EI) for C7H6Cl2N2 (187.9908): 187.9913. 

 

 

Synthesis of 3,6-dichloro-4- odopyridazine (105a): i

 

N

N
I

Cl

THF (2 mL) was added to a solution of 

MPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 30 min according to GP3. I2 (381 mg, 1.5 mmol) 

dissolved in dry THF (2 mL) was then dropwise added and the resulting mixture was stirred 

for 30 min. The reaction mixture was quenched with a sat. aq. Na2S2O3 solution (10 mL) and 

with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 50 mL) and dried 

ver anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

Cl  

 

3,6-Dichloropyridazine (103) (149 mg, 1.0 mmol) in 

T

o
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flash chromatography (CH2Cl2/pentane 1:2) furnished compound 105a (231 mg, 84%) as a 

colourless solid. 

m.p.: 145.1 – 146.6 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.06 (s, 1 H).  
13C-NMR (75 MHz, CDCl3) δ: 159.7, 153.9, 139.7, 105.4. 

MS (70 eV, EI) m/z (%): 274 (95) [M+], 127 (23), 123 (10), 121 (10), 119 (100), 86 (15), 84 

(43), 49 (8). 

IR (ATR) ~  (cm-1): 3092, 3020, 1796, 1516, 1488, 1464, 1332, 1296, 1276, 1236, 1152, 

1136, 1060, 1044, 992, 956, 900, 812, 764, 728, 672, 660, 628, 608, 588, 564. 

(105b): 

HRMS (EI) for C4HCl2IN2 (273.8561): 273.8538. 

 

Synthesis of (3,6-dichloropyridazin-4-yl)(4-fluorophenyl)methanone 

 

N

N

F

Cl

Cl

O

 

,6-Dichloropyridazine (103) (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

mol) at 25 oC and the reaction mixture 

as then stirred at this temperature for 30 min according to GP3. After cooling to –30 °C, 

CuCN·2LiCl (1.0 M in THF, 1.1 mmol, 1.1 equiv) was added and the resulting mixture was 

stirred for 30 min at this temperature according to GP4. 4-Fluorobenzoyl chloride (317 mg, 

2.0 mmol) was then slowly added and the resulting mixture was allowed to warm up slowly to 

10 °C. The reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), extracted 

ith diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

 

3

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 m

w

w

was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:1) 

furnished compound 105b (259 mg, 96%) as a white solid. 

m.p.: 71.1 – 72.6 °C. 
1H-NMR (400 MHz, CDCl3) δ: 7.79 – 7.83 (m, 2 H), 7.51 (s, 1 H), 7.19 – 7.24 (m, 2 H). 
13C-NMR (100 MHz, CDCl3) δ: 187.4, 167.0 (d, J (C-F) = 259.9 Hz), 156.3, 151.5, 139.6, 

132.8 (d, J (C-F) = 9.9 Hz), 130.4 (d, J (C-F) = 3.1 Hz), 127.7, 116.8 (d, J (C-F) = 22.6 Hz). 

MS (70 eV, EI) m/z (%): 270 (11) [M+], 123 (100), 95 (19). 
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IR (ATR) ~  (cm-1): 3067, 2927, 2358, 1917, 1673, 1590, 1504, 1414, 1344, 1319, 1256, 

1237, 1178, 1157, 1140, 1103, 1041, 1009, 967, 955, 909, 849, 841, 818, 795, 760, 753, 683, 

625, 620, 614, 606, 602. 

9.9762. 

659, 650, 645, 638, 633, 

HRMS (EI) for C11H5Cl2FN2O (269.9763): 26

 

Synthesis of 3,6-dichloro-4-(3-(trifluoromethyl)phenyl)pyridazine (105c): 

 

N

N

Cl

F C3

Cl  

 

3,6-Dichloropyridazine (103) (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 30 min according to GP3. Pd(dba)2 (17 mg, 3 mol%) 

and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 3-

iodobenzomethyltrifluoride (354 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula 

 the reaction mixture. The resulting mixture was stirred for 1 h at 25 °C. The reaction 

17), 264 (25), 229 (28), 206 (16), 

 (13), 138 (10), 136 (24), 113 (25), 59 (18). 

I

to

mixture was then quenched with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl 

ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:2) furnished 

compound 105c (243 mg, 83%) as a colourless solid. 

m.p.: 93.0 – 94.9 °C. 
1H-NMR (400 MHz, CDCl3) δ: 7.66 – 7.81 (m, 4 H), 7.53 (s, 1 H).  
13C-NMR (100 MHz, CDCl3) δ: 156.1, 154.4, 143.3, 141.2, 133.9, 131.5 (q, J (C-F) = 33.0 

Hz), 129.6 (2), 128.3, 127.0 (q, J (C-F) = 3.8 Hz), 125.7 (q, J (C-F) = 3.8 Hz), 123.4 (q, J (C-

F) = 272.5 Hz). 

MS (70 eV, EI) m/z (%): 294 (60), 292 (100) [M+], 266 (

204 (49), 194 (21), 169

R (ATR) ~  (cm-1): 3048, 2359, 1743, 1614, 1558, 1485, 1435, 1361, 1323, 1309, 1281, 

1

 

241, 1226, 1214, 1167, 1144, 1109, 1097, 1078, 1060, 1042, 1001, 933, 917, 903, 884, 803, 

782, 755, 709, 697, 660, 645, 639, 632, 625, 620, 614, 606, 601. 

HRMS (EI) for C11H5Cl2F3N2 (291.9782): 291.9785. 
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Synthesis of 3,5-dichloro-2-iodopyrazine (108a): 

 

N

NCl

I

Cl

 

106) (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 30 min according to GP3. I2 (381 mg, 1.5 mmol) 

dissolved in dry THF (2 mL) was then dropwise added and the resulting mixture was stirred 

for 30 min. The reaction mixture was quenched with a sat. aq. Na2S2O3 solution (10 mL) and 

with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 50 mL) and dried 

ver anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

 

2,6-Dichloropyrazine (

o

flash chromatography (CH2Cl2/pentane 1:2) furnished compound 108a (251 mg, 90%) as a 

colourless solid. 

m.p.: 101.3 – 103.0 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.30 (s, 1 H).  
13C-NMR (75 MHz, CDCl3) δ: 153.1, 146.9, 142.4, 115.7. 

MS (70 eV, EI) m/z (%): 274 (100) [M+], 147 (75), 127 (18), 86 (32), 57 (21), 44 (94). 

IR (ATR) ~  (cm-1): 2969, 2633, 2281, 1784, 1738, 1510, 1491, 1379, 1353, 1323, 1274, 

1230, 1217, 1205, 1175, 1162, 1143, 1018, 893, 843, 655, 634, 618, 611, 604. 

HRMS (EI) for C4HCl2IN2 (273.8561): 273.8555. 

 

Synthesis of ethyl 4-(3,5-dichloropyrazin-2-yl)benzoate (108b): 

 

N

NCl Cl

EtO2C  

 

2,6-Dichloropyrazine (106) (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

TMPZnCl·LiCl (2) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture was 

then stirred at this temperature for 30 min according to GP3. Pd(dba)2 (17 mg, 3 mol%) and 

dobenzoate (359 mg, 1.3 mmol), were then transferred via cannula to the reaction mixture. 

P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), followed by the addition of ethyl 4-

io
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The reaction mixture was stirred at 25 °C for 1.5 h. with a sat. aq. NH4Cl solution (20 mL), 

xtracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

1:2) furnished compound 108b (251 mg, 87%) as a colourless solid. 

m.p.: 88.5 – 90.0 °C. 
1H-NMR (300 MHz, CDCl ) δ: 8.59 (s, 1 H), 8.14 (d, J = 8.6 Hz, 2 H), 7.84 (d, J = 8.6 Hz, 2 

e

3

H), 4.40 (q, J = 7.2 Hz, 2 H), 1.40 (t, J = 7.0 Hz, 3 H).   
13C-NMR (75 MHz, CDCl3) δ: 165.8, 150.1, 145.9, 142.0, 139.0, 131.6, 129.4 (2), 61.2, 

14.3. 

MS (70 eV, EI) m/z (%): 296 (32) [M+], 270 (24), 268 (38), 251 (100), 223 (26). 

IR (ATR) ~  (cm-1): 3086, 3005, 2985, 2359, 1966, 1708, 1611, 1569, 1537, 1507, 1482, 

1466, 1446, 1423, 1408, 1366, 1310, 1283, 1263, 1190, 1175, 1140, 1131, 1114, 1098, 1028, 

1021, 1009, 915, 858, 843, 786, 758, 719, 698, 657, 634, 621, 616, 610, 602. 

HRMS (EI) for C H Cl N O  (296.0119): 296.0119. 

 

13 10 2 2 2

yrazin-2-yl)methyl)acrylate (108c): Synthesis of ethyl 2-((3,5-dichlorop

 

NCl Cl

NEtO2C  

 

2,6-Dichloropyrazine (106) (149 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

MPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

. After cooling to –50 °C, 

thyl (2-bromomethyl)acrylate (230 mg, 1.2 mmol) and CuCN·2LiCl (1.0 M solution in THF, 

5 drops) were added and the resulting mixture was allowed to warm up slowly to –20 °C. The 

reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl 

ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:3) furnished 

ompound 108c (187 mg, 72%) as a colourless oil. 

T

was then stirred at this temperature for 30 min according to GP3

e

c
1H-NMR (300 MHz, CDCl3) δ: 8.38 (s, 1 H), 6.34 (s, 1 H), 5.56 (s, 1 H), 4.14 (q, J = 7.1 Hz, 

2 H), 3.92 (s, 2 H), 1.21 (t, J = 7.1 Hz, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 166.0, 151.5, 146.8, 145.0, 141.5, 136.0, 127.6, 60.9, 36.7, 

14.0. 

MS (70 eV, EI) m/z (%): 261 (100) [M+-H], 163 (10). 
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IR (ATR) ~  (cm-1): 2969, 2359, 1738, 1503, 1385, 1342, 1294, 1226, 1215, 1084, 1013, 987, 

954, 795, 764, 749, 667, 621, 615, 608, 603. 

HRMS (ESI) for C10H10Cl2N2O2 (260.0119 (M+-H)): 261.0196. 

 

Synthesis of 8-(4-chlorophenyl)-1,3,7-trimethyl-1H-purine-2,6(3H,7H)-dione (111a): 

 

O

N

N N

N

O

Cl

 

 

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) was added to a solution of 1,3,7-

trimethyl-1H-purine-2,6(3H,7H)-dione (109) (194 mg, 1.0 mmol) in THF (2 mL) at 25 oC and 

e for max. 5 min. Pd(dba)2 (17 mg, 

 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 1-chloro-

ia cannula to the 

action mixture. The resulting mixture was stirred for 1 h at 25 °C. The reaction mixture was 

then quenched with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 50 

mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/ether 1:1) furnished compound 111a (226 mg, 

the reaction mixture was then stirred at this temperatur

3

4-iodobenzene (310 mg, 1.3 mmol, 1.3 equiv) were then transferred v

re

74%) as a colourless solid. 

m.p.: 199.4 – 201.0 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.62 (d, J = 8.5 Hz, 2 H), 7.48 (d, J = 8.5 Hz, 2 H), 4.03 (s, 3 

H), 3.59 (s, 3 H), 3.39 (s, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 155.4, 151.5, 150.7, 148.1, 136.7, 130.4, 129.2, 126.7, 108.6, 

33.9, 29.8, 28.0. 

MS (70 eV, EI) m/z (%): 304 (100) [M+], 82 (23), 67 (13). 

IR (ATR) ~  (cm-1): 2969, 1738, 1694, 1646, 1605, 1569, 1538, 1473, 1454, 1430, 1408, 

1374, 1288, 1229, 1216, 1180, 1108, 1090, 1074, 1030, 1008, 977, 835, 803, 759, 749, 739, 

730, 708, 685, 671, 650, 645, 639, 632, 625, 620, 614, 606. 601. 

 C14H13ClN4O2 (304.0727): 304.0722. HRMS (ESI) for
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Synthesis of ethyl 2-((1,3,7-trimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-

yl)methyl)acrylate (111b): 

 

O

N

N N

N

O CO2Et

 

 

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) was added to a solution of 1,3,7-

trimethyl-1H-purine-2,6(3H,7H)-dione (109) (194 mg, 1.0 mmol) in THF (2 mL) at 25 oC and 

e reaction mixture was then stirred at this temperature for max. 5 min. After cooling to –50 

3) δ: 165.7, 155.1, 151.4, 150.8, 147.7, 135.0, 127.3, 107.4, 61.1, 

.0. 

