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Abstract 

i 

Abstract 

 

To unravel the molecular pylons of innate anxiety, a well established animal model 

has been characterized using transcriptome- and sequence-based analyses. The 

animal model – hyper (HAB) and hypo (LAB) anxious mice – has been created by 

selective inbreeding based on outbred CD1 mice using the extreme values the mice 

spent on the open arm of the elevated plus-maze, a test also used to screen drugs 

for anxiolytic or anxiogenic effects.  

These mice proved a robust phenotypic divergence, also for depression-like 

behavior and stress-axis reactivity.  

In a first assay, brain regions unambiguously involved in regulating anxiety-related 

behavior were screened for gene expression differences between HAB and LAB 

animals in a microarray experiment covering the whole genome. This led to the 

identification of thousands of differentially expressed transcripts. The highest 

significant results were further validated by quantitative PCR or other techniques 

focusing either on protein quantification or enzyme activity. Applying this strategy, 

differential regulation of 15 out of 28 transcripts could be validated: vasopressin, 

tachykinin 1, transmembrane protein 132D, RIKEN cDNA 2900019G14 gene, 

ectonucleotide pyrophosphatase/phosphodiesterase 5, cathepsin B, coronin 7, 

glyoxalase 1, pyruvate dehydrogenase beta, metallothionein 1, matrix 

metallopeptidase 15, zinc finger protein 672, syntaxin 3, solute carrier family 25 

member 17 and ATP-binding cassette, sub-family A member 2. Additionally, 

analysis of cytochrome c oxidase activity resulted in the identification of differences 

in long-term activity between HAB and LAB mice in the amygdala and the 

hypothalamic paraventricular nucleus pointing to an important role of these brain 

regions in shaping the anxiety-related extremes in these mice.  

In a second genome-wide screening approach, 267 single nucleotide 

polymorphisms were identified to constantly differ between HAB and LAB animals 

(i.e. to carry the opposite homozygous genotype at these loci) and subsequently 

genotyped in 520 F2 mice, the offspring of reciprocally mated HABxLAB animals. 

These F2 mice have been previously phenotyped in a broad variety of behavioral 

tests and show – as descendants of intermediate heterozygotes for all polymorphic 

genomic loci between HAB and LAB mice – a free segregation of all alleles, thus 

allowing genotype-phenotype associations based on whole-genome analysis. Only 

focusing on the most significant findings, associations have been observed between 

anxiety-related behavior and loci on mouse chromosomes 5 and 11, between 
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depression-like behavior and chromosome 2 and between stress-axis reactivity and 

chromosome 3.  

The locus on chromosome 11 is marked by a polymorphism located in the 3’ 

untranslated region of zinc finger protein 672, a gene also markedly overexpressed 

in LAB mice and expressed at lower levels in HAB mice leading to a probable causal 

involvement in shaping the phenotype. Further associations on chromosome 5 

include two functional polymorphisms in enolase phosphatase 1 that result in a 

different mobility of the enzyme in proteomic assays and with a polymorphism 

located in the transmembrane protein 132D gene. Furthermore, independently, an 

association of a polymorphism in this particular gene, together with the resulting 

gene expression differences has been observed in a group of panic disorder 

patients, highlighting this gene as a causal factor underlying anxiety-related 

behavior and disorders in both the HAB/LAB mouse model and human patients.  

The combination of expression profiling and confirmation by quantitative PCR, single 

nucleotide polymorphism analysis and F2 association studies, i.e. unbiased and 

hypothesis driven approaches were key to the identification and functional 

characterization of loci, genes and polymorphisms causally involved in shaping 

anxiety-related behavior. Thus, it provides an overview of some new promising 

targets for future pharmaceutic treatment and will contribute to a better 

understanding of the molecular processes that shape anxiety and thereby also 

animal and human behavior. 
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1. Introduction 

 

1.1. The evolution of threat assessment systems 

Anxiety and fear are two similar, but nevertheless well distinguishable emotions 

combined with physical and physiological reactions. Both have a common 

background and sense at a former evolutionary stage (Flannelly et al., 2007; Rosen 

and Schulkin, 1998). 

Fear itself is an adequate evolutionary adaptation, to prevent being eaten by 

predators, or to escape from life-threatening situations, that an individual is 

confronted with suddenly (Belzung and Philippot, 2007). This reaction ability might 

already play a vital role in organisms that are capable of actively changing their 

position.  

To differentiate between fear and anxiety, fear is the reaction to an acute threat with 

a defined danger, whereas anxiety is strictly context-based and evokes the 

impression of a threatening situation without the direct contact with something that 

would justify the described reaction. This way, to perceive something as anxiogenic, 

an individual must have the cognitive ability, to (I) perceive a threat per se, (II) to 

learn associations with a specific context and (III) to recall the memory (association). 

From this point of view fear is a basic prerequisite to any kind of higher emotion 

related to threat assessment, like anxiety (Belzung and Philippot, 2007). 

Belzung and Philippot (2007) indeed summarized these conditions resulting in five 

distinct stimulus evaluation checks (SEC) in organisms that have to be 

accomplished in order to provoke an anxiety-related reaction. However, even 

protozoans or nematodes show the capability to perform at least the first three SECs 

(“novelty check”, “intrinsic pleasantness check” and “goal/need conduciveness 

check”) even if a detailed discrimination of these is hard to prove for these 

organisms. The ability to change morphology and behavior in response to a 

predator-induced threat has even been demonstrated for protozoans like Euplotes. 

Basically, if these three SECs work, many physiological reactions typical of an acute 

stressor can be observed, allowing an adequate threat response. 

The fourth SEC is proven to function in all vertebrates but also for some insects. In 

brief, animals able to learn helplessness, i.e. to learn to cope with and not to escape 

from a hopeless and threatening situation, but as soon as the opportunity is given to 

do so, are able to perform this fourth SEC. Nevertheless, the fifth SEC (“norm/self 

compatibility check”) seems to be unique to primates, as it requires cultural 

transmission (Belzung and Philippot, 2007). This brief description of evaluation 

circuits, demonstrates the sense of threat assessment, i.e. the decision on a fight or 
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flight reaction. For individual survival, it might be favorable to overestimate 

threatening stimuli (i.e. to react, if the organism would not have to, costs less 

compared to loss of life). These SECs already include a bias towards the 

interpretation in favor of a defensive behavior, independent of whether this takes 

place in single cell or more complex organisms.  

With differentiation of more complex classes and species, these SECs increasingly 

require central control. This was taken over quite early in evolutional terms, by 

neurons, the cell type most suitable for intercellular communication and 

coordination. They represent an ancient and vigorously conserved cell type in 

metazoans, with cnidarians and sponges already bearing neuronal cells (Holland, 

2003), able to communicate with each other and coordinate their action. Starting 

from cnidarians, also a basiepidermal nerve net is present in eumetazoa (Holland, 

2003). Emerging complexity gave rise to neuronal agglomerations in these nerve 

nets, forming ganglia in species like Caenorhabditis elegans and other more 

complex organisms building the core of a central nervous system in all 

invertebrates, that was also transferred to vertebrates combined with the 

dorsoventral body axis inversion (Denes et al., 2007). 

A broad variety of changes and adaptations has led to the development of the brain, 

with the hypothalamus and functional equivalents of the hippocampus and amygdala 

already present in fish (Belzung and Philippot, 2007). Many brain structures and 

systems have already been attributed to fear and anxiety in vertebrates, with the 

evolutionary oldest one, the basal ganglia, that already function at a pre-emotional 

level and the limbic system which also already works at a preconscious level. Most 

importantly, the prefrontal cortex also plays an important role in mammals as for the 

modulation of the autonomic nervous system, social cognition and emotional 

decision making. These three systems can be summarized as evolutionary threat 

assessment systems (ETAS). It also has been proposed, that many different kinds 

of threats require different ETAS even at the most rudimentary level of evolution, like 

for threats originating from predators, conspecifics, height or from insects (Flannelly 

et al., 2007), thus forming the basis of multiple systems, involved in the anticipation 

and processing of potentially threatening situations, competing with and 

complementing each other, resulting in the complex trait called anxiety, which 

already include a bias towards the overinterpretation of anxiogenic stimuli. 

 

1.2. The evolution of neuroactive compounds 

In parallel to the morphologic and organogenic evolution of neurons, ganglia and 

brains, a high degree of complexity and diversity was established in mammals, 
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originating from a few neuroactive compounds in the first neurons. First forms of 

substance P-related tachykinin peptides are known from hydra or vasopressin- and 

oxytocin-like peptides are already present in the locust (Gwee et al., 2008; Severini 

et al., 2002). Nevertheless, the basic forms of neuronal communication via 

molecules do not necessarily require a vast degree of complex substances, as pre-

neuronal cell to cell communication might already take place by the release of 

glutamate, gamma-aminobutyric acid, glycine, acetylcholine, serotonin or any other 

small neurotransmitter. Additionally, mechanisms of cell to cell communication to 

convey information also exist for prokaryotes, especially in colony-forming bacteria 

as Pseudomonas aeruginosa. However, most of the best-characterized substances 

used for ‘quorum sensing’ in bacteria comprise substances like quinolones, 

pentandione-based molecules, long fatty acids or short peptides (Williams, 2007). 

This makes a major difference to eukaryotic cells and organisms, as these 

substances are hardly applied in signal transduction processes (except for the short 

peptides). 

Interestingly, this suggests that the broad variety of substances used for intercellular 

communication arose from the same basis of only a few molecules (Landgraf and 

Holsboer, 2005); especially as bacteria show a variety that uses different 

substances). Also release mechanisms from vesicles seem to be quite conserved 

and are not a privilege of neurons. First forms of endo- and exocytosis must have 

been present in the first cells that required more than the uptake of substances via 

diffusion. Equivalently, proteins of the superfamily of soluble N-ethylmaleimide 

sensitive factor attachment protein receptors (SNARE) and their interacting proteins 

seem to play a pivotal role for the release of substances from vesicles. Whereas 

SNAREs are required for the fusion of vesicles with a membrane, NSF (N-

ethylmaleimide sensitive factor) and soluble NSF attachment proteins (SNAP) are 

necessary for the regeneration of used (cis-) SNARE complexes. This principle 

works in all neuronal synapses, but the same way in yeast (Ungar and Hughson, 

2003). Complexity and diversity of signaling molecules significantly increased, also 

displaying a big but not unconservative variety between species. Good examples for 

this are tachykinin and tachykinin-like peptides. Amphibians and other 

submammalian representatives display a broad variation of tachykinins. Their exact 

sequence and of course their function do not completely correspond to that of 

mammalian tachykinins, but some of them are potent agonists of mammalian 

tachykinin receptors. They also share a common hydrophobic C-terminal sequence, 

defined as FXGLM-NH2, where X stands for any hydrophobic residue. Numerous 

studies demonstrated the indispensability of this sequence for the interaction with 
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one of the three known mammalian receptors for tachykinins, NK1, NK2 and NK3. 

Nevertheless it took about 70 years of intense research from the first identification of 

substance P (SP) by von Euler and Gaddum in 1931 over neurokinin A (NKA) and 

neurokinin B (NKB) in mammals to the discovery of more tachykinins that has only 

reached the current state in the last years (Page, 2004; Severini et al., 2002).  

Three genes are known in mammals that encode for tachykinins, that have most 

probably arose from two genome duplications which took place during vertebrate 

and mammalian development. In humans TAC1, TAC3 and TAC4, in rodents 

(mouse and rat) Tac1, Tac2 and Tac4, with Tac2 of mice and rats displaying high 

homology to the human TAC3 gene and both encoding NKB (Duarte et al., 2006). 

The two other genes, Tac1 and Tac4 are similar concerning their structure both 

expressing at least four different splicing variants.  

Tac1 transcripts (i.e. splicing variants) produce the following peptides: SP, NKA, 

neuropeptide K (NPK) and neuropeptide γ (NPγ), with all of these peptides 

representing tachykinin peptide family members (Fig. 1). In contrast, Tac4 transcript 

variants encode the peptides hemokinin 1 (HK-1) and the endokinins A, B, C and D 

(EKA, EKB, EKC, EKD) with the EKC and EKD representing only tachykinin-like 

peptides as their C-terminal sequence bears two significant modifications replacing 

the tachykinin motif FXGLM to FQGLL that also decreases its hydrophobicity. 

Another specialty of Tac4 gene products is represented by the fact that these 

endokinins are only specific to human cells and have not been described to be 

expressed or synthesized in rodents. Nevertheless recent studies indicate that 

similar endokinins might be encoded by Tac4 in rabbits (Page, 2004). 
 

 

Figure 1: Gene, mRNA with splicing variants and peptides encoded by tachykinin 1 (Tac1).  
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Three different receptors are described, all classified as neurokinin receptors and 

consequently named NK1, NK2 and NK3. All tachykinins displaying the FXGLM 

peptide motif bind to all NK receptors differing only in their binding affinity. The 

distribution of receptors is to a certain extent tissue specific. Although mammalian 

tachykinins are the natural ligands of the receptors, other – non-mammalian but 

vertebrate - tachykinins, like uperolein (from Uperuleia marmorata), physalaemin 

(from Physalaemus biligonigerus), kassinin (from Kassina senegalensis) or 

phyllomedusin (from Phyllomedusa bicolor), can bind to the respective receptors 

with fairly high affinity. Beside other tachykinin-like peptides (the locustatachykinins) 

that only differ in their last amino acid residue, concerning the specific five amino 

acid motif, even some authentic tachykinins were isolated from invertebrate species 

like eleidosin (from Eledone aldovrandi) or sialokinin I and II (from Aedes aegypti) 

which display similar receptor binding effects in mammals, thereby representing 

potent agonists NK receptor (Severini et al., 2002).  

Another result of a single gene duplication event is the evolution of arginine-

vasopressin (Avp) and oxytocin (Oxt) gene loci from one single progenitor, 

vasotocin. Beside the high sequence homology of the peptides and also the genes 

in nearly all mammals, the two genes are located on the same chromosome in close 

vicinity with each other, placed on the opposite DNA strands. Although they share a 

big part of their sequence and function as in the body, their function is quite 

different. In the brain they also act as neuromodulators on similar brain systems and 

regions but with different function (Fields et al., 2003; Gwee et al., 2008; Landgraf 

and Neumann, 2004).  

 

1.3. Anxiety and depression disorders 

Arising from the threat assessment systems, there is already a bias towards 

interpreting harmless stimuli as being rather dangerous (Kim and Gorman, 2005). 

As mentioned before, there are many behavioral and physiological consequences of 

confrontations with stressful situations. If now the systems regulating these stress 

responses do not fully return to their former homeostatic state because of the 

repeated confrontation with a small or due to the confrontation with one strong 

stressor, the state of heightened alertness might never recover to basal level 

anymore, or can be triggered by much smaller events to the same strong reactions. 

This is the state, anxiety disorder patients have to cope with. As one can imagine, 

there is a smooth transition along a continuum between normal and pathological 

anxiety. The patients’ genetic predisposition, their nurturing and education, their 

experiences and their environment shape their overall predisposition and likelihood 
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of being affected by any kind of these disorders. The overall lifetime-prevalence in 

industrialized countries for anxiety disorders is above 25% and patients suffering 

from one of these disorders are also prone to develop a second or third kind of 

anxiety disorder (Bittner et al., 2004; Hettema et al., 2004; Hettema et al., 2005; 

Jacobi et al., 2004; Kim and Gorman, 2005) The co-occurrence of multiple anxiety 

disorders clearly points to a kind of stress-dosage effect and the reduced ability of 

the stress-regulation systems to recover to a homeostatic state. These clear-cut 

effects of genetic predisposition, the effects of maternal care and nurturing have 

also been demonstrated for animals and animal models (Caldji et al., 1998; Francis 

and Meaney, 1999; Wilkins and Haig, 2003a). 

Anxiety disorder patients are also highly in danger to develop a depression disorder 

during their later life which is well described as comorbidity of these two disorders. 

The rate of comorbidity is fairly between 50-60% (Landgraf, 2001a). Depression 

disorders – similarly to anxiety disorders – pose a huge burden for affected persons, 

their close environment and also for economy. But whereas anxiety disorders might 

only slightly affect one patient’s life, as is the case with specific phobias, where 

patients do not face the threat in everyday situations, in depression persons might 

be disabled for months or years, not taken into account that depressive episodes 

might return repeatedly.  

Also the currently available pharmaceutic treatment for both, anxiety disorders and 

depression, is still far away from an optimal state. Best recovery can be reached 

utilizing a combination of pharmaceutic and behavioral (cognitive) therapy. 

Nevertheless, treatment response takes weeks or months, only one third of patients 

show a treatment response for the commonly used substances. As anxiolytics, 

benzodiazepines are widely used, although antidepressants like selective serotonin 

reuptake inhibitors, tricyclics and monoamine oxidase inhibitors are also prescribed 

often (Nutt, 2005). However, all of them might cause side effects, like analgesic or 

sedative ones. As the systems that are blocked do not exclusively exert functions in 

the central nervous system, side effects can also affect muscle function, the gut, 

skin, kidney or the complete hormone system (Simon et al., 2008). 

Therefore, many efforts are undertaken to identify new targets for pharmaceutic 

treatment, bearing with higher efficacy and selectivity. A new possible target – the 

neurokinin receptors – were found and analyzed during the last ten years, also 

reaching the clinical trial phase with saredutant. Although the results obtained were 

similar to the treatment with antidepressants, in one study the placebo control group 

was even more effective, so the drug failed (Czeh et al., 2006). With more efforts 
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aimed at the characterization of the underlying mechanisms, new and more specific 

targets can be identified in the near future.  

Furthermore, many studies underline the complex genetics behind anxiety and 

depression and support the consideration of data obtained from linkage and 

association studies in humans and animal models as well as the investigation of 

single specific molecular circuits. Further emphasis is on the fact most analysis from 

patients point to: genetic variation contributing to behavioral effects is not simply 

multifactorial, but each genetic locus contributing to these behavioral effects is 

expected to cause a variance of not more than 3% in the respective phenotype 

(Conti et al., 2004; Hovatta and Barlow, 2008; Peters et al., 2007; Schadt et al., 

2005; Smoller et al., 2000). This increases the importance of quantitative trait locus 

(QTL) analysis (i.e. the identification of loci, contributing to multiple traits to a tiny 

percentage) and also makes the need for an integrative research combining the 

analysis of genetic predisposition (using polymorphisms as genomic markers) with 

gene and peptide expression profiles obvious (Schadt et al., 2005). 

Appling this strategy, new systems can be targeted, where the currently available 

high-throughput genome, transcriptome and proteome analysis systems might be of 

valuable help. Genome analysis systems reveal differences in the genetic sequence 

and can be directed at single nucleotide polymorphisms (SNP), copy number or any 

other kind of polymorphic structure. Transcriptome analysis systems assess the 

gene expression rate on a whole genome basis and proteomic assays can also 

detect quantitative and qualitative differences in proteins and peptides. They might 

provide the basis of a personalized therapy by (I) delivering the necessary 

biomarkers for a detailed molecular diagnosis and (II) the treatment targets for 

anxiety disorders, depression and many more complex diseases including some 

autoimmune syndromes or cancer.  

 

1.4. Assessing anxiety/depression in mice 

Unfortunately, the assessment of the systems involved – especially the central 

nervous system – is rather problematic in humans – not exclusively because of 

ethical concerns – so model organisms have to be studied and can even reveal 

more in some cases, as researchers can follow the line from less to more complex 

nervous systems, from simple to complex behaviors and from metabolic products to 

complex biosynthetic enzymes and enzyme complexes. 

In some cases even invertebrate species can be used to study specific behavioral 

aspects, like aggression in Drosophila sp. (Dierick and Greenspan, 2006). 
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During the 70-ies and 80-ies of the last century a lot of effort has been undertaken to 

assess anxiety-related and depression-like behaviors in rodents, particularly in rats. 

The elevated plus-maze (EPM) test for anxiety-related behavior by Lister and the 

Porsolt forced swim test (FST) for depression-like behavior are the most prominent 

examples that have also been validated with antidepressant and anxiolytic drug 

treatment in countless studies. Later on, these tests have been adapted for mice as 

genetic manipulation found its way into mammalian research (Cryan and Holmes, 

2005).  

On the EPM, as in most other anxiety-related behavioral tests, the rodents’ innate 

anxiety of open and brightly lit spaces is challenged versus the – also innate – 

exploratory drive to investigate unknown terrain. The animals may choose between 

exploring a dark and closed (with walls) or an open and brightly lit compartment, 

where the total amount of time spent in each one is indicative of the individuals’ 

anxiety-related behavior (Bourin et al., 2007; File, 2001). However, this anxiety-

related behavior might be contaminated with locomotor hyperdrive or deficits. To 

exclude this bias, the open field (OF) test may be applied, to receive locomotor 

activity unaffected by anxiety-related behavior by measuring the distance traveled, if 

only moderate illumination is applied in the test. Still, anxiety-related behavior can 

be scored by measuring the time spent near the walls (more protected) against the 

central region, that is less protected (Cryan and Holmes, 2005; Holmes et al., 2002). 

However, also the total number of arm entries on the EPM can be regarded as a 

valid parameter measuring locomotor activity (Ramos et al., 2008).  

Another possibility to assess anxiety-related behavior independent of locomotion is 

the elevated platform (EPF) test where the animals are placed on a round platform 

that is quite big enough, to turn around. Although this test is most commonly used 

as a mild stressor (Ebner et al., 2004; Kavushansky and Richter-Levin, 2006), the 

amount of explorative head dips (going over the edge of the platform) is indicative of 

the animals’ anxiety-related behavior (Kessler, 2007). 

In the FST, depression-like behavior is assessed by challenging the animal in an 

inescapable, desperate situation (a glass cylinder filled with water, but the edge out 

of reach for the animal). The parameter measured is the total time the animal tries to 

escape (active coping) or just floats (passive coping) in the cylinder. Similarly, but 

only working for mice, a test paradigm has been developed that does not require the 

water as a surplus stressor to the inescapable situation, the so-called the tail 

suspension test (TST), where mice are hung up by their tail tip to a bar, some 

centimeters above the ground (Cryan and Mombereau, 2004).  
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Of course these tests do not reflect the full spectrum of anxiety- and stress-related 

phenotypes, as they only work with innate stressors. In other tests, cognitive abilities 

in regard of associative learning, fear-conditioning or social defeat and social 

recognition abilities can be assessed (Bunck, 2008; Frank et al., 2006; Frank and 

Landgraf, 2008). 

 

1.5. The hypothalamo-pituitary-adrenal (HPA) axis, gene expression and 

translation 

For stress responses and the following reestablishment of the homeostatic state, the 

hypothalamo-pituitary-adrenal (HPA) axis is the pivotal contributor. In the 

hypothalamic paraventricular nucleus (PVN) input signals from amygdala nuclei, the 

bed nucleus of the stria terminalis (BNST), the pons or the locus coeruleus ransom 

the release of peptide hormones like corticotrophin-releasing hormone (CRH) and 

vasopressin (AVP). Once released, these neuropeptides trigger the stimulation of 

the pituitary to secrete adrenocorticotropin (ACTH) into the peripheral blood vessels 

(Lang et al., 2000) acting on the adrenal cortex to secrete cortisol or corticosterone 

(CORT) to suppress stress-related reactions of the PVN and other brain nuclei 

(Herman and Cullinan, 1997; Tsigos and Chrousos, 2002). If now either the 

expression or translation of AVP, CRH, ACTH, or CORT is inhibited, the system can 

not work efficiently enough. Interestingly, not only an increased cortisol or CORT 

response has been observed in anxiety-related disorders (Strohle and Holsboer, 

2003), but also hypocortisolism has been reported in many cases of stress-related 

disorders, among others like in post traumatic stress disorder (Frank et al., 2006; 

Raison and Miller, 2003).  

Furthermore, as mentioned before, a big and well-coordinated orchestra of 

molecular signaling molecules has to be available to mediate any stress response. 

Therefore, not only the transmitter molecules have to be available, but the 

synthesizing enzymes and also receptors have to be expressed and translated in 

the cells, where they are required. With respect to the HPA axis, the roles of CRH or 

NK1 receptors are well-described (Ebner and Singewald, 2006; Muller et al., 2001; 

Saria, 1999). The same applies to the respective neuropeptide ligands. Anything 

that might interfere with a correctly operating sequence might lead to severe 

consequences in the required behavioral and physiological responses. As the 

“orchestra” is quite big, the “drop out” of one violin player will not cause the failure of 

the whole concert (especially, as there are many mechanisms which are meant to 

compensate for the failure of single mechanisms). To mention just some of the 

active compounds and peptides: γ-aminobutyric acid, glutamate, glycine, 
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epinephrine, norepinephrine, substance P, glucagon-like peptide 1, serotonin, 

oxytocin, prolactin or urocortin (Herman and Cullinan, 1997; Landgraf, 2001b; Zafra 

and Gimenez, 2008).  

But if more systems are affected and disturb fine-coordination or cause a total failure 

it may lead to serious consequences for the whole system.  

Tissue and especially brain area-specific gene expression therefore is a prerequisite 

to a well-functioning organism. To reveal the specific mechanisms leading e.g. to a 

specific but complex phenotype, examining gene expression is an especially helpful 

tool (Green et al., 2004; Hovatta and Barlow, 2008).  

 

1.6. The influence of genetic polymorphisms 

Besides physical and physiological disturbances that lead to the loss of the 

homeostatic state, genetic polymorphisms play a vital role, first of all for the 

evolution per se, but genetic polymorphisms can enhance or limit individual 

capacities and capabilities in everyday life. 

Genetic polymorphisms arise from mutations, irrespective of their genomic position. 

They can lead to both, loss and gain of function, if they cause a change in the 

genetic triplets (missense mutation) for amino acids in protein-coding genomic 

regions (Lewin, 2004). Polymorphisms may even affect mRNA stability, if they cause 

synonymous mutations at the third ‘degenerate’ base position (Shabalina et al., 

2006). Furthermore they influence mRNA transcription rates, if they are located in 

genomic regions near genes where transcription factors and cofactors can be 

recruited to (cis-regulatory effect). This applies to at least 20% of polymorphisms 

found in promoter regions and even to gene introns (Buckland et al., 2004; Hubler 

and Scammell, 2004; Levine and Tjian, 2003). Trans-regulatory effects on gene 

expression may also come to effect, if a regulatory region is in close spherical 

proximity to the regulated gene but on the physical genomic map would be located 

thousands or millions of basepairs (bp) away from the respective gene. Some 

studies highlight that due to the close and dense package of DNA in cell nuclei such 

interactions are possible (if not even the main mechanism for transcriptional 

regulation) and play a pivotal role in tissue-specific gene expression (Engel et al., 

1992; Yvert et al., 2003).  