M

th

°C, ethyl 2-(bromomethyl)acrylate (230 mg, 1.2 mmol) and CuCN·2LiCl (1.0 M solution in 

THF, 5 drops) were added and the resulting mixture was allowed to warm up slowly 

overnight. The reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), 

extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/ether, 

1:1) furnished compound 111b (211 mg, 69%) as a colourless solid. 

m.p.: 113.5 – 115.1 °C. 
1H-NMR (300 MHz, CDCl3) δ: 6.28 (s, 1 H), 5.49 (s, 1 H), 4.14 (q, J = 7.1 Hz, 2 H), 3.86 (s, 

3 H), 3.70 (s, 2 H), 3.45 (s, 3 H), 3.29 (s, 3 H), 1.21 (t, J = 7.1 Hz, 3 H).  
13C-NMR (75 MHz, CDCl

31.8, 29.6, 29.3, 27.7, 14

S (70 eV, EI) m/z (%): 306 (78) [M+], 260 (28), 232 (100), 219 (11), 67 (13). 

IR (ATR) ~  (cm-1): 2998, 2956, 2358, 1719, 1697, 1658, 1548, 1497, 1448, 1426, 1402, 

1

1, 630, 602. 

 

362, 1340, 1293, 1253, 1215, 1162, 1112, 1033, 978, 960, 939, 894, 858, 831, 812, 759, 743, 

718, 693, 663, 64

HRMS (ESI) for C14H18N4O4 (306.1328): 306.1320. 

 

 

 

 

 

 

  



D: Appendix  146 
  

3.5 Functionalization of arenes and heteroarenes bearing a nitro group: 

 

Synthesis of ethyl 2',6'-difluoro-3'-nitrobiphenyl-4-carboxylate (114a): 

 

NO2

F

F

EtO2C

 

 

2,4-Difluoro-1-nitrobenzene 112 (159 mg, 1.0 mmol) in THF (2 mL) was added to a solution 

of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction 

mixture was then stirred at this temperature for 45 min according to GP3. Pd(dba)2 (17 mg, 

3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), followed by the addition 

of ethyl 4-iodobenzoate (359 g, 1.3 mmol), were then transferred via cannula at -20°C. The 

resulting mixture was allowed to warm up slowly to 25 °C overnight. The reaction mixture 

was then quenched with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 

50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in 

vacuo. Purification by flash chromatography (CH Cl /pentane 1:2) fu2 2 rnished compound 114a 

rless solid. 

m

3 z, 2 H), 7.51 (d, J = 

8

) δ: 165.8, 162.5 (dd, J = 6.0 Hz, J = 260.1 Hz), 153.7 (dd, J = 6.0 

 J = 2.0 Hz), 

 

(23) [M+], 279 (48), 262 (100), 216 (43), 188 (34), 44 (12). 

(281 mg, 92%) as a colou

.p.: 85.0 – 86.7 °C. 
1H NMR (300 MHz, CDCl ) δ: 8.09 – 8.18 (m, 1 H), 8.15 (d, J = 8.8 H

.8 Hz, 2 H), 7.11 – 7.18 (m, 1 H), 4.40 (q, J = 7.0 Hz, 3 H), 1.40 (d, J = 7.0 Hz, 2 H). 
13C NMR (75 MHz, CDCl3

Hz, J = 260.1 Hz), 131.2 (dd, J = 0.5 Hz, J = 3.9 Hz), 130.2 (dd, J = 1.8 Hz,

129.7, 126.6 (dd, J = 1.8 Hz, J = 21.4 Hz), 120.2 (dd, J = 28.1 Hz, J = 1.8 Hz), 112.1 (dd, J = 

4.3 Hz, J = 24.7 Hz), 61.3, 14.3. 

MS (70 eV, EI) m/z (%): 307 

IR (ATR) ~  (cm−1): 3101, 2969, 2359, 1712, 1621, 1589, 1567, 1535, 1510, 1472, 1404, 

368, 1341, 1304, 1286, 1269, 1215, 1185, 1170, 1148, 1127, 1103, 1070, 1020, 1011, 948, 

79, 857, 824, 778, 756, 714, 702, 667, 636, 620, 607, 602. 

 for C15H11F2NO4 (307.0656): 307.0651. 

1

8

HRMS (EI)
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Synthesis of (2,6-difluoro-3-nitrophenyl)(phenyl)methanone (114b): 

 

NO2

FO

F  

 

2,4-Difluoro-1-nitrobenzene 112 (159 mg, 1.0 mmol) in THF (2 mL) was added to a solution 

·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction 

114b

, 7 H). 

3) δ: 186.2, 162.2 (dd, J = 4.2 Hz, J = 262.4 Hz), 153.7 (dd, J = 9.0 

of TMPZnCl

mixture was then stirred at this temperature for 45 min according to GP3. CuCN·2LiCl (1.0 M 

solution in THF, 1.1 mL, 1.1 mmol) was slowly added at –40 °C and the reaction mixture was 

stirred at the same temperature for 30 min according to GP4. Then, benzoyl chloride (281 mg, 

2.0 mmol) was added dropwise at –40 °C and the resulting mixture was allowed to warm up 

slowly to 25 °C overnight. The reaction mixture was then quenched with a sat. aq. NH4Cl 

solution (20 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. 

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane, 1:2) furnished compound  (221 mg, 84%) as a colourless solid. 

m.p.: 75.8 – 77.2 °C. 
1H NMR (300 MHz, CDCl3) δ: 7.14 – 8.31 (m
13C NMR (75 MHz, CDCl

Hz, J = 269.9 Hz), 135.7, 135.1, 133.8, 130.2, 129.6, 129.1, 128.7 (dd, J = 2.1 Hz, J = 10.9 

Hz), 128.5, 119.3 (dd, J = 21.9 Hz, J = 2.1 Hz). 
+MS (70 eV, EI) m/z (%): 263 (52) [M ], 105 (100), 33 (77). 

IR (ATR) ~  (cm−1): 3100, 1912, 1738, 1675, 1619, 1594, 1530, 1496, 1469, 1450, 1351, 

1320, 1311, 1280, 1266, 1217, 1180, 1159, 1128, 1100, 1073, 1034, 1027, 1000, 970, 934, 

862, 834, 828, 797, 774, 759, 731, 705, 692, 683, 668, 645, 638, 630, 626, 620, 614, 606, 601. 

HRMS (EI) for C13H7F2NO3 (263.0394): 263.0393. 

 

Synthesis of 2,4-difluoro-3-iodonitrobenzene (114c): 

 

NO

F

I 2

F  
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2,4-Difluoro-1-nitrobenzene 112 (159 mg, 1.0 mmol) in THF (2 mL) was added to a solution 

f TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction 

mixture was then stirred at this temperature for 45 min according to GP3. I2 (381 mg, 1.5 

mmol) dissolved in dry THF (2 mL) was then dropwise added and the resulting mixture was 

stirred for 30 min. The reaction mixture was quenched with a sat. aq. Na2S2O3 solution 

0 mL) and with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 50 mL) 

o

(1

and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. 

Purification by flash chromatography (CH2Cl2/pentane 1:1) furnished compound 114c 

(256 mg, 90%) as a colourless solid. 

m.p.: 46.1 – 47.5 °C. 
1H NMR (300 MHz, CDCl3) δ: 8.12 – 8.17 (m, 1 H), 7.04 – 7.08 (m, 1 H). 
13C NMR (75 MHz, CDCl3) δ: 165.6 (dd, J = 5.0 Hz, J = 252.6 Hz), 156.4 (dd, J = 6.9 Hz, J 

= 264.1 Hz), 127.7 (dd, J = 2.3 Hz, J = 10.3 Hz), 111.6 (dd, J = 4.2 Hz, J = 26.1 Hz), 74.3 

(dd, J = 29.2 Hz, J = 1.9 Hz). 

MS (70 eV, EI) m/z (%): 285 (100) [M+], 258 (17), 239 (19), 227 (17), 167 (25), 149 (66), 

112 (58), 71 (11), 57 (12), 44 (12). 

IR (ATR) ~ −1 (cm ): 3098, 2926, 2855, 2359, 1916, 1739, 1602, 1584, 1529, 1463, 1425, 

51, 698, 669, 621, 616. 

o-pyridine (117): 

1336, 1301, 1277, 1218, 1147, 1105, 1011, 860, 827, 7

HRMS (EI) for C6H2F2INO2 (284.9098): 284.9094. 

 

Synthesis of 2-chloro-4-cyclohex-2-enyl-3-nitr

 

N Cl

NO2

 

mL) was added to a solution of 

·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 30 min according to GP3. After cooling to –50 °C, 3-

bromocyclohexene (192 mg, 1.2 mmol) and CuCN·2LiCl (1.0 M solution in THF, 0.05 mL, 

0.05 mmol) were added and the reaction mixture was stirred for 1 h at the same temperature. 

he reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), extracted with 

 

2-Chloro-3-nitropyridine (115) (159 mg, 1.0 mmol) in THF (2 

TMPZnCl

T
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diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:1) furnished 2-

chloro-4-(cyclohex-2-enyl)-3-nitro-pyridine (117) (173 mg, 73%) as a colourless solid.  

m.p.: 54.5 – 55.4 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.44 (d, 3J = 5.1 Hz, 1 H), 7.32 (d, 3J = 5.1 Hz, 1 H), 6.07 

(ddd, 3J = 10.0 Hz, 3J = 6.1 Hz, 4J = 3.7 Hz, 1 H), 5.54 (dd, 3J = 10.0, 4J = 1.9 Hz, 1 H), 3.46 

(m, 1 H), 2.09 (m, 3 H), 1.76 (m, 1 H), 1.64 (m, 1 H), 1.51 (m, 1 H).  
13C-NMR (75 MHz, CDCl3) δ: 150.2, 150.0, 146.5, 141.8, 131.9, 125.9, 123.3, 37.4, 31.3, 

24.7, 20.8. 

%): 237 (3) [M+-H], 223 (31), 221 (100), 203 (48), 193 (48), 185 (20), 

51 (22), 41 (34). 

MS (70 eV, EI) m/z (

181 (45), 167 (32), 165 (31), 157 (21), 129 (29), 128 (31), 115 (21), 77 (35), 

IR (ATR) ~  (cm-1): 2939, 1589, 1539, 1446, 1361, 1347, 1231, 1137, 1041, 973, 918, 890, 

855, 845, 757, 723, 691, 616. 

HRMS (EI) for C11H11ClN2O2 (237.0431 [M+-H]): 237.0424. 

ethoxy-2-nitrobenzyl)acrylate (120): 

 

Synthesis of ethyl 2-(6-fluoro-3-m

 

F

EtO2C

NO

OMe

 2

 

4-Fluoro-2-nitrobenzene (118) (171 mg, 1.0 mmol) in THF (2 mL) was added to a solution of 

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the reaction mixture 

was then stirred at this temperature for 6 h according to GP3. After cooling to –50 °C, ethyl 

2-(bromomethyl)acrylate (230 mg, 1.2 mmol) and CuCN·2LiCl (1.0 M solution in THF, 5 

drops) were added at -40 °C and the resulting mixture was stirred at the same temperature for 

 h. The reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), extracted 1

with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:3) 

furnished compound 120 (189 mg, 67%) as a colourless oil. 
1H-NMR (300 MHz, CDCl3) δ: 7.15 (m, 1 H), 8.89 – 8.93 (m, 1 H), 6.24 (s, 1 H), 5.31 (s, 1 

H), 4.19 (q, J = 7.1 Hz, 2 H), 3.86 (s, 3 H), 3.63 (bs, 2 H), 1.27 (t, J = 7.1 Hz, 3 H).  
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13C-NMR (75 MHz, CDCl3) δ: 165.9, 154.3 (d, J = 243.6 Hz), 147.1 (d, J = 2.8 Hz), 136.2 

(d, J = 0.8 Hz), 126.3 (d, J = 0.8 Hz), 120.0 (d, J = 21.9 Hz), 117.6, 117.3, 111.7 (d, J = 8.3 

Hz),  61.1, 56.7, 26.9 (d, J = 2.9 Hz), 14.1.  

): 283 (1) [M+], 237 (100), 209 (88), 192 (58), 166 (20), 149 (21), 133 MS (70 eV, EI) m/z (%

(16), 121 (13), 99 (11). 

IR (ATR) ~  (cm-1): 2969, 2359, 1738, 1503, 1385, 1342, 1294, 1226, 1215, 1084, 1013, 987, 

954, 795, 764, 749, 667, 621, 615, 608, 603. 

HRMS (ESI) for C13H14FNO5 (283.0856): 283.0845. 

 

Synthesis of methyl 3-(cyclohex-2-enyl)-5-nitrofuran-2-carboxylate (123): 

 

OO2N

CO2Me

 

 

Methyl 5-nitrofuran-2-carboxylate (121) (171 mg, 1.0 mmol) in THF (2 mL) was added to a 

solution of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the 

reaction mixture was then stirred at this temperature for 30 min according to GP3. After 

cooling to –50 °C, 3-bromocyclohexene (209 mg, 1.3 mmol) and CuCN·2LiCl (1.0 M 

olution in THF, 5 drops) were added and the resulting mixture was stirred for 1 h at this 

46 (10). 

I

s

temperature. The reaction mixture was quenched with a sat. aq. NH4Cl solution (20 mL), 

extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

1:2) furnished compound 123 (179 mg, 72%) as a yellowish oil. 
1H-NMR (400 MHz, CDCl3) δ: 7.20 (s, 1 H), 5.94 (m, 1 H), 5.56 (m, 1 H), 4.10 (m, 1 H), 

3.92 (s, 3 H), 2.07 (m, 3 H), 1.50 – 1.69 (m, 3 H).  
13C-NMR (100 MHz, CDCl3) δ: 157.5, 142.6, 133.9, 130.4, 126.2, 120.1, 52.8, 32.2, 29.0, 

24.6, 20.5. 

MS (70 eV, EI) m/z (%): 252 (2) [M+], 234 (100), 217 (55), 1

R (ATR) ~  (cm-1): 2936, 2356, 1729.35, 1629, 1594, 1532, 1502, 1435, 1398, 1338, 1288, 

1226, 1206, 1110, 1091, 985, 925, 880, 848, 819, 799, 763, 725, 668, 634, 622. 

HRMS (EI) for C12H13NO5 (251.0794): 251.0794. 
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3.6 Functionalization of heteroarenes bearing an aldehyde 

 

Synthesis of 2-(3-(trifluoromethyl)phenyl)benzo[b]thiophene-3-carbaldehyde (126a): 

 

S

CHO

CF3

 

was added to a 

olution of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the 

reaction mixture was then stirred at this temperature for 30 min according to GP3. Pd(dba)2 

(17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 

3-iodobenzomethyltrifluoride (354 mg, 1.3 mmol, 1.3 equiv) were then transferred via 

cannula to the reaction mixture. The resulting mixture was stirred for 1 h at 25 °C. The 

reaction mixture was then quenched with a sat. aq. NH4Cl solution (20 mL), extracted with 

diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

 

Benzo[b]thiophene-3-carbaldehyde (124) (162 mg, 1.0 mmol) in THF (2 mL) 

s

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:3) furnished 

compound 126a (281 mg, 92%) as a colourless solid. 

m.p.: 102.8 – 104.2 °C. 
1H-NMR (400 MHz, CDCl3) δ: 10.02 (s, 1 H), 8.79 (m, 1 H), 7.45 – 7.87 (m, 7 H). 
13C-NMR (100 MHz, CDCl3) δ: 185.9, 158.0, 138.0, 136.8, 133.7, 132.4, 131.5 (q, J (C-F) = 

33.0 Hz), 130.7, 129.5, 127.0 (q, J (C-F) = 3.8 Hz), 126.6 (q, J (C-F) = 3.8 Hz), 126.5, 126.2, 

123.5 (q, J (C-F) = 272.5 Hz), 121.7. 

MS (70 eV, EI) m/z (%): 306 (97) [M+], 305 (100), 278 (12), 257 (13), 237 (28), 233 (18), 

208 (29), 160 (13), 44 (40). 

IR (ATR) ~  (cm-1): 3068, 2866, 2359, 1926, 1745, 1669, 1590, 1520, 1483, 1459, 1438, 

1421, 1392, 1351, 1325, 1310, 1288, 1265, 1217, 1178, 1156, 1118, 1097, 1092, 1073, 1051, 

3. 

1018, 1000, 994, 966, 947, 933, 907, 868, 863, 812,  773, 754, 733, 703, 679, 653, 641, 633, 

620, 608, 60

HRMS (EI) for C16H9F3OS (306.0326): 306.0326. 
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Synthesis of 2-(4-chlorophenyl)benzo[b]thiophene-3-carbaldehyde (126b): 

 

S

CHO

Cl

 

 

Benzo[b]thiophene-3-carbaldehyde (124) (162 mg, 1.0 mmol) in THF (2 mL) was added to a 

olution of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the 

d, J = 8.0 Hz, 1 H), 7.83 (d, J = 8.0 Hz, 

). 

.0, 129.2, 

s

reaction mixture was then stirred at this temperature for 30 min according to GP3. Pd(dba)2 

(17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 

1-chloro-4-iodobenzene (310 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to 

the reaction mixture. The resulting mixture was stirred for 2 h at 25 °C. The reaction mixture 

was then quenched with a sat. aq. NH4Cl solution (20 mL), extracted with diethyl ether (3 × 

50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in 

vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:3) furnished compound 126b 

(236 mg, 87%) as a colourless solid. 

m.p.: 99.7 – 101.4 °C. 
1H-NMR (300 MHz, CDCl3) δ: 10.02 (s, 1 H), 8.76 (

1 H), 7.42 – 7.54 (m, 6 H
13C-NMR (75 MHz, CDCl3) δ: 186.2, 158.9, 137.8, 136.9, 136.4, 131.6, 130.3, 130

126.4, 126.0, 125.2, 121.6. 

MS (70 eV, EI) m/z (%): 272 (100) [M+], 237 (54), 208 (34), 165 (12), 118 (20), 104 (23). 

IR (ATR) ~  (cm-1): 3054, 2969, 2867, 2362, 1947, 1739, 1671, 1590, 1562, 1517, 1482, 

, 748, 723, 716, 710, 698, 667, 638, 616, 610, 603. 

 f

1457, 1431, 1407, 1397, 1346, 1265, 1218, 1187, 1161, 1135, 1109, 1091, 1050, 1020, 1012, 

971, 952, 938, 846, 830, 813

HRMS (EI) or C15H9ClOS (272.0063): 272.0057. 

 

Synthesis of 2-(phenylethynyl)benzo[b]thiophene-3-carbaldehyde (126c): 

 

S

CHO  
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Benzo[b]thiophene-3-carbaldehyde (124) (162 mg, 1.0 mmol) in THF (2 mL) was added to a 

olution of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the 

reaction mixture was then stirred at this temperature for 30 min according to GP3. I2 (381 mg, 

1.5 mmol) dissolved in dry THF (2 mL) was then dropwise added and the resulting mixture 

was stirred for 0.5 h. To the solution of freshly generated in situ 2-iodobenzo[b]thiophene-3-

carbaldehyde, NEt3 (7 mL), CuI (8 mg, 4 mol%), Pd(dba)2 (17 mg, 3 mol%) and P(o-furyl)3 

4 mg, 6 mol%) in THF (2 mL) and phenylacetylene (254 mg, 1.5 mol, 1.5 equiv) were 

.9, 80.0. 

):  262 (100) [M+], 234 (38), 232 (13), 202 (11), 189 (13). 

s

(1

successively slowly added. The reaction mixture was stirred at rt for 2 h. The reaction mixture 

was quenched with a sat. aq. Na2S2O3 solution (10 mL) and with a sat. aq. NH4Cl solution (20 

mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After 

filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:2) furnished compound 126c (165 mg, 63%) as a yellowish solid. 

m.p.: 104.9 – 106.5 °C. 
1H-NMR (400 MHz, CDCl3) δ: 10.47 (s, 1 H), 8.69 (m, 1 H), 7.77 (m, 1 H), 7.60 (m, 2 H), 

7.38 – 7.51 (m, 5 H).  
13C-NMR (100 MHz, CDCl3) δ: 185.6, 138.9, 138.5, 135.9, 135.2, 131.8, 129.8, 128.6, 

126.8, 126.5, 124.9, 121.6, 121.3, 102

MS (70 eV, EI) m/z (%

IR (ATR) ~  (cm-1): 2969, 2832, 2359, 2340, 2203, 1739, 1661, 1587, 1569, 1507, 1481, 

1458, 1442, 1427, 1361, 1316, 1293, 1250, 1229, 1216, 1177, 1162, 1141, 1119, 1070, 1059, 

1

F

043, 1015, 997, 953, 918, 868, 748, 737, 697, 687, 668, 630, 621, 616, 610. 

HRMS (EI) for C17H10OS (262.0452): 262.0459. 

 

3.7 unctionalization of arenes and heteroarenes using TMPZnCl·LiCl (100) 

under microwave irradiation (GP5) 

 

Synthesis of 2-fluoro-6-methoxy-3'-trifluoromethyl-biphenyl (129): 

 

OMe

F

F3C

 

 

-Fluoroanisole (127) (126 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a solution 

of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the resulting 

3
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mixture was heated at 160 °C (250 W) for 2 h according to GP5. Pd(dba)2 (17 mg, 3 mol%) 

and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 3-

iodobenzotrifluoride (354 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to the 

reaction mixture. The resulting mixture was stirred at 25 °C for 2 h and then quenched with a 

sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over 

anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:8) furnished the compound 129 (194 mg, 72%) as a 

colourless oil. 
1H-NMR (CDCl3, 300 MHz) δ: 7.73 (s, 1 H), 7.54 – 7.66 (m, 3 H), 7.28 – 7.38 (m, 1 H), 

6.81 – 6.88 (m, 2 H), 3.82 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 160.3 (d, J = 245.7 Hz), 157.7 (d, J = 6.7 Hz), 134.1 (quint., 

J = 1.6 Hz), 132.4 (d, J = 0.8 Hz), 130.3 (q, J = 32.3 Hz), 129.6 (d, J = 10.8 Hz), 128.3, 127.6 

3 (q, J = 3.7 Hz), 124.2 (q, J = 272.4 Hz), 117.2 (d, J = 17.6 Hz), 

%): 270 (100) [M+], 255 (14), 235 (36), 201 (13), 186 (37), 157 (11), 

(dddd, J = 1.5 Hz), 124.

108.4 (d, J = 23.2 Hz), 106.8 (d, J = 2.8 Hz), 56.1. 

MS (EI, 70 eV) m/z (

136 (12).  

IR (ATR) 
~

 (cm-1): 2941, 2848, 1616, 1580, 1499, 1471, 1431, 1331, 1285, 1271, 1251, 

1

1238, 1163, 1120, 1098, 1072, 1027, 942, 904, 825, 803, 780, 752, 728, 700, 655. 

HRMS (EI) for C 4H10F4O (270.0668): 270.0657. 

 

Synthesis of ethyl 4'-chloro-6-fluorobiphenyl-2-carboxylate (132a): 

 

CO2Et

F

Cl

 

thyl 3-fluorobenzoate (130) (168 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a 

solution of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the 

resulting mixture was heated at 160 °C (200 W) for 1.5 h according to GP5. Pd(dba)2 (17 mg, 

3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 1-chloro-

4-iodobenzene (308 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to the 

action mixture. The resulting mixture was stirred at 25 °C for 2 h and then quenched with a 

 

E

re

sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over 
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anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:2) furnished the compound 132a (209 mg, 76%) as a 

colourless oil. 
1H-NMR (300 MHz, CDCl3) δ: 7.65 – 7.68 (m, 1 H), 7.36 – 7.43 (m, 3 H), 7.21 – 7.30 (m, 3 

H), 4.07 (q, J = 7.2 Hz, 2 H), 1.02 (t, J = 7.2 Hz, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 167.0 (d, J (C-F) = 3.3 Hz), 159.6 (d, J (C-F) = 246.4 Hz), 

133.8, 133.5 (d, J (C-F) = 2.5 Hz), 132.6, 130.6 (d, J (C-F) = 1.3 Hz), 129.0 (d, J (C-F) = 8.5 

Hz), 128.7 (d, J (C-F) = 17.5 Hz), 128.2, 125.5 (d, J (C-F) = 3.7 Hz), 118.8 (d, J (C-F) = 23.4 

 [M+], 270 (37), 250 (20), 233 (100), 199 (19), 186 (22), 

Hz), 61.2, 13.6. 

MS (70 eV, EI) m/z (%): 278 (52)

170 (72), 149 (14), 85 (14), 44 (31). 

IR (ATR) ~  (cm-1): 3070, 2987, 1716, 1675, 1607, 1594, 1579, 1476, 1449, 1366, 1292, 

1273, 1194, 1152, 1114, 1027, 963, 928, 811, 762, 709, 660. 

HRMS (EI) for C15H12ClFO2 (278.0510): 278.0506. 

f ethyl 2-benzoyl-3-fluorobenzoate (132b): 

 

Synthesis o

 

CO2EtO

F  

 

Ethyl 3-fluorobenzoate (130) (168 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a 

solution of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the 

resulting mixture was heated at 160 °C (200 W) for 1.5 h according to GP5. CuCN·2LiCl (1.0 

M solution in THF, 1.1 mL, 1.1 mmol) was slowly added at –30 °C and the reaction mixture 

 at the same temperature for 30 min according to GP4. Then, benzoyl chloride 

H), 4.13 (q, J = 7.2 Hz, 2 H), 1.06 (t, J = 7.2 Hz, 3 H). 

was stirred

(281 mg, 2.0 mmol) was added dropwise at –30 °C and the resulting mixture was allowed to 

warm up slowly to 25 °C overnight. The reaction mixture was then quenched with a sat. aq. 

NH4Cl solution (20 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2) furnished compound 132b (196 mg, 72%) as a colourless solid. 

m.p.: 101.6 – 103.1 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.90 – 7.93 (m, 1 H), 7.79 – 7.82 (m, 2 H), 7.31 – 7.59 (m, 5 
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13C-NMR (75 MHz, CDCl3) δ: 192.5, 164.6 (d, J (C-F) = 3.1 Hz), 159.1 (d, J (C-F) = 248.0 

Hz), 137.0, 133.5, 130.9 (d, J (C-F) = 3.8 Hz), 130.5 (d, J (C-F) = 8.0 Hz), 129.5 (d, J (C-F) = 

20.1 Hz), 129.0, 128.6, 126.2 (d, J (C-F) = 3.1 Hz), 120.2 (d, J (C-F) = 21.9 Hz), 61.8, 13.6. 

MS (70 eV, EI) m/z (%): 272 (39) [M+], 227 (35), 195 (46), 170 (15), 167 (100), 151 (13), 

105 (71), 77 (44). 