The most common class of genetic polymorphisms are SNPs, as they can arise 

from the most simple kind of error that might occur during replication. So far, 30 

million SNPs have been identified in humans that would mean one SNP per 1kbp of 

total DNA. Although other mutations might occur as well, as transitions, deletions or 

duplications of single fragments of different size, and might have a major impact on 
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the individual’s viability, they occur less often and are therefore less well 

documented in different species and also harder to compare in inter-species 

approaches. Nevertheless, recent advances in genotyping large amount of loci, also 

facilitate the discovery and mapping of inter-individual copy number variations (Feuk 

et al., 2006). 

Popular examples for gain-of-function by mutations is the protective mutation in 

hemoglobin that causes sickle-cell anemia, but protects from malaria infection, or a 

polymorphism that has been described to protect from both the bubonic plague 

epidemic known from the Middle Ages and HIV infection (Altschuler, 2000; Ayi et al., 

2004). 

As another example for complex traits, scientists recently succeeded in identifying 

genomic loci, highly associated with the restless-legs syndrome by screening for 

SNPs in a large group of patients vs. unaffected controls (Schormair et al., 2008; 

Winkelmann et al., 2007; Winkelmann et al., 2008).  

The same way, researchers have to search for mutations, involved in anxiety 

disorders and depression to elucidate new ways for more effective and personalized 

treatments (Holsboer, 2008). 

 

1.7. The HAB/LAB mouse model 

For the analysis of any biological mechanism in humans, it is not only because of 

ethical considerations impossible to make these assessments in humans. In service 

of the modular understanding of the existing circuitries, the best possible approach 

is to put emphasis on model organisms that are on one hand simple enough to 

keep, breed and raise them for long-term experiments but are, on the other hand, 

complex enough to reflect complex traits, like anxiety or depression-like behavior in 

a way that can be applied analogously or extrapolated to primates. In this respect, 

rodents play a major role for psychiatric research, although some aspects of the 

respective phenotypes in humans won’t be reflected at all by any model, such as 

feeling of worthlessness.  

Following a breeding strategy that was also successfully applied to rats (Landgraf 

and Wigger, 2002; Liebsch et al., 1998a; Liebsch et al., 1998b) before, a mouse 

model has been established in the same manner, i.e. starting from the CD1 outbred 

mouse strain animals displaying high anxiety-related behavior (HAB) in the EPM test 

have been selected to form the basis of the HAB mouse line. HAB mice usually 

spend less than 10% of the total test time on the open arm of the EPM. Accordingly, 

animals showing low anxiety-related behavior (LAB) were selected and bred to 

generate the LAB mouse line, spending more than 50% on the open arm of the EPM 
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(Kessler et al., 2007; Kromer et al., 2005; Landgraf et al., 2007). During the first 

seven generations, an outbreeding protocol was applied to warrant for the equal 

distribution of anxiety-related susceptibility genes and starting from generation 10 

switched to a strict inbreeding (brother-sister) protocol. This was to ensure the 

fixation of loci critically involved in producing the phenotype in a homozygous state. 

Additionally, a normal anxiety-related (NAB) mouse line has been added two years 

ago, where the animals should spend around 30% of the total test time on the open 

arm of the EPM (Landgraf and Kessler, personal communication), which also 

reflects the mean value of outbred CD1 mice (Bunck et al., submitted; Touma et al., 

2008). Nevertheless, during the last 30 generations, numerous different 

endophenotypes have been assessed in HAB, NAB and LAB mouse lines, also 

involving outbred CD1 (referred to as CD1) in some cases. 

 

1.7.1. Phenotypic characteristics of HAB/LAB mice 

HAB and LAB mice do not only differ in their anxiety-related behavior as measured 

on the EPM, but their divergence in anxiety-related test parameters can also be 

detected and quantified in the dark/light box, OF and EPF tests (Kromer et al., 

2005); Keßler et al., in preparation). Importantly, the difference in the EPM has been 

verified under independent, but similar testing conditions at the University of 

Regensburg and Innsbruck (Bosch et al. and Sartori et al., in preparation). 

Furthermore, HAB and LAB mice show differences in depression-like behavior 

measures as assessed by the TST and FST, with HABs displaying significantly 

more passive, LABs a more active coping strategy in those desperate test situations 

(Kromer et al., 2005). A further interesting finding is the differential HPA axis 

regulation in HAB vs. LAB mice. While neither line shows differences in basal levels 

of CORT or ACTH, HAB mice exhibit a significantly flattened CORT response in 

blood plasma upon a strong physical stressor (restraint stress or stress reactivity 

test) relative to LAB mice (Kessler et al., in preparation).  

Also cognitive differences were observed between the two mouse lines, with HABs 

being able to discriminate for a longer time-interval between a novel and a familiar 

ovariectomized female as compared to LAB mice in the social discrimination test. 

These cognitive differences also apply to the performance in the Morris water maze, 

the Y-maze or fear conditioning related measures (Bunck, 2008).  

Importantly, the mouse lines do not differ in body weight, locomotor activity, 

locomotor capability or their ability to hear, smell or see (Zurmuehlen, 2007). 
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1.7.2. Molecular characteristics of HAB/LAB mice 

A pronounced deficit in AVP peptide and the Avp-coding mRNA has been 

demonstrated in LAB mice in various brain regions, as compared to CD1 or HAB 

mice (Bunck et al., submitted), which is in close association with a polymorphism in 

the AVP preprohormone-coding mRNA and anxiety-related behavior and signs of 

central diabetes insipidus (Kessler et al., 2007). 

Similarly HAB, but not LAB or CD1, mice exhibit an overexpression of Crh in 

multiple regions, linked to depression-like behavior (Bunck et al., in preparation). 

Not much is known about the genetic background of HAB/LAB mice, as both are 

derived from CD1 mice. Up to date there is no information available on genetic 

polymorphisms or their allelic frequency, although the latter might even vary from 

supplier to supplier. The most closely related inbred strains often used in animal 

models are FVB/J and NOD/J (Beck et al., 2000).  

 

1.7.3. The F2 panel 

To test hypothesis in behavioral biology, one can either apply substances to block 

enzymes, hormones, receptors or to enhance them and then take a look at 

behavioral consequences. The other possibility is, but this only applies to model 

systems which are based on the same species with definite (if possible, not too 

many) differences, to take the two lines – in our case HAB and LAB mice, mate 

them reciprocally to create a genetically completely heterozygous F1 generation (in 

all alleles differing between HAB and LAB mice) and to mate these F1 mice to each 

other again to establish the F2 generation, where each genotype and phenotype has 

the possibility to segregate freely, if they are not linked to each other (Henderson et 

al., 2004; Turri et al., 1999; Valdar et al., 2006). So far, the breeding has been 

completed, all HABxLAB F2 intercross mice (N = 521) tested for a number of 

behavioral (EPM, OF, EPF, FST, TST and stress reactivity) and physiological (body 

weight, water consumption) parameters (Kessler et al., in preparation). 

 

The aim of this thesis was to shed some light on the molecular mechanisms 

underlying trait anxiety and depression-like behavior as modeled in HAB and LAB 

mice.  

Therefore, phenotypic stability of HAB mice was addressed by a selective breeding 

approach first, to drive them towards less anxious behavior.  

Then, to screen for gene products differing between HAB and LAB mice, gene 

expression profiles in various brain regions involved in the regulation of anxiety-
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related behavior were generated by using two different microarray platforms. The 

most significant findings were reanalyzed in an independent approach by 

quantitative PCR (qPCR) and could be partially confirmed. Other assays tried to 

assess the effects of differential regulation, based on enzyme-activity or 

measurements of protein levels. 

In another unbiased whole-genome assay, SNPs were identified that constantly 

differed between HAB and LAB animals (i.e. both lines carried the opposite alleles 

homozygously), thus allowing the genotyping of F2 and CD1 mice and helping to 

gain some insight into the genetic variability available in outbred CD1 mice. Further, 

sequencing of candidate genes helped to reveal differences, the observed gene 

expression differences might be related to.  

Finally, to reveal functional associations of genomic loci with behavior, the 

genotyping information on SNPs in F2 mice made the analysis of 

genotype/phenotype associations possible, highlighting the role of single genomic 

regions in actively influencing anxiety-related behavior. In this whole study, the focus 

is on selected, highly significant results, while other findings also of potential interest 

are neglected at this stage.  

Further this thesis represents the first approach to integrate data obtained in gene 

expression analyses and genotyping for a large number of polymorphic loci to 

identify genes causally involved in shaping the anxiety-related and depression-like 

behaviors in HAB vs. LAB mice. These results could partially be extrapolated to 

other animal and – last but not least – to human studies, dealing with anxiety 

disorders and depression. Further this study contributes to the analysis of the 

genetic background in outbred CD1 mice. 
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2. Animals, materials and methods 

All animal experiments were carried out with the approval of local authorities and 

conducted according to current regulations for animal experimentation in Germany 

and the European Union (European Communities Council Directive 86/609/EEC). All 

animals were kept in the animal facility of the Max Planck Institute of Psychiatry 

under standard housing conditions (room temperature 23±2°C, relative air humidity 

60+-5%, 12h/12h dark/light cycle with lights on at 7 a.m) in groups of two to four 

animals per cage. If animals were ordered from a supplier, they were granted at 

least one week of habituation before starting with any behavioral study. Animal 

numbers, the respective generation of animals and the mouse lines used for each 

experiment are indicated each. Behavioral experiments were carried out under 

standard housing conditions and were always performed between 8 a.m. and 1 p.m. 

All animals were tested in a randomized order, blind to the mouse line. This also 

applies to the processing of individual samples from animals. 

All mice used were either HAB, LAB, HABxLAB F1 intercross, HABxLAB F2 

intercross, NAB or CD1 mice. NAB mice are inbred mice, selectively inbred for 

displaying an intermediate phenotype (i.e. spending around 30% of the total EPM 

test time on the open arms). Inbreeding NAB mice, only started by the end of the 

year 2006. Outbred CD1 mice are referred to as CD1 only.  

Except where indicated, all chemicals were purchased from Sigma-Aldrich 

(Taufkirchen b. München, Germany); centrifugations of volumes smaller 2ml were 

done in a Hermle Z 233 MK centrifuge (Hermle Labortechnik, Wehingen, Germany). 

For pipetting volumes up to 1ml, pipets by Gilson (Pipetman, Gilson, Middleton, WI) 

were used with pipet tips manufactured by Sarstedt (Nürnbrecht, Germany). For all 

experimental steps involving handling of RNA filter pipet tips were used. 

 

2.1. The HAB phenotype reversal by selective breeding 

To assess the phenotypic stability of HAB mice and estimate the remaining genetic 

variability in HAB mice after more than 20 generation of bidirectional and more than 

12 generations of strict inbreeding, the selection criterion of HAB mice (high anxiety-

related behavior – as reflected by the EPM test) was intended to be reversed (i.e. to 

selectively breed HAB mice for a less anxious phenotype). Therefore three HAB sib 

pairs were selected of generation 23, which were most non-anxious in the EPM test 

with spending more than 10% of the total test time on one of the open arms, and 

mated to each other, following the standard breeding procedure as already 

described (Kromer et al., 2005). Descendants of six consecutive generations were 

all tested on the EPM, always applying the reversed HAB (rHAB) criterion (reduced 
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anxiety-related behavior) for breeding. Additionally, 14 male mice of the 5th rHAB 

generation (G5) were tested in the TST. Throughout all seven generations two to 

four families were run in parallel. HAB mice descending from the rHAB parental 

mice served as reference. 

 

2.2. Identification of candidate genes 

For the identification of candidate genes relevant to anxiety-related and depression-

like behavior, gene expression profiling was carried out on two different microarray 

platforms, the MPI24K – the 2nd generation microarray platform of the Max Planck 

Institute of Psychiatry – and on a commercially available platform of Illumina (San 

Diego, CA). 

 

2.2.1. Animals and behavioral tests for the gene expression studies 

Mice for microarray analyses on both the MPI24K and Illumina platform were tested 

in both the EPM test and the TST. Only mice were selected for gene expression 

profiling that did not deviate more than 5% from their group means in any measure. 

HAB mice, displaying nearly no locomotion on the EPM were excluded from further 

analysis. For the MPI24K platform based microarray, mouse pools consisting of six 

HAB and six LAB mice each (G16) were compared. For the Illumina platform based 

experiment eight HAB, eight LAB (G25) and seven NAB mice (G3) were selected.  

Animals for the validation of microarray-based gene expression analyses were HAB 

and LAB mice from G22 - G27, unselected CD1 mice as well as NAB animals of G4. 

Both male and female mice were tested on the EPM. Male mice were additionally 

tested in the TST. 

 

2.2.2. Gene expression profiling on the MPI24K-platform 

The gene expression profiling system of the MPI24K array, which is an upgrade of 

the MPI17K microarray platform (Deussing et al., 2007), is based on dual color 

direct comparison experimental protocol using indirect labeling.  

 

2.2.2.1. Tissue dissection 

Anaesthetized animals aged ten weeks were killed by decapitation 3d after the TST. 

Brains were collected, dissected in slices of 200µm and mounted to Superfrost 

microscope slides (Menzel, Braunschweig, Germany) in a cryostat (Microm MH50, 

Microm, Walldorf, Germany) from rostral to caudal. From these frozen slices the 

brain areas of interest were acquired by micropuncture as described before 

(Palkovits, 1973) utilizing punchers with a diameter of 0.5 or 1mm (Fine Science 
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Tools, Heidelberg, Germany). The brain regions collected included the anterior part 

of the cingulate cortex (Cg), the nucleus accumbens core and shell (NAc), the PVN, 

the supraoptic nucleus (SON) and the basolateral/lateral (BLA/LA), central (CeA) 

and medial (MeA) amygdala. Punches of 1mm diameter were collected from 

Bregma +1.3mm to +0.9mm, twice sampling the tissue medially about 0.5mm from 

the dorsal tissue border to receive the Cg and bilaterally sampling the NAc core and 

unpreventably a minor part of its shell around the anterior commissure (Fig. 2A). 

Further tissue was collected medially 0.8mm above the ventral tissue limit (Ø=1mm) 

and bilaterally from the optic tract (Ø=0.5mm) to acquire tissue from the PVN and 

SON, from Bregma -0.56mm to -0.96mm (Fig. 2B). Amygdala tissue samples were 

collected bilaterally from two slides for each region acquiring punches of 1mm 

diameter. CeA was collected from Bregma -0.96mm to -1.36mm dorsomedially from 

the ventral end of the external capsule (Fig. 2C), MeA from -1.16mm to -1.56mm 

dorsolaterally from the optic tract and BLA/LA was collected from Bregma -1.36mm 

to -1.76mm from in between the bifurcation of the external capsule (Fig. 2D).  
 

 

 

Figure 2: Approximate locations in mouse coronal brain sections to acquire the (A) cingulate 
cortex and nucleus accumbens, (B) hypothalamic paraventricular nucleus and supraoptic 
nucleus, (C) central amygdala and (D) basolateral/lateral and medial amygdala. Pictures are 
based on the Mouse Brain Atlas (Paxinos and Franklin, 2001). 
 

Coordinates were selected according to the mouse brain atlas (Paxinos and 

Franklin, 2001) and are subject to vary ±0.05mm. 

A B 

C D 



 
Animals, materials and methods 

18 

2.2.2.2. Total RNA isolation and amplification 

Total RNA was extracted in presterilized 1.5ml Safelock tubes (Eppendorf, 

Hamburg, Germany) using a TRIzol (Invitrogen, Karlsruhe, Germany) chloroform 

standard protocol. After tissue homogenization in 300µl of TRIzol by pipetting, 1µl 

linear acrylamide (5mg/ml, Ambion, Austin, TX) and 60µl of chloroform (Carl Roth, 

Karlsruhe, Germany) were added and the samples vortexed. Centrifugation for 5min 

at 18°C and 13,000rpm followed, then RNA was precipitated with 180µl isopropanol 

(Carl Roth) overnight at -20°C, centrifuged at 4°C and 13,000rpm for 30min and 

washed twice in 500µl 70% ethanol (Carl Roth) with centrifugation steps at 4°C and 

13,000rpm of 10min in between. Following the last centrifugation step, all remaining 

liquid was removed with a pipet, pellets were dried in an incubator for 15min at 45°C 

and resolved in 13µl of autoclaved bidistilled water.  

Extracted total RNA was amplified and dye coupled in two rounds with Ambion’s 

Amino Allyl MessageAmp aRNA kit (Ambion) according to the manufacturer’s 

protocol using T7 oligo(dT) primers for the first round to select specifically for mRNA 

for reverse transcription and random hexamer primers for the second round of 

reverse transcription. The procedure included the synthesis of a first then a second 

strand of cDNA and an in vitro transcription step overnight. cDNA synthesis was 

carried out in PCR tubes (Abgene, Hamburg, Germany) using a thermal cycler 

(GeneAmp PCR System 9700, PE Applied Biosystems, Foster City, CA). For in vitro 

transcription, the tubes provided by the kit’s manufacturer were used, after pipetting 

all reagents, tubes were sealed with parafilm (American National Can, Neenah, WI) 

and incubated at 37°C in a warm room constantly heated. In the second round of in 

vitro transcription, an amino allyl extension to every second uracyl base was 

incorporated to receive the amino allyl RNA (aRNA) for the following indirect dye 

coupling reaction. Before aRNA purification the filters were equilibrated with 100µl 

aRNA binding buffer and incubated for 5min. All samples were pooled to one 

sample per line and brain region. The dye swapped experimental design required 

coupling of one half of each pooled sample to cyanine 3 (Cy3, Amersham 

Biosciences, Buckinghamshire, UK) the other half to cyanine 5 (Cy5, Amersham 

Biosciences). Correct quantification of aRNA was ensured by photometric 

assessment of the optic density in a photometer (Ultrospec II, Pharmacia LKB 

Biochrom, Cambridge, United Kingdom) and additional analysis on agarose gel. 
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2.2.2.3. Array hybridization and quantification 

Prehybridization buffer: 

125ml   formamide 

62.5ml  20xSSC 

2.5ml   10% SDS  

2.5ml  BSA (10mg/ml) 

57.5ml water 

Hybridization buffer: 

 500µl   formamide 

 250µl  20xSSC 

 10µl   10% SDS  

 5µl   mouse-COT1-DNA (20mg/ml, Invitrogen) 

 40µl  poly adenylic acid (2.5µg/µl, Amersham Biosciences) 

Ten array slides per brain region (MPI24K Arrays, MPI of Psychiatry, Munich, 

Germany) – serving as technical replicates - were prehybridized prior to the 

experiment in the prehybridization buffer for 1h at 42°C, then washed in water and 

isopropanol and dried by centrifugation (Megafuge 1.0R, Heraeus, Hanau, 

Germany) at 1500g for 3min in 50ml tubes (Sarstedt). Dye coupled aRNA samples 

were mixed with the contrary dye coupled sample from the other mouse line of the 

specific regions and loaded with a hybridization buffer to five arrays each under m-

Series LifterSlips (Menzel). All arrays were hybridized at 50°C over 16-17h in 

separate hybridization chambers. Then arrays were washed in 2xSSC and 0.1% 

SDS for 5min at 42°C, 10min room temperature in 0.1xSSC and 0.1% SDS, four 

times in 0.1xSSC for 1min and finally for 20s in 0.01xSSC solutions. Slides were 

dried by centrifugation at 1,500rpm for 3min. Then, arrays were scanned on a 

PerkinElmer ScanArray 4000 (PerkinElmer Life and Analytical Sciences, Shelton, 

CT) laser scanner using automatic focusing and adapting laser power between 60 

and 80 for Cy3 and 40 and 70 for Cy5. This ensured that for both dyes - in average - 

the same fluorescence intensities were reached and that not more than 1-2% of 

spots showed fluorescence intensities over the point of saturation. Quantification of 

all arrays was performed with QuantArray-software (GSI Lumonics, Billerica, MA) 

applying a fixed-circle quantification protocol and manual positioning of all grids over 

the hybridized spots. To provide a negative control for the hybridization and 

evaluation procedure, excess aRNA was used for an additional hybridization in both 

Cy3 and Cy5 combinations. 
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2.2.2.4. Statistical analysis 

For statistical evaluation, analytic methods were applied as previously described 

(Dudoit et al., 2002; Yang et al., 2002). In brief, first an MA-plot was generated to 

display raw fluorescence intensities of Cy5 (R) and Cy3 (G) with M = log2 R/G and A 

= log2          . Data were normalized to exclude systematic and technical errors. For 

two normalization steps, a function c was subtracted from the logarithmized 

fluorescence intensities (log2 R and log2 G). First a global normalization was 

performed, based on the assumption that R and G correlate: 

kG

R
c

G

R

G

R

222 logloglog =−⇒ . 

In a second normalization step, an intensity-dependent normalization was added, 

which was performed applying a LOESS smooth, as it is implied in the R software 

package (http://www.r-project.org). This is calculated from: 
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where c(A) stands for the LOESS smooth of the MA-plot. From the MA-plot, 40% of 

values were used to calculate the smooth. In several other normalization steps, 

differences were minimized that resulted from unequal distribution of probes from 

the array production or from unbalanced fluorescence intensities within one array 

slide. All data were merged in a matrix, p-values for multiple testing were calculated 

by permutation and are therefore called adjusted p-values.  

 

2.2.3. Gene expression profiling on the Illumina-platform 

The MouseWG-6 v1.1 Expression BeadChip-system by Illumina (Illumina, San 

Diego, CA), provided a gene expression screening platform that could identify 

46,000 individual gene transcripts that were represented on each array (for each 

sample) between 10 to 30 times. This technology made the manual setup of 

technical replicates (as has been done with the MPI24K platform) obsolete and 

provided the opportunity of measuring individual samples combined with a single 

color labeling protocol that eliminated problems arising from basal differences in 

signal intensity due to different dyes. 

 

2.2.3.1. Tissue laser-microdissection 

Animals and the according brains were treated as described in 2.2.2.1. with the 

difference that 25µm slices were acquired in the cryostat (Microm). Only brain slices 

containing the brain areas of interest were sampled, including the anterior part of the 

Cg, the PVN, the SON, the anterior dentate gyrus (DG), the CeA and the basolateral 

RG



 
Animals, materials and methods 

21 

amygdala (BLA). For the DG, the same coordinates as for the PVN and SON were 

applied. To cover the whole area of interest an overall depth of 400µm per region 

was chosen. While sampling the CG, BLA and CeA four brain slices were mounted 

onto an LMD6000 metallic frame slide covered with a membrane of polyethylene 

terephthalate (Leica Microsystems Deutschland, Bensheim, Germany), the following 

four to Superfrost slides (Menzel). This procedure was repeated for the next eight 

slices. For the region containing the PVN, SON and DG only two slices were 

mounted to one slide always alternating the LMD6000 frame and the Superfrost 

microscope slides. Only the LMD6000 slides were used for further processing and 

stored at -80°C. Right before laser-microdissection, brain slices on the LMD6000 

frame slides were stained with cresyl violet applying a modified staining protocol that 

included 1.5min staining in cresyl violet, followed by washing in 70% and 96% 

ethanol for 20s each and in isopropanol for 5min. The slides were refrozen and 

processed at the laser-microdissection microscope (AS LMD, Leica, kindly provided 

by PD Dr. Gabriele Rieder at the Max von Pettenkofer Institute of the Medical 

Faculty of the Ludwig Maximilians University in Munich). For the dissection 

procedure of the required brain areas, a magnification of 100x was chosen with 

laser power between 80-100% and speed varying between 1 and 4. Cut-out brain 

areas were captured in the caps of 0.2ml PCR soft tubes (Biozym Scientific, 

Hessisch Oldendorf, Germany) and cooled on dry ice immediately after completion 

of one brain region. Pictures of the processed brain slices were acquired by means 

of the IM1000 software (Leica, see Fig. 14). 

 

2.2.3.2. Total RNA isolation and amplification 

From all samples, total RNA was extracted individually (one sample per mouse and 

brain region) as described in chapter 2.2.2.2. RNA was amplified and labeled using 

the Illumina TotalPrep RNA Amplification kit (Ambion) with only one round of in vitro 

transcription, where biotinylated uracyl bases were built in to the newly synthesized 

aRNA. 5µg per sample were required for loading to the microarray slides. Correct 

quantification was ensured by measurement of optic density in a NanoPhotometer 

(Implen, Munich, Germany) and additional analysis on agarose gel. Samples not 

fulfilling all criteria of homogeneity (inadequate concentrations, too many small but 

few larger aRNA fragments) were excluded from further analysis.  

 

2.2.3.3. Array hybridization and quantification 

Each microarray slide had the capacity for six samples, same brain regions were 

hybridized in the same batch comparing a maximum of six individual mice of each 
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breeding line. Reagents and material were provided by Illumina, the procedure was 

strictly conducted according to the manufacturer’s protocol. In brief, each sample 

was mixed with hybridization buffer, loaded onto the designated array field and the 

slides were put into hybridization chambers and incubated for 17h in incubation 

chambers provided by Illumina. Arrays were washed in several steps, incubated with 

Cy3, washed several times again and dried by centrifugation. Finally, fluorescence 

signals were detected on a BeadStation scanner (Illumina) and analyzed by the 

BeadStudio (Illumina) software. The manufacturer's built-in controls have been 

analyzed including hybridization controls and sample dependent parameters. Only 

microarrays fulfilling Illumina's recommendations for quality control have been used 

for further evaluation. 

  

2.2.3.4. Statistical analysis 

Illumina BeadStudio gene expression results were further analyzed similar to the 

statistical analysis as described in 2.2.2.4. All analyses have been performed using 

R-packages, based on ‘beadarray’ system as described by Dunning et al. (2007), 

which simplifies the comparison between a high number of arrays. First, pair wise 

box plots were generated to compare mean expression within each line and brain 

region. Normalization for expression values has been applied to all samples with the 

‘QSpline’ function. Each sample has been clustered to ensure that each brain region 

per line shows similar expression patterns using the ‘hclust’ function. Three samples 

from different brain regions have been identified as inadequate during the scan 

process and have therefore been excluded from further analysis. For differential 

expression analysis, functions of the ‘LIMMA’ package have been applied on log2-

transformed values. The resulting matrix has been used for all subsequent analyses. 

Significantly regulated genes were ranked using an empirical BAYES method 

implemented in the LIMMA R-package (Lonnstedt and Speed, 2002; Smyth, 2004).  

 

2.2.4. Analysis of candidate genes by quantitative PCR 

Candidate genes for anxiety-related behavior and for further characterization were 

picked from the gene expression screening analyses according to their p-values (p < 

0.1) and relative expression. Gene transcripts showing high (around 2-fold) 

expression differences in all brain regions between HAB and LAB mice were 

selected, as well as some other transcripts that were already described in 

connection to anxiety-related behavior, but were only detected as significantly 

regulated in only two or three brain regions. For analysis by qPCR, tissue samples 

for the Cg, PVN, SON, CeA and BLA/LA were acquired by micropuncture as 
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described in chapter 2.2.2.1. For whole brain analyses, three coronal sections of 

200µm were taken at different brain levels. Total RNA extraction from both, 

micropunches or representative whole brain material was performed as described in 

chapter 2.2.2.2. before, but using TRI-Reagent (Sigma-Aldrich) instead of TRIzol. 