IR (ATR) ~  (cm-1): 2983, 1716, 1597, 1577, 1498, 1454, 1397, 1367, 1284, 1242, 1177, 

1140, 1090, 1073, 1020, 1006, 954, 938, 865, 824, 751, 685. 

HRMS (EI) for C16H13FO3 (272.0849): 272.1014. 

 

Synthesis of 3-(3-(trifluoromethyl)phenyl)-2H-chromen-2-one (135a): 

 

O O

CF3

 

oumarin (133) (168 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a solution of 

TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the resulting mixture 

was heated at 80 °C (100 W) for 1 h according to GP5. Pd(dba)2 (17 mg, 3 mol%) and P(o-

furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 3-iodobenzotrifluoride 

(354 mg, 1.3 mmol, 1.3 equiv) were then transferred via ca  the reaction mixture. The 

sulting mixture was stirred at 25 °C for 2 h and then quenched with a sat. aq. NH4Cl 

 

C

nnula to

re

solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. 

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:2) furnished the compound 135a (182 mg, 71%) as a colourless solid. 

m.p.: 124.0 – 125.0 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.91 – 7.94 (m, 2 H), 7.86 (s, 1 H), 7.63 – 7.66 (m, 1 H), 

7.52 – 7.58 (m, 3 H), 7.28 – 7.37 (m, 2 H). 
13C-NMR (CDCl3, 75 MHz) δ: 160.1, 153.6, 140.7, 135.4, 132.0, 130.9 (q, J = 32.4 Hz), 

128.9, 128.1, 126.8, 125.4 (q, J = 3.9 Hz), 125.2 (q, J = 3.9 Hz), 124.7, 123.9 (d, J = 272.5 

Hz), 119.3, 116.5. 

MS (EI, 70 eV) m/z (%): 290 (85) [M+], 262 (100), 233 (15), 183 (12), 165 (72).  

IR (ATR) 
~

 (cm-1): 2925, 2853, 1711, 1608, 1562, 1491, 1458, 1429, 1339, 1331, 1290, 

1259, 1166, 1148, 1109, 1076, 967, 956, 920, 904, 859, 808, 773, 759, 734, 692, 654, 644, 

626. 
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HRMS (EI) for C16H9F3O2 (290.0555): 290.0550. 

 

Synthesis of 3-(4-chlorophenyl)-2H-chromen-2-one (135b): 

 

O O

Cl  

 

Coumarin (133) (168 mg, 1.0 mmol) dissolved in THF (2 mL) was added to a solution of 

MPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the resulting mixture 

was heated at 80 °C (100 W) for 1 h according to GP5. Pd(dba)2 (17 mg, 3 mol%) and P(o-

furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 1-chloro-4-iodobenzene 

(308 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to the reaction mixture. The 

resulting mixture was stirred at 25 °C for 2 h and then q enched with a sat. aq. NH4Cl 

solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na SO . 

T

u

2 4

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:2) furnished the compound 135b (182 mg, 71%) as a colourless solid. 

m.p.: 189.2 – 191.3 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 7.79 (s, 1 H), 7.65 (d, J = 8.9 Hz, 2 H), 7.50 – 7.56 (m, 2 H), 

7.40 (d, J = 8.9 Hz, 2 H), 7.26 – 7.36 (m, 2 H). 
13C-NMR (CDCl3, 75 MHz) δ: 160.3, 153.5, 139.9, 134.9, 133.0, 131.6, 129.8, 128.6, 128.0, 

127.1, 124.6, 119.4, 116.5. 

MS (EI, 70 eV) m/z (%): 256 (100) [35Cl-M+], 228 (72), 165 (49).  

IR (ATR) 
~ -1 (cm ): 3054, 1708, 1685, 1608, 1566, 1489, 1452, 1401, 1352, 1297, 1259, 

1228, 1153, 1123  1091, 1013, 952, 923, 838, 815, 776, 748, 742, 706, 633, 622. 

HRMS (EI) for C15H9ClO2 (256.0291): 256.0288. 

,

 

Synthesis of ethyl 4-(3-chloropyrazin-2-yl)benzoate (138a): 

 

N

N

CO2Et

Cl  
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2-Chloropyrazine (136) (115 mg, 1.0 mmol) dissolved in THF (1 mL) was added to a solution 

f TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the resulting 

g to GP5. Pd(dba)2 (17 mg, 

 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with ethyl 4-

iodobenzoate (359 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to the reaction 

mixture. The resulting mixture was stirred at 65 °C for 1.5 h and then quenched with a sat. aq. 

NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in . Purification by flash 

hromatography (CH2Cl2) furnished the compound 138a (216 mg, 82%) as a brown solid. 

o

mixture was heated at 70 °C (100 W) for 45 min accordin

3

 vacuo

c

m.p.: 90.1 – 91.7 °C. 
1H-NMR (CDCl3, 400 MHz) δ: 8.56 (d, J = 2.4 Hz, 1 H), 8.33 (d, J = 2.4 Hz, 1 H), 8.12 (d, J 

= 8.8 Hz, 2 H), 7.83 (d, J = 8.8 Hz, 2 H), 4.37 (q, J = 7.2 Hz, 2 H), 4.37 (t, J = 7.1 Hz, 3 H). 
13C-NMR (CDCl3, 100 MHz) δ: 165.8, 152.2, 147.3, 142.5, 142.3, 140.1, 131.2, 129.3, 

129.2, 61.1, 14,2. 

MS (EI, 70 eV) m/z (%): 262 (97) [35Cl-M+], 234 (35), 217 (100), 199 (13), 189 (27).  

IR (ATR) 
~

 (cm-1): 3053, 2983, 2918, 1704, 1611, 1573, 1510, 1486, 1464, 1436, 1364, 

1312, 1284, 1267, 1187, 1157, 1129, 1108, 1053, 1023, 1010, 963, 872, 856, 841, 813, 789, 

760, 699, 652, 642, 625, 604. 

HRMS (EI) for C13H11ClN2O2 (262.0509): 262.0498. 

henyl)methanone (138b): 

 

Synthesis of (3-chloropyrazin-2-yl)(4-fluorop

 

N

N Cl

O

F
 

 

2-Chloropyrazine (136) (115 mg, 1.0 mmol) dissolved in THF (1 mL) was added to a solution 

l) at 25 oC and the resulting 

ixture was heated at 70 °C (100 W) for 45 min according to GP5. Pd(PPh3)4 (100 mg) 

dissolved in THF (1 mL) was then simultaneous added to the reaction mixture with 4-

fluorobenzoyl chloride (317 mg, 2.0 mmol) at the same temperature. The resulting mixture 

was then stirred at 65 °C and quenched with a sat. aq. NH4Cl solution (30 mL), extracted with 

diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO . After filtration, the solvent was 

of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmo

m

4
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evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:1) furnished 

the compound 138b (158 mg, 67%) as a yellowish oil. 
1H-NMR (CDCl3, 300 MHz) δ: 8.57 (d, J = 2.5 Hz, 1 H), 8.53 (d, J = 2.5 Hz, 1 H), 7.84 –

7.88 (m, 2 H), 7.12 – 7.18 (m, 2 H). 
13C-NMR (CDCl3, 75 MHz) δ: 189.2, 166.5 (d, J = 257.8 Hz), 150.4, 146.6, 144.9, 141.6, 

133.0 (d, J = 9.8 Hz), 131.0 (d, J = 2.9 Hz), 116.1 (d, J = 22.2 Hz). 

MS (EI, 70 eV) m/z (%): 236 (8) [35Cl-M+], 123 (100), 95 (28).  

IR (ATR) 
~

 (cm-1): 3076, 2924, 1675, 1595, 1548, 1505, 1438, 1411, 1372, 1297, 1280, 

1234, 1212, 1182, 1147, 1082, 1056, 1012, 936, 849, 820, 799, 769, 753, 723, 687, 652, 633, 

622, 606. 

HRMS (EI) for C11H6ClFN2O (236.0153): 236.0141. 

 

Synthesis of 2-chloro-3-(phenylethynyl)pyrazine (138c): 

 

ClN

N

 

136) (115 mg, 1.0 mmol) dissolved in THF (1 mL) was added to a solution 

ixture was heated at 70 °C (100 W) for 45 min according to GP5. After cooling down to 25 

°C, iodine (381 mg, 1.5 mmol) dissolved in dry THF (2 mL) was added dropwise and the 

resulting mixture was stirred for 1 h at rt. To the solution of generated in situ 2-chloro-3-

iodopyrazine, NEt3 (7 mL), CuI (8 mg, 4 mol%), Pd(dba)2 (17 mg, 3 mol%) and P(o-furyl)3 

(14 mg, 6 mol%) in THF (2 mL) and phenylacetylene (155 mg, 1.5 mol, 1.5 equiv) were 

ixture was stirred at rt for 1 h. The resulting 

 

2-Chloropyrazine (

of TMPZnCl·LiCl (101) (1.3 M in THF, 0.85 mL, 1.1 mmol) at 25 oC and the resulting 

m

slowly successively added. The reaction m

mixture was quenched with a sat. aq. NH4Cl solution (25 mL), extracted with diethyl ether (3 

× 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in 

vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:2) furnished the compound 

138c as a colourless solid (159 mg, 74%). 

m.p.: 76.2 – 77.5 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.46 (d, J = 2.7 Hz, 1 H), 8.26 (d, J = 2.5 Hz, 1 H), 7.61 –

7.64 (m, 2 H), 7.34 – 7.40 (m, 3 H). 
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13C-NMR (75 MHz, CDCl3) δ: 150.6, 142.2, 141.6, 139.4, 132.2, 129.9, 128.4, 121.1, 97.4, 

84.4. 

MS (70 eV, EI) m/z (%): 214 (100) [35Cl-M+], 179 (67), 128 (14).  

IR (ATR) 
~

 (cm-1): 3045, 2919, 2262, 2217, 1937, 1595, 1548, 1507, 1491, 1442, 1435, 

1381, 1335, 1304, 1211, 1185, 1168, 1153, 1078, 1054, 1024, 998, 926, 863, 772, 758, 692, 

667, 657, 622, 611, 605. 

HRMS (EI) for C12H7ClN2 (214.0298): 214.0291. 

 

Synthesis of 3-(4-fluoro-phenyl)-1H-pyrazolo[3,4-b]pyrazine (JNK kinase inhibitor 

(139)): 

N

N

N
H

N

F

 

 

Hydrazine (64% in water; 0.17 mL, 3.4 mmol) was added to a solution of 138b (236 mg, 1.0 

at 70 °C. The resulting mixture was stirred at the same mmol) dissolved in 2 mL THF 

temperature for 30 min, then quenched with a sat. aq. Na2CO3 solution (10 mL), extracted 

with diethyl ether (5 × 20 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/Et2O 19:1) furnished 

139 as a colourless solid (150 mg, 70%). 

m.p.: 249.1 – 251.5 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 8.68 (s, 1 H), 8.61 (s, 1 H), 8.42 – 8.45 (m, 2 H), 7.31 – 7.36 

(m, 2 H). 
13C-NMR (CDCl3, 75 MHz) δ: 162.2 (d, J = 245.8 Hz), 145.3, 143.1, 140.9, 140.6, 130.6, 

128.4 (d, J = 3.1 Hz), 128.1 (d, J = 8.4 Hz), 115.7 (d, J = 21.8 Hz). 

MS (EI, 70 eV) m/z (%): 214 (100) [M+], 187 (16).  

IR (ATR) 
~

 (cm-1): 3202, 3157, 3035, 2911, 1598, 1552, 1530, 1494, 1460, 1411, 1379, 

1332, 1258, 1215, 1193, 1162, 1098, 1042, 992, 931, 849, 814, 801, 770, 738, 690. 

FN4 (214.0655): 214.0648. HRMS (EI) for C11H7
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4. Functionalization of Pyrazine Derivatives via Regio- and 

Chemoselective Metalations. 