The yield of total RNA was between 0.3 and 1.5µg. A maximum of 1µg of total RNA 

was reverse transcribed with Superscript II (Invitrogen, Karlsruhe, Germany) after 

DNAse treatment according to the manufacturer’s protocol. For quality control, a 

small aliquot of each cDNA was analyzed on an agarose gel. For expression 

analysis of unspliced Avp, primers were designed to detect a sequence from the first 

intron and RNA was reverse transcribed using random hexamer primers and three 

samples of HAB and LAB aRNA each from the experiment described in 2.2.2.2. 

cDNA of male or female HAB, unselected CD1 mice, or LAB mice was analyzed by 

qPCR, using the QuantiFast SYBR Green PCR Kit (Qiagen GmbH, Hilden, 

Germany) according to the manufacturer’s instructions, the respective 

oligonucleotide primers were designed based on Primer3 (Rozen and Skaletsky, 

2000) and purchased from Sigma-Aldrich. The same applies to primers for the 

detection of specific splicing variants of Tac1. For this, primers had to hybridize to 

half of one and half of the following exon. Amplificates from the Tac1 splicing variant 

and intronal Avp detection were additionally sequenced. The procedure is described 

in the following chapter 2.3.5. Gene products to be quantified by qPCR were 

selected by the following criteria: significant expression differences between HAB 

and LAB mice (adj. p-value < 0.10, fold regulation at least 1.3 fold and differential 

expression in the microarray experiment (in most cases) for all or some (at least 

three) analyzed regions. All primers for qPCR are listed in table 1. Experiments were 

performed in duplicates on the Lightcycler®2.0 instrument (Roche Diagnostics, 

Mannheim, Germany) under the following PCR conditions: Initial denaturation at 

95°C for 10min, followed by 40 cycles of denaturation (95°C for 10s) and a 

combined annealing and extension phase (60°C for 30s). At the end of every run, a 

melting curve (50-95°C with 0.1°C/s) was generated to ensure the quality of the 

PCR product. Crossing points (Cp) were calculated by the LightCycler®Software 4.0 

(Roche Diagnostics) using the absolute quantification fit points method. Threshold 

and noise band were set to the same level in all compared runs. Relative gene 

expression was determined by the 2-∆∆CT method (Livak and Schmittgen, 2001) 

using the real PCR efficiency calculated from an external standard curve. Cp were 

normalized to the housekeeping genes Gapdh, Hprt1, Atp2b1, Rpl13a and Polr2b or 

any combination of two of the mentioned genes. Fold regulation values were 
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calculated relative to the expression mean of the group displaying the lowest 

expression.  

 
Table 1: List of primers for qPCR with chromosomes and exons the primers hybridized to.  
In-1 refers to the first intron. List is sorted alphabetically according to the gene symbols. A 
clear exon definition was not possible for the first two genes. 
 

Chr. 
Gene 

symbol 
Orient-
ation 

 
Exon 

 

Primer sequence  
5'����3' 

Prod. 
size 

forward  TTG GAA ACC TTC CTT TGC AG 
2 

2900019 
G14Rik reverse  AAA CAC ATT CAC CCC CAT TC 

175bp 

forward  TAT GAA ATG GAA TAC ACC GAA GG 
1 

5230400 
G24Rik reverse  ATC TGC TGG TCT TGA AAA TGA AA 

210bp 

forward 47 CAT CAG CTT CGA GGA AGA GC 
2 Abca2  

reverse 48 CAT TCG GGG AGG ATG GTA G 
206bp 

forward 9 TCC TGC TGA AGC AGT TCA AC 
11 Aldh3a2 

reverse 10 ACA GGG AAG TCC ACC AGA TC 
157bp 

forward 13 TTC TCT CCT TCC TGG CTG TG 
7 Apbb1  

reverse 14 GAC ACT TCT GGT AGC GGA GC 
162bp 

forward 1 CAT TAC GGA AAA TAC AGG AGA GC 
10 Atp2b1 

reverse 2 TGC TTC CCA GAC TAA CTG AAG AA 
182bp 

forward 4 TAT TGG CCC AGA GTA TCA GCA 
16 Atp5j 

reverse 5 GGG GTT TGT CGA TGA CTT CAA AT 
134bp 

forward In-1 TTC CTT ATG ACT GGG CTT GG 
2 Avp 

reverse In-1 GCA CTG CTG GCT AGA AAA GG 
170bp 

forward 1 TCG CCA GGA TGC TCA ACA C 
2 Avp 

reverse 2 TTG GTC CGA AGC AGC GTC  
164bp 

forward 1 AAG AAG AGG ACG AAG TGG AAT G 
11 Ccdc104 

reverse 2 TCT TGA TGG ATT TCT GTG TAG G 
180bp 

forward 1 AGG TGT CCA AGT TTC GGC ATA 
16 Coro7 

reverse 2 GCA GCT TGA TTT GAT GTG GTT 
113bp 

forward 1 CTG CGC GGG TAC TTA GGA GT 
14 Ctsb 

reverse 2 CAG GCA AGA AAG AAG GAT CAA G 
148bp 

forward 27 GGA GCC TCC TCT GGA TTG TA 
14 Dgkh 

reverse 29 AGT GTG ACC ACC CCT CAG AC 
211bp 

forward 22 TAC AAG GTG GGC TAC GCT CT 
5 Dgkq  

reverse 23 CAA GGT GTC CAC TCG GGT AT 
188bp 

forward 3 TGC CCA TCC TAA TCT AAC GG 
17 Enpp5 

reverse 4 GGA TGC ATT TCT GCT AAT GC 
186bp 

forward 1 GGT GCA AGC GAA CGG GAT AG 
5 Ep400 

reverse 2 GAC TGG CTG ATG GAG CGA AAG 
202bp 

forward 3 CCA TCA CCA TCT TCC AGG AGC GAG  
6 Gapdh 

reverse 4.5 GAT GGC ATG GAC TGT GGT CAT GAG  
227bp 

forward 8 CAG GAG AGC AGA GAC AGC AC 
3 Gig1 

reverse 9 AAT GGC TCA GTC AAT GAA CC 
185bp 

forward 6 CAT GGA GGA GAG CAA AGC AC 
19 Gnaq  

reverse 7 GGT TCA GGT CCA CGA ACA TT 
178bp 

forward 1 CCT GTG GGG AAA GGT GAA C 
7 Hbb-b1  

reverse 2 GGC CTT CAC TTT GGC ATT AC 
148bp 

forward 5 AGG TGC TAA GGG GAA GAA GG 
9 Hmgn3  

reverse 6 GTC CCG AGA GGT ACG TGA AA 
171bp 
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Chr. 
Gene 

symbol 
Orient-
ation 

 
Exon 

 

Primer sequence  
5'����3' 

Prod. 
size 

forward 8 GTC AAG GGC ATA TCC AAC AAC AAA C 
X Hprt1 

reverse 3 CCT GCT GGA TTA CAT TAA AGC ACT G 
240bp 

forward 10 ACG CCC TTC AGA AAG TGC TA 
1 Kcnh1  

reverse 11 GTG GTC AGG AGG CAG GAT AA 
182bp 

forward 1 ACG ACC AGA CAC GGA ATG TAA 
3 Mbnl1 

reverse 2 CGC CCA TTT ATC TCT AAC TGT GT 
168bp 

forward 1 CCG AGA TGC AGA GTT TCT ATG G 
8 Mmp15 

reverse 2 TGA AGG TCA GGT GGT AAT TGT TC 
189bp 

forward 1 CTA AGC GTC ACC ACG ACT TC 
8 Mt1 

reverse 2 GCA CTT GCA GTT CTT GCA G 
157bp 

forward 1 GCT CTA TCT CTG CTC GTG TGT TT 
6 Npy 

reverse 2 GTG TCT CAG GGC TGG ATC TCT 
175bp 

forward 9 TCG AAG CCA TAG AAG CCA GT 
14 Pdhb  

reverse 10 AGG CAT AGG GAC ATC AGC AC 
173bp 

forward 9 CAA GAC AAG GAT CAT ATC TGA TGG 
5 Polr2b 

reverse 7 AGA GTT TAG ACG ACG CAG GTG 
157bp 

forward 1 ATA ACA GAG GGT GCT TCG ATT CT 
3 Ppp3ca 

reverse 2 ACA CAC ACC ACC GAC AAG AG 
158bp 

forward 16 AAC AGT GAG GAG CAG CCA GT 
14 Pxk 

reverse 19 GGT AAT GCT GAA GAC AGT CC 
161bp 

forward 8 GCC TTT CTT GCC TCT TCC TTT 
7 Rab6 

reverse 8 GCT CAT AGC CTG GAG CTG TC 
244bp 

forward 8 CAC TCT GGA GGA GAA ACG GAA GG 
7 Rpl13a 

reverse 10 GCA GGC ATG AGG CAA ACA GTC 
181bp 

forward 9 ACC GAA TGC AGG AAG ACA TC 
2 Slc1a2 

reverse 10 AAT TGG CTG AGA ATC GGG TC 
221bp 

forward 1 CAT GGC CTC TGT GCT GTC CTA C 
15 Slc25a17 

reverse 2 GAA GCC GAA GTC TAG CAG TAT CCA 
139bp 

forward 1 CAA TAC TTT TAA CCC TGC GAA GC 
5 Smarcd3 

reverse 2 GTC CAA CTC AAT GAC CAA ACT CT 
154bp 

forward 24 GCC CAG ACC ATC AAA CAA CT 
19 Spnb3 

reverse 25 TCA CGC TCC TGT ATC CAC TG 
221bp 

forward 10 CTT CTA CCA TTG GGG GCA TA 
19 Stx3  

reverse 11 TGC CCT GTG TTG TGA GTT TC 
145bp 

forward 1 GGC CAA GGA GAG CAA AGA G 
6 

Tac1 
unspecific reverse 2 ACA GTT GAG TGG AAA CGA GAA  

127bp 

forward 1 CAT CCC TTC TTC AGC CAG AG 
5 Tmem132d 

reverse 2 AGT GAG AAC CGC TGA ATG CT 
187bp 

forward 3 AGT ATT GGC CGC AAA AGA GA 
3 Tpd52 

reverse 4 CTG AGC CAA CCG ATG AAA AT 
194bp 

forward 1 TCG GGA AAT ACT TAC TGT TGG AG 
12 Trib2 

reverse 2 AGC TTC GCT CAA AGA ACA CAT AG 
219bp 

forward 13 ATC AGT GTG TCC ATG CCT GT 
17 Ttbk1 

reverse 14 ACT GTT TGG GAC GGA GGT C 
148bp 

forward 1 CCT CGC TGG ACT GGT ATT TG 
18 Ttr 

reverse 2 TTA CAG CCA CGT CTA CAG CAG 
121bp 

forward 5 TCT GAA AGA CAG ATG GAA TGC C 
7 Uros 

reverse 7 CCA CAC GGA AAG AGA AGA GGC 
174bp 
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Chr. 
Gene 

symbol 
Orient-
ation 

 
Exon 

 

Primer sequence  
5'����3' 

Prod. 
size 

forward 1 GTC CTC AAG GTC ACA CAA TTA GTC 
11 Zfp672 

reverse 2 CAG ACA TGA GTG TAG GGT GCA AG 
207bp 

forward 3/4 CAA GCG GGA TGC TGA TTC  

forward 3/5 AAG CGG GAT GCT GGA CAT  

reverse 5/7 GCC ATT TTG TGA GAG ATC TGG  
6 

Tac1 

specific to 
splicing 
variants reverse 6/7 CGC TTC TTT CAT AAG CCA CAG  

      

 

2.2.5. Assessment of candidate gene functions 

Similarly to the candidate genes analyzed by qPCR, for some genes the protein or 

peptide level, its activity or capability for manipulation was assessed. Also basic 

metabolic parameters were analyzed in HAB and LAB mice, as many of the 

ostentatious candidate genes were part of metabolic pathways (many kinase, 

phosphatase and carrier-coding proteins). 

Glyoxalase I (GLO1), as an example was identified to be expressed at different 

levels between HAB, CD1 and LAB mice, with HAB animals displaying the lowest 

and LAB mice the highest concentration of the protein, not only in the brain, but 

even in red blood cells (Kromer et al., 2005; Landgraf et al., 2007). As the present 

study revealed that this is also true for mRNA expression (not exclusively to the 

protein), together with the ubiquitous expression differences of some other proteins 

connected to metabolism, first blood plasma concentrations of lactate and other 

blood plasma parameters related to metabolism were assessed, followed by a 

metabolism challenging behavioral manipulation study using CD1 mice to examine 

the effects of higher calorie intake.  

As also different transcript variants for tachykinin 1 (Tac1) are known and have been 

investigated using qPCR, also a subsequent detection and quantification of the 

peptides encoded by these transcript variants has been performed to investigate 

how gene expression differences translate into peptide levels.  

Furthermore, as many subunits of cytochrome c oxidase (COX) were differentially 

expressed between HAB and LAB mice in a variety of brain regions, the complete 

enzyme’s activity has been measured in HAB vs. LAB brains to elucidate the effects 

of differential expression of COX-subunits on overall COX activity. Moreover COX 

activity also serves as a long-term cellular activity marker as it’s a vital part of the 

enzymatic system forming ATP. Additionally, it has also been demonstrated that a 

decrease in COX activity is associated with reduced mRNA expression (Christen, 

2000; Simonian and Hyman, 1993).  
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2.2.5.1. Glyoxalase I (GLO1) and metabolic stimulation 

As metabolic factors seemed to show differences, first some metabolic and 

metabolism-related blood plasma parameters were investigated followed by a 

metabolic manipulation experiment. Glo1 encodes for a detoxifying enzyme, that 

eliminates methylglyoxal, a destructive byproduct from the citrate cycle. As reported 

by a previous study (Kromer et al., 2005) and confirmed in this study, the enzyme is 

ubiquitously overexpressed in LAB mice, whereas HAB mice rather show a deficit of 

this enzyme. So, if basic metabolic processes are involved in shaping the anxiety-

related phenotype, an artificial imbalance in the metabolic system should influence 

the behavioral phenotype.  

 

2.2.5.1.1. Metabolism and blood plasma parameters 

Characterizing the metabolic system of HAB and LAB mice, first food intake was 

monitored in single-housed HAB, LAB and CD1 mice aged nine weeks (ten per line), 

measuring the amount of food in gram (standard diet, Altromin, Lage, Germany), 

that was consumed over a period of six days. 

Blood plasma analysis of ten HAB and nine LAB animals (aged ten weeks each) 

was performed from trunk blood. Blood was sampled via decapitation of the animals 

after anesthesia in isoflurane (Forene, Abbott, Wiesbaden, Germany) into EDTA-

coated tubes (KABE Labortechnik, Nürnbrecht-Elsenroth) and immediately 

centrifuged at 4°C and 400rpm for 10min. Plasma was separated and kept on ice. 

Blood plasma concentrations of L-lactate, cholesterol, triglycerides, high- (HDL) and 

low- (LDL) density lipoproteins were assessed using commercially available kits 

(Roche Diagnostics) according to the manufacturer’s instructions.  

 

2.2.5.1.2. Behavioral manipulation via metabolism 

44 CD1 mice were purchased from Charles River (Sulzfeld, Germany) aged four 

weeks and single-housed upon arrival. Bodyweight, food and water consumption 

were measured every two to three days. After one week habituation time to the new 

location and housing conditions, water was replaced by an 0.5M saccharose 

solution for every second mouse, with changing to a fresh saccharose solution every 

second time of measurement. EPM and OF testing was carried out in these animals 

aged ten weeks. Three days after testing, six mice per group (treatment vs. control) 

were sacrificed for blood plasma and urine osmolality analysis with an osmometer 

(Vogel, Gießen, Germany) as well as for GLO1 protein concentration measurement. 

Saccharose feeding was continued until all mice were aged 14 weeks with a 
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repetition of the EPM and OF testing. Then all animals were sacrificed for the 

analysis of GLO1 protein concentration by Western blot from red blood cells.  

 

2.2.5.1.3. Western Blot analysis of glyoxalase 1 (GLO1) 

Required solutions: 

4x sample buffer for protein gels 

1.25ml  1M Tris; pH = 6.8 

4.6ml   20% SDS 

0.6g  dithiothreitol DTT  

 4ml   glycerol (100%) 

0.001% bromphenol blue   

Mix and add H2O to 10ml. 

Transfer buffer without SDS 

 12g   Tris  

60g   glycine 

800ml  methanol 

Mix and add H2O to 4000ml. 

1x TBS 

8g   NaCl 

2.43g   Tris 

0.05ml  Tween 20 

Mix and add H2O to 1000ml. 

100µl of red blood cells, settling at the bottom of EDTA-coated tubes after 

centrifugation, have been transferred to 15ml tubes and washed three times in 

1xPBS (phosphate buffered saline). After centrifugation at 2,500rpm at 4°C for 5min, 

the supernatant was removed. Then samples were kept at -80°C until further 

processing. Pellets were then transferred to 1.5ml tubes and 400µl of cold water 

containing 1mM PMSF (phenylmethanesulphonyl-fluoride) as a protease inhibitor 

were added. After centrifugation, the supernatant was transferred to a fresh tube. 

For protein quantification by Bradford protein assay 1:100 dilutions were prepared. 

Concentrations were assessed by calculation to a standard curve based on bovine 

serum albumin (BSA). Concentrations (i.e. optic density) were assessed in 96-well 

microtiter plates in an ELISA reader Dynatech MR5000 (Dynatech Laboratories, 

Denkendorf, Germany) at 595nm wavelength.  

100µg of total protein mixed with 5µl of 4x sample buffer and the volume filled up to 

25µl with water were loaded to a combined stacking and separating polyacrylamide 

gel that was prepared in a gel pouring frame by Bio-Rad (Bio-Rad, Hercules, CA). 
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Gels were electrophorized at 150V for 45min in 1xTGS (Tris/glycine/SDS) buffer 

(Stock 10xTGS, Bio-Rad). Before blotting to the polyvinylidene difluoride (PVDF) 

membrane, the membrane was briefly incubated in methanol and in water then the 

transfer chambers were laid into transfer buffer. On layers of sponges and filter 

paper, first the polyacrylamide gel was placed onto the black side (negative pole) 

and covered with the PVDF membrane. Transfer to PVDF membrane was 

performed in the blotting apparatus (Criterion blotter, Bio-Rad) at 100V for 1h with 

water cooling and changing of cooling packs after 30min). Membranes were blocked 

with 5% milkblock (2.5g milk powder + 50ml TBS-T) at 4°C overnight on a shaker. 

After rinsing them in TBS-T, they were incubated with an anti-glyoxalase-I antibody 

(10µl/30ml TBS-T plus 5% milk powder; the antibody was kindly provided by Dr. 

Kenneth Tew, Fox Chase Cancer Center, Philadelphia, PA) for 2h at room 

temperature on a shaker. The membranes were washed five times with water, then 

about three times for 15min with TBS-T followed by the incubation with the 

secondary antibody protein A horseradish peroxidase from Amersham Biosciences 

(1µl/10ml TBS-T) for about 40min and shaken at room temperature. Again 

membranes were washed five times in water, then for 1h in TBS-T with changing to 

a fresh solution every ten minutes. Finally the membranes were incubated in ECL+ 

solution (Amersham Biosciences) for 5min and fixed in a film cassette. Before 

developing, the film (ECL Film, Amersham Biosciences) was placed in ruby light on 

the membranes for 5min. Films were scanned, signal intensity of the GLO1 bands 

was determined using the Scion Image software (Alpha 4.0.3.2; Scion, Frederick, 

MD).  

 

2.2.5.2. Tachykinin 1 (Tac1) encoded peptide quantification 

Required solutions (all data on percentage is volume-based): 

Solvent A: 

 100%   50mM potassium phosphate buffer, pH=2.5 

Solvent B:  

70%   acetonitril 

 30%   37mM potassium phosphate buffer, pH=2.5 

PBS-T: 

99.05%  1x phosphate buffered saline (PBS), pH=7.2 

0.05%  TWEEN 20 

Blocking buffer: 

3%   BSA 

96.98% PBS-T  
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0.02%  sodium azide 

Based on the qPCR results, the following question was how the differential 

expression of single splicing variants translates into peptide levels. Therefore high 

performance liquid chromatography (HPLC) was applied to first separate fractions 

with the respective peptides and then to identify them in an enzyme-linked 

immunosorbent assay (ELISA) with an antibody specific for the last five amino acids 

of tachykinin peptides.  

Brains of female HAB, CD1 and LAB mice (twelve each) were harvested, the PVN 

and BLA/LA were dissected as described in chapter 2.2.2.1. For peptide extraction, 

tissue punches were lysed in 50µl of boiling 5% acetic acid by gentle shaking at 

95°C for 30min in a thermomixer (5436, Eppendorf, Hamburg, Germany). After 

chilling the samples on ice for 10min, samples were sonified (Sonifier Cell Disruptor 

B15, Branson Ultrasonics, Danbury, CT) using 15 impulses twice and frozen at -

80°C overnight. Then, lysed tissue was centrifuged at 4,000rpm and 4°C for 20min 

after thawing on ice, the supernatant was separated and centrifuged again under the 

same conditions for 10 min. Again only the supernatant was kept and concentrated 

to a volume of 12µl at 45°C (Concentrator 5301, Eppendorf). For reversed phase 

HPLC (rpHPLC), all instruments (HPLC Series 1100) were manufactured by Agilent 

Technologies (Böblingen, Germany) and used with C-18 columns (EC550/2 

Nucleosil 300-5 C18, Macherey-Nagel). For fractioning of the samples a gradient 

protocol was applied (see table 2). Specific elution time for each peptide was 

determined by analysis of 5µg of each peptide and a mixture of 0.2µg of each 

peptide (SP, NKA, NKB, NPK and NPγ) in a solution of 12µl 5% acetic acid. Details 

of the elution protocol are documented in table 3 with the respective fractions 

sampled.  

Table 2: The gradient protocol of solvents for rpHPLC fractioning of peptide extractions from 
the BLA/LA and the PVN.  
 

Step Time [min] Solvent A Solvent B Flow rate µl/min 

1 0 100% 0% 200 

2 10 72% 28% 200 

3 70 43% 57% 200 

4 75 0% 100% 200 

5 76 100% 0% 200 

6 96 100% 0% 50 
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Table 3: Elution protocol of tachykinin peptides during rpHPLC. Not further required 
fractions, like from steps 2 or 8 were discarded later.  
 

Step Time [min] 
Elution period 

[min] 

Total elution 

volume [µl]  
Peptide 

1 18.5 3 600 NPγ 

2 21.5 2 400  

3 23.5 3 600 NKA 

4 26.5    

5 29 6 1200 SP 

6 35    

7 40 5 1000 NPK 

8 45 2 400  

9 47 5 1000 NKB 

10 52 4 1200 X 

 

Further processed samples were transferred from U96 MicroWell plates (Nunc, 

Wiesbaden, Germany) to 1.5ml tubes and concentrated to a volume of 5µl.  

ELISA was prepared and performed on F96 Immobilizer Amino plates (Nunc), with 

measuring one standard curve for each peptide in eleven concentrations from 2 to 

400 pg/µl. Samples were diluted to a total volume of 100µl in sodium carbonate 

buffer (100mM, pH=9.6), sealed and incubated overnight at 4°C under gentle 

shaking (Polymax 1040, Heidolph Instruments, Schwabach, Germany). After 

washing all wells three times with 200µl PBS-T, plates were sealed and incubated 

for 5h at 4°C on a shaker with 300µl blocking buffer in each well. After incubation, 

samples were washed with 200µl PBS-T each and incubated overnight at 4°C on a 

shaker with 100µl of a 1:700 dilution of the primary antibody (rat monoclonal 

[NC1/34 HL] to substance P, Abcam, Cambridge, UK) in blocking buffer. Samples 

were subsequently washed four times in 200µl PBS-T and incubated in 100µl of a 

1:1000 dilution of the secondary antibody (goat polyclonal to rat IgG – H&L AP; 

Abcam) in blocking buffer for 4h at 4°C on a shaker. Washing was repeated four 

times and incubation with 100µl of an alkaline phosphatase chromogen, p-

nitrophenyl phosphate (pNPP, 1µg/µl) followed. Optic density was assessed after 

20, 30, 40 and 60min after addition of pNPP in the Dynatech MR5000 ELISA reader. 

Blank value means were subtracted from each individual value per plate, individual 

values per plate were normalized based on control measurements on each plate. 

Based on the standard curves for each peptide, absolute quantity of material [mol] 

could be calculated.  
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2.2.5.3. Cytochrome c oxidase (COX) activity 

Required solutions: 

0.1M phosphate buffer pH 7.4: 

 22.8g   NaH2PO4 

 115g   Na2HPO4 

 add H2O to 2000ml. 

4% PFA (paraformaldehyde): 

Dilute 20% paraformaldehyde to 4% with 0.1M phosphate buffer 

Cytochrome c / DAB solution: 

140mg  3,3-diaminobenzadine (DAB) 

 50mg   cytochrome c 

 11.11g  saccharose 

 50mg  nickel ammonium sulfate 

 50ml  0.1M phosphate buffer 

Brains of six basal HAB and LAB mice each were prepared as described before in 

2.2.2.1. Brains were sectioned to 40µm slices, with keeping the same sections as in 

2.2.2.1. Microscope slides containing the brain sections were stained during 

incubation for 2h at 37°C in the cytochrome c / DAB solution, protected from light 

and under mild shaking. Brains were then washed for 10min in 0.1M phosphate 

buffer on ice, followed by fixation for 30min in 4% PFA. Then washing was 

continued by washing the slides twice in 0.1M phosphate buffer for 5min, in 50% 

ethanol for 1min, in 70% ethanol for 1min, in 96% ethanol for 1min followed by 5min 

in isopropanol and finally by 10min in Roti-Histol (Roth). Slices were embedded in 

Roti-Histokitt (Roth) and covered by cover slips. Slides were captured using a 

binocular camera system with the same settings for all slides (Leica). Quantification 

of each slide was performed using Scion Image.  

 

2.3. Identification of polymorphisms 

Most studies on mouse genetics focus on mice from inbred strains. They are 

supposed to have the same genetic configuration and the only thing differing 

between individuals is probably their hierarchical status, if they are not single-

housed. Nevertheless, even these mice acquire different experiences during their 

development and interpret similar stimuli as more or less pleasant or harmful. The 

other advantage of studying inbred mice is that there is a lot known about variations 

occurring in the genes of these mouse strains. About 25,000 SNPs are known to 

exist if a variety of inbred strains is compared only on a middle-sized chromosome 

like chromosome 10 (MGD).  
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Unfortunately less is known about the occurrence of polymorphisms and other 

variations in outbred mouse strains. Although their frequency would be lower, as 

compared to wild mice, up to date, nearly no information about their genetic 

variability is available (Chia et al., 2005). Therefore, a better genetic characterization 

of outbred stocks is urgently needed, with the following experiments contributing to 

this issue. However, as the focus of the present experiments lies on the genetic 

background of anxiety-related behavior, the main interest was to identify genetic 

polymorphisms in a variety of candidate genes that are associated with the anxiety-

related phenotype.  

 

2.3.1. Animals and behavioral tests 

For SNP screenings, i.e. the determination of the frequency of polymorphisms, 

animals used were unselected male (N = 77) and female CD1 (N = 165) mice, 16 

male and female HAB and LAB mice (the grandparental generation of the HABxLAB 

F2 intercross mice), 18 male and female heterozygous HABxLAB F1 intercross mice 

(referred to as F1) and 521 male HABxLAB F2 intercross mice (referred to as F2). 

These mice have been phenotyped (except for the female CD1 mice) in a broad test 

battery, including EPM and TST.  

DNA samples from two HAB and LAB mice from G18 or higher were used for the 

detection of polymorphisms by sequencing, as they don’t show all the variation in 

CD1 mice, but represent the variation responsible for the phenotypic variance. For 

most genomic variations, they should have a homozygous state and are therefore 

easy to detect.  

 

2.3.2. DNA isolation  

required reagents: 

Tail buffer: 

 20ml   20xTris; pH = 8 

 80ml  0.5M EDTA 

 8ml   5M NaCl 

 20ml   20% SDS 

Mix and add H2O to 400ml. 

TE buffer: 

1.21g   Tris; pH = 8 

0.37g  EDTA 

Mix and add H2O to 1000ml. 
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DNA was isolated from mouse tail tips (about 6mm) were sampled after euthanasia 

of the animals. Tail tips were kept on -20°C until DNA isolation. For DNA isolation 

the NucleoSpin Tissue (Macherey-Nagel) kit was applied according to the 

manufacturer’s instructions. Alternatively, for smaller sample amounts (e.g. for 

sequencing), DNA was isolated from the tail tips by starting with a digestion by 

adding 10µl of proteinase K (20mg/ml) and 700µl of tail buffer to the tail tips and 

incubating them at 56°C in a thermo-shaker (Eppendorf) for 3h. After vortexing, 

300µl of a saturated NaCl solution (7M) were added to the samples that were 

vigorously shaken afterwards and centrifuged at 13,000rpm for 10min. 750µl of 

supernatant were transferred to fresh tubes and 500µl of isopropanol were added. 

Then samples were mixed again manually and centrifuged for 5min at 13,000rpm 

followed by one wash step with 500µl of 70% ethanol. After a final centrifugation 

step at 13,000rpm for 5min, all liquid was removed and the pellets were dried at 

65°C for 5-10min. Then pellets were dissolved in 100µl of TE buffer and DNA 

quantity and quality were assessed by photometric measurement (Nanophotometer, 

Implen or Ultrospec II, Pharmacia LKB Biochrom, Cambridge, United Kingdom).  

 

2.3.3. Prescreening  

To receive an overview of SNPs available as specific markers for HAB and LAB 

mice that would further provide the basis of genotype-phenotype associations in F2 

mice, 16 male and female HAB and LAB mice, 18 F1 and 34 F2 mice were 

genotyped. For SNPs, where HAB and LAB mice would show the opposite genotype 

homozygously (AA vs. BB), F1 mice should show only a heterozygous genotype 

(AB), for biallelic markers. To assess a large number of SNPs, the Mouse Medium 

Density Linkage Panel (Illumina) was chosen to allow the determination of 1449 

genotypes simultaneously. DNA samples were all prepared in 96 well plates (Nunc) 

and diluted to a concentration of 50ng/µl. Random inspection of every tenth sample 

on agarose gel was performed to ensure DNA quality and quantity. Samples were 

processed according to the manufacturer’s instructions as described in the Illumina 

Golden Gate Assay for Sentrix Array Matrix workflow sheets. After purification and 

sequence amplification, samples were hybridized from a 96-well plate to probes 

placed on top of fiber bundles (Fig. 3).  
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Figure 3: Illumina Sentrix Array Matrix (for GoldenGate Assay). (A) The upper side of the 
array matrix, this side is scanned. (B) Bottom side of the array matrix, probes were fixed 
here and the samples hybridized. (C) Scan picture of one fiber bundle.  
 

Fluorescence signals of hybridized samples were captured in the Illumina 

BeadStation, genotypes were called from fluorescence intensity clusters using the 

Illumina BeadStudio software Ver. 3.1.0.0, with the genotyping module Ver. 3.1.12. 

All intensity clusters were inspected individually and adjusted manually, if 

necessary. Analysis of genotypes focused on the detection of valid genotypic SNP 

markers to distinguish between HAB and LAB mice.  

 

2.3.4. Screening of the F2 panel and CD1 mice 

Based on the prescreening experiment (as described in chapter 2.3.3.) a custom 

designed oligo pool (384 SNPs) was set up for genotyping all 521 F2 mice, 32 HAB 

and LAB mice as well as 77 CD1 mice, to receive further insight into the distribution 

of genotypes in unselected outbred CD1 mice, i.e. the progenitors of the HAB and 

LAB lines. The custom designed oligo pool was designed to work on the Illumina 

GoldenGate Assay-based Sentrix Array Matrix 250 SNPs were added, which were 

identified in the screening from the previous chapter (table 2). Two further 

polymorphisms have been identified between HAB and LAB mice, resulting in 

qualitative differences in the enzyme enolase-phosphatase 1 (coding gene is 

referred to as Enoph1) by 2D-gel electrophoresis (Ditzen et al., submitted). 

Furthermore, two polymorphic loci around the Avp locus (see chapter 2.5.2.3 and 

the results) were added for detection by the customer designed oligo pool. As about 

130 slots were still available for SNPs, the loci to analyze were recruited from 10kbp 

around candidate genes from the MPI24K gene expression analyses or from other 

research groups of the Max Planck Institute of Psychiatry focusing on human 

anxiety and depression patients (Ising, Erhardt and Binder, personal 

communication). Putative SNPs were selected from MGD and are also displayed in 

table 4. All samples were processed and analyzed as described in chapter 2.3.3.  

 
 
 

A B C 
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Table 4: Single nucleotide polymorphisms (SNP) to test with the custom designed oligo pool. 
Source (1) refers to SNPs, taken from the Medium Density Linkage Panel, (2) described 
added SNPs based on genes known from gene expression studies or from research groups 
of the Max Planck Institute of Psychiatry focusing on human anxiety and depression patients. 
Gene association is assumed, if a SNP is located 10kbp around a gene locus. 
 

Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

1 mCV23695025 1 22,398,088 - 

1 mCV24784983 1 25,476,000 Bai3 

1 rs3677683 1 27,321,156 - 

1 rs4137502 1 30,887,618 Phf3 

1 rs3707642 1 32,568,345 Khdrbs2 

1 rs3683997 1 35,935,818 - 

1 rs13475827 1 40,990,938 - 

1 CEL-1_44668113 1 44,620,787 - 

1 rs13475881 1 58,439,402 - 

1 rs13475919 1 73,020,555 - 

2 Rs30238170 1 82,719,300 - 

2 rs30238169 1 82,720,355 5230400G24Rik 

2 rs30238168 1 82,720,980 5230400G24Rik 

2 rs30237262 1 82,722,282 5230400G24Rik 

2 rs30236408 1 82,726,579 5230400G24Rik 

2 rs30242174 1 82,749,582 - 

1 UT_1_89.100476 1 87,014,950 Chrnd 

1 rs13476012 1 101,,801,487 Cntnap5b 

1 CEL-1_103251925 1 103,228,922 - 

1 rs3685919 1 111,528,321 - 

1 rs13476050 1 112,508,292 - 

1 rs3699561 1 132,988,758 Mapkapk2 

1 rs3672697 1 147,028,489 - 

1 rs13476163 1 148,717,645 B830045N13Rik 

1 rs6393307 1 152,872,095 - 

1 rs13476187 1 156,052,564 ENSMUSG00000066797 

1 rs6157620 1 185,385,733 - 

1 rs3667164 1 190,511,531 Ush2a 

1 rs6240512 2 10,900,065 100040690 

1 CZECH-2_15618849 2 15,594,129 - 

1 rs13476366 2 19,320,592 - 

1 rs13476503 2 53,042,643 Prpf40a 

1 rs4223189 2 61,638,140 Psmd14 

1 rs3664661 2 71,436,620 - 

1 CEL-2_73370728 2 73,174,311 - 

1 rs13476639 2 92,666,968 - 

1 rs6406705 2 100,200,136 - 

1 rs13476666 2 101,163,197 - 

1 rs13476689 2 107,305,294 - 

1 rs13476723 2 117,118,533 Rasgrp1 

2 chlcdelavp2 2 130,273,975 Avp 

2 cmlcsnpavp1 2 130,276,153 Avp 

1 rs13476783 2 133,686,867 - 

1 rs3664408 2 161,205,958 - 

1 CEL-2_168586738 2 168,032,354 Nfatc2 

2 rs31438972 3 19,586,067 Trim55 

2 rs31145247 3 19,586,366 Trim55 

2 rs30796162 3 19,597,491 - 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

2 rs31286319 3 19,598,902 - 

1 rs13477043 3 31,379,500 - 

1 gnf03.030.222 3 32,722,005 - 

1 rs6376008 3 86,465,169 Lrba 

1 rs6211610 3 90,025,782 Rab13 

1 rs13477268 3 93,138,727 - 

1 rs4138887 3 102,493,088 - 

1 CEL-3_120379605 3 118,794,515 - 

1 rs13477379 3 122,540,626 Pde5a 

1 rs3671119 3 126,116,580 Arsj 

2 rs13477411 3 131,922,067 - 

2 rs6166189 3 132,079,726 - 

2 rs31556559 3 132,298,496 EG433653 

2 rs30263909 3 132,299,981 EG433653 

1 rs3676039 3 135,880,574 Bank1 

1 rs6407142 3 142,720,843 - 

1 gnf03.160.599 3 156,149,851 Negr1 

2 rs3022975 4 8,073,046 Car8 

1 CEL-4_30653207 4 30,606,147 - 

2 rs3090720 4 57,221,105 Ptpn3 

1 rs3708471 4 76,516,632 Ptprd 

1 rs13477873 4 101,102,850 Ak3l1 

2 rs3022996 4 111,044,395 4931433A01Rik 

1 rs3023025 4 142,772,319 Prdm2 

1 rs13478110 5 9,741,228 - 

1 rs3714258 5 12,371,157 - 

1 rs6341620 5 37,492,799 Jakmip1 

1 CEL-5_45872918 5 46,008,170 - 

1 rs3664008 5 54,048,319 Rbpj 

1 mCV23386455 5 62,987,260 Tbcd1d 

1 rs3667334 5 83,471,068 - 

1 rs13459087 5 87,521,105 Ugt2b36 

1 CEL-5_87173557 5 88,825,844 Amtn 

1 gnf05.084.686 5 89,982,732 Npffr2 

1 rs3673049 5 90,116,719 Adamts3 

2 rs31780700 5 92,889,948 Scarb2 

2 rs29583970 5 92,983,999 - 

2 rs31786987 5 93,102,064 4932413O14Rik 

1 rs3661241 5 98,266,375 - 

2 rs13460000 5 100,488,240 Enoph1 

2 rs13460001 5 100,490,027 Enoph1 

1 rs13478433 5 104,357,982 - 

1 rs13459186 5 110,534,259 Gtpbp6 / Plcxd1 

1 rs13478483 5 118,405,617 Nos1 

1 rs13478518 5 128,264,975 Tmem132d 

2 rs33711358 5 128,515,999 Tmem132d 

2 rs13478520 5 128,616,797 Tmem132d 

1 rs6298689 5 140,240,607 Ints1 

2 rs36247439 5 149,857,285 Hmgb1 

2 rs29781244 5 149,862,877 Hmgb1 

2 rs33343556 5 149,865,874 - 

2 rs36309698 5 149,868,499 - 

2 rs37452785 5 149,868,789 - 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

2 rs30116240 6 7,499,262 - 

2 rs30221186 6 7,503,288 Tac1 

2 rs30206506 6 7,512,626 Tac1 

2 rs30771076 6 7,512,775 Tac1 

1 rs3655269 6 17,922,618 - 

1 rs13478649 6 18,518,251 - 

1 rs13478656 6 21,893,927 - 

1 rs3684494 6 24,365,693 - 

1 rs13478697 6 32,800,650 Chchd3 

1 rs4139698 6 49,819,544 - 

2 rs13478762 6 54,175,671 Chn2 

2 rs30228387 6 54,224,143 Chn2 

1 rs3672029 6 75,345,665 - 

1 rs6285738 6 93,485,969 - 

1 rs6239023 6 94,005,991 Magi1 

1 rs6349084 6 96,697,598 - 

1 rs6339546 6 133,917,751 - 

1 rs13479053 6 134,201,252 Etv6 

1 rs3672808 6 139,805,730 Pik3c2g 

1 rs3711088 6 148,260,469 Tmtc1 

1 rs3659551 7 6,909,503 Usp29 

1 mCV23738426 7 8,465,811 Vmn2r52 

1 CEL-7_5627457 7 12,296,204 - 

2 rs32116079 7 19,147,099 Psg27 

2 rs13461382 7 19,591,025 Irf2bp1 

2 rs31505570 7 19,721,049 Fbxo46 

1 CEL-7_36725559 7 43,396,959 - 

1 rs4232449 7 48,581,740 - 

2 rs31525495 7 53,894,287 Sergef 

2 rs31708001 7 53,903,710 Tph1 

2 rs32373825 7 53,904,154 Tph1 

2 rs6279417 7 53,931,049 - 

2 rs6279463 7 53,931,082 - 

2 rs6281625 7 53,931,473 - 

1 rs6160140 7 73,426,174 Lrrk1 

1 rs3705155 7 75,667,606 - 

1 rs13479347 7 83,432,559 - 

1 rs13479355 7 85,431,231 Ntrk3 

1 rs13479358 7 86,843,104 5730590G19Rik 

2 rs31060727 7 107,753,415 Mrpl48 

2 rs32330100 7 107,755,420 Mrpl48 / Rab6 

2 rs32034601 7 107,756,141 Mrpl48 / Rab6 

2 rs31746209 7 107,758,176 Rab6 

2 rs31908266 7 107,771,055 Rab6 

2 rs32020539 7 107,791,025 Plekhb1 

1 rs3713052 7 108,918,190 Clpb 

1 rs6357312 7 109,389,815 Rhog 

2 rs13479460 7 118,818,343 Galntl4 

1 rs6194926 7 121,509,575 4933406I18Rik 

1 CEL-7_115892950 7 122,464,255 Rgs10 

1 CEL-7_122752866 7 129,495,978 Dock1 

1 rs13479506 7 131,822,778 3100003L05Rik 

1 rs3682038 7 133,483,665 - 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

1 rs13479535 7 138,763,317 - 

1 rs3663988 7 146,505,067 - 

1 CEL-8_33812776 8 33,652,415 Tnks 

2 rs33319598 8 54,406,484 - 

2 rs32893761 8 54,441,823 - 

2 rs32900718 8 54,584,421 - 

2 rs37502172 8 54,664,031 - 

1 rs3707439 8 61,429,008 - 

1 rs13479807 8 68,141,750 Mar1 

1 rs13479811 8 69,577,205 - 

1 rs13479871 8 87,590,219 Fbxw9 

1 rs6257357 8 88,071,460 Dnaja2 

1 rs13479880 8 89,271,028 ENSMUSG00000074178 

1 rs13479884 8 90,183,245 - 

1 gnf08.108.032 8 106,104,093 Tmco7 

1 gnf08.118.027 8 116,136,203 - 

1 rs6400423 8 129,106,325 - 

2 rs3697596 8 130,354,209 - 

1 mCV25073238 9 10,596,883 - 

1 gnf09.012.310 9 17,874,218 - 

1 rs13480092 9 18,926,807 Olfr836 

1 rs3088801 9 24,802,456 - 

1 rs4135590 9 42,796,186 Arhgef12 

1 rs13480173 9 46,336,655 - 

1 rs3676124 9 83,013,939 Hmgn3 

1 rs3669564 9 87,780,386 - 

1 rs3711089 9 105,393,993 Atp2c1 

1 rs13480421 9 111,761,261 - 

1 rs6320810 9 115,065,092 Osbpl10 

1 rs3669563 9 117,827,882 - 

1 rs13459114 9 121,825,029 Cyp8b1 

1 rs13459119 10 20,045,489 Bclaf1 

1 rs3679120 10 22,641,085 - 

1 rs13480581 10 38,685,357 Lama4 

2 rs3090642 10 44,860,993 Prep 

1 rs13480630 10 67,283,841 - 

1 rs13480638 10 68,907,415 - 

2 rs29326309 10 95,590,622 - 

2 rs13480738 10 102,999,447 - 

2 rs13480739 10 103,185,336 - 

1 rs13480740 10 103,515,832 - 

2 rs6282517 10 103,725,176 - 

1 rs3688351 10 103,953,112 - 

2 rs13480742 10 103,966,226 - 

2 rs13480743 10 104,097,543 - 

2 rs13480744 10 104,441,816 100042383 

2 rs13480749 10 105,437,651 - 

1 rs6243755 10 108,174,849 Syt1 

1 rs13480773 10 114,179,165 Trhde 

2 rs6350239 10 114,513,832 Tph2 

2 rs4228474 10 114,515,997 Tph2 

2 rs29341895 10 114,624,510 - 

2 rs29354500 10 114,624,607 - 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

2 rs29327697 10 114,625,405 - 

1 mCV24217147 10 117,503,347 Smgp21b 

1 rs13480803 10 122,568,425 Usp15 

1 mCV22832306 10 125,997,604 - 

2 rs3697243 10 126,250,067 - 

1 rs13480836 11 3,454,200 - 

1 rs6190775 11 6,312,209 - 

1 gnf11.017.294 11 18,007,065 - 

1 rs3723987 11 19,368,928 - 

2 rs13480933 11 29,118,539 Smek2 

2 rs26822202 11 29,122,316 Ccdc104 

2 rs29469152 11 29,122,634 Ccdc104 

2 rs29473241 11 29,147,356 Ccdc104 

2 rs26822189 11 29,147,449 Ccdc104 

2 rs29410558 11 29,149,274 - 

1 rs13459123 11 30,958,902 Asb3 

2 rs26950069 11 58,126,592 Zfp692 

2 rs29402173 11 58,128,820 Zfp672 

2 rs29406291 11 58,129,646 Zfp672 

2 rs29387701 11 58,138,073 1700047K16Rik 

2 rs29427167 11 58,138,512 - 

2 rs29397704 11 58,140,748 - 

1 rs3697686 11 58,381,052 Olfr327-ps1 

1 rs3711357 11 61,266,066 Zfp179 

1 rs13481061 11 62,806,119 Cdrt4 

1 rs13481071 11 65,014,320 Myocd 

2 rs26888740 11 74,739,049 Smg6 / Srr 

2 rs26888739 11 74,739,210 Smg6 / Srr 

2 rs26888734 11 74,740,289 Smg6 

2 rs6192434 11 74,745,116 Smg6 

2 rs29479272 11 74,978,579 Hic1 

2 rs6155957 11 74,978,877 Hic1 

2 rs28226774 11 76,806,816 - 

2 rs28226773 11 76,806,890 - 

2 rs28226748 11 76,840,125 Slc6a4 

2 rs28226747 11 76,840,970 Slc6a4 

2 rs28226743 11 76,841,856 Slc6a4 

2 rs28226734 11 76,846,429 - 

1 rs13481119 11 79,360,701 Nf1 

1 rs13481161 11 92,322,572 - 

1 rs13481313 12 14,876,064 - 

1 rs13481321 12 16,687,164 Greb1 

1 rs13481371 12 30,883,465 Sntg2 

1 rs6223000 12 34,867,610 - 

1 rs13481445 12 51,443,486 Prkd1 

1 rs3677344 12 65,698,044 - 

1 rs13481541 12 77,479,299 Zbtb1 

1 rs3662628 12 80,362,465 Zfyve26 

1 rs13481556 12 81,763,540 Slc39a9 

1 rs13481588 12 93,207,169 EG667589 

1 rs3023711 12 117,417,767 - 

2 rs3692361 12 118,957,587 Rapgef5 

1 rs13481673 13 5,584,894 - 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

1 rs6348604 13 15,502,938 - 

1 rs13481706 13 16,432,650 - 

1 rs3710348 13 31,365,187 - 

1 rs3688207 13 45,454,657 - 

2 rs13462828 13 62,915,954 - 

2 rs30073403 13 63,213,965 2010111I01Rik 

2 rs29584318 13 63,383,551 2010111I01Rik 

2 rs29636134 13 63,405,500 Fancc 

1 rs13481871 13 71,432,597 - 

1 rs3686443 13 86,662,750 - 

1 rs3655061 13 89,723,142 Hapln1 

1 rs13481961 13 98,040,192 - 

1 rs4230144 14 8,924,022 Rpp14 

1 rs6322899 14 10,651,880 Fhit 

1 rs6290836 14 13,378,532 Cadps 

2 rs3696385 14 18,195,504 - 

1 rs13482104 14 27,163,606 - 

1 rs6396829 14 28,814,149 Erc2 

1 gnf14.055.608 14 55,370,255 Mipep 

2 rs3703075 14 63,543,436 Wdfy2 

2 rs13459144 14 76,317,480 Gtf2f2 

1 rs13482327 14 97,600,347 - 

2 rs3692362 14 100,175,288 - 

1 rs6191117 14 100,606,904 - 

1 rs3708779 14 111,167,655 EG668772 

1 rs13482375 14 112,079,790 Slitrk5 

1 rs6169105 14 117,657,346 Gpc6 

1 rs13459176 15 3,229,130 Sepp1 

1 CEL-15_9687257 15 9,601,488 - 

1 rs13482431 15 11,241,219 Adamts12 

1 rs3715857 15 19,181,733 - 

1 rs13482509 15 31,971,924 - 

2 rs32005588 15 32,841,248 - 

2 rs31983176 15 32,849,387 Sdc2 

2 rs32228111 15 32,858,088 Sdc2 

2 rs32250555 15 32,874,418 Sdc2 

2 rs4230687 15 32,964,635 Sdc2 

2 rs3695416 15 38,414,152 - 

1 rs3683326 15 41,219,409 - 

1 rs6400804 15 56,637,987 - 

2 rs36320059 15 81,147,953 Slc25a17 

2 rs37939180 15 81,148,568 Slc25a17 

2 rs37394767 15 81,148,663 Slc25a17 

2 rs38717462 15 81,151,100 Slc25a17 

2 rs36586819 15 81,167,126 Slc25a17 

2 rs36346494 15 81,192,154 - 

2 rs32320164 15 83,392,328 Tspo 

2 rs31717709 15 83,393,007 Tspo 

2 rs32046139 15 83,399,802 Tspo 

2 rs31565634 15 83,400,032 Tspo 

2 rs31717505 15 83,406,204 Ttll12 

1 rs13482712 15 92,076,446 Cntn1 

1 rs4152638 16 4,326,609 Adcy9 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

1 rs4152790 16 4,850,158 4930562C15Rik 

1 rs4173902 16 37,352,904 Stxbp5l 

1 rs4177651 16 40,683,387 - 

2 rs3696661 16 51,676,815 - 

1 rs4197150 16 66,296,803 - 

1 rs3718160 16 76,867,900 - 

1 rs6317052 16 79,493,030 - 

1 rs4211364 16 80,830,317 - 

1 rs3672065 17 14,336,401 Dact2 

1 rs3726555 17 16,539,606 - 

1 rs13482899 17 17,761,307 Lnpep 

1 rs13482914 17 20,982,760 V1re8 

2 rs3696835 17 22,818,022 ENSMUSG00000046088 

2 rs3693494 17 29,917,069 - 

2 rs33798776 17 30,661,307 Btbd9 

2 rs33800126 17 30,695,419 - 

2 rs33798569 17 30,702,010 - 

2 rs33797503 17 30,703,669 - 

2 rs30778922 17 30,809,092 Dnahc8 

2 rs3145477 17 30,814,214 Dnahc8 

1 rs6298471 17 36,684,410 H2-M11 

1 rs6272475 17 53,622,040 Rab5a 

1 rs3714226 17 55,409,410 - 

1 rs3715723 17 58,810,428 - 

1 rs3675634 17 71,590,806 Lpin2 

2 rs33372832 17 74,733,598 - 

2 rs33595841 17 74,733,692 - 

2 rs33340320 17 74,733,758 - 

2 rs13465627 17 74,787,631 Spast 

2 rs33394982 17 74,790,564 - 

1 rs6229946 17 75,590,536 Ltbp1 

1 rs13483157 17 89,287,847 - 

1 rs6397044 17 93,594,172 - 

1 rs13483183 18 3,516,539 Bambi 

1 gnf18.001.688 18 4,647,835 - 

2 rs30263474 18 20,822,913 Ttr 

2 rs31313820 18 20,822,943 Ttr 

2 rs6273344 18 20,825,921 Ttr 

2 rs31315882 18 20,830,086 Ttr 

1 rs13483271 18 29,116,312 - 

2 rs29540760 18 31,595,494 Syt4 

2 rs29551386 18 31,598,369 Syt4 

2 rs30031611 18 31,600,912 Syt4 

2 rs30133602 18 31,683,612 EG383420 

2 rs29823717 18 31,699,317 - 

2 rs30303190 18 31,703,097 - 

1 rs3718586 18 33,291,841 Camk4 

1 rs3658163 18 68,820,968 - 

1 rs6161154 18 71,609,676 Dcc 

1 rs4137441 18 88,803,388 - 

1 rs13483525 19 10,518,533 Syt7 

1 rs6316813 19 11,396,714 Ms4a7 

2 rs38304960 19 12,859,265 Zfp91 
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Source SNP identifier 
 

Chr. 
 

Position [bp] Associated gene 

2 rs31193418 19 12,862,342 Zfp91 

1 rs6372656 19 21,917,692 Tmem2 

1 rs13483643 19 45,386,221 - 

1 rs6194426 19 50,203,520 - 

1 mCV23069572 19 52,369,475 - 

1 rs6304326 19 53,512,609 - 

1 rs6191324 19 59,396,320 Pdzd8 

1 gnfX.026.801 X 36,745,486 Stag2 

1 rs13483765 X 54,787,689 - 

1 gnfX.080.189 X 90,784,538 - 

1 rs13483894 X 93,694,393 Heph 

1 rs6182892 X 94,171,734 - 

1 rs6221690 X 127,572,284 - 

1 rs13483997 X 128,648,050 - 

1 rs13484004 X 130,310,074 - 

2 rs3697198 X 132,751,198 Tceal7 

1 rs13484043 X 139,242,663 Tmem164 

1 gnfX.148.995 X 162,427,214 Arhgap6 

 

2.3.5. Sequencing of candidate genes  

To identify polymorphic sites between HAB and LAB mice, the Avp, corticotropin-

releasing hormone (Crh), Tac1, cathepsin B (Ctsb), metallothionein 1 (Mt1) and the 

transmembrane protein 132D (Tmem132d) coding genes were sequenced. In all 

cases, except for Tmem132d, about 2,500bp of the gene promoter, the complete 

exons and introns and about 2,000bp of the downstream enhancer regions (DER) 

were sequenced. For Tmem132d, only 1,500bp of the promoter, the exons, 

conserved sequences from intron 3 and intron 4 and 1,000bp from the DER were 

analyzed, as the first three introns together are spanning more then 500kbp. 