 

4.1 General procedure for the deprotonation using TMPMgCl·LiCl (16a) or 

TMPZnCl (101) (GP6) 

 

A dry and argon flushed 10 mL Schlenk-flask, equipped with a magnetic stirrer and a septum, 

as charged with TMPMgCl·LiCl (16a) or TMPZnCl·LiCl (101) (1.1 equiv). The substrate 

on was checked by GC analysis of reaction aliquots quenched with a solution of I2 in 

THF. The electrophile or its solution in THF was added at the temperature T2. After the 

completion of the reaction (checked by GC analysis of reaction aliquots quenched with a sat. 

aqueous NH4Cl solution), the reaction mixture was quenched with a sat. aqueous NH4Cl 

solution . The aqueous layer was extracted with diethyl ether. The combined organic extracts 

were dried over Na2SO4 and concentrated in vacuo. The crude residue was purified by flash 

column chromatography. 

w

(1.0 equiv) in THF was dropwise added at the temperature T1. The completion of the 

metalati

 

4.2 General procedure for the reaction with acyl chlorides (GP7) 

 

According to GP6, the freshly prepared magnesium or zinc reagent was cooled to −30 °C, and 

CuCN·2LiCl65 (1.1 equiv, 1.00 M in THF) was added and stirred for 30 min. Thereafter, acyl 

chloride (2.0 equiv) was added at −30 °C, and the reaction mixture was warmed to 25 °C and 

stirred for the appropriate time. The reaction mixture was quenched with a sat. aq. NH4Cl 

ther and dried over anhydrous Na SO . After filtration, the solvent 

w

solution extracted with e 2 4

as evaporated in vacuo. The crude residue was purified by flash column chromatography. 

 

4.3 Preparation of polyfunctionalized pyrazines 

 

Synthesis of 3,5-dichloro-2-(4-methoxyphenyl)pyrazine (147a): 

 

N

N ClCl

OMe  
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2,6-Dichloropyrazine (141) (1,49 g, 10.0 mmol) dissolved in THF (10 mL) was reacted with a 

solution of TMPZnCl·LiCl (101) (1.4 M in THF, 7.9 mL, 11.1 mmol) at 25 °C and the 

action mixture was then stirred at this temperature for 30 min according to GP6. Pd(dba)2 

(113 mg, 2 

4-iodoan

re. The resulting mixture was stirred at 65 °C for 1 h and then quenched with a sat. aq. 

re

mol%) and P(o-furyl)3 (93 mg, 4 mol%) dissolved in THF (5 mL), and mixed with 

isole (3.04 g, 13 mmol, 1.3 equiv) were then transferred via cannula to the reaction 

mixtu

NH4Cl solution (100 mL), extracted with diethyl ether (3 × 100 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:3) furnished the compound 147a (2.17 g, 86%) as a 

colourless solid. 

m.p.: 95.7 – 97.5 °C. 
1H-NMR (300 MHz, CDCl3) �: 8.54 (s, 1 H), 7.79 (d, J = 8.8 Hz, 2 H), 7.00 (d, J = 8.8 Hz, 2 

H), 3.86 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) �: 160.9, 150.8, 145.0, 144.4, 141.7, 131.0, 127.2, 113.7, 55.4. 

MS (70 eV, EI) m/z (%): 254 (100) [35Cl-M+], 239 (12), 219 (35), 133 (11), 44 (16).  

IR (ATR) 
~

 (cm-1): 3013, 2940, 2840, 1738, 1607, 1577, 1531, 1512, 1461, 1452, 1415, 

379, 1320, 1304, 1250, 1217, 1174, 1143, 1115, 1105, 1032, 1017, 1003, 953, 934, 920, 853, 

842, 82

HRMS (EI) for C11H8Cl2N2O (254.0014): 254.0012. 

1

6, 804, 792, 774, 661, 641, 625, 618, 603. 

 

Synthesis of 3,5-dichloro-2-thienylpyrazine (147b): 

 

N

N ClCl

S

 

 

2,6-Dic in THF (1 mL) was reacted with a 

olution of TMPZnCl·LiCl (101) (1.4 M in THF, 0.79 mL, 1.1 mmol) at 25 °C and the 

ing to GP6. Pd(dba)2 

7 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 

2-iodothiophene (273 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to the 

reaction mixture. The resulting mixture was stirred at 65 °C for 1 h and then quenched with a 

sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over 

anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

hloropyrazine (141) (149 mg, 1.0 mmol) dissolved 

s

reaction mixture was then stirred at this temperature for 30 min accord

(1
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chromatography (CH2Cl2/pentane 1:6) furnished the compound 147b (242 mg, 83%) as a 

colourless solid. 

m.p.: 90.2 – 92.8 °C. 
1H-NMR (300 MHz, CDCl3) �: 8.44 (s, 1 H), 8.13 (dd, J = 3.8 Hz, J = 1.0 Hz, 1 H), 7.54 (dd, 

J = 5.1 Hz, J = 1.0 Hz, 1 H), 7.54 (dd, J = 5.1 Hz, J = 1.2 Hz, 1 H).  
13C-NMR (75 MHz, CDCl3) �: 144.8, 143.3, 142.1, 141.4, 138.6, 130.7, 130.4, 128.3. 

MS (70 eV, EI) m/z (%): 230 (100) [35Cl-M+], 195 (60), 165 (17), 109 (20), 44 (23).  

IR (ATR) 
~

 (cm-1): 3078, 2969, 1738, 1524, 1515, 1500, 1433, 1426, 1397, 1359, 1328, 

1309, 1295, 1282, 1267, 1228, 1215, 1179, 1163, 1136, 1100, 1085, 1070, 1055, 979, 960, 

911, 892, 861, 855, 849, 824, 761, 750, 733, 696, 660, 635, 621, 601. 

2N2S (229.9472): 229.9463. 

ichloro-2-(4-chlorophenyl)pyrazine (147c): 

 

HRMS (EI) for C8H4Cl

 

Synthesis of 3,5-d

N

N ClCl

Cl  

,6-Dichloropyrazine (141) (149 mg, 1.0 mmol) dissolved in THF (1 mL) was reacted with a 

79 mL, 1.1 mmol) at 25 °C and the 

action mixture was then stirred at this temperature for 30 min according to GP6. Pd(dba)2 

(17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 

1-chloro-4-iodobenzene (310 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to 

the reaction mixture. The resulting mixture was stirred at 65 °C for 1 h and then quenched 

with a sat. aq. NH4Cl solution (30 mL), extracted with ethyl ether (3 × 50 mL) and dried 

2SO4. After filtration, the solvent was evaporated in vacuo. Purification by 

2

3

3

 

2

solution of TMPZnCl·LiCl (101) (1.4 M in THF, 0.

re

di

over anhydrous Na

flash chromatography (CH Cl2/pentane 1:5) furnished the compound 147c (210 mg, 81%) as 

a colourless solid. 

m.p.: 122.6 – 124.0 °C. 
1H-NMR (300 MHz, CDCl ) �: 8.57 (s, 1 H), 7.75 (d, J = 9.0 Hz, 2 H), 7.47 (d, J = 9.0 Hz, 2 

H).  
13C-NMR (75 MHz, CDCl ) �: 150.0, 145.6, 145.3, 142.0, 136.3, 133.4, 130.8, 128.6. 

MS (70 eV, EI) m/z (%): 258 (100) [35Cl-M+], 223 (55), 137 (22).  
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IR (ATR) 
~

 (cm-1): 3075, 2924, 1903, 1656, 1597, 1536, 1500, 1416, 1401, 1312, 1289, 

1258, 1173, 1143, 1113, 1103, 1088, 1021, 1007, 959, 912, 865, 834, 825, 772, 737, 712, 657, 

S

631, 620, 615, 602. 

HRMS (EI) for C10H5Cl3N2 (257.9518): 257.9353. 

 

ynthesis of 3,5-dichloro-2-(3-(trifluoromethyl)phenyl)pyrazine (147d): 

 

N

N ClCl

CF3

 

F (1 mL) was reacted with a 

f TMPZnCl·LiCl (101) (1.4 M in THF, 0.79 mL, 1.1 mmol) at 25 °C and the 

reaction mixture was then stirred at this temperature for 30 min according to GP6. Pd(dba)2 

(17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with 

3-iodobenzotrifluoride (354 mg, 1.3 mmol, 1.3 equiv) were then transferred via cannula to the 

reaction mixture. The resulting mixture was stirred at 65 °C for 1 h and then quenched with a 

at. aq. NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over 

 

2,6-Dichloropyrazine (141) (149 mg, 1.0 mmol) dissolved in TH

solution o

s

anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:5) furnished the compound 147d (242 mg, 83%) as 

colourless oil. 
1H-NMR (CDCl3, 300 MHz) �: 8.61 (s, 1 H), 8.07 (s, 1 H), 8.01 (d, J = 7.8 Hz, 1 H), 7.75 (d, 

J = 7.8 Hz, 1 H), 7.63 (t, J = 7.8 Hz, 1 H). 
13C-NMR (CDCl3, 75 MHz) �: 149.6, 146.1, 145.5, 142.2, 135.7, 132.6 (q, J = 2.7 Hz), 131.0 

(q, J = 32.6 Hz), 128.9, 126.6 (q, J = 3.9 Hz), 126.5 (q, J = 3.9 Hz), 123.7 (q, J = 272.7 Hz). 

MS (70 eV, EI) m/z (%): 292 (100) [35Cl-M+], 257 (66), 171 (18), 145 (10).  

IR (ATR) 
~

 (cm-1): 2340, 1615, 1534, 1504, 1411, 1332, 1296, 1275, 1256, 1166, 1112, 

1094, 1072, 1023, 1002, 903, 867, 807, 793, 772, 705, 697, 662, 653, 646, 620, 610, 604. 

l2F3N2 (291.9782): 291.9782. HRMS (EI) for C11H5C

 

 

 

Synthesis of 2-allyl-3,5-dichloropyrazine (147e): 
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N

N ClCl

 

141) (149 mg, 1.0 mmol) dissolved in THF (1 mL) was reacted with a 

stirred at this temperature for 30 min according to GP6. After 

cooling to -30 °C, CuCN·2LiCl (1 M solution in THF, 5 drops) was added and the reaction 

mixture was then cooled to –78 °C. Allyl bromide (181 mg, 1.5 mmol) was added dropwise at 

–78 °C and the reaction mixture was allowed to warm up slowly to –50 °C for 1.5 h. The 

sulting mixture was then quenched with a sat. aq. NH4Cl solution (30 mL), extracted with 

13

 

2,6-Dichloropyrazine (

solution of TMPZnCl·LiCl (101) (1.4 M in THF, 0.79 mL, 1.1 mmol) at 25 °C and the 

reaction mixture was then 

re

diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:6) furnished 

the compound 147e (148 mg, 78%) as a colourless oil. 
1H-NMR (300 MHz, CDCl3) �: 8.44 (s, 1 H), 5.93 – 6.07 (m, 1 H), 5.14-5.22 (m, 2 H), 3.70 

(dt, 3 J = 6.6 Hz, 4 J = 1.5 Hz, 2 H). 

C-NMR (75 MHz, CDCl3) δ: 152.3, 146.8, 145.1, 141.8, 132.2, 118.3, 38.6. 

MS (70 eV, EI) m/z (%): 188 (36) [35Cl-M+], 187 (100), 153 (12).  

IR (ATR) 
~

 (cm-1): 2986, 2938, 1722, 1646, 1516, 1419, 1377, 1290, 1250, 1143, 1058, 

894, 878. 

HRMS (EI) for C7H6Cl2N2 (187.9908): 187.9888. 

 (147f): 

 

Synthesis of 3,5-dichloro-2-iodopyrazine

 

N

N ClCl

I  

th a 

9 mL, 1.1 mmol) at 25 °C and the 

action mixture was then stirred at this temperature for 30 min according to GP6. Iodine 

81 mg, 1.5 mmol) dissolved in dry THF (2 mL) was then added dropwise and the resulting 

ixture was stirred for 1 h at rt. The reaction mixture was quenched with a sat. aq. NH4Cl 

s added, extracted with diethyl ether (3 × 

 

2,6-Dichloropyrazine (141) (149 mg, 1.0 mmol) dissolved in THF (1 mL) was reacted wi

solution of TMPZnCl·LiCl (101) (1.4 M in THF, 0.7

re

(3

m

solution (20 mL) and sat. aq. Na2S2O3 (20 mL) wa
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30 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in 

vacuo. Purification by flash chromatography on silica (CH2Cl2/pentane 1:2) furnished the 

compound 147f as a colourless solid (250 mg, 91%). 

m.p.: 101.3 – 103.0 °C. 

H-NMR (300 MHz, CDCl ) δ: 8.30 (s, 1 H).  1
3

13C-NMR (75 MHz, CDCl3) δ: 153.1, 146.9, 142.4, 115.7. 

MS (70 eV, EI) m/z (%): 274 (100) [35Cl-M+], 147 (75), 86 (32), 57 (21), 44 (94).  

IR (ATR) 
~

 (cm-1): 2969, 2633, 2281, 1784, 1738, 1510, 1491, 1379, 1353, 1323, 1274, 

1230, 1217, 1205, 1175, 1162, 1143, 1018, 893, 843, 655, 634, 618, 611, 604. 

4 2 2

 

Synthesis of 3,5-dichloro-2-(hex-1-ynyl)pyrazine (147g): 

 

HRMS (EI) for C HCl IN  (273.8561): 273.8555. 

N

N ClCl

 

1 mL) was reacted with a 

ixture was then stirred at this temperature for 30 min according to GP6. Iodine 

) was added dropwise and the resulting 

ixture was stirred for 1 h at rt. To the solution of freshly generated in situ 2,3-chloro-5-

d(dba)2 (17 mg, 3 mol%) and P(o-furyl)3 

4 mg, 6 mol%) in THF (2 mL) and 1-hexyne (115 mg, 1.4 mol, 1.4 equiv) were 

successively slowly added. The reaction mixture was stirred at 20 °C for 1 h. The resulting 

mixture was quenched with a sat. aq. NH4Cl solution (25 mL), extracted with diethyl ether (3 

× 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was evaporated in 

acuo. Purification by flash chromatography (CH2Cl2/pentane 1:5) furnished the compound 

 

2,6-Dichloropyrazine (141) (149 mg, 1.0 mmol) dissolved in THF (

solution of TMPZnCl·LiCl (101) (1.4 M in THF, 0.79 mL, 1.1 mmol) at 25 °C and the 

reaction m

(381 mg, 1.5 mmol) dissolved in dry THF (2 mL

m

iodopyrazine, NEt3 (7 mL), CuI (8 mg, 4 mol%), P

(1

v

147g as a colourless oil (189 mg, 83%). 
1H-NMR (300 MHz, CDCl3) �: 8.40 (s, 1 H), 2.51 (t, J = 7.1 Hz, 2 H), 1.40 – 1.68 (m, 4 H), 

2.51 (t, J = 7.5 Hz, 3 H).  
13C-NMR (75 MHz, CDCl3) �: 148.7, 144.6, 141.7, 137.5, 101.6, 75.7, 29.9, 21.9, 19.4, 13.5. 

MS (70 eV, EI) m/z (%): 228 (47) [35Cl-M+], 213 (92), 199 (100), 186 (39), 165 (31), 149 

(72), 57 (44), 43 (50).  
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IR (ATR) 
~

 (cm-1): 2958, 2932, 2872, 2231, 1494, 1465, 1418, 1308, 1274, 1249, 1166, 

1141, 1091, 1051, 1007, 948, 903, 875, 851, 829, 767, 743, 669, 654, 648, 638, 633, 628, 623, 

618, 612, 601. 

HRMS (EI) for C10H10Cl2N2 (228.0221): 228.0213. 

yl)(phenyl)methanone (149a): 

 

Synthesis of (3,5-dichloro-6-(4-methoxyphenyl)pyrazin-2-

 

N

N ClCl

O

OMe

 

3,5-Dichloro-2-(4-methoxyphenyl)pyrazine (147a) (254 mg, 1.0 mmol) dissolved in THF (1 

mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) 

at –40 °C for 1 h according to GP6. The reaction mixture was then cooled to –50 °C, 

1.1 mL, 1.1 mmol) was added according to GP7. After 

], 105 (100), 77 (34).  

 

CuCN·2LiCl (1 M solution in THF, 

30 min stirring at the same temperature, benzoyl chloride (282 mg, 2.0 mmol) was added and 

the resulting mixture was then allowed to warm up slowly to 20 °C overnight. The resulting 

mixture was then quenched with a sat. aq. NH4Cl solution (30 mL), extracted with diethyl 

ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:2) furnished 

the compound 149a (342 mg, 96%) as a colourless solid. 

m.p.: 98.6 – 100.4 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.84 – 7.90 (m, 2 H), 7.83 (d, J = 5.1 Hz, 2 H), 7.63 – 7.68 

(m, 1 H), 7.48 – 7.53 (m, 2 H), 6.97 (d, J = 5.1 Hz, 2 H) , 3.85 (s, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 190.3, 161.3, 149.9, 147.6, 145.3, 141.4, 134.6 (2), 131.3, 

130.3, 128.8, 126.4, 113.8, 55.4. 

MS (70 eV, EI) m/z (%): 358 (16) [35Cl-M+

IR (ATR) 
~

 (cm ): 3004, 2841, 2049, 1665, 1604, 1594, 1579, 1512, 1501, 1463, 1449, 

1442, 1421, 1361, 1308, 1

-1

298, 1253, 1216, 1178, 1152, 1120, 1086, 1028, 1011, 1000, 954, 

863, 835, 809, 794, 778, 734, 711, 684, 660, 641, 615, 605. 

HRMS (EI) for C18H12Cl2N2O2 (358.0276): 358.0270. 
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Synthesis of (3,5-dichloro-6-(4-methoxyphenyl)pyrazin-2-yl)(furan-2-yl)methanone 

(149b): 

N

N ClCl

O

OMeO
 

 

3,5-Dichloro-2-(4-methoxyphenyl)pyrazine (147a) (254 mg, 1.0 mmol) dissolved in THF (1 

mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) 

at –40 °C for 1 h according to GP6. The reaction mixture was then cooled to –50 °C, 

CuCN·2LiCl (1 M solution in THF, 1.1 mL, 1.1 mmol) was added according to GP7. After 

30 min stirring at the same temperature, furoyl chloride (261 mg, 2.0 mmol) was added and 

lting mixture was then allowed to warm up slowly to 20 °C overnight. The resulting the resu

mixture was then quenched with a sat. aq. NH4Cl solution (30 mL), extracted with diethyl 

ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:1) furnished 

the compound 147b (292 mg, 84%) as a colourless solid. 

m.p.: 137.9 – 139.5 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.85 (d, J = 9.0 Hz, 2 H), 7.73 (m, 1 H), 7.31 (m, 1 H), 6.97 

(d, J = 9.0 Hz, 2 H), 6.60 (m, 1 H), 3.86 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 176.8, 161.3, 150.9, 149.6, 148.7, 145.7, 145.6, 142.0, 131.2, 

126.3, 123.0, 113.9, 112.9, 55.4. 

MS (70 eV, EI) m/z (%): 348 (36) [35Cl-M+], 320 (20), 95 (100).  

IR (ATR) 
~

 (cm ): 3141, 3113, 3000, 2918, 2848, 1647, 1604, 1558, 1511, 1486, 1459, 

1421, 1396, 1367, 1349, 1304, 1255, 1183, 1157, 1125, 1115, 1093, 1019, 964, 918, 883, 838, 

-1

826, 797, 790, 773, 759, 717, 696, 663, 649, 635, 619, 614, 608. 

HRMS (EI) for C16H10Cl2N2O3 (348.0068): 348.0067. 

 

 

ine (149c): 

 

 

 

Synthesis of 2,6-dichloro-3-(cyclohex-2-enyl)-5-(4-methoxyphenyl)pyraz
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N

N ClCl

OMe  

 

3,5-Dichloro-2-(4-methoxyphenyl)pyrazine (147a) (254 mg, 1.0 mmol) dissolved in THF (1 

mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) 

t –40 °C for 1 h according to GP6. The reaction mixture was cooled to –30 oC, CuCN·2LiCl 

s, 3 H), 2.06 – 2.14 (m, 3 H), 1.68 –

M

a

(1 M solution in THF, 5 drops) was added and the reaction mixture was then cooled to –60 

°C. 3-Bromocyclohexene (242 mg, 1.5 mmol) was added dropwise at –60 °C and the reaction 

mixture was allowed to warm up slowly to –10 °C for 3 h and then quenched with a sat. aq. 

NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:1) furnished the compound 149c (311 mg, 93%) as a 

colourless solid. 

m.p.: 84.1 – 85.9 °C. 
1H-NMR (300 MHz, CDCl3) δ: 7.85 (d, J = 9.0 Hz, 2 H), 6.99 (d, J = 9.0 Hz, 2 H), 5.87 –

5.94 (m, 1 H), 5.73 (m, 1 H), 3.98 – 4.04 (m, 1 H), 3.86 (

1.96 (m, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 160.8, 155.7, 149.7, 143.1, 141.6, 131.2, 129.0, 127.7, 126.5, 

113.6, 55.4, 39.4, 27.6, 24.6, 21.4. 

S (70 eV, EI) m/z (%): 334 (82) [35Cl-M+], 305 (38), 299 (68), 268 (100), 67 (33).  

IR (ATR) 
~

 (cm-1): 3006, 2969, 2931, 2856, 2837, 2044, 1738, 1605, 1577, 1520, 1503, 

1461, 1454, 1443, 1419, 1373, 1341, 1297, 1249, 1217, 1172, 1155, 1135, 1124, 1082, 1028, 

1013, 987, 962, 925, 895, 887, 869, 837, 808, 792, 776, 721, 686, 670, 664, 649, 637, 611. 

HRMS (EI) for C17H16Cl2N2O (334.0640): 334.0636. 

 

 

 

 

 

 

Synthesis of ethyl 4-(3,5-dichloro-6-(4-methoxyphenyl)pyrazin-2-yl)benzoate (149d): 
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N

N ClCl

OMeEtO2C  

 

(CH2Cl2/pentane 1:1) furnished the compound 149d (382 mg, 95%) as a 

) , 7.01 (d, J = 8.9 Hz, 2 H), 4.41 (q, J = 7.2 Hz, 2 H), 3.87 (s, 3 H), 1.41 (t, J = 

6.0, 161.1, 150.2, 149.1, 143.0, 141.9, 139.3, 131.5, 131.1, 

3,5-Dichloro-2-(4-methoxyphenyl)pyrazine (147a) (254 mg, 1.0 mmol) dissolved in THF (1 

mL) was reacted with a solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) 

at –40 °C for 1 h according to GP6. A solution of ZnCl2 (1 M in THF, 1.2 mL, 1.2 mmol) was 

added and the resulting mixture was stirred at –40 °C for 1 h. Pd(dba)2 (17 mg, 3 mol%) and 

P(o-furyl)3 (14 mg, 6 mol%) dissolved in THF (2 mL), and mixed with ethyl 4-iodobenzoate 

(387 mg, 1.4 mmol, 1.4 equiv) were then transferred via cannula to the reaction mixture. The 

resulting mixture was stirred at 65 °C for 1 h and then quenched with a sat. aq. NH4Cl 

solution (100 mL), extracted with diethyl ether (3 × 100 mL) and dried over anhydrous 

Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography 

colourless solid. 

m.p.: 118.1 – 119.8 °C. 
1H-NMR (300 MHz, CDCl3) δ: 8.15 (d, J = 8.7 Hz, 2 H), 7.94 (d, J = 8.7 Hz, 2 H) , 7.88 (d, 

J = 8.9 Hz, 2 H

7.2 Hz, 3 H).  
13C-NMR (75 MHz, CDCl3) δ: 16

129.5, 129.4, 127.1, 113.8, 61.2, 55.4, 14.3. 

MS (70 eV, EI) m/z (%): 402 (100) [35Cl-M+], 357 (27), 178 (12), 157 (17).  

IR (ATR) 
~

 (cm-1): 2986, 2902, 2046, 1719, 1607, 1577, 1523, 1507, 1489, 1442, 1410, 

1354, 1311, 1296, 1280, 1257, 1176, 1137, 1126, 1103, 1023, 1015, 1005, 974, 948, 894, 879, 

66, 646, 629, 612. 

RMS (EI) for C20H16Cl2N2O3 (402.0538): 402.0535. 

ynthesis of 2,3-dichloro-5-methylsulfanyl-pyrazine (151a): 

869, 858, 826, 795, 783, 767, 756, 731, 720, 701, 680, 6

H

 

S

 

NCl  

N SMeCl

,3-Dichloropyrazine (144) (149 mg, 1.0 mmol) dissolved in THF (1 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) at 25 °C and the 

2
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reaction mixture was then stirred at this temperature for 15 min according to GP6. S-Methyl-

methanethiosulfonate (151 mg, 1.2 mmol) was added to the mixture at 0 °C. The resulting 

mixture was stirred for 1 h and then quenched with a sat. aq. NH4Cl solution (30 mL), 

extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

e solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane th

1:6) furnished the compound 151a (131 mg, 67 %) as a yellowish solid. 

m.p.: 62.1 – 64.1 °C. 
1H-NMR (600 MHz, CDCl3) δ: 8.15 (s, 1 H), 2.56 (s, 3 H). 
13C-NMR (150 MHz, CDCl3) δ: 155.9, 146.7, 141.8, 139.8, 13.3. 

MS (70 eV, EI) m/z (%): 193 (100) [35Cl-M+], 163 (54), 161 (80), 97 (13), 83 (11), 71 (14), 

69 (16), 57 (26), 44 (53), 43 (19), 41 (13).  

IR (ATR) 
~

 (cm-1): 3075, 2922, 2851, 1831, 1531, 1489, 1432, 1418, 1395, 1376, 1333, 

1319, 1289, 1193, 1151, 1123, 1033, 960, 918, 860, 719, 658. 

HRMS (EI) for C5H4Cl2N2S (193.9472): 193.9458. 