Sequencing primers were designed to cover between 500-600bp.  

Sequencing was also applied to verify qPCR reaction products. This was done for 

the intronal Avp and for the Tac1 splicing variants. In this case, fragments were 

between 100 and 250bp.  

2900019G14Rik was sequenced to explain for differences in the melting curves 

observed during qPCR (see results). qPCR fragments of Tac1 and PCR fragments 

of Avp for polymorphism detection were cloned into a vector prior to sequencing. 

 

2.3.5.1. Cloning of fragments 

If cloning of DNA fragments was required before sequencing (this is indicated for 

fragments cloned prior to sequencing), the PCR product was purified from the PCR 

reaction mix with the NucleoSpin Extract II kit (Macherey-Nagel). For this, 8.5µl of 

the PCR reaction were diluted with 91.5µl water and 200µl of the NT buffer were 
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added. Otherwise, purification was performed according to the manufacturer’s 

instructions. Then 4.2µl of each purified PCR product were incubated with 5µl 

ligation buffer, 0.3µl pGEM-T vector and 0.5µl T4-DNA ligase (pGEM-T Easy Vector 

System, Promega, Madison, WI) for 1h at room temperature. After incubation, 1µl of 

3M sodium acetate, 20µl 99% ethanol and 1µl glycogen (10mg/ml) were added to 

each sample and vigorously mixed. Samples were shock-frozen in liquid nitrogen 

and centrifuged for 30min at 13,000rpm and 4°C, the supernatant was discarded 

and pellets washed in 300µl 70% ethanol. After centrifugation under the same 

conditions for 5min and removal of the remaining liquid, pellets were dried at 65°C 

and resuspended in 5µl water.  

45µl of competent Escherichia coli DH5α cells were added to each sample and 

transferred into pre-cooled electroporation cuvettes (Bio-Rad). To permeabilize the 

cell membranes for the vector a voltage of 1.5kV was applied (GenePulser, Bio-

Rad) to all cuvettes containing the vector / E. coli suspension. Transformed bacteria 

were collected in 1ml SOB medium and incubated for 1h at 37°C. 150µl of the 

suspension were incubated overnight at 37°C on lysogeny broth/ampicillin agar 

plates inoculated with 5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal: 25µl; 

10%, Fermentas, St. Leon-Rot, Germany) and isopropyl-β-D-thiogalactopyranoside 

(IPTG: 30µl; 0.1M, Fermentas) dissolved in dimethyl sulfoxide. Colonies were 

picked according to blue / white selection and their plasmid inserts amplified using 

T7 and SP6 primers and Taq polymerase (Fermentas) for 25-µl reactions under the 

following conditions: initial denaturation at 94°C for 4min, 35 cycles of denaturation 

(94°C for 1min), annealing (49°C for 1min), extension (72°C for 1min) and a final 

extension of 10min at 72°C. 5µl of each PCR product were analyzed on a 1.5% 

agarose gel, fragments with proper insert were required to have the expected 

sequence length plus 143bp. 2µl of the PCR reaction were used for further analysis.  

 

2.3.5.2. Cycle sequencing 

2µl of PCR or qPCR product were purified by washing twice with nuclease-free 

water using the NucleoFast 96 PCR Clean-up kit (Macherey-Nagel). Clean-up plates 

were centrifuged at 9°C and 4,500xg for 10min (Heraeus Multifuge 4KR, Thermo 

Fisher Scientific, Waltham, MA) and resolved during 10 more minutes in 25µl water 

on a shaker (Eppendorf). 2.4µl of cleaned up PCR product were used for the 

sequencing reaction (BigDye Terminator Kit, Applied Biosystems, Foster City, CA) 

by using 1.2µl sequencing buffer, 0.4µl BigDye reagent and 1µl of the forward 

primer per sample. If sequencing reaction results were unclear or unreadable, 

sequencing reaction was also peformed with the reverse primer. Sequencing 
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reactions were performed in ThermoFast 96 PCR plates (ABgene, Hamburg, 

Germany) using a PTC-225 Gradient MultiCycler (MJ Research, Miami, FL) under 

the following conditions: initial denaturation at 96°C for 1min, 35 cycles of 

denaturation (96°C for 10s), annealing (50°C for 5s), extension (60°C for 4min). 

Sequencing reaction products were purified by washing them twice in 20µl injection 

solution using Montage SEQ96 plates (Millipore, Billerica, MA) on a vacuum pump 

(Biomek 2000 Laboratory Automation Workstation, Beckman Coulter, Fullerton, CA) 

and transferred to 96 well plates. Sequences were resolved by capillary 

electrophoresis on a 3730 DNA Analyzer (Applied Biosystems) at the 

HelmholtzZentrum’s Institute of Human Genetics (Neuherberg, Germany). 

Sequence analysis and comparison were performed using FinchTV Ver. 1.2 

(Geospiza, Seattle, WA) and BioEdit Ver. 7.0.2 (Tom Hall, Ibis Biosciences, 

Carlsbad, CA) software programs.  

 

2.3.5.3. Vasopressin (Avp) 

For sequencing Avp (Fig. 4), all 1,944 bp of the unspliced transcript, 3,258bp of the 

promoter and 3,012bp of the DER were analyzed. The respective primers are 

described in table 5. All amplified sequences were cloned into the pGEM-T vector. 

The sequencing reaction was run with T7 and SP6 primers.  

 
Figure 4: The vasopressin (Avp) gene’s physical position on mouse chromosome 2. Exons 
are shown as red boxes, filled parts refer to translated, unfilled to untranslated regions. 
Spliced introns are indicated. As the gene is encoded on the minus strand, the start position 
has a higher value as the end position. Figure is based on data from Ensembl 
(www.ensembl.org, 08.01.2008).  

 
Table 5: Primer sequences used for sequencing of the vasopressin (Avp) gene including the 
PCR fragment length resulting from each reaction.  
 

Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward GAC ACA GTG TGC CTC TAT G 
Avp 1 

reverse GCT CTC CTG GAC CTT CTG 
784 

forward AAT ACT CTA GGA AGA AGA CAA 
Avp 2 

reverse GAA ACA GCT TCC TGG TCA 
731 

forward GGA CAT GCC ACT CAA GGG 
Avp 3 

reverse TAC AGG CGT GCA TCA CGG 
701 

 

5’ 3’ 
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Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward CTA GAA GCC GTG GGC TAG GT 
Avp 4 

reverse GGG GGT GGG AGA GCT GGG AAT AGT 
798 

forward CAT TGC CAC CAT AGC TTT CC 
Avp 5 

reverse CTC TTG GGC AGT TCT GGA G 
805 

forward GAG CAG AGC CTG AGC TGC ACA CAG T 
Avp 6 

reverse ACA TAC AAT ACA ACA GAT CTG 
673 

forward CCA TGC CCA AGT GGA GC 
Avp 7 

reverse GCT GGA ACG AGG CCA AG 
682 

forward AAA GCA GCA GGT GAC ACT AGG 
Avp 8 

reverse CTA TGC ACG ACT TCG GGT GTG 
829 

forward ACT CCG TGG ATT CTG CCA AGC 
Avp 9 

reverse GAT GCC TTC TGC TCC TGA GAC 
793 

forward GCA CGG AAA TAG ACA AGA TAG 
Avp 10 

reverse AAC TGA CCA TCC TGA GCC ACC 
815 

forward AGA GAT TAG TCT CAG TGA CCT G 
Avp 11 

reverse CTG GAG TTG TGA GGT GGT TGT G 
817 

forward ACG GCT CAA GGA GGT AGG CG 
Avp 12 

reverse AAG TGA CCA CAA AGC ACG GAG 
830 

    

 

2.3.5.4. Corticotropin-releasing hormone (Crh) 

To analyze Crh (Fig. 5) for sequence variations, all 1,916 bp of the unspliced 

transcript, 3,028bp of the promoter and 2,197bp of the DER were sequenced. The 

respective primers are described in table 6. All amplified sequences were analyzed 

in the sequencing reaction using the indicated primers in a nested PCR reaction.  

 

Figure 5: The corticotropin-releasing hormone (Crh) gene’s physical position on mouse 
chromosome 3. Exons are shown as red boxes, filled parts refer to translated, unfilled to 
untranslated regions. Spliced introns are indicated. As the gene is encoded on the minus 
strand, the start position has a higher value as the end position. Figure is based on data from 
Ensembl (www.ensembl.org, 08.01.2008).  

 
Table 6: Primer sequences used for sequencing of the corticotropin-releasing hormone (Crh) 
gene including the PCR fragment length resulting from each reaction.  
 

Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward AAA GTG CAA AGA GAT GCA G 
Crh 1 

reverse TCT ATT ACA AGA CTC ACA CCA AGA G 
508 

forward CTT GGT GCC CAT ATT TCT TGA 
Crh 2 

reverse TTA CAC AGC ATC ACG GCA TC 
538 

5’ 3’ 
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Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward GCT GAT ATG TGT GTT GCT CCA 
Crh 3 

reverse TTC ACC TCA GTG TTT GGG ATT 
590 

forward GAA TTG GTC AGG AAT GAA AG 
Crh 4 

reverse GTC TGG GAT TCG CTT CAG 
464 

forward CCA GAA ACA GGG AAC AGG AA 
Crh 5 

reverse CGA GGA AGG CCA TAA ACA AA 
592 

forward GGG AAC AGT CCT GAT TAA CTT T 
Crh 6 

reverse ATA TTT ATC GCC TCC TTG GTG A 
614 

forward CCA CAC TTG GAT AGT CTC ATT 
Crh 7 

reverse TTA AGG CAC AGT TAG CGA CA 
599 

forward CTG GAA TGC CTG TGC CTA TG 
Crh 8 

reverse CTC TGA AGC ACC GAG GTT G 
597 

forward AAG CCT AGA GCC TGT CTT GTC 
Crh 9 

reverse GAA GGT GAG ATC CAG AGA GATG 
616 

forward CGC CCA TCT CTC TGG ATC T 
Crh 10 

reverse CTA GCC ACC CCT CAA GAA TG 
501 

forward GCA GAT GGG AGT CAT CCA GT 
Crh 11 

reverse TCT GAC CTT CTC CAG TTG TCC 
561 

forward CTG AGG ACC GAG GAA GTG TG 
Crh 12 

reverse CAG TCT CCC AGC AAT TTA TTC A 
525 

forward GCC CTG GAA ATA TGC TTG AT 
Crh 13 

reverse GGC CAC ACG TCC ATA GTC C 
496 

forward TGT CAA AAG AGT TGC CCT AGA 
Crh 14 

reverse CAC ATA GGC AGC AGG AAA CA 
577 

forward AGA AAT CCT GTC CAG AGG TC 
Crh 15 

reverse GAA AGC CAA GCA GGG AAC 
514 

    

 

2.3.5.5. Tachykinin 1 (Tac1) 

For sequencing Tac1 (Fig. 6) all 7,903 bp of the unspliced transcript, 2,935bp of the 

promoter and 2,773bp of the DER were analyzed. The respective primers are 

described in table 7. All amplified sequences were analyzed in the sequencing 

reaction using the indicated primers in a nested PCR reaction.  

 

 

Figure 6: The tachykinin 1 (Tac1) gene’s physical position on mouse chromosome 6. Exons 
are shown as red boxes, filled parts refer to translated, unfilled to untranslated regions. 
Spliced introns are indicated. The gene is encoded on the plus strand. Figure is based on 
data from Ensembl (www.ensembl.org, 08.01.2008).  

 

5’ 3’ 
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Table 7: Primer sequences used for sequencing of the tachykinin 1 (Tac1) gene including 
the PCR fragment length resulting from each reaction.  
 

Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward GTA CGA AAT GGA TGG TGA CTG 
Tac1 1 

reverse GGT TTG GTG GCT GAT TAT AGG 
529 

forward AGC TAA GTC GAA AGG ATG GAC 
Tac1 2 

reverse GGT AAG TAG AGA CCA CAA TCC AG 
619 

forward ATG AAG TGG GAA TGG GTG TTA G 
Tac1 3 

reverse TCA TGC CTC CGC TTA TGT AG 
576 

forward GCT TAA ATC TGT GAG GTC TTT G 
Tac1 4 

reverse GAT GAA GTA AAC GAT GTT GCA G 
552 

forward AGG CTG AGT TAG GAG AAT ACC C 
Tac1 5 

reverse CTA GAG GAG GAA AGC AGA CTT G 
572 

forward TAC GTT CCA CAT GCT GTT CTA C 
Tac1 6 

reverse CCA TCC AAT CCA GAG AGA CC 
490 

forward CTC AAG ATT CCC TGA CTC CTC 
Tac1 7 

reverse GGT ATT TGC ACA CTT TCT CTC C 
621 

forward TCT GCT CCC ACT CCA TTC TC 
Tac1 8 

reverse TTA TAT TCC AGT GCG CCT CTC 
591 

forward AGA TCA AGG TGA GTC CCA AAC 
Tac1 9 

reverse GTG AAC AGT AGG GTG GAT GAA G 
611 

forward CAT TCA GTG CTC CAA GTT TCC 
Tac1 10 

reverse TAT TGC TCA TCT CAC CAG CAT C 
599 

forward GAG CCC TTT GAG CAT CTT C 
Tac1 11 

reverse CAT TAA CTC TTC ACA AGC TCC AC 
501 

forward CCA GGC TCA GGT GAA AGA TG 
Tac1 12 

reverse AAG GTA GAA CTG TGG GAC TCT TG 
459 

forward CGC GTG TAT TTT AAG CTC CTG 
Tac1 13 

reverse CAG ACA TGA GTG CTT GTG AGG 
650 

forward AGC AGA ACA TAG AGC CCA ATA G 
Tac1 14 

reverse GTT ACC AGT TTG GAG TTT ACC C 
650 

forward ATC CAG AGG TGA CAG GAA GTC 
Tac1 15 

reverse GCT GAA ACC CAT ATT GTG AGC 
583 

forward TCC CAC ACA CAA ATG TAT AAC C 
Tac1 16 

reverse CCA AAG ACT CAG GGT ATG TAA TG 
630 

forward CAA ATG TTC ATA GTG TCT GTA GCC 
Tac1 17 

reverse CCT GTG GCG TTT ATG TAG AAA G 
570 

forward GAT TGT CCT TGA CCC AAA GC 
Tac1 18 

reverse TGT GAG CAC TGA TAA ATC TGG AG 
552 

forward CCA GCC TTG AGA GAT GGA ATA TAG 
Tac1 19 

reverse AAT GTC TAC CAG CTT CTG TGT CC 
627 

forward AGC CAC CTG ATC CCT ACT GTC 
Tac1 20 

reverse GAG GGT ATT TCG TCA TCT CAG C 
626 

forward GGG CAA CTA TTT ACA GGA GCA C 
Tac1 21 

reverse TCT CTT CTC TCT TGG ACA CCT TC 
468 

forward AAT ATC GGT CTC AAG GGC AAT C 
Tac1 22 

reverse TCC TAG TTT CTT TGG GCA TCT G 
514 

forward TGT GGT AGG TAT GGT CCT TTC TC 
Tac1 23 

reverse ACT AAT TTC TAC TTC TGG GGA GGT C 
612 

forward ATG TGC GCT ATG AGG AAT G 
Tac1 24 

reverse GAA GAA AGG CTG TTG ATT TGA C 
535 
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Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward TCA ATG TAA TTC TCT GGT CTT CAG 
Tac1 25 

reverse CCC ATT CCT TTC AGT GTT ATG 
643 

forward TTG CTG ACA CCC ATA ATC TTC 
Tac1 26 

reverse GCT CCT TTG TAA TCC ACA CTT ATC 
602 

forward CGT TTT ACA GAT GGG GAA AGA G 
Tac1 27 

reverse CAC CAA TGT GCC TAT GAA AAT C 
617 

forward ATG CAC AGG GTA TGT TTT ATG G 
Tac1 28 

reverse TTA TAT GGC CTG ATC TTT GTG G 
508 

forward GTG ACT AGG GCA ATG GAA AGA G 
Tac1 29 

reverse GGG AGG AGA GCA GAG TTA TGT G 
485 

forward CTA GGC TCA AGA ATG AAC ACA GG 
Tac1 30 

reverse GCT TTA TGT AGG AGT TTG GAG CAG 
612 

    

 

2.3.5.6. Cathepsin B (Ctsb) 

To screen for sequence variations between HAB and LAB mice in Ctsb (Fig. 7), 

8,045bp of the unspliced transcript, 2,441bp of the promoter and 1,797bp of the 

DER were analyzed. Due to the size of the unspliced transcript (20,619bp), 

10,278bp from intron 1 and 2,266bp from intron 8 were ignored in the sequencing 

reaction. The respective primers are described in table 8. All amplified sequences 

were analyzed in the sequencing reaction using the indicated primers in a nested 

PCR reaction.  

 

 

Figure 7: The cathepsin B (Ctsb) gene’s physical position on mouse chromosome 14. Exons 
are shown as red boxes, filled parts refer to translated, unfilled to untranslated regions. 
Spliced introns are indicated. The gene is encoded on the plus strand. Figure is based on 
data from Ensembl (www.ensembl.org, 08.01.2008).  

 
 
 
 
 
 

5’ 3’ 
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Table 8: Primer sequences used for sequencing of the cathepsin B (Ctsb) gene including the 
PCR fragment length resulting from each reaction.  
 

Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward ACA GCA AGG AAC AAC ATA GCA C 
Ctsb 1 

reverse GAT GGA AGC AGA AAG GTC AAA G 
502 

forward ATA GGT CAT TGG GCT GTG TAG G 
Ctsb 2 

reverse GAG AGA CAA GAA CCC AGA AGT ACC 
621 

forward GTG AGC AGG CAG TGA TAT GG 
Ctsb 3 

reverse AAA TGA GCA GCC TTT CTT GG 
554 

forward GCA GCC AGA GAC ACT TTT GG 
Ctsb 4 

reverse CCC ATG AAT TTT GTC CAA GG 
591 

forward AGA TCA ACT AGG TCA GCC AGC TTC 
Ctsb 5 

reverse AAC TGG TGG TTT GTC TGC TCT CT 
540 

forward TGC ATG TCA CGA AGA TGT TG 
Ctsb 6 

reverse ACT GGA AAG AAG CCG ATC AC 
562 

Intron 1: 10,278bp not sequenced  

forward TCC ACC TTA ACG CTG ACT CTT C 
Ctsb 7 

reverse CTC GCT CCA AAG CTC ACT TAT C 
603 

forward ATT GCT CTC CAG TCT CCA TGT T 
Ctsb 8 

reverse TCC CTA CAC TCC AAC ACT AGC A 
529 

forward AGG CTG GAC GCA ACT TCT AC 
Ctsb 9 

reverse CAA TCT TCT CCC ACC TTT CTT G 
516 

forward TCA AAT CAG GCA AGG CAT AG 
Ctsb 10 

reverse CGG AGG TCA GAG GGA TTA TTA G 
532 

forward CTG GAG AGA TGG CTA AGT GGT T 
Ctsb 11 

reverse GCA CTG GCT CTA TGC TCA TTT A 
606 

forward AGG AAG GAA GGA AGG AAG GAA C 
Ctsb 12 

reverse ACA GTG ATG GGA AGA AAT GGA C 
581 

forward GCA TAT CTA GGG AGG GAC CAG 
Ctsb 13 

reverse AGA GCC TTC AAC CTT CTG AGT G 
575 

forward ATC TGC CTT GGA ATT TGC TC 
Ctsb 14 

reverse TTG GAG ACG ACA GTT CTT TCT G 
537 

forward AGA TGG AGC TTG GTT GAG TCC 
Ctsb 15 

reverse AGG GAT GGT GTA TGG TAA GCA G 
531 

forward CCT CAA TAC AGG AGC TGA CC 
Ctsb 16 

reverse TGA GAC AAG ACA GAG TGT GGA C 
545 

forward AAA CAG GAG CAG TAA GGA GGA G 
Ctsb 17 

reverse GAA GAG AGC AGA AGG GAG ACT G 
573 

Intron 8: 2,266bp not sequenced  

forward AAA GAC TAT GGG TGC TGG AGA C 
Ctsb 18 

reverse AGT TCT CGT CAC ATG CTG CTC 
515 

forward CCC CTC CTC AAA CTA CAT AAG C 
Ctsb 19 

reverse CTC CCC TGT CTA CCT CAT TCC 
537 

forward CTG CTT TGA CTT CAT TGT CCA G 
Ctsb 20 

reverse AAT GTC GAT GGA TGC AGA TG 
515 

forward ACT TCA CGA GAG GAC AAA TGC 
Ctsb 21 

reverse GTG TGA GCA GTT ACA GGT ACG G 
545 

forward GGA ATG TCT GTG CCA ATA AAC C 
Ctsb 22 

reverse GCC TCA AAC CGA GTT ACA CTT C 
533 

forward TGT AAC TCG GTT TGA GGC AAC 
Ctsb 23 

reverse GAG GAC CAC ACA AAG AAC ACA C 
526 

forward CCA TGT CGG CAA TCA GAA C 
Ctsb 24 

reverse ACC ACA CAA AGA ACA CAC AAC G 
581 
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Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward CCG ATC TCT GGG AGT TTG AG 
Ctsb 25 

reverse GAT GTG CTT GCT ACC TTC CTC T 
488 

forward CGC TCT CAC TTC CAC TAC CAC 
Ctsb 26 

reverse CTA AGT TCA ATT CCC AGC AAC C 
591 

    

 

2.3.5.7. Metallothionein 1 (Mt1) 

For sequencing Mt1 (Fig. 8), all 1,085bp of the unspliced transcript, 2,187bp of the 

promoter and 1,878bp of the DER were analyzed. The respective primers are 

described in table 9. All amplified sequences were analyzed in the sequencing 

reaction using the indicated primers in a nested PCR reaction.  

 
Figure 8: The metallothionein 1 (Mt1) gene’s physical position on mouse chromosome 8. 
Exons are shown as red boxes, filled parts refer to translated, unfilled to untranslated 
regions. Spliced introns are indicated.The gene is encoded on the plus strand. Figure is 
based on data from Ensembl (www.ensembl.org, 08.01.2008).  

 
Table 9: Primer sequences used for sequencing of the metallothionein 1 (Mt1) gene 
including the PCR fragment length resulting from each reaction.  
 

Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward CAA GAG GTC TAA AGG CCC AAG 
Mt1 1 

reverse TGG TCA ACA AAG TGA GTT CCA G 
511 

forward GAT CTG GAG AGA ACT GAC CAA C 
Mt1 2 

reverse TTC ATG GTG GTT TAG ATA CAA GTG 
564 

forward GCT GTG TTG TCT CCT CCA AG 
Mt1 3 

reverse TGC ATA CCA TCA CTT CTG AGC 
601 

forward CTG AAT CCT CTG TCC TTG TGT G 
Mt1 4 

reverse CTC TCT CTG GAT CGA AGC TAG G 
535 

forward AGC AGA TGG GTT AAG GTG AGT G 
Mt1 5 

reverse CTG CCC TCT TTA TAG TCG TTG G 
546 

forward TGA CTA TGC GTG GGC TGG AG 
Mt1 6 

reverse CAT GAG GGA GGC AGC ATT ACA G 
659 

forward CCC TGA CTT AAC CTG TGA GGA G 
Mt1 7 

reverse GGG TGG AAC TGT ATA GGA GAC G 
585 

forward TCC TTT CTA GGC TGC TGG CTC 
Mt1 8 

reverse TAC CCA CCT CCT TAT ACC CAA C 
562 

forward TGG TCA GGT CTT GTG TTA GGG 
Mt1 9 

reverse GGC CAT CTT CTG CTA CAT ACG 
642 

 

5’ 3’ 
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Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward TCA GCT ATT GGA TGG AAC ACA G 
Mt1 10 

reverse GAG ATG GCT CAG TGG GTA AGA G 
629 

forward ATT TGA ACT CCT GAC CTT CG 
Mt1 11 

reverse ACG TCT CAC GGG CTA GAG 
640 

    

 

2.3.5.8. Transmembrane protein 132D (Tmem132d) 

To identify SNPs in Tmem132d (Fig. 9), 8,339bp of the unspliced transcript, 1,132bp 

of the promoter and 103bp of the DER were analyzed. Due to the size of the 

unspliced transcript (675,077bp), only exons, fragments of 100-500 bp around 

exons, furthermore two rather conserved intronal sequences from intron 3 (717bp 

and 389bp) and 839bp from intron 4 were considered for sequencing of the whole 

unspliced transcript. The respective primers are described in table 10. All amplified 

sequences were analyzed in the sequencing reaction using the indicated primers in 

a nested PCR reaction.  

 

 

Figure 9: The transmembrane protein 132D (Tmem132d) gene’s physical position on mouse 
chromosome 5. Exons are shown as red boxes, filled parts refer to translated, unfilled to 
untranslated regions. Spliced introns are indicated. As the gene is encoded on the minus 
strand, the start position has a higher value as the end position. Figure is based on data from 
Ensembl (www.ensembl.org, 08.01.2008).  

 
Table 10: Primer sequences used for sequencing of the transmembrane protein 132D 
(Tmem132d) gene including the PCR fragment length resulting from each reaction.  
 

Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward TGC TGC CAA GCT GTG ATA AA 
Tmem132d 1 

reverse TGC GGA TAA AAA TGG ACT GG 
483 

forward AGC CCA AAA CGG ACT CTC TT 
Tmem132d 2 

reverse GGA CAG TTC AGG AAC CCC TA 
460 

forward TCA GGG ACA GGA ATT TGA GG 
Tmem132d 3 

reverse TTT TTA AGC CCC ACC CTT CT 
367 

5’ 3’ 
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Gene symbol 
and primer 

number 
Orientation 

Primer sequence 
5’����3’ 

Product 
size 
[bp] 

forward CCA GGA AGG TGG GAC CTA CT 
Tmem132d 4 

reverse CTG AGG ACT GGC TCG TGA AT 
582 

forward CCA GCC GGA GTC CTC AGA 
Tmem132d 5 

reverse CCA CCC ACA TCC ACA TCT ACT 
476 

forward AAA GTG AGG CTG TGG GTA GC 
Tmem132d 6 

reverse GTT CTC GTC CCT GTG GTC AT 
505 

Forward CCA ACC CAT TTG GAT TCA CT 
Tmem132d 7 

reverse TCC TTC AAA GGT GGA CTG CT 
504 

forward AGG AGG ATT CGA GGA AGA GC 
Tmem132d 8 

reverse TCT GCA GAC AGT TCC ACA GC 
317 

forward TAA ACC TGA TTC CCC GTG AG 
Tmem132d 9 

reverse GCC CTG TGT GGG TTC ACT AT 
460 

forward CTT CCT CAA GCT CCT TCT GG 
Tmem132d 10 

reverse GGC TAC CCT TGG GAT ATG GT 
457 

forward ACA GGT TAA TGC CCT GTT GC 
Tmem132d 11 

reverse AGC TTT GCA CAC TGC ACT TC 
413 

forward GGA CTG GGA AAG ATG TGG AC 
Tmem132d 12 

reverse GGT CTG GAG AGT GTG GGA AC 
439 

forward GAG ACG TGA TAG GCC CAT GT 
Tmem132d 13 

reverse CCT TTT ACA GGG GTC GCA TA 
601 

forward TTG TGG ATG GTG GTC AGT CC 
Tmem132d 14 

reverse CCA TTT TTG TCC CCA TTT TG 
424 

forward TGT TGC ACC AGC GTT GTA C 
Tmem132d 15 

reverse ATC TGG CGT CGC TAT TAT TAG 
412 

forward GAA GCA CCG TGT GTC TAA GG 
Tmem132d 16 

reverse CCT GGA GCT TGC TGG TCT AC 
554 

forward ACA TTT GGC TTC CTG TGA CC 
Tmem132d 17 

reverse CCA GGC ATG GGT TAT AGC AG 
451 

forward ATT CCC TGG TCT GTG GAC TG 
Tmem132d 18 

reverse GGC AGA GTC TAG GCA CTT GG 
482 

forward AAC CAC CTG TCA TGC CTC TC 
Tmem132d 19 

reverse CCC TGT GTC TCC CAT GTA TC 
624 

forward TTA TAA CAT GGG ATG GCT GG 
Tmem132d 20 

reverse GGG ATA GAA ACC CCT GAT GG 
432 

forward ACC CAA TTC TTT TCC TCG AC 
Tmem132d 21 

reverse TCC ACT CTC ACT GCT GTT GG 
436 

forward TCT CCC TGA TGG CTA CAT CC 
Tmem132d 22 

reverse AAC AGG TTT TCC TGG CCT TC 
420 

forward TGA CAG GAG GTC CAA AAA GC 
Tmem132d 23 

reverse AGT CCA GAC CCC TGT CAA TG 
520 

forward TCA CTC TCA CGA CTG GGT TG 
Tmem132d 24 

reverse GTG TCC CCG TTA TAC GTG CT 
372 

forward TCA GAC GAT GGG TGT CCT TC 
Tmem132d 25 

reverse CTG ACC CAC ACA TGC TCA AC 
532 

    

 

2.3.6. Assessing the effects of polymorphisms 

All SNPs and other polymorphisms identified by sequencing were analyzed if they 

are located in the exons or at exon borders, if they influence the amino acid 

sequence or if they are located in the promoter or DER. Avp and Tmem132d were 
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additionally screened for transcription factor binding motifs via the the Transcription 

Element Search System (TESS, http://www.cbil.upenn.edu/cgi-bin/tess/tess). 

Putative binding sites of transcription factors were additionally checked for their 

function and occurrence within the brain according to the NCBI database 

(http://www.ncbi.nlm.nih.gov/). 

 

2.3.7. Allele-specific transcription analyses of vasopressin (Avp) 

For Avp, in addition to the validation of gene expression differences, an allele-

specific transcription analysis has been performed based on the identified 

polymorphisms, to analyze the effects of the identified polymorphisms on the gene’s 

expression.  

Therefore, PVN and SON were dissected from the hypothalamus of four female F1 

mice that were heterozygous for the recently described C(40)T (rs50049109) single 

nucleotide polymorphism (SNP). Total RNA was extracted using a TRIzol chloroform 

extraction protocol and reverse transcribed with Omniscript (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions. 208bp of the Avp transcript 

containing the SNP at position C(40)T were amplified by PCR in 40 identical cycles 

of denaturation at 94°C for 1min, annealing at 56°C for 1min and elongation at 72°C 

for 1min using Taq polymerase (Fermentas, St. Leon-Roth, Germany) and 5’ 

gagcagagcctgagctgcacacagt 3’ as forward and 5’ agcagatgcttggtccgaagcacg 3’ as 

reverse primers (MWG Biotech, Ebersberg, München). Amplified fragments were 

ligated into a vector and transfected into competent Escherichia coli cells that were 

grown overnight as described above.  

From each agar plate, 25 colonies with proper insert (according to white/blue 

selection) were picked and sequenced. The specific alleles from each transcript 

were determined by the C(40)T polymorphism.  

 

2.4. Association and linkage of SNPs with behavioral parameters 

For the F2 panel, statistical analysis was performed using WG-Permer 

(www.mpipsykl.mpg.de/wg-permer). Trait values were rank-transformed to protect 

against artifacts. Analysis was done using a genotypic model, i.e. the three 

genotypic classes possible for each of the phenotypes were treated as a separate 

class each and global test on equality of the three means was performed.  

 

2.5. Statistical data analysis  

All data, except for data from high throughput gene expression profiling and 

genotyping were analyzed using SPSS Ver. 16.0.1 (Chicago, IL), applying the 
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Kruskal-Wallis test (KWH) for comparisons over more then two groups with 

subsequent Mann-Whitney tests (MWU) and sequential Bonferroni correction for 

multiple testing, if applicable. For allele-specific expression analysis of Avp, Χ2 test 

was applied (Preacher, 2001: Calculation for the chi-square test: An interactive 

calculation tool for chi-square tests of goodness of fit and independence [Computer 

software], available from http://www.quantpsy.org). 
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3. Results 

 

3.1. The HAB phenotype reversal by selective breeding 

Continuous breeding of rHAB mice towards a less anxious phenotype resulted in 

elevated group means for the percentage of time that these mice spent on the open 

arms of the EPM (less anxiety) although this effect was only significant for rHAB 

males (MWU: p = 0.04), not for females (MWU: p = 0.14; Fig. 10A). For females, 

only the number of full open arm entries was elevated significantly (MWU: p = 0.04; 

Fig. 10B), whereas for males in addition to the percentage of time, the latency time 

to the first entry was decreased (MWU: p = 0.03; Fig. 10C). There was no significant 

difference in body weight or any parameter assessing locomotion on the EPM, 

independent of gender. In the TST, no significant difference could be observed in 

any parameter (Fig. 10D and E). 

 

3.2. Identification of candidate genes 

 

3.2.1. Animals and behavioral tests 

At any time, HAB and LAB mice displayed the trait-specific differences, in the EPM 

and TST irrespective of gender. HAB and LAB mice never displayed significant 

differences concerning body weight or locomotion on the EPM. CD1 and NAB 

showed elevated body weight in comparison to HAB and LAB mice (data not shown, 

example for CD1 in Fig. 11F).  

For the MPI24K platform-based gene expression analyses, HAB and LAB mice were 

used that displayed significant differences regarding the percentaged time spent on 

the open arms of the EPM (MWU: p =  3.95x10-3; Fig. 11A) and in the total test time 

spent immobile in the TST (MWU: p = 3.88x10-3; Fig. 11B).  

HAB, NAB and LAB mice used for the Illumina-based gene expression profiling 

displayed significant differences in the time spent on the open arms of the EPM 

(KWH: p = 8.80x10-5; MWU: HAB and NAB vs. LAB p = 3.58x10-3; HAB vs. NAB p = 

1.75x10-3; Fig. 11C).  

HAB and NAB vs. LAB mice also showed significant differences in the total time 

spent immobile in the TST (KWH: p = 6.65x10-4; MWU: HAB and NAB vs. LAB p = 

3.55x10-3; HAB vs. NAB p = 0.84; Fig 11D). Only HAB and LAB vs. NAB mice 

showed significant differences regarding body weight (KWH: p = 3.45x10-3; MWU: 

HAB vs. NAB: 9.62x10-3; LAB vs. NAB p = 0.01; HAB vs. LAB p = 0.46) with a mean 

difference of 3.52g, with NAB mice having an increased body weight at the age of 

seven weeks. NAB mice also exhibited increased locomotion compared to both HAB 
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and LAB mice, as reflected by the number of closed arm entries on the EPM (data 

not shown). 

 

 

Figure 10: Behavioral assessment of reversed HAB (rHAB – in B-E: black) mice vs. HAB (in 
B-E: white) mice with (A) the development of the percentaged time spent on the open arms 
of the elevated plus-maze (EPM) in rHAB mice in the course of breeding generations; (B) 
number of full open arm entries on the EPM for rHAB females; (C) latency time of rHAB 
males to their first open arm entry; The depression-like behavior of rHAB vs. HAB males as 
measured by the (D) total immobility time in the tail suspension test and (E) the latency to 
the first immobility. Statistical significance calculated against parental generation HAB mice. 
Data are displayed as means ± SEM in (A) and + SEM in (B-E); * p < 0.05. 

 

Similarly, in female HAB, CD1 and LAB and male HAB, NAB and LAB mice the 

differences for the percentaged time spent on the open arms of the EPM were highly 

significant in females (KWH: p = 1.73x10-4; MWU: HAB vs. LAB p = 2.39x10-3; HAB 
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vs. CD1 p = 2.33x10-3; CD1 vs. LAB p = 0.02; Fig. 11E). CD1 mice showed 

significantly increased locomotion and body weight compared to HAB and LAB mice 

(data not shown, body weight in Fig. 11F).  

 

 

Figure 11: Behavioral assessment of mice used for gene expression profiling. (A-B) Male 
mice used in the MPI24K-based gene expression analyses; (C-D) male mice used in the 
Illumina platform-based gene expression profiling; (E-F) Female and (G-H) male mice used 
for validation via qPCR. (A, C, E, G) The mice‘s anxiety-related behavior as assessed by the 
time they spent on the open arms of the elevated plus-maze and (B, D, H) their depression-
like behavior as reflected by the total immobility time in the tail suspension test. (F) Displays 
the body weight of female mice aged seven weeks. Data are displayed as means + SEM; * p 
< 0.05; ** p <0.01; *** p < 0.001. 

 

3.2.2. Gene expression profiling on the MPI24K platform 
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3.2.2.1. Tissue dissection 

Micropunching of brain tissue achieved an accuracy of 0.1-0.2mm deviation in any 

direction relative to the expected coordinates as described in the Mouse Brain Atlas 

(Fig. 12).  

 

 

Figure 12: Brain regions acquired by micropuncture from 200µm slices. The (A) cingulate 
cortex (Cg) and nucleus accumbens (NAc) from both sides, (B) paraventricular nucleus 
(PVN) and supraoptic nuclei (SON), (C) central (CeA), (D) basolateral/lateral (BLA/LA) and 
medial amygdala (MeA).  

 

3.2.2.2. RNA amplification 

Amplification of pooled total RNA samples yielded 50-100µg of aRNA. The agarose 

gels revealed similar fragment sizes of aRNA mainly ranging from 500 to 1,500bp in 

size (Fig. 13).  

CeA 

NAc 

Cg 

MeA 

BLA/LA 

SON 

PVN 
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Figure 13: Amplified RNA samples from different brain regions including the supraoptic 
nuclei (S), basolateral/lateral (B), central amygdala (Z), cingulate cortex (C), medial 
amygdala (M) and nucleus accumbens (A).  

 

3.2.2.3. Differential expression data 

The gene expression analyses based on the MPI24K platform resulted in the 

identification of 30 to 450 genes per brain region that were significantly (p < 0.05) 

differentially regulated between HAB and LAB mice. If the threshold was set to 

detect genes potentially regulated (p < 0.1), seven transcripts were identified to be 

regulated in all analyzed brain regions, two genes in only six, 23 in five, 74 in four, 

204 in three, 545 in two and 1,651 specifically in one brain region, giving a total of 

2,507 differentially expressed sequences (excerpt of the list in supplementary table 

1). The 19 highest ranking differentially expressed sequences (according to their p-

value and number of brain regions, they were found to be differentially expressed in) 

were selected for further investigation. Additionally, three neuropeptide coding 

genes were further analyzed that were differentially expressed in at least two brain 

regions and one gene was extremely differentially expressed (14-fold expression 

difference in the BLA/LA; Table 11). 

Table 11: Gene transcripts selected for further investigation including their fold regulation, 
the respective p-value and the brain regions, where they were identified. Negative fold 
regulation values refer to an increased expression in LAB compared to HAB mice, whereas 
positive values to an increased expression in HAB compared to LAB mice. Cytochrome c 
oxidase subunits are summarized, as some subunits were higher expressed in HAB and 
others in LAB mice in at least two brain regions.   
 

Fold 
regulation 

 
p-value 

 

Brain 
regions 

Gene symbol Gene name 

-8.81 2.00x10
-4

 BLA/LA Ttr transthyretin 

-3.47 5.86x10
-3

 all Slc25a17 solute carrier family 25, member 17 

-2.26 0.02 all \MeA Ctsb cathepsin B 

-2.26 0.02 all \MeA Mmp15 matrix metallopeptidase 15 
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Fold 
regulation 

 
p-value 

 

Brain 
regions 

Gene symbol Gene name 

-2.00 0.01 all Zfp672 zinc finger protein 672 

-1.89 0.02 all Glo1 glyoxalase 1 

-1.88 0.01 all 5230400G24Rik RIKEN cDNA 5230400G24 gene 

-1.71 0.02 
all  

\BLA/LA 
and SON 

Coro7 coronin 7 

-1.66 0.02 
all 

\BLA/LA  
and SON 

Ccdc104 coiled-coil domain containing 104 

-1.56 0.03 
all 

\BLA/LA 
and SON 

Ep400 E1A binding protein p400 

-1.53 0.01 

Cg 
MeA 
NAc 
PVN 

Mt1 metallothionein 1 

-1.44 0.10 CeA Npy neuropeptide Y 

-1.42 0.03 

BLA/LA 
MeA 
PVN 
SON 

Tac1 tachykinin 1 

1.74 0.02 all \CeA Hmgn3 
high mobility group nucleosomal 
binding domain 3 

1.80 0.05 
PVN 
SON 

Avp arginine vasopressin 

4.36 2.28x10
-3

 all Rab6 
RAB6, member RAS oncogene 
family 

1.72 
or 

-1.50 
0.03 all 

Cox6b 
Cox6c 
Cox7b 
Cox8a 
Cox17 

cytochrome c oxidase, subunit VIb1 
cytochrome c oxidase, subunit VIc 
cytochrome c oxidase, subunit VIIb 
cytochrome c oxidase, subunit VIIIa 
cytochrome c oxidase, subunit XVII 

 

 

3.2.3. Gene expression profiling on the Illumina platform 

3.2.3.1. Tissue laser-microdissection 

Laser-microdissection of brain tissue delivered much more accurate results 

compared to micropuncture (Fig. 12), as the outline of each brain region could be 

well adapted due to the staining of brain slices (Fig. 14) 
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Figure 14: Brain regions acquired by laser-microdissection with the (A) cingulate cortex 
(Cg), (B) dentate gyrus (DG), hypothalamic paraventricular nucleus (PVN) and supraoptic 
nucleus (SON) and (C) central (CeA) and basolateral amygdala (BLA).  

 

3.2.3.2. Total RNA isolation and amplification 

RNA isolation from the laser-microdissected tissue yielded in average 580ng of total 

RNA, with the highest amounts isolated from the BLA (ø = 1,574ng) and the lowest 

from the SON (ø = 92ng). After individual amplification of all samples, only one 

sample from the SON yielded enough aRNA to process it on the microarray for gene 



 
Results 

63 

expression profiling. Therefore, all samples from the SON were excluded from 

further processing. Some more samples were excluded from a variety of brain 

regions based on the agarose gel picture of the samples (Fig. 15). 

 

Figure 15: Color inverted agarose gel pictures of all aRNA samples with the respective 
number of samples per line from the (A) basolateral (BLA), (B) central amygdala (CeA), (C) 
cingulate cortex (Cg), (D) dentate gyrus (DG) and (E) hypothalamic paraventricular nucleus 
(PVN). White arrows indicate samples excluded from further processing. 

 

 

 

 



 
Results 

64 

3.2.3.3. Differential expression data 

 

In the second gene expression analysis experiment based on the Illumina platform, 

2770 transcripts were identified to be differentially expressed between HAB and LAB 

mice (excerpt of the list in supplementary table 2). For about 90% of these 

transcripts, NAB mice displayed an intermediate expression level or were 

expressing the transcripts at the same level as HAB or LAB animals. In less than 4% 

of transcripts, NAB mice showed an increased or decreased expression as 

compared to both HAB and LAB mice. Additionally, about 959 transcripts could be 

identified, where only NAB animals showed deviation from the expression levels of 

HAB and LAB mice. Out of these transcripts, 231 were found to be differentially 

regulated in all regions, 99 in only four, 125 in three, 296 in two and 2019 

specifically in only one brain region. 22 transcripts were further characterized, with 

20 found regulated in nearly all regions and a further two regulated rather less 

strong but specifically in one single brain region (Table 12).  

 

Table 12: Gene transcripts selected for further investigation identified in the Illumina 
platform-based gene expression profiling including their fold regulation (HAB vs. LAB 
column), the respective p-value and the brain regions, where they were identified. Negative 
fold regulation values refer to an increased expression in LAB compared to HAB mice, 
whereas positive values indicate an increased expression HAB compared to LAB mice. The 
last column refers to the fold regulation of HAB vs. NAB mice analogous to the first column. 
Genes identified also on the MPI24K platform are indicated in bold letters.  
 

HAB vs. 
LAB 

p-value 
Brain 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-14.15 1.33x10
-9

 all Enpp5 
ectonucleotide 
pyrophosphatase/ 
phosphodiesterase 5 

-5.05 

-12.29 4.88x10
-31

 all Ctsb cathepsin B -13.61 

-3.58 1.41x10
-7

 all Kcnh1 
potassium voltage-gated 
channel 1 

-2.59 

-2.61 1.95x10
-9

 all Glo1 glyoxalase 1 -1.69 

-2.15 4.53x10
-21

 all Apbb1 
amyloid beta (A4) precursor 
protein-binding 1 

-2.07 

-2.03 7.19x10
-12

 all Slc25a17 
solute carrier family 25, 
member 17 

-1.92 

1.34 0.02 DG Pxk 
PX domain containing 
serine/threonine kinase 

1.43 

1.34 0.09 Cg Tmem132d transmembrane protein 132D 1.00 

1.62 1.89x10
-6

 all \Cg Slc1a2 
solute carrier family 1, 
member 2 

1.57 

1.93 4.34x10
-12

 all Dgkq diacylglycerol kinase, theta 1.00 

2.05 1.52x10
-16

 all Hmgn3 
high mobility group 
nucleosomal binding  
domain 3 

2.08 

2.14 
4.38x10-

23 
all Pdhb 

pyruvate dehydrogenase 
beta 

-1.58 

2.14 4.17x10-8 all Cox6a2 cytochrome c oxidase 1.23 
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HAB vs. 
LAB 

p-value 
Brain 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

2.21 3.15x10
-12

 all Dgkh diacylglycerol kinase, eta 2.58 

2.57 1.26x10
-13

 all Abca2 
ATP-binding cassette, sub-
family A (ABC1), member 2 

1.03 

3.46 2.23x10
-19

 all Aldh3a2 
aldehyde dehydrogenase 
family 3, subfamily A2 

1.48 

3.60 1.02x10
-22

 all Gnaq 
guanine nucleotide binding 
protein 

3.72 

4.05 1.75x10
-10

 all Hbb-b1 
hemoglobin beta adult major 
chain 

3.41 

4.05 1.29x10
-37

 all Stx3 syntaxin 3 4.25 

4.54 1.23x10
-13

 all Gig1 glucocorticoid induced gene 1 1.56 

5.23 4.47x10
-6

 all 2900019G14Rik 
RIKEN cDNA 2900019G14 
gene 

2.16 

6.12 1.07x10
-9

 all Ttbk1 tau tubulin kinase 1 1.73 

 

3.2.4. Validation of results by quantitative PCR 

In whole brain material of female mice, expression differences for six genes from the 

MPI24K platform array could be confirmed (Coro7, Ctsb, Mmp15, Mt1, Slc25a17, 

and Zfp672) delivering significant results over all three mouse lines and displaying 

an overall 2-fold increased expression in LAB compared to HAB mice (Table 13). 

For two other genes (Trib2 and Mbnl1), originally tested as potential housekeeping 

genes, significant expression differences were found, too. In genes that were 

expressed region specifically, no significant differences have been observed in the 

analysis of whole brain tissue.  

 
Table 13: Gene transcripts analyzed in whole brain tissue from female mice with the relative 
(rel.) fold expression in HAB, NAB and LAB mice ±SEM, followed by the p-values of the 
Kruskal-Wallis (KWH) and Mann-Whitney tests (MWU) for HAB vs. LAB, HAB vs. NAB and 
NAB vs. LAB mice. Statistically significant results are indicated in bold letters.  
  

Gene symbol 

Rel. 
expression 

HAB 
±SEM 

Rel. 
expression 

NAB 
±SEM 

Rel. 
expression 

LAB 
±SEM 

 
 

KWH 
 
 

MWU 
HAB 
vs. 

LAB 

MWU 
HAB 
vs. 

NAB 

MWU 
NAB 
vs. 

LAB 

Ccdc104 1.00±0.16 1.06±0.19 1.05±0.12 0.77    

Coro7 1.00±0.19 1.41±0.26 1.79±0.10 0.02 0.01 0.22 0.25 

Ctsb 1.00±0.13 1.59±0.31 2.03±0.31 0.03 0.03 0.11 0.36 

Ep400 1.00±0.26 1.17±0.25 1.24±0.47 0.71    

5230400G24Rik 1.00±0.13 1.11±0.17 1.26±0.20 0.69    

Mbnl1 1.00±0.23 1.36±0.30 2.05±0.22 0.04 0.03 0.34 0.17 

Mmp15 1.00±0.27 2.03±0.45 2.34±0.36 0.03 0.03 0.10 1.00 

Mt1 1.00±0.06 2.16±0.66 1.87±0.21 0.01 
3.51 
x10

-3
 

0.11 0.30 

Npy 1.00±0.10 1.81±0.54 1.32±0.14 0.35    

Rab6 1.38±0.16 1.12±0.07 1.00±0.20 0.39    

Slc25a17 1.00±0.09 1.47±0.21 1.73±0.15 0.01 0.02 0.11 0.11 

Tac1 1.21±0.27 1.43±0.15 1.00±0.17 0.12    
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Gene symbol 

Rel. 
expression 

HAB 
±SEM 

Rel. 
expression 

NAB 
±SEM 

Rel. 
expression 

LAB 
±SEM 

 
 

KWH 
 
 

MWU 
HAB 
vs. 

LAB 

MWU 
HAB 
vs. 

NAB 

MWU 
NAB 
vs. 

LAB 

Tmem132d 1.00±0.24 1.16±0.23 1.26±0.16 0.68    

Trib2 1.00±0.27 2.57±0.45 3.06±0.49 
4.36 
x10

-3
 

0.01 0.02 0.75 

Zfp672 1.00±0.23 2.23±0.32 1.97±0.21 0.02 0.05 0.03 0.77 

 

Additionally, in whole brain material from male mice, differential expression of six 

more genes could be confirmed with remarkably high expression differences 

between HAB and LAB mice for syntaxin 3 (Stx3; 2.26-fold in LAB) ATP-binding 

cassette, sub-family A (ABC1), member 2 (Abca2; 6.16-fold in HAB) and for the 

RIKEN cDNA 2900019G14 gene (2900019G14Rik; 15.90-fold in HAB; Tables 14 

and 15). Although differences for some transcripts reached similar tendencies as in 

the microarray experiment, the differences did not reach statistical significance.  

 

Table 14: Gene transcripts analyzed in whole brain tissue from male mice with the relative 
(rel.) fold expression in HAB, NAB and LAB mice ±SEM, followed by the p-values of the 
Kruskal-Wallis (KWH) and Mann-Whitney tests (MWU) for HAB vs. LAB, HAB vs. NAB and 
NAB vs. LAB mice. Statistically significant results are given in bold letters.  
 

Gene symbol 

Rel. 
expression 

HAB 
±SEM 

Rel. 
expression 

NAB 
±SEM 

Rel. 
expression 

LAB 
±SEM 

 
 

KWH 
 
 

MWU 
HAB 
vs. 

LAB 

MWU 
HAB 
vs. 

NAB 

MWU 
NAB 
vs. 

LAB 

Apbb1 1.00±0.11 1.05±0.15 1.28±0.17 0.21    

Hbb-b1 1.34±0.16 1.62±0.27 1.00±0.15 0.11    

Kcnh1 1.00±0.11 1.16±0.20 1.15±0.15 0.83    

Scl1a2 1.12±0.14 1.21±0.23 1.00±0.14 0.98    

Stx3 1.00±0.31 1.34±0.07 2.26±0.27 0.01 0.08 0.09 0.01 

 
Table 15: Gene transcripts analyzed in whole brain tissue from male mice with the relative 
(rel.) fold expression in HAB and LAB mice ±SEM, followed by the p-values of the Mann-
Whitney tests (MWU) for HAB vs. LAB mice. Statistically significant results are given in bold 
letters.  

 
Gene symbol 

 

Rel. 
expression in 

HAB ±SEM 

Rel. 
expression 

in LAB ±SEM 

MWU 
HAB vs. 

LAB 

2900019G14Rik 15.90±1.70 1.00±0.09 4.48x10
-3

 

Abca2 6.16±0.80 1.00±0.22 2.70x10
-3

 

Dgkh 2.01±0.56 1.00±0.12 0.29 

Dgkq 1.61±0.59 1.00±0.18 0.36 

Enpp5 2.14±0.55 1.00±0.03 0.01 

Gig1 1.00±0.12 1.04±0.13 0.72 

Gnaq 1.00±0.21 1.15±0.31 0.67 

Hmgn3 2.08±0.39 1.00±0.16 0.03 

Pdhb 1.60±0.28 1.00±0.12 0.06 

Pxk 1.31±0.22 1.00±0.14 0.27 

Ttbk1 1.14±0.21 1.00±0.21 0.94 
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Altogether, the expression differences of twelve genes could be confirmed by qPCR 

out of the 28 transcripts analyzed irrespective of specific brain regions.  

Vasopressin (Avp) 

Investigation of the Avp transcript in the PVN and SON of female HAB, CD1 and 

LAB mice revealed reduced Avp expression in the PVN (Fig. 16A) and SON (Fig. 

16B) in LAB compared to HAB or CD1 animals (PVN KWH: p = 0.03; MWU: HAB 

vs. LAB p = 0.01, HAB vs. CD1 p = 0.20, CD1 vs. LAB p = 0.57; SON KWH: p = 

3.89x10-3; MWU: HAB and CD1 vs. LAB p = 0.01, HAB vs. CD1 p = 0.55).  

 

Figure 16: Vasopressin (Avp) expression patterns as measured by quantitative PCR in the 
(A) hypothalamic paraventricular nucleus and (B) supraoptic nucleus of female mice. Data 
are presented as means +SEM; ** p < 0.01; * p < 0.05. 
 

qPCR measurements also revealed slightly elevated concentrations of unspliced 

Avp in HAB compared to LAB that, however, failed to reach significance. Correct 

sequence of the Avp intron-specific amplificates was confirmed by sequencing (data 

not shown).  

Tachykinin 1 (Tac1) 

Not completely in line with the results from the gene expression screening, for Tac1 

transcripts a higher expression could be observed by qPCR in all female mice, but 

only the results for the basolateral/lateral amygdala and the supraoptic nucleus 

reached statistical significance (BLA/LA KWH: p = 0.03; MWU: HAB vs. LAB p = 

0.03, HAB vs. CD1 p = 0.05, CD1 vs. LAB p = 0.72; SON KWH: p = 6.16x10-3; 

MWU: HAB vs. LAB p = 0.02, HAB vs. CD1 p = 0.35, CD1 vs. LAB p = 0.02; PVN 

KWH: p = 0.07; MWU: HAB vs. LAB p = 0.06, HAB vs. CD1 p = 0.25, CD1 vs. LAB p 

= 0.37; Fig. 16).  
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Figure 17: Tachykinin 1 (Tac1) expression patterns as measured by quantitative PCR in the 
(A) basolateral/lateral amygdala, (B) supraoptic nucleus and (C) hypothalamic 
paraventricular nucleus of female mice. Data are presented as means +SEM; T p < 0.1; * p < 
0.05; ** p < 0.01. 

 

 

Figure 18: Gene expression levels of tachykinin 1 (Tac1) transcript variants (α-, β-, γ- and δ-
PPT) in female HAB, CD1 and LAB mice (eight each) in (A) the basolateral/lateral amygdala 
and (B) the hypothalamic paraventricular nucleus. Data are presented as means +SEM;  
*** p < 0.001; ** p < 0.01; * p < 0.05; T p < 0.1. 

 

 



 
Results 

69 

Also for the detailed analysis of Tac1 splicing variants, no significant differences 

could be observed in the PVN for all transcripts variants. However, in the BLA/LA all 

four known splicing variants were significantly higher expressed in HAB compared to 

CD1 and LAB mice (Fig. 18). Especially for the -PPT and -PPT fragments HAB 

animals exhibited a 10-fold increased expression compared to LAB mice. Neither for 

the SON nor for the CeA a differential expression of single transcript variants could 

be confirmed.  

Transmembrane protein 132D (Tmem132d) 

qPCR analysis further confirmed the significantly increased expression of 

Tmem132d in the cingulate cortex of HAB compared to LAB mice with CD1 animals 

displaying an intermediate expression level (KWH: p = 0.02; MWU: HAB vs. LAB p = 

0.03, HAB vs. CD1 p = 0.13; CD1 vs. LAB p = 0.14; Fig. 19).  

 

 

Figure 19: Gene expression levels of the transmembrane protein 132D gene (Tmem132d) 
as confirmed in tissue punches from the cingulate cortex of female HAB, CD1 and LAB mice. 
Data are presented as means +SEM; * p < 0.05. 

 

Transthyretin (Ttr) 

Gene expression analysis of Ttr by qPCR failed to reveal any differences in the 

BLA/LA between HAB and LAB mice. Although there were two LAB mice that 

expressed the Ttr transcript in excess, in other mice of the LAB group expression 

levels were under the detection threshold (data not shown).   

 

3.2.5. Effects of selected candidate genes 

Further investigation of candidate gene-related phenomena revealed new and 

significant physiological differences between HAB and LAB mice.  
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3.2.5.1. Glyoxalase I (GLO1) and metabolic stimulation 

 

3.2.5.1.1. Metabolism and blood plasma parameters 

Measurement of food intake over six days in single housed HAB, CD1 and LAB 

mice demonstrated significantly elevated food intake by 25% in LAB mice compared 

to both, HAB and CD1 animals (KWH: p = 2.28x10-3; MWU: HAB vs. LAB p = 

7.49x10-3, HAB vs. CD1 p = 0.56, CD1 vs. LAB p =  9.31x10-3 ; Fig. 20). However, 

no significant differences between HAB and LAB mice could be observed, when 

tested for blood plasma concentrations of lactate, triglycerides, cholesterol, HDL and 

LDL.  

 

Figure 20: Food consumption of male HAB, CD1 and LAB mice per day and per gram of 
body weight. Data are presented as means +SEM; ** p < 0.01. 

 

3.2.5.1.2. Behavioral manipulation by metabolic stimulation 

Control measurements conducted throughout the complete experiment (15 weeks) 

confirmed that mice fed with 0.5M saccharose showed a significant increase in 

calorie uptake and likewise increased water consumption. Interestingly, they 

exhibited decreased food consumption. There was no significant difference 

detectable between saccharose-soaked and control mice regarding their body 

weight at any time-point of the experiment (Fig. 21).  

As a control parameter of physiological stress caused by dehydration, urine 

osmolality was assessed and revealed a significant decrease in the 0.5M 

saccharose-soaked group, with no difference in blood plasma osmolality was  

(Fig. 22). 

The first testing of treated vs. control mice on the EPM revealed a significant 

increase of the latency to first enter into the open arm (KWH: p = 0.03; Fig. 23 C) 

combined with a decrease in the total time spent on the open arms (KWH: p = 0.09; 

Fig. 23 B).  
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Treated mice also exhibited a decrease in the percentaged time spent on the open 

arms, but the difference for this parameter failed to reach significance (∆ = 9%; 

KWH: p = 0.12; Fig. 23A). The second EPM test showed similar results with only the 

latency still being slightly reduced in treated mice (KWH: p = 0.08; Fig. 23D, E). 

Locomotion did not differ between the treated and control group as measured by the 

total distance traveled in the OF (Fig. 23F). 

 

Figure 21: Body weight and metabolic indicators of CD1 mice drinking 0.5M saccharose and 
controls in the experimental time course. (A) The animals’ body weight at different 
experimental stages and their corresponding age in weeks. (B) Daily water consumption of 
the mice at all stages and (C) the calculated daily total calorie uptake. Data are presented as 
means +SEM; *** p < 0.001; ** p < 0.01; * p < 0.05. 



 
Results 

72 

 

 

Figure 22: (A) Urine and (B) blood plasma osmolality in CD1 mice soaked with 0.5M 
saccharose (aq) vs. controls. Data are presented as means +SEM; ** p < 0.01. 
 

 
Figure 23: Assessment of anxiety-related behavior and locomotion in CD1 mice soaked with 
0.5M saccharose (aq). (A) Anxiety-related behavior as reflected by the percentaged time 
spent on the open arms of the elevated plus-maze (EPM), mice tested for the first time; (B) 
Total time spent the open arms of the EPM in mice tested for the first time; (C) Latency time 
to first enter one open arm of the EPM in mice tested for the first time; (D) Percentaged time 
spent on the open arms of the EPM, mice tested for the second time; (E) Latency time to first 
enter one open arm of the EPM in mice tested for the second time; (F) Total distance 
traveled in the open field as a measure of locomotion. Data are presented as means +SEM; 
* p < 0.05; T p < 0.10. 
 

 

3.2.5.1.3. Western Blot analysis of glyoxalase 1 (GLO1) 

The first time point of GLO1 measurement from red blood cells pointed to a 

decreased expression in the 0.5M saccharose-treated group, failing to show 

statistical significance but still reaching a trend four weeks after the start of 

treatment (MWU: p = 0.08; Fig. 24A). Interestingly, an effect in the other direction 

(i.e. an increase in the treated group) was observed in red blood cell extracts taken 

nine weeks after treatment’s start (MWU: p = 0.09; Fig. 24B).  
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Figure 24: Measurement of glyoxalase I protein from red blood cells by Western Blot of CD1 
mice soaked with 0.5M saccharose (aq) (A) from five animals after four weeks of elevated 
calorie uptake and (B) of ten mice per group after nine weeks of elevated calorie uptake. 
Data are presented as means +SEM; T p < 0.10. 

 

3.2.5.2. Tachykinin 1 (Tac1) encoded peptides 

All measured values for NKB were below the detection limit, but all other peptides 

could be quantified by ELISA. No significant differences in peptide levels could be 

identified between HAB, CD1 and LAB mice, neither in the BLA/LA nor in the PVN. 

The quantity of substances ranged from 100-1,600fmol with the lowest 

concentrations measured for NPK and the highest for SP. While, in the 

basolateral/lateral amygdale, SP exhibited the highest level of all peptides ranging 

from 1,000 to 1,600fmol and all other peptides were present below a level of 

500fmol, in the PVN NPγ also reached concentrations of approximately 800 to 

1,200fmol for all tested mouse lines. Another interesting result is that in contrast to 

the BLA/LA, where NKA was found at a level between 200 and 800fmol and NPK 

only at 100fmol, this proportion was inverted for these two peptides in the PVN (data 

not shown).  

 
3.2.5.3. Cytochrome c oxidase (COX) activity 

Assessing the enzyme activity of the cytochrome c oxidase, significant differences 

were identified in the BLA and CeA, where HAB displayed increased enzyme activity 

compared to LAB mice (BLA and CeA MWU: p = 0.02; Fig. 25A, B). A similar 

tendency was observed for the shell of the NAc (MWU: p = 0.07; Fig. 25C), whereas 

a decreased activity of cytochrome c oxidase was observed in HAB compared to 

LAB animals in the PVN (MWU: p = 0.04; Fig. 25D). No difference in enzyme activity 

was detected in the Cg, the complete NAc or hippocampal regions between HAB 

and LAB mice.  



 
Results 

74 

 

Figure 25: Measurement of cytochrome c oxidase activity in diverse brains regions of HAB 
and LAB mice in the (A) basolateral amygdala, (B) central amygdala, (C) shell of the nucleus 
accumbens and (D) hypothalamic paraventricular nucleus. Data are presented as means 
+SEM; * p < 0.05; T p < 0.10. 

 

3.3. Identification of polymorphisms 

 

3.3.1. Prescreening  

Prescreening on the Illumina Mouse Medium Density Linkage Panel resulted in the 

identification of 235 individual SNPs (Table 4, SNPs with the source code ‘1’) that 

were found to display opposite homozygous genotypes in HAB vs. LAB mice (i.e. if 

all HAB mice showed the genotype ‘AA’, all LAB mice displayed the genotype ‘BB’). 

In detail, 301 autosomal SNPs were identified as having homozygous state in both 

HAB and LAB animals, but showing an inconsistent state in LAB mice (most SNPs 

with the same homozygous genotype in LABs, but some showing the opposite 

genotype). Therefore, when focusing on LAB mice, two well-defined subgroups 

could be identified, where one subgroup carried the opposite homozygous genotype 

to HAB mice at 275 loci and the other one at 277. If referred to one of the LAB 

subgroups, they are termed LAB-A and LAB-B mice. The genotypic difference 

between the two LAB mouse subgroups included 76 SNPs that left a total of 225 

autosomal SNPs as useful markers differing between the HAB and the complete 

LAB group (Fig. 26A; made up of both subgroups). Additionally, 20 HABxLAB F1 

intercross animals also consistently showed a strictly heterozygous genotype for the 

225 autosomal SNPs, identified in HAB vs. LAB animals. Results for X-

chromosomal markers were analogous.  
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Further 41 SNPs were identified, where some animals were either hetero- or 

homozygous, without displaying any consistency between lines or families within 

these lines. In average, all mice carried about ten SNPs (of the above mentioned 

41) heterozygously, displaying no significant difference between the mouse lines 

(Fig. 26). 30 SNPs were excluded from the analysis as they displayed fluorescence 

rates below the threshold, over which they can be reassigned reliably (call rate).  

 

 

Figure 26: Characterization of HAB and LAB mice based on the screening for 1449 single 
nucleotide polymorphisms (SNPs). (A) The number of SNPs detected as exclusively 
opposite homozygous between HAB and LAB mice. The dashed line indicates the total 
number of SNPs, bars show the number of SNPs for comparisons of HAB mice versus both 
LAB subgroups (LAB-A and LAB-B) and between the two LAB subgroups only. (B) The total 
number of heterozygous SNP loci detected in individual HAB and LAB mice. Data are 
presented as means +SEM. 
 

 

3.3.2. Screening of the F2 panel 

For 26 SNPs, genotypes could not be reassigned as they displayed low call rates. 

Thereof 13 SNPs were identified in the prescreening experiment (gnf05.084.686, 

CEL-7_5627457, CEL-5_87173557, rs13482712, rs13481706, rs13481161, 

rs13480092, rs13476503, rs3664408, rs3688351, rs3692362, rs4232449, 

rs6239023), 13 further loci were added to this genotyping-assay (rs30263474, 

rs3022996, rs30228387, rs29327697, rs26888739, rs13480933, rs32005588, 

rs31193418, rs31983176, rs32034601, rs32900718, rs33319598, rs29469152).  

From the added SNPs to this genotyping-assay (not included in the prescreening 

experiment), 35 loci delivered genotypes bearing with informative value, i.e. they 

were showing opposite homozygous genotypes in HAB vs. LAB mice. This includes 

two SNPs that were identified to be typical for LAB-A mice only. In F2 mice, the 

distribution of genotypes was not deviating significantly from the expected 1:2:1 ratio 

for any allele.  

Additionally, an X-chromosomal-like distribution of alleles was observed for eleven 

SNPs (rs6221690, rs6182892, rs3697198, rs13484043, rs13484004, rs13483997, 
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rs13483894, rs13483765, gnfX.148.995, gnfX.080.189, gnfX.026.801). Examination 

of their actual genomic position confirmed this hypothesis.  

All independent control samples (one HAB and LAB sample each, run once each on 

every plate), delivered concordant results throughout all assays. 12 control samples 

from plates 1-6 run on the 8th plate also delivered the same genotypes as before. 

Altogether, only 89 SNPs showed no informative value concerning the F2 panel, 

leaving a total of 267 SNPs as valid and stable markers. 

Additionally, all HAB and LAB animals could be reassigned to their line based on the 

distribution of genotypes, also confirming the results of genotyping from the pre-

screening experiment.  

 

3.3.3. Genotype frequencies in wildtype CD-1 mice 

In contrast to HAB, LAB, F1 and F2 mice, only for 46 loci no variation was 

detectable at all. For 21 SNPs, the minor allele had a frequency under 10%, for 130 

SNPs (42% of all SNPs showing variations) allele frequencies were between 35 and 

65%. Significant deviation from Hardy-Weinberg equilibrium was obtained for 13 

SNPs in CD1 animals. For 42 SNPs, sequence variation was unique to CD1, but not 

for any HAB and LAB or HABxLAB F1 intercross mouse. Not one single SNP was 

detected, where any HAB or LAB breeding-derived animal showed a new variation 

that has not been found in unselected CD1 mice.  

 

3.3.4. Sequencing of candidate genes 

To investigate whether differences in gene expression originated from differences in 

the sequences of HAB-and LAB-specific alleles, differentially expressed genes were 

sequenced. In about 50% of genes sequenced, variations between HAB and LAB 

mice were found in and around the gene loci.  

 

3.3.4.1. Vasopressin (Avp) 

Sequencing of the Avp gene resulted in the identification of nine polymorphic sites, 

of which eight correspond to SNPs and one comprises a 12bp deletion (Fig. 27).  

The upstream promoter region contains two SNPs: T(-2521)C with HABs carrying 

thymine and LABs cytosine and C(-1422)T with HABs carrying cytosine and LABs 

thymine. Furthermore, LAB mice miss a 12bp segment mapping to ∆(-2180-2191). 

The gene-coding locus contains three SNPs: position C(40)T with HABs carrying 

cytosine and LABs thymine, A(1431)G with HABs carrying adenine and LABs 

guanine, and T(1527)C with HABs carrying thymine and LABs cytosine. The 

downstream enhancer region, also referred to as intergenic region between Avp and 
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Oxt, contains three SNPs: A(+399)G with HABs carrying adenine and LABs 

guanine, T(+476)G with HABs carrying thymine and LABs guanine, and C(+2444)A 

with HABs carrying cytosine and LABs adenine.  

 

Figure 27: Vasopressin (Avp) gene sequence of HAB vs. LAB mice. Polymorphic sites are 
indicated with positions from transcription start (-1 to -2600bp) in the promoter region (two 
SNPs and deletion in LABs), within the Avp coding sequence from transcription start (1 to 
1944bp; three SNPs) and in the downstream enhancer region (+1 to +2600bp; three SNPs). 
Exons with untranslated regions (UTRs) are indicated by boxes (exons shaded, UTRs 
completely filled black or white). 

 

For both the C(40)T SNP and the 12bp deletion, NAB and F2 mice always showed 

the same linkage consisting of three variations: the homozygous HAB-specific 

combination of alleles (CC) at the 40 locus polymorphism, which appears always 

associated with the presence of the intact 12bp region of the promoter in both alleles 

(+/+) the homozygous LAB-specific combination (TT and -/-) or a heterozygous 

combination (CT and +/-). The most frequent genotype combination in NAB mice 

was the HAB-specific one (Table 16). 

 

Table 16: Genotype frequencies in a CD1 population (n = 165) for the SNP in the Avp signal 
peptide and the strictly linked promoter deletion. The same strict linkage was obvious in a 
freely-segregating F2 panel (HABxLAB intercross offspring, n = 508). 
 

CD1 mice F2 mice 

Locus (40) 
Genotype 
frequency 

∆∆∆∆ (-2191-
2180)    

Locus (40) 
Genotype 
frequency 

∆ ∆ ∆ ∆ (-2191-
2180)    

CC 73.30% +/+ CC 25.90% +/+ 

CT 26.10% +/- CT 51.90% +/- 

TT 0.60% -/- TT 23.20% -/- 
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3.3.4.2. Corticotropin-releasing hormone (Crh) 

No sequence variations have been identified at the Crh locus differing between HAB 

and LAB mice. Only some variations differing between HAB and LAB mice and the 

reference sequence, that was based on mice from the C57BL/6J strain could be 

identified (data not shown).  

 

3.3.4.3. Tachykinin 1 (Tac1) 

Also for the Tac1 locus, no sequence variations could be identified, that would allow 

for the discrimination of a HAB vs. LAB mouse line-specific allele.  

 

3.3.4.4. Cathepsin B (Ctsb) 

In contrast to Tac1 or Crh, many polymorphic loci were identified at the Ctsb locus. 

Altogether, 76 SNPs, eight insertions and nine deletions were found in HAB vs. LAB 

mice. The definition of insertion or deletion was made in reference to the sequence 

of the mouse strain C57BL/6J. In the promoter region, ten SNPs and two insertions 

were found. In the ten exons, eight polymorphic sites (all SNPs) were identified (Fig. 

28).  

Figure 28: Cathepsin B (Ctsb) gene sequence of HAB vs. LAB mice. Polymorphic sites are 
indicated with positions in the coding sequence from transcription start in the spliced mRNA. 
Exons and untranslated regions (UTRs) are indicated by boxes (exons shaded, UTRs 
completely filled black or white). 

 

The vast majority of variations was identified in the introns and the DER (Table 17). 

Interestingly, in the promoter about six variations are located within 230bp between -

2,269 and -2,045bp. Similar proximity of polymorphic sites was found in the third 

and fourth intron, where also within 550 and 400bp 18 and twelve variations were in 
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close neighborhood. Additionally, condensation of twelve variable sites could be 

identified in the DER (at a length of 350bp).  

 

Table 17: Variations identified in the cathepsin B (Ctsb) gene. Variation type refers to single 
nucleotide polymorphisms (SNPs), deletions or insertions, the genomic position to the 
physical position on chromosome 14, HAB and LAB to their line specific allele, location in the 
gene to the functional structure of the variation locus (downstream enhancer region: DER), 
relative (rel.) position to the Ctsb locus, position in mRNA to the spliced mRNA and SNP 
identifier to already described polymorphisms. Functional structures are indicated by 
horizontal disjunctions. 
. 

Variation 
type 

Genomic 
position 

 
 

HAB 
 

 

LAB 
Location 

in the 
gene 

Rel. 
position 

Pos. 
in 

mRNA 

SNP 
identifier 

SNP 63,739,084 C T Promoter -2,269   

SNP 63,739,124 C G Promoter -2,229   

Insertion 63,739,210 GAGA - Promoter -2,143   

SNP 63,739,257 C T Promoter -2,096   

SNP 63,739,273 C T Promoter -2,080   

SNP 63,739,308 G A Promoter -2,045   

Insertion 63,739,394 C - Promoter -1,959   

SNP 63,739,609 G A Promoter -1,744   

SNP 63,740,071 G C Promoter -1,282   

SNP 63,740,540 C A Promoter -826  rs30963834 

SNP 63,740,968 T C Promoter -398  rs30962992 

SNP 63,741,271 G T Promoter -95   

SNP 63,741,362 C T Exon 1 10 10 rs30962990 

SNP 63,741,423 A G Intron1 71  rs30962988 

SNP 63,752,252 A G Exon 2 10,900 150  

SNP 63,752,362 T C Intron 2 11,010   

SNP 63,752,540 A G Intron 2 11,188   

SNP 63,752,557 C T Intron 2 11,205  rs30973898 

SNP 63,752,683 C T Intron 2 11,331  rs16791841 

SNP 63,752,876 G A Exon 3 11,524 276 rs16791842 

SNP 63,753,119 C T Intron 3 11,767  rs16791844 

SNP 63,753,163 A G Intron 3 11,811   

SNP 63,753,224 A G Intron 3 11,872  rs30972751 

SNP 63,753,468 T C Intron 3 12,116   

SNP 63,753,529 C T Intron 3 12,177   

SNP 63,753,684 T A Intron 3 12,332   

SNP 63,753,699 C G Intron 3 12,347   

SNP 63,753,705 C T Intron 3 12,353   

Insertion 63,753,712 A - Intron 3 12,360   

SNP 63,753,733 T A Intron 3 12,381   

SNP 63,753,745 C T Intron 3 12,393   

SNP 63,753,778 C T Intron 3 12,426   

Deletion 63,753,885 - 

AATAAAT 

CTAAGAG 

AAGGATG 

AGTCACT 

Intron 3 12,533   

SNP 63,753,914 G A Intron 3 12,562   
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Variation 
type 

Genomic 
position 

 
 

HAB 
 

 

LAB 
Location 

in the 
gene 

Rel. 
position 

Pos. 
in 

mRNA 

SNP 
identifier 

SNP 63,753,930 T G Intron 3 12,578   

Deletion 63,753,945 - 
TAAAAATAA 

GCCTGAAG 
Intron 3 12,593   

SNP 63,754,102 A G Intron 3 12,750   

SNP 63,754,112 C A Intron 3 12,760   

Deletion 63,754,125 - GGAA Intron 3 12,773   

Insertion 63,754,163 ACA - Intron 3 12,811   

SNP 63,754,221 T C Intron 3 12,869   

SNP 63,754,227 C T Intron 3 12,875  rs30972744 

SNP 63,754,228 G A Intron 3 12,876   

SNP 63,754,279 C T Intron 3 12,927  rs30971633 

SNP 63,754,724 G A Intron 4 13,372   

Deletion 63,754,741 - G Intron 4 13,389   

SNP 63,754,763 T C Intron 4 13,411   

SNP 63,754,764 G C Intron 4 13,412   

SNP 63,754,866 A G Intron 4 13,514   

SNP 63,754,907 A C Intron 4 13,555   

SNP 63,754,931 A T Intron 4 13,579   

SNP 63,754,948 C T Intron 4 13,596  rs30971631 

SNP 63,755,037 C T Intron 4 13,685   

SNP 63,755,050 C G Intron 4 13,698   

SNP 63,755,110 C G Intron 4 13,758   

SNP 63,755,122 C A Intron 4 13,770  rs30971628 

SNP 63,755,186 C T Intron 4 13,834   

SNP 63,755,315 A G Exon 5 13,963 474 rs13462712 

SNP 63,755,474 G A Intron 5 14,122   

Deletion 63,755,498 - T Intron 5 14,146   

SNP 63,755,500 G T Intron 5 14,148   

Deletion 63,756,855 - AA Intron 5 15,503   

SNP 63,757,503 T C Intron 7 16,151   

SNP 63,758,010 A G Intron 8 16,658   

SNP 63,760,454 G A Intron 8 19,102  rs30969648 

SNP 63,760,495 G A Intron 8 19,143  rs30969646 

Insertion 63,760,849 
CACATGG 

TTTTGTAG 

ACAGTTCC 

- Intron 9 19,497   

SNP 63,761,222 C T Exon 10 19,870 1,151 rs13462709 

SNP 63,761,241 T G Exon 10 19,889 1,170  

SNP 63,761,536 C G Exon 10 20,184 1,466  

SNP 63,761,844 G T Exon 10 20,492 1,774 rs13462707 

SNP 63,762,117 C G DER +144   

SNP 63,762,512 T C DER +539   

SNP 63,762,597 A C DER +624   

SNP 63,762,653 A G DER +680  rs30967661 

SNP 63,762,668 A C DER +695   

SNP 63,762,783 T A DER +810  rs30967657 

SNP 63,763,038 C A DER +1,065   
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Variation 
type 

Genomic 
position 

 
 

HAB 
 

 

LAB 
Location 

in the 
gene 

Rel. 
position 

Pos. 
in 

mRNA 

SNP 
identifier 

SNP 63,763,124 C T DER +1,151  rs30967655 

SNP 63,763,140 C T DER +1,167  rs30966673 

Insertion 63,763,172 CA - DER +1,199   

Deletion 63,763,184 - TC DER +1,211   

SNP 63,763,230 A C DER +1,257   

Deletion 63,763,303 - TTA DER +1,330   

SNP 63,763,356 C T DER +1,383   

Insertion 63,763,385 CC - DER +1,412   

Deletion 63,763,400 - GTTT DER +1,427   

SNP 63,763,441 C G DER +1,468   

SNP 63,763,452 A C DER +1,479   

SNP 63,763,470 A G DER +1,497   

SNP 63,763,474 A G DER +1,501   

Insertion 63,763,662 ATA - DER +1,689   

SNP 63,763,715 A G DER +1,742   

 

3.3.4.5. Metallothionein 1 (Mt1) 

Comparison of the HAB and LAB mouse sequences at the Mt1 locus failed to reveal 

any differences. 

 

3.3.4.6. Transmembrane protein 132D (Tmem132d) 

By sequencing Tmem132d, several polymorphic loci could be identified, among 

them, two SNPs in the promoter of the gene at positions A(-519)G and A(-310)G.  