 

Synthesis of 2,3-dichloro-5-(3-cyclohex-2-enyl)pyrazine (151b): 

 

NCl

NCl  

 

2,3-Dichloropyrazine (144) (149 mg, 1.0 mmol) dissolved in THF (1 mL) was reacted with a 

ulting mixture was 

  en cooled to –30 °C, CuCN·2LiCl (1 

 solution in THF, 5 drops) was added and the resulting mixture was cooled to –60 °C. 3-

and the reaction mixture was 

llowed to warm up slowly to 20 °C overnight. The resulting mixture was then quenched with 

a sat. aq. NH4Cl solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over 

anhydrous Na2SO4. After filtration, the solvent was evaporated in vacuo. Purification by flash 

chromatography (CH2Cl2/pentane 1:2) furnished the compound 151b (160 mg, 72%) as a 

solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) at 25 °C and the 

reaction mixture was then stirred at this temperature for 15 min according to GP6. A solution 

of ZnCl2 (1 M in THF, 1.2 mL, 1.2 mmol) was added at 25 °C and the res

stirred at 25 °C for 15 min. The reaction mixture was th

M

Bromocyclohexene (242 mg, 1.5 mmol) was added dropwise 

a

colourless oil. 
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1H-NMR (CDCl3, 300 MHz) δ: 8.18 (s, 1 H), 5.95 – 6.01 (m, 1 H), 5.69 – 5.74 (m, 1 H), 

3.54 (m, 1 H), 2.01 – 2.14 (m, 3 H), 1.63 – 1.77 (m, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 159.0, 146.5, 144.8, 140.5, 130.7, 126.0, 40.6, 29.8, 24.7, 

20.5. 

MS (EI, 70 eV) m/z (%): 228 (99) [35Cl-M+], 213 (43), 199 (100), 193 (62), 174 (26), 162 

(36).  

IR (ATR) 
~

 (cm-1): 3313, 2933, 2862, 1649, 1544, 1506, 1447, 1411, 1316, 1283, 1244, 

. 

2-yl)benzoate (151c): 

1191, 1148, 1041, 998, 909, 887, 854, 822, 751, 724, 661, 633, 616, 608, 604

HRMS (EI) for C10H10Cl2N2 (228.0221): 228.0220. 

 

Synthesis of ethyl 4-(5,6-dichloropyrazin-

 

CO2Et

NCl

NCl  

 

2,3-Dichloropyrazine (144) (149 mg, 1.0 mmol) dissolved in THF (1 mL) was reacted with a 

solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) at 25 °C and the 

reaction mixture was then stirred at this temperature for 15 min according to GP6. A solution 

of ZnCl2 (1 M in THF, 1.2 mL, 1.2 mmol) was added at 25 °C and the resulting mixture was 

tirred at 25 °C for 15 min. Pd(dba)2 (17 mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) s

dissolved in THF (2 mL), and mixed with ethyl 4-iodobenzoate (387 mg, 1.4 mmol, 1.4 

equiv) were then transferred via cannula to the reaction mixture. The resulting mixture was 

stirred at 65 °C for 1.5 h and then quenched with a sat. aq. NH4Cl solution (30 mL), extracted 

with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated in vacuo. Purification by flash chromatography (CH2Cl2) furnished the 

compound 151c (231 mg, 78%) as a colourless solid. 

m.p.: 114.9 – 116.1 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 8.76 (s, 1 H), 8.17 (d, J = 8.8 Hz, 2 H), 8.06 (d, J = 8.8 Hz, 2 

H), 4.41 (q, J = 7.0 Hz, 2 H), 1.42 (t, J = 7.0 Hz, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 165.8, 149.6, 147.1, 146.3, 138.7, 137.6, 132.3, 130.3, 126.9, 

61.4, 14.3. 
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MS (EI, 70 eV) m/z (%): 296 (33) [35Cl-M+], 268 (44), 251 (100), 223 (25), 188 (11), 69 

(10), 44 (30).  

IR (ATR) 
~

 (cm-1): 2986, 2905, 1943, 1706, 1610, 1577, 1552, 1540, 1515, 1479, 1454, 

1443, 1425, 1400, 1364, 1315, 1267, 1238, 1213, 1199, 1180, 1160, 1126, 1107, 1060, 1038, 

 (EI) for C13H10Cl2N2O2 (296.0119): 296.0109. 

1017, 965, 925, 881, 860, 840, 777, 748, 696, 663, 633, 621, 614, 604. 

HRMS

 

Synthesis of 2,3-dichloro-5-(phenylethynyl)pyrazine (151d): 

 

N

N

Cl

Cl

 

 

2,3-Dichloropyrazine (144) (149 mg, 1.0 mmol) dissolved in L) was reacted with a 

olution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) at 25 °C and the 

3 mg, 77%). 

13 37.3, 132.2, 130.0, 128.6, 120.8, 95.5, 

 eV) m/z (%): 248 (100) [ Cl-M ], 127 (14).  

THF (1 m

s

reaction mixture was then stirred at this temperature for 15 min according to GP6. A solution 

of ZnCl2 (1 M in THF, 1.2 mL, 1.2 mmol) was added at 25 °C and the resulting mixture was 

stirred at 25 °C for 15 min. Iodine (280 mg, 1.1 mmol) dissolved in dry THF (1 mL) was then 

added dropwise and the resulting mixture was stirred for 1 h at rt. To the solution of freshly 

generated in situ 2,3-chloro-5-iodopyrazine, NEt3 (7 mL), CuI (8 mg, 4 mol%), Pd(dba)2 (17 

mg, 3 mol%) and P(o-furyl)3 (14 mg, 6 mol%) in THF (2 mL) and phenylacetylene (134 mg, 

1.3 mol, 1.3 equiv) were successively slowly added. The reaction mixture was stirred at 20 °C 

for 1 h. The resulting mixture was quenched with a sat. aq. NH4Cl solution (25 mL), extracted 

with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, the solvent 

was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 1:2) 

furnished the compound 151d as a yellowish solid (18

m.p.: 103.2 – 104.9 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 8.43 (s, 1 H), 7.58 – 7.61 (m, 2 H), 7.35 – 7.44 (m, 3 H). 

C-NMR (CDCl3, 75 MHz) δ: 146.9, 145.8, 144.2, 1

83.9. 

MS (EI, 70 35 +
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IR (ATR) 
~

 (cm-1): 3078, 3034, 2994, 2204, 1989, 1903, 1825, 1688, 1569, 1534, 1489, 

1441, 1409, 1337, 1315, 1291, 1215, 1194, 1159, 1073, 1037, 996, 977, 927, 916, 902, 854, 

-2-yl)-(4-fluoro-phenyl)-methanone 

53): 

833, 776, 759, 750, 690, 667, 620, 603. 

HRMS (EI) for C12H6Cl2N2 (247.9908): 247.9907. 

 

Synthesis of (5,6-dichloro-3-methylsulfanyl-pyrazin

(1

N

NCl SMe

Cl

O

F

 

 

2,3-Dichloro-5-methylsulfanylpyrazine (151a) (149 mg, 1.0 mmol) dissolved in THF (1 mL) 

was reacted with a solution of TMPMgCl·LiCl (16a) (1.0 M in THF, 1.1 mL, 1.1 mmol) at 25 

C and the reaction mixture was then stirred at this temperature for 15 min according to GP6. 

3), 123 (100), 95 (48), 75 

°

A solution of ZnCl2 (1 M in THF, 1.2 mL, 1.2 mmol) was added and the resulting mixture 

was stirred at –40 °C for 30 min. CuCN·2LiCl (1.0 M in THF, 1.1 mL) was then added and 

the resulting mixture was stirred at –40 °C for 30 min according to GP7. Then, 4-

fluorobenzoyl chloride (317 mg, 2 mmol) was added at –40 °C and the mixture was allowed 

to warm up to –10 °C for 2 h. The resulting mixture was then quenched with a sat. aq. NH4Cl 

solution (30 mL), extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. 

After filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:7) furnished the compound 153 (228 mg, 72 %) as a yellowish solid. 

m.p.: 144.3 – 146.4 °C. 
1H-NMR (600 MHz, CDCl3) δ: 8.10 – 8.03 (m, 2 H), 7.20 – 7.10 (m, 2 H), 2.55 (s, 3 H). 
13C-NMR (150 MHz, CDCl3) δ: 188.7, 166.0 (d, J = 256.2 Hz), 159.0, 147.9, 142.0, 138.9, 

133.5 (d, J = 9.5 Hz), 131.9 (d, J = 2.8 Hz), 115.6 (d, J = 21.9 Hz), 14.5. 

MS (70 eV, EI) m/z (%):  316 (18) [35Cl-M+], 301 (16), 283 (1

(16), 46 (57).  

IR (ATR) 
~

 (cm-1): 3063, 1905, 1770, 1734, 1660, 1599, 1507, 1467, 1432, 1408, 1360, 

 

 

1332, 1297, 1264, 1239, 1185, 1157, 1098, 1016, 977, 965, 943, 870, 846, 807, 788, 737, 703, 

670. 

HRMS (EI) for C12H7Cl2FN2OS (315.9640): 315.9647. 
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4.4  Total Synthesis of Coelenterazine (140) 

 

Synthesis of 2-chloro-5-(4-methoxyphenyl)pyrazine (155): 

 

N

N

MeO

Cl

 

 

This compound was prepared from 2,5-dichloropyrazine (154). 4-Iodoanisole (10.8 g, 46 

mmol) was charged with freshly titrated i-PrMgCl·LiCl (1.3 M in THF, 38.6 mL, 50.6 mmol) 

and the reaction mixture was stirred at 25 °C pletion of the reaction, a 

Cl3) δ: 161.6, 141.3, 138.6, 128.6, 127.2, 114.5, 55.4. 

M

IR (ATR) 

 for 1 h. After com

solution of zinc chloride (1.0 M in THF, 55 mL, 55 mmol) was added and the resulting 

mixture was stirred at 25 °C for 30 min. Pd(dba)2 (519 mg, 2 mol%) and P(o-furyl)3 (395 mg, 

4 mol%) were then introduced, the resulting mixture was then transferred dropwise at 25 °C 

via cannula to a solution of 154 (8.9 g, 60 mmol) dissolved in THF (60 mL) and stirred for 1 h 

at the same temperature. The reaction mixture was quenched with a sat. aq. NH4Cl solution 

(100 mL), extracted with diethyl ether (5 × 100 mL) and dried over anhydrous Na2SO4. After 

filtration, the solvent was evaporated in vacuo. Purification by flash chromatography 

(CH2Cl2/pentane 1:1) furnished the compound 155 (6.47 g, 64%) as a yellowish solid. 

m.p.: 79.1 – 81.0 °C.  
1H-NMR (300 MHz, CDCl3) δ: 8.85 (s, 1 H), 8.42 (s, 1 H), 7.98 (d, J = 9.0 Hz, 2 H), 7.00 (d, 

J = 9.0 Hz, 2 H), 3.86 (s, 3 H). 
13C-NMR (75 MHz, CD

S (70 eV, EI) m/z (%): 220 (100) [35Cl-M+], 205 (16), 177 (12), 167 (21), 149 (57). 

~  (cm-1): 2928, 1724, 1604, 1516, 1501, 1440, 1415, 1382, 1292, 1257, 1176, 

1162, 1148, 1073, 1073, 1026, 1006, 870, 827, 657, 610. 

HRMS (ESI) for C H ClN O (220.0403): 220.0396. 
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Synthe 2-yl)(phenyl)methanone (156): sis of (3-chloro-6-(4-methoxyphenyl)pyrazin-

  

N

N Cl

MeO

O

 

 

-Chloro-5-(4-methoxyphenyl)pyrazine (155) (5.8 g, 26.7 mmol) dissolved in THF (25 mL) 

 MHz) δ: 8.91 (s, 1 H), 8.05 (d, J = 8.9 Hz, 2 H), 7.87 – 7.91 (m, 2 H), 

: 191.3, 162.1, 152.9, 146.6, 145.9, 137.4, 135.1, 134.1, 130.2, 

2

was reacted with a solution of TMPMgCl·LiCl (2a) (1.2 M in THF, 25 mL, 29.4 mmol) at –

45 °C and the reaction mixture was then stirred at this temperature for 1 h according to GP6. 

A solution of ZnCl2 (1 M in THF, 30 mL, 30 mmol) was added at –50 °C and the resulting 

mixture was stirred at this temperature for 1 h and then at 25 °C for 15 min. Pd(PPh3)4 (925 

mg, 3 mol%) and benzoyl chloride (5.69 g, 40.5 mmol, 1.5 equiv) dissolved in THF (20 mL) 

were then transferred via cannula very slowly to the reaction mixture. The resulting mixture 

was stirred at 25 °C overnight and then quenched with a sat. aq. NH4Cl solution (50 mL), 

extracted with diethyl ether (3 × 100 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvent was evaporated in vacuo. Purification by flash chromatography (CH2Cl2/pentane 

2:1) furnished the compound 156 (6.14 g, 71%) as a yellowish solid. 

m.p.: 103.8 – 105.8 °C. 
1H-NMR (CDCl3, 300

7.59 – 7.66 (m, 1 H), 7.46 – 7.51 (m, 2 H), 7.03 (d, J = 8.9 Hz, 2 H), 3.87 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ

128.9, 128.6, 126.4, 114.6, 55.4. 

MS (EI, 70 eV) m/z (%): 324 (54) [35Cl-M+], 296 (21), 105 (100).  

IR (ATR) 
~

 (cm-1): 2923, 1669, 1607, 1544, 1517, 1458, 1432, 1338, 1315, 1288, 1256, 

1200, 1166, 1117, 1070, 1019, 942, 922, 914, 832, 807, 772, 702, 689, 658, 631. 