 
Figure 29: Transmembrane protein 132D (Tmem132d) gene sequence of HAB vs. LAB 
mice. Polymorphic sites are indicated with minus sign for promoter positions in bp, with 
positions in the coding sequence from transcription start in the spliced mRNA (in bp) or with 
chromosomal positions for single nucleotide polymorphisms in introns (in bp). Exons and 
untranslated regions (UTRs) are indicated by boxes (exons shaded, UTRs completely filled 
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black or white). Unfilled circles with numbers ‘1’ and ‘2’ refer to two deletions in HAB mice. 
For ‘1’ at position 128,577,978bp (deletion of CAAA) and ‘2’ at position 128,577,906 
(deletion of ACA).  

 

Four further SNPs were identified located in exons, with C(470)T and C(573)T in the 

untranslated region and A(1,747)G in exon 3 (also known as rs36596918) and 

A(3,164)G in exon 9 (rs13478518) as part of the protein coding sequence. 

Furthermore, three SNPs and 2 deletions were discovered in introns, among them 

C(128,616,797)T (rs13478520), A(128,577,729)T, ∆(128,577,906-128,577,903) 

and ∆(128,577,978-128,577,974) in the third and T(128,344,853)A in the fifth intron 

(Fig. 29). 

 

3.3.4.7. Further sequencing results 

2900019G14Rik amplificates from qPCR were also sequenced, as qPCR resulted in 

well detectable products. All products showed slightly shifted melting peaks, when 

analyzing the melting curves, with HAB animals dispalying a slightly decreased 

melting peak temperature. Sequencing of the 137bp-sized amplificate resulted in the 

identification of two SNPs, C(90)A and C(110)T (positions relative to the amplicon’s 

sequence; Fig. 30).  

 

AGAGTATTTC     TCGTTCTCAT GTGACCTGAG TGAAGAACTT     AACCTAGAAA 

CCCCTGTACT     CATTATTGTT TGCAAATCTC TGAGTCCAG[C/A] ACCTTTGTAA 

ATACAGCCC[C/T] GAGGAGGAAT GGGGGTGAAT GTGTTTA 

 
Figure 30: Sequence of the RIKEN cDNA 2900019G14 gene amplificate generated by 
quantitative PCR.  

 

3.3.5. The effects of polymorphisms  

Analysis of the identified SNPs of sequenced genes in the coding sequence 

revealed that most SNPs in Ctsb, Tmem132d and Avp were synonymous mutations 

at the third (degenerate) codon. The only exceptions to that are C(40)T and 

G(1747)A. Whereas C(40)T is located in the coding sequence of the AVP signal 

peptide, resulting in the change of the amino acid residue from alanine to valine and 

G(1747)A in Tmem132d causing the substitution of an arginine residue by lysine.  

A detailed in silico search for potential transcription factor binding sites at the 

polymorphic loci at the Avp locus led to the identification of a number of candidates 

that are summarized in Table 18. 

For the polymorphisms in Tmem132d, TGA[A/G]CT was identified as a possible 

binding site for the glucocorticoid receptor (locus refered to as glucocorticoid 

response element – GRE). The mentioned polymorphism is the A(-310)G, with LAB 
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animals carrying the A, HAB mice the G allele homozygously. Additionally, at the A(-

519)G locus, where also LAB mice carry the A and HAB animals the G allele 

homozygously, the LAB-specific sequence creates a binding site for a repressor 

(E12), whereas the HAB-specific site for a transcription factor (NF1).  

In Ctsb at position A(-2045)G a binding site for CBF1 was predicted that would 

increase binding in in LAB, but not in HAB mice. Same applies to T(-95)G, where 

binding of WT1 would be possible in LAB but only at decreased efficiency in HAB 

mice. 

 

Table 18: Polymorphisms in the promoter and downstream enhancer region of Avp between 
the HAB and LAB specific sequence, with probable binding factors.  
 

Polymorphism 1
st 

binding factor 2
nd

 binding factor Reference 

T(-2521)C NF-1 C/EBPalpha Kraus et al., 2001 

∆(-2180-2191) NF-1 C/EBPbeta Ji et al., 1999 

C(-1422)T --- --- --- 

A(+399)G c-Ets-2 C/EBPbeta 
Chakrabarty and 
Roberts, 2007 

T(+476)G AP-1 / GATA-1 --- --- 

C(+2444)A --- --- --- 

 

3.3.6. Allele-specific transcription analyses of vasopressin (Avp) 

To obtain evidence for a functional role of the polymorphisms in Avp contributing to 

different levels of expression in LAB versus HAB mice, the activity of each allele was 

studied in an F1 cross between these two lines. Under this condition, both alleles 

were contained in the same cellular background, thus eliminating differential 

synaptic input as a confounding factor. Assessing the allele-specific transcription 

rate, the LAB-specific allele displayed a significantly decreased expression relative 

to the HAB-specific one in the PVN and SON (p=1.4x10-4; Fig. 31). This is 

consistent with Avp mRNA expression data of LAB versus HAB mice (see Fig. 16).  

 

Figure 31: Proportion of HAB vs. LAB allele-specific vasopressin (Avp) transcripts from 

heterozygous F1 (HABxLAB intercross) mice in the paraventricular nucleus (PVN; χ²=14.4) 

and the supraoptic nucleus (SON; χ²=15.2). Data are shown as means +SEM; *** p < 0.001. 
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3.4. Association and linkage of SNPs with behavioral parameters 

To further test the functional involvement of the identified SNPs, all SNP loci from 

the Illumina experiment with the custom-designed oligo pool were associated with a 

variety of behavioral parameters (excerpt in supplementary table 3). 

Most significant and interesting results were obtained for SNPs in Enoph1, 

Tmem132d, Zfp672, near methionine sulfoxide reductase B2 (Msrb2), in Avp and 

hornerin (Hrnr).  

For Enoph1, SNPs in a total of 514 male mice, 111 animals were identified as 

carrying the HAB-typical SNPs rs13460000 and rs13460001 (GG and CC), 116 

animals the LAB-typical AA and TT, and 287 animals the heterozygous AG and CT 

genotypes. If these SNPs impact on anxiety-related behavior, homozygous GG and 

CC F2 animals should behave more anxious than their AA and TT counterparts. 

Indeed, a co-segregation could be detected with AA and TT mice being less anxious 

on the EPM (p = 1.05x10-6) and tending to show reduced depression-like behavior in 

the tail suspension test, although failing to reach statistical significance (p = 0.23; 

Fig. 32).  

 

Figure 32: Association between anxiety-related and depression-like behavior and enolase-
phosphatase 1 (Enoph1) genotypes in the freely-segregating F2 panel. Phenotypic indices of 
male F2 mice with HAB-specific Enoph1 genotypes GG and CC (HAB-specific homozygotes, 
N = 113), AG and CT (heterozygotes, N = 292), or AA and TT (LAB-specific homozygotes, N 
= 117). (A) Percentaged time spent on the open arms of the elevated plus-maze (EPM) and 
(B) total immobility time in the tail suspension test. LAB-specific homozygotes were less 
anxious and also displayed less immobility, although failing to reach statistical significance. 
Data are presented as means +SEM; *** p < 0.001. 

 

The functional impact of Tmem132d was substantiated by the association analysis, 

where rs13478518 located in exon 9 of Tmem132d was found to be associated with 

anxiety-related behavior on the EPM (p = 9.80x10-4), with less anxious animals 

carrying the LAB-specific (i.e. GG) and more anxious ones the HAB-specific (i.e. 

AA) genotype (Fig. 33). Both depression-like behavior and locomotor activity failed 

to show an association (data not shown). 



 
Results 

85 

 

Figure 33: Association between anxiety-related behavior and the transmembrane protein 
132D (Tmem132d) genotypes in the freely-segregating F2 panel. Phenotypic indices of male 
F2 mice with LAB-specific Tmem132d genotypes GG (LAB-specific homozygotes, N = 128), 
AG (heterozygotes, N = 276) or AA (HAB-specific homozygotes, N = 118). Percentaged time 
spent on the open arms of the elevated plus-maze (EPM). LAB-specific homozygotes were 
less anxious. Data are presented as means +SEM; ** p < 0.01. 

 

Anxiety-related behavior as reflected by the percentaged time spent on the open 

arms of the EPM also delivered a significant linkage with a SNP (rs29402173) in the 

3’ UTR of Zfp672. Whereas animals bearing the HAB-specific variant (GG) 

displayed high anxiety-like behavior, mice with the LAB-specific genotype (AA) were 

less anxious (p = 1.18x10-9; Fig. 34). Also in this case locomotor activity and 

depression-like behavior did not reveal any significant differences between animals 

bearing different genotypes (data not shown). Zfp672 was identified in the 

microarray and qPCR analyses as differentially regulated between HAB and LAB 

mice.  

 

Figure 34: Association between anxiety-related behavior and the zinc finger protein 672 
(Zfp672) genotypes in the freely-segregating F2 panel. Phenotypic indices of male F2 mice 
with LAB-specific Zfp672 genotypes AA (LAB-specific homozygotes, N = 117), AG 
(heterozygotes, N = 271), or GG (HAB-specific homozygotes, N = 134). Percentaged time 
spent on the open arms of the elevated plus-maze (EPM). LAB-specific homozygotes were 
less anxious. Data are presented as means +SEM; *** p < 0.001. 

 

A polymorphism, rs13476366, near (approximately 1,500bp downstream) Msrb2, 

exhibited very high association with depression-like behavior as reflected in both, 
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the TST (p = 4.66x10-19; Fig. 35A) and the FST (p = 1.23x10-37; data not shown). F2 

mice carrying the HAB-specific (CC) genotype homozygously, spent significantly 

more time immobile or floating as their counterparts carrying TT. Interestingly, 

locomotor activity was significantly elevated in the CC carrying group by 25% 

compared to the TT carrying group (p= 3.38x10-7; data not shown). Also anxiety-

related behavior was attenuated, but in the group carrying the HAB-specific CC 

genotype (p = 3.73x10-4; Fig. 35B). This polymorphism maps to a location, where 

also another gene, Abca2, is in close neighborhood (and in the SNP screening with 

the Illumina custom designed oligo pool, this SNP was the closest to Abca2) that 

was also detected in the microarray and qPCR analysis as differentially regulated. 

 

Figure 35: Association between depression-like, anxiety-related behavior and rs13476366 
genotypes in the freely-segregating F2 panel. Phenotypic indices of male F2 mice with LAB-
specific TT genotypes (LAB-specific homozygotes, N = 121), CT (heterozygotes, N = 249), 
or CC (HAB-specific homozygotes, N = 152). (A) Total immobility time in the tail suspension 
test of F2 mice with the respective genotypes and (B) percentaged time spent on the open 
arms of the elevated plus-maze (EPM). LAB-specific homozygotes were more anxious, but 
displayed attenuated depression-like behavior. Data are presented as means +SEM; *** p < 
0.001. 

 

The Avp-related polymorphisms were also assessed in a total of 258 male mice with 

HAB grandmothers, 67 animals were identified as carrying the HAB-typical 

polymorphisms positive for the 12bp deletion and C(40)T (+/+ and CC), 49 animals 

the LAB-typical -/- and TT, and 142 animals the heterozygous +/- and CT 

genotypes. If these polymorphisms impact on anxiety-related behavior, homozygous 

-/- and TT F2 animals should behave less anxious than their +/+ and CC 

counterparts. Indeed, a co-segregation could be detected with -/- and TT mice being 

significantly less anxious on the EPM (p = 0.01; Fig. 36A). Importantly, this 

association between genetic polymorphisms and anxiety levels was independent of 

locomotor activity, as measured in the open field (Fig. 36B). In the remaining 250 F2 

male mice with LAB grandmothers no association was detectable (data not shown). 

The allele frequency in the F2 panel roughly reflects a 1:2:1 distribution (Table 16). 



 
Results 

87 

 

 

Figure 36: Association between anxiety-related behavior and the vasopressin (Avp)-related 
genotypes in the freely-segregating F2 panel. Phenotypic indices of male F2 mice with HAB 
grandmothers and Avp-related genotypes (+/+) and CC (HAB-typical homozygotes, n = 67), 
(+/-) and CT (heterozygotes, n = 142), or (-/-) and TT (LAB-typical homozygotes, n = 49). (A) 
Percentaged time spent on the open arms of the elevated plus-maze (EPM) and (B) total 
distance traveled in the open field (OF). LAB-typical homozygotes were less anxious, 
independent of locomotor activity. Data are presented as means +SEM; * p < 0.05. 

 

Genotype-phenotype association also revealed a significant linkage of a SNP 

(rs13477268) located 1,500bp downstream hornerin (Hrnr) with CORT response to 

a stressor as measured from the blood plasma. F2 mice carrying the HAB-specific 

AA genotypes displayed a strongly attenuated increase in blood plasma CORT 

concentrations, in contrast to their counterparts bearing the LAB-specific GG 

genotype (p = 1.20x10-50; Fig. 37). 

 

Figure 37: Association between corticosterone increase in blood plasma after restraint 
stress and rs13477268 genotypes in the freely-segregating F2 panel. Phenotypic indices of 
male F2 mice with LAB-specific GG genotypes (LAB-specific homozygotes, N = 128), AG 
(heterozygotes, N = 274), or AA (HAB-specific homozygotes, N = 120). Data are presented 
as means +SEM; *** p < 0.001. 
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4. Discussion 

In the present study, it has been shown that anxiety-related and depression-like 

behaviors are adequately mirrored in the HAB/LAB mouse model on a complex 

multigenic basis. A quite solid genetic background underlying the behavioral trait 

can be testified for HAB and assumed for LAB mice, as the results of the rHAB-

breeding suggests.  

Furthermore, 30 candidate genes for anxiety-related (and depression-like) behavior 

have been identified and elaborated using microarray-based gene expression 

profiling and further validation either by qPCR or by testing peptide levels, enzyme 

activity or the influence of gene products on further physiological parameters. 

Thereby, 14 gene transcripts weathered all tests as possible candidates for anxiety. 

Among them, Slc25a17, Stx3, Abca2, Avp, Zfp672, Tac1 and Ctsb exhibited the 

most convincing effects and are already described (not necessarily in connection to 

psychiatric disorders), whereas others like 2900019G14Rik or Tmem132d are not 

described at all yet.  

Although many gene products were found to be regulated in metabolic pathways, 

their regulation in the brain failed to affect the whole organism’s physiology, as – 

except for the higher amount of food consumption in LAB compared to HAB or CD1 

mice – many metabolism-related parameters in the blood plasma did not reflect any 

differences between HAB and LAB mice. Additionally, an approach to influence 

behavior by a forced enhancement of metabolism via feeding with 0.5M saccharose 

solution only showed very moderate effects on the animals’ anxiety-related 

behavior. This might be also attributed to the multifactorial nature of behavioral 

regulation.  

Basic analysis of CD1 mice revealed a predictability for SNPs based on inbred strain 

comparisons, but also showed that HAB and LAB mice have lost more than 70% of 

the variability in CD1.  

Additionally, sequencing of candidate genes mentioned above, shed light on 

variations in the genome that might influence gene expression, by either enhancing 

or repressing gene expression, affecting mRNA stability, translation efficiency or 

enzyme activity. 

Screening for variations in the DNA sequences of HAB and LAB mice that would 

allow for a causal association of single chromosomal regions with selected 

phenotypes, resulted in the identification of 267 SNPs as viable markers for this 

purpose. These associations in F2 mice revealed among others a high influence of 

regions on chromosomes 5 and 11 on anxiety-related behavior, as reflected by the 

EPM, with genes involved, that have been either characterized by qPCR before 
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(Zfp672 and Tmem132d), or were highlighted in other studies assessing qualitative 

differences (Enoph1). Further causal associations of single chromosomal regions 

were detected for depression-like behavior (chromosome 2) and the level of CORT 

increase in blood plasma in response to a stressor (chromosome 3).  

Reversing the HAB phenotype 

With the HAB and LAB mouse lines, an animal model has been established, that 

reflects anxiety-related behavior in a number of behavioral paradigms, including the 

EPM (selection criterion) and additionally depression-like behavior as reflected by 

the TST or FST (Kessler et al., 2007; Kromer et al., 2005; Landgraf et al., 2007). As 

breeding of these mice has now been performed for more than 20 generations with 

the inbreeding starting as of G8, with G28 a complete inbred status would have 

been achieved by definition. Therefore, mice of G23 were selected to serve as the 

basis of rHAB mice, to analyze, if the remaining genetic variance in HAB mice would 

still be enough to reverse the highly anxious towards a less anxious phenotype. The 

results suggest on the one hand, that still prevailing variability in HAB mice would be 

enough to shift the phenotype towards a less anxious behavioral range as reflected 

by EPM data. On the other hand, behavioral effects on the rHAB-breeding only 

reached statistical significance with the 7th generation of the reversal of the selection 

criterion and only in male but not in female mice. However, the level of anxiety was 

still in a range, which is still considered as high anxiety-related behavior, as even in 

the HAB/LAB breeding, average anxiety in HAB mice only developed below 15% 

starting at the 6th generation (Kromer et al., 2005). Also in a recently finished study 

dealing with the reproduction of the HAB/LAB lines starting from new independent 

CD1 animals, which was planned and performed as a short-term breeding, the 

mean value of the percentaged time spent on the open arms of the EPM firstly 

reached a range around 15% in the 6th and 7th generation (Salvamoser, 2008). As 

most studies dealing with short-term selective breeding consider the 4th or 5th 

generation of offspring already as individuals with fully developed phenotype 

(Belknap et al., 1997; Hitzemann et al., 2008; Palmer et al., 2005; Ponder et al., 

2007; Wilhelm et al., 2007), if the phenotype that is selected for is not significantly 

deviating from the original one, there is probably not enough variability left, to allow 

for more variability regarding that specific phenotype. Furthermore, many studies 

suggest an anxiolytic effect by raising mice under non-standard enriched 

environment (Fox et al., 2006), or an effect of more or less intensive maternal care 

on the developing mice (Weaver et al., 2006). To dissect genetic effects from effects 

mediated by maternal care, cross-fostering paradigms are usually applied, where 

pups of one mother (e.g. HAB animals) are replaced by pups of the other line 
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(Wigger et al., 2001). Both possibilities have already been investigated in HAB and 

LAB mice, with environmental enrichment causing significant decrease in anxiety-

related behavior in HAB mice (Baier and Bunck, unpublished) and cross-fostering 

only exerting minor anxiolytic effects on HAB mice with the mean still remaining in a 

HAB-typical range (Kessler et al., in preparation). Thus, while changes in anxiety-

related behavior seem to be possible by applying different approaches, HAB mice 

do not escape the frame typical of this line (0 - 15% of total test time spent on the 

open arms of the EPM; except for the enriched environment paradigm, with the 

values between 20 and 25%). 

Genotypes in HAB LAB and CD1 mice 

As the present study provided the opportunity to investigate the poorly described 

genetic background of outbred mouse strains (Chia et al., 2005), the current study 

allows for an estimation of variability in CD1 mice. As 42 SNPs were identified 

uniquely in CD1 mice, additional 31 SNPs were also identified displaying variation 

also in HAB vs. LAB mice giving a total of 73 SNPs. Given the total number of 

previously (prior to the custom-designed oligo pool genotyping) uncharacterized 

polymorphisms, 149 SNPs were included to the new assay. Hence, 49% of all 

tested genotypes showed variability in CD1 mice, in contrast to only 21% being also 

applicable to HAB vs. LAB mice. This would allow the conclusion that nearly 50% of 

all already described sequence variations in the MGD would be identifiable in CD1 

mice, whereas only about 20% would represent genotypic markers applicable to the 

HAB and LAB mouse lines. It is important to mention, that most of the currently 

known polymorphisms rely on comparisons of inbred strains (Bult et al., 2008).  

In so far, it’s not surprising that results of single gene locus sequencing suggest that 

overall variation in CD1, HAB and LAB mice would by far exceed the variation 

known from the database, as for Tmem132d, only three of ten identified SNPs were 

listed there. Similarly, for Avp only three of the eight SNPs and for Ctsb, 22 out of 76 

SNPs were listed in the MGD. Altogether, half of the SNPs known from the MGD are 

probably identifiable as variable site in CD1 mice, but approximately twice the 

number of polymorphic sites is not even described at the moment. The discrepancy 

of genotypes as identified in LAB mice that resulted in the identification of the 

genetically distinct LAB-A and LAB-B subgroups could be traced back and verified 

according to a pedigree of LAB mice (Fig. 38). The genealogy of LAB mice makes it 

obvious that offspring of all LAB animals can be tracked back to common ancestor 

in the G10. At that point, inbreeding only started two generations earlier, so genetic 

variability was still nearly unaffected. But if so, why were no HAB sublines 
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identifiable? Obviously, the HAB mouse line went through a genetic bottle neck quite 

late in G16, what also makes the smaller variability in the HAB group allegeable. 

 

Figure 38: Genealogy of HAB and LAB mice from outbred CD1 progenitors until the parental 
generation of F2 mice (G21). Each point at each generation represents one breeding pair of 
mice. 
 

 

Gene expression analyses and genotype-phenotype associations 

Many gene products were characterized in detail, as far as their confirmation of 

differential expression between HAB and LAB mice or their genetic sequence is 

concerned. For about 13 of those gene products identified in microarray gene 

expression profiling analyses, no significant difference in regulation could be verified 

in HAB vs. LAB mice using qPCR. This can be attributed to multiple causes. First of 

all, some of the identified gene transcripts might have been differentially expressed 

between the mouse lines only in that specific generation or at that specific time of 

the year. Independent observations suggest that annual seasons affect litter sizes 

even under standardized laboratory conditions, what implicates the possibility on 

other physiological parameters and especially consequences on the neurochemistry 

and neurogenetics of the brain (Chesler et al., 2002). Nevertheless, this also 

implicates, that if these changes in gene expression between the mouse lines is not 

constant over the year, or even within two distinct generations, their effect on the 
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phenotypes of interest (anxiety) is negligible. Further, some technical aspects might 

come into consideration like the non-exclusion of probes in the assay that show only 

low fluorescence values (Yauk and Berndt, 2007) has been mentioned, but also the 

selection of housekeeping genes affects the outcome of validation by qPCR 

(Coulson et al., 2008; Nygard et al., 2007). Furthermore, as the probes used for 

hybridization using the Illumina platform have a length of 50bp, polymorphisms in 

the sequence might severely impair the binding capacity of aRNA bearing SNPs. 

This might also be the reason for a measured 12-fold upregulation of Ctsb in LAB 

mice in the Illumina experiment, although only a 2-fold overexpression could be 

confirmed (Tables 11-13). 

Nevertheless, the differential expression of 15 genes could be confirmed, partially 

even independent of gender. This increases the value of the corresponding 

candidate genes for anxiety, as both, males and females of each mouse line always 

display the line-specific phenotypes. The confirmed candidate genes are: Coro7, 

Mmp15, Slc25a17, Zfp672, 2900019G14Rik, Abca2, Enpp5, Hmgn3, Pdhb, Ctsb, 

Mt1 and Stx3 as whole brain tissue is concerned, whereas Mbnl1 and Trib2 (Tables 

13-15) can be added to the list of candidate genes as based on qPCR. Tac1, 

Tmem132d and Avp (Fig. 16-19) are also part of the genes confirmed by qPCR, 

even if their differential expression is restricted to specific brain areas. This results in 

an overall reproducibility of over 50%, which seems to be acceptable.  

Coro7 

As Coro7 is concerned, this gene transcript and its protein have been shown to be 

important in brain development. Although it is present in most organs of the adult 

organism, the highest amounts can be found in the brain, kidneys, thymus and 

spleen. The protein has been identified in the cytosol and as a membrane-bound 

protein as well. Although not many studies have been dealing with this gene 

product, they suggest a function in the membrane of the Golgi apparatus and in 

vesicle trafficking (Rybakin et al., 2004; Rybakin et al., 2006). Elevated expression 

of this gene in LAB compared to HAB animals, with CD1 mice displaying an 

intermediate expression level, might contribute to differences at the behavioral level 

as well as general protein levels would be affected or their homeostatic state 

disturbed or the transport of vesicles within neurons could be more or less effective 

between the mouse lines. These effects have not been assessed in HAB and LAB 

mice yet, but would be an interesting target for further studies.  

Mmp15, Slc25a17 and 2900019G14Rik 

Mmp15 or its gene product is not well-characterized, as far as brain function is 

concerned, but it seems to bear a role in inflammation- and oncogenesis-related 
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processes (Do et al., 2006; Wang et al., 2008). Also Slc25a17 is poorly described, 

except for its function as peroxisomal ATP transporter (Visser et al., 2002), what 

makes this candidate gene interesting as a player involved in neurometabolism. For 

2900019G14Rik no description is available at all, although some connection to 

Slc1a2 might be assumed, as the physical proximity is below 10kbp (NCBI). It is 

nevertheless important to mention that this gene exhibited the highest expression 

difference that could be confirmed in HAB vs. LAB mice (16-fold). Unfortunately, the 

two polymorphisms identified in the analyzed part of the gene transcript can’t reveal 

any further insight into their functionality at this stage. 

Further investigations are required to elucidate possible effects of these four genes 

on anxiety or any other phenotypic correlate in HAB and LAB mice. 

Zfp672 

The zinc finger protein, Zfp672 is a putative transcription factor (NCBI) that has been 

identified as differentially expressed between HAB and LAB mice. What makes this 

gene even more important as a candidate gene for anxiety, is the association 

between one SNP in the 3’ UTR and anxiety-related behavior as measured on the 

EPM in F2 mice (Fig. 34). Importantly, in this case, no significant association has 

been found with locomotor activity or depression-like behavior.  

Hmgn3 

This gene was found to be 2-fold overexpressed in HAB vs. LAB mice. HMGN family 

proteins were identified to promote chromatin unfolding, to enhance accessibility of 

nucleosomes and to regulate transcription. Especially Hmgn3 was displaying a 

significant upregulation of a glycine transporter (Slc6a9 / GLYT1), a protein that 

modulates glycine concentration in the synaptic cleft. Furthermore, transcriptional 

regulation of 0.8% of all genes in a microarray experiment could be attributed to 

Hmgn3 (West et al., 2004). So, by altering this gene’s expression, the expression of 

many other gene products is changed that directly affect the capacities required for 

maintaining synaptic activity (including Slc6a9), what can have a major impact on 

shaping the behavioral phenotypes characteristic of HAB and LAB mice.  

Pdhb 

Mutations in Pdhd have been found to cause severe symptoms in humans, if they 

lead to a deficiency in that enzyme (Okajima et al., 2008). Its deficiency is especially 

severe, as the enzyme plays a vital role in alanine and aspartate metabolism, 

butanoate metabolism, in valine, leucine and isoleucine biosynthesis and in the citric 

acid cycle. Therefore, if LAB mice would show global signs of PDHB deficiency 

(gene expression or protein levels have not yet been assessed outside the brain), 

this could contribute to their elevated food consumption (Fig. 20), without leading to 
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increased body weight within this line compared to HAB mice. But this deficiency 

affects definitely the brain, so minor modifications of behavior by deficiency of amino 

acids can be expected in LAB mice, as many disorders connected with anxiety, 

hyperactivity, attention