HRMS (EI) for C18H13ClN2O2 (324.0666): 324.0658. 
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Synthesis of (3-amino-6-(4-methoxyphenyl)pyrazin-2-yl)(phenyl)methanone (157): 

 

N

N

MeO

NH2

O

 

 

(3-Chloro-6-(4-methoxyphenyl)pyrazin-2-yl)(phenyl)methanone (156) (324 mg, 1.0 mmol) 

dissolved in n-BuOH (2 mL) and 25% aq. NH3 (2 mL) was heated in a sealed tube at 180 °C 

for 12 h. The resulting mixture was then quenched with a sat. aq. Na2CO3 solution (20 mL), 

extracted with diethyl ether (3 × 50 mL) and dried over anhydrous Na2SO4. After filtration, 

the solvents were evaporated in vacuo. Purification by flash chromatography (CH2Cl2) 

furnished the compound 157 (287 mg, 94%) as a fluorescent yellowish solid. 

m.p.: 147.9 – 149.5 °C. 
1H-NMR (CDCl3, 300 MHz) δ: 8.44 (s, 1 H), 8.04 (d, J = 8.9 Hz, 2 H), 7.95 – 7.98 (m, 2 H), 

7.45 – 7.56 (m, 3 H), 7.01 (d, J = 8.9 Hz, 2 H), 3.87 (s, 3 H). 
13C-NMR (CDCl3, 75 MHz) δ: 195.1, 161.9, 155.5, 153.7, 138.4, 131.8, 130.4, 129.7, 129.1, 

128.0, 127.9, 127.8, 114.4, 55.4. 

MS (EI, 70 eV) m/z (%): 305 (100) [M+], 276 (23), 105 (27), 77 (23).  

IR (ATR) 
~

 (cm-1): 3427, 3286, 1618, 1593, 1533, 1502, 1454, 1442, 1335, 1299, 1247, 

1209, 1173, 1149, 1112, 1026, 1000, 960, 890, 853, 810, 774, 706, 695, 670. 

HRMS (EI) for C18H15N3O2 (305.1164): 305.1166. 

 

Synthesis of (3-amino-6-(4-hydroxyphenyl)pyrazin-2-yl)(phenyl)methanone (158): 

 

N

N NH2

HO

O

 

-Amino-6-(4-methoxyphenyl)pyrazin-2-yl)(phenyl)methanone (157) (305 mg, 1.0 mmol) 

nd sodium ethanethiolate (494 mg, 5 mmol) in DMF (5 mL) were heated at 100 °C for 20 h 

 

(3

a
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under argon atmosphere. The resulting mixture was then quenched with a sat. aq. NH4Cl 

olution (20 mL), and extracted with AcOEt (5 × 50 mL). The combined organic layers were 

washed with brine (25 mL) and dried over anhydrous Na2SO4. After filtration, the solvent was 

evaporated in vacuo. Purification by flash chromatography (pentane/Et2O 1:1) furnished the 

compound 158 (209 mg, 72%) as a yellowish solid. 

m.p.: 204.5 – 206.2 °C. 
1H-NMR (400 MHz, DMSO-d6) δ: 10.10 (s, 1 H), 8.49 (s, 1 H), 8.06 (d, J = 8.8 Hz, 2 H), 

.83 – 7.86 (m, 4 H), 7.53 – 7.56 (m, 1 H), 7.45 – 7.49 (m, 2 H), 6.92 (d, J = 8.8 Hz, 2 H). 

s

7
13C-NMR (100 MHz, DMSO-d6) δ: 194.4, 160.3, 155.6, 153.5, 138.7, 131.3, 130.1, 129.3, 

128.7, 127.6, 126.6, 126.0, 115.8. 

MS (EI, 70 eV) m/z (%): 291 (100) [M+], 290 (95), 263 (12), 262 (24), 105 (25).  

IR (ATR) 
~

 (cm-1): 3457, 3364, 3332, 1608, 1588, 1540, 1521, 1504, 1446, 1340, 1324, 

1294, 1278, 1254, 1219, 1208, 1171, 962, 930, 889, 838, 815, 805, 772, 702, 690, 673, 625. 

HRMS (EI) for C17H13N3O2 (291.1008): 291.1001. 

 

Synthesis of 4-(5-amino-6-benzylpyrazin-2-yl)phenol Coelenteramine (159): 

 

N NH2

N

HO

 

 

A stirred solution of (3-amino-6-(4-hydroxyphenyl)pyrazin-2-yl)(phenyl)methanone (158) 

ted at 

00 °C for 1 h. The reaction mixture was allowed to cool to room temperature. Then, KOH 

pellets (500 mg) were added, the resulting mixture was heated in a sand bath at 240 °C. After 

cooling to room temperature, the reaction mixture was diluted with water and extracted with 

Et2O. The organic layer was washed with dilute HCl and dried over Na2SO4. Purification by 

flash chromatography (CH2Cl2/Et2O 1.5:1) furnished Coelenteramine (159) (257 mg, 93%) as 

a colourless solid. 

.p.: 201.6 – 203.1 °C. 

(291 mg, 1.0 mmol), ethylene glycol (2 mL) and hydrazine hydrate (0.5 mL) were hea

1

m

  



D: Appendix  179 
  
1H-NMR (400 MHz, DMSO-d6) δ: 9.70 (s, 1 H), 8.18 (s, 1 H), 7.83 (d, J = 8.8 Hz, 2 H), 

7.24 – 7.31 (m, 4 H), 7.15 – 7.19 (m, 1 H), 6.85 (d, J = 8.8 Hz, 2 H), 6.21 (bs, 2 H), 4.03 (s, 2 

H). 
13C-NMR (100 MHz, DMSO-d6) δ: 158.3, 152.7, 147.3, 138.5, 128.9, 128.2, 127.6, 127.4, 

126.0, 115.4, 38.3. 

MS (EI, 70 eV) m/z (%): 277 (100) [M+], 276 (83), 130 (8).  

IR (ATR) 
~

 (cm-1): 3487, 3298, 1624, 1610, 1588, 1537, 1519, 1493, 1448, 1422, 1367, 

1347, 1324, 1279, 1228, 1203, 1166, 1139, 1105, 959, 865, 833, 821, 763, 736, 728, 702, 675. 

HRMS (EI) for C17H15N3O (277.1215): 277.1201. 

 

Synthesis of acetic acid 4-(3-bromo-2-oxo-propyl)phenyl ester (161): 

 

O
O

BrO

 

(42 g, 48.9 mmol, 2.5 equiv). The flask was heated with a heat gun (400 °C) for 10 min under 

high vacuum. After cooling to 25 °C, the flask was flushed with argon (3 times). Zinc dust 

(3.18 g, 48.9 mmol, 2.5 equiv) was added followed by THF. 1,2-Dibromethane was added (5 

mol %) and the reaction mixture was heated until ebullition occurs. After cooling to 25 °C, 

trimethylsilyl chloride (1 mol %) was added and the mixture was heated again until ebullition 

loromethylphenyl ester (160; 3.6 g, 19.56 mmol) was added at 25 °C 

s added, the layers were separated and the aqueous layer was extracted 

 The combined organic extracts were dried over MgSO4. Evaporation 

and purification by flash chromatography (pentane/Et2O 3:1) afforded 

the expected ketone 161 as a colourless solid (184 mg, 61%). 

 

A Schlenk-flask equipped with a magnetic stirring bar and a septum was charged with LiCl 

occurs. Acetic acid 4-ch

as a solution in THF. After the reaction mixture was allowed to settle down for some hours, 

the yield of the resulting benzylic zinc chloride was determined by iodiometric titration (C = 

0.77 M). To a CuCN·2LiCl solution (1.0 M in THF, 1.1 mL) at –40 °C was added dropwise 

the freshly prepared benzylic zinc chloride solution (1.27 mL, 1 mmol). The resulting reaction 

mixture was stirred for 30 min at this temperature. Then, the solution was cooled to –80 °C 

and the bromoacetyl chloride (234 mg, 1.5 mmol, 1.5 equiv) was added dropwise. The 

reaction mixture was stirred overnight and allowed to warm to 25 °C. Then, a mixture of a sat. 

aqueous NH4Cl wa

with Et2O (3 x 100 mL).

of the solvents in vacuo 
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1H-NMR (300 MHz, CDCl3) δ: 7.23 (d, J = 8.5 Hz, 2 H), 7.06 (d, J = 8.5 Hz, 2 H), 3.94 (s, 2 

H), 3.90 (s, 2 H), 2.29 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 199.1, 169.3, 150.0, 130.6, 130.5, 122.0, 45.9, 33.4, 21.1. 

acid 4-(3-nitrooxy-2-oxo-propyl)phenyl ester (162): 

 

Synthesis of acetic 

 

O
O

ONO2O

 

 

This compound was prepared according to the known procedure.100h,106 A solution of AgNO3 

 of 161 (137 mg, 0.5 

mol) in MeCN (0.5 mL). The resulting mixture was then stirred for 18 h at 25 °C, filtrated, 

quenched with a sat. aq. NH4Cl solution (2 mL), extracted with diethyl ether (3 × 50 mL) and 

dried over anhydrous Na2SO4. Evaporation of the solvents in vacuo afforded the pure 

xpected derivative 162 as a colourless solid (102 mg, 82%). 

(195 mg, 1.15 mmol, 2.3 equiv) in MeCN (1 mL) was added to a solution

m

e
1H-NMR (300 MHz, CDCl3) δ: 7.19 (d, J = 8.5 Hz, 2 H), 7.05 (d, J = 8.5 Hz, 2 H), 4.94 (s, 2 

H), 3.72 (s, 2 H), 2.27 (s, 3 H). 
13C-NMR (75 MHz, CDCl3) δ: 198.6, 169.3, 150.1, 130.4, 129.3, 122.1, 73.3, 45.3, 21.0. 

 

Synthesis of Acetic acid 4-(2,3-dioxo-propyl)phenyl ester (163): 

 

O
O

HO

O

 

 

This compound was prepared according to the known procedure.100h,106 NaOAc·3H2O (68 mg, 

0.5 mmol) was slowly added to a solution of 162 (126 mg, 0.5 mmol)in DMSO (2 mL). The 

reaction mixture was stirred at 25 °C for 40 min and then poured inti ice-water. The resulting 

mixture was saturated with sodium chloride and then extracted with. The organic phase was 

washed with water, aqueous sodium hydrogen carbonate and then again with water. Removal 

of the solvent by distillation under reduced pressure followed by drying in vacuo afforded the 

pure expected derivative 163 as a colourless solid (70 mg, 68%). 

  



D: Appendix 181 

1H-NMR (300 MHz, CDCl3) δ: 9.22 (s, 1 H), 7.84 (d, J = 8.5 Hz, 2 H), 7.13 (d, J = 8.5 Hz, 2 

H), 6.67 (bs, 1 H), 6.14 (s, 1 H), 2.30 (s, 3 H). 

. 13C-NMR (75 MHz, CDCl3) δ: 188.2, 169.2, 151.1, 148.6, 131.6, 131.3, 121.9, 121.7, 21.1

Synthesis of Coelenterazine (140): 

N
H

HO

This compound was prepared according to the known procedure.100h,106 A mixture of 163 (145

mg, 0.7 mmol), Coelenteramine 159 (138 mg, 0.5 mmol), ethanol (5 mL

N N

O OH

), 36% aqueous HCl 

)

 solvent was removed by evaporation and the residue further 

140) (134 mg, 64%) as a yellowish solid. 

H-NMR (600 MHz, DMSO-d6) �: 10.98 (bs, 1 H), 9.55 (bs, 1 H), 9.13 (s, 1 H), 7.37 (d, 2 H, 

J = 7.7 Hz), 7.17 – 7.30 (m, 5 H), 7.08 (d, 2 H, J = 8.5 Hz), 6.71 (d, 2 H, J = 8.1 Hz), 6.64 (d, 

2 H, J = 8.6 Hz), 6.44 (bs, 1 H), 4.15 (s, 2 H), 3.84 (s, 2 H). 
13C-NMR (DMSO-d6, 150 MHz) δ: 157.3, 155.5, 137.5, 130.9, 129.9, 129.6, 129.3, 128.8, 

128.4, 128.2, 126.7, 121.6, 114.9, 114.7, 113.6, 109.5, 56.0, 48.6. 

S (EI, 70 eV) m/z (%): 423 (24) [M+], 393 (23), 317 (24), 277 (55), 261 (100), 107 (32), 

(0.2 mL)and water (0.7 mL  was heated at 80 °C for 4.5 h under argon. After cooling the 

mixture to room temperature, the

dried in vacuo. Purification by flash chromatography (CH2Cl2/MeOH 9:1) furnished 

Coelenterazine (

m.p.: 175.2 – 178.5 °C.
1

M

91 (25).  

IR (ATR) 
~

 (cm-1): 3164, 3043, 3028, 1612, 1512, 1440, 1373, 1229, 1152, 826, 697. 

HRMS (EI) for C26H21N3O3 (423.1583): 423.1570. 
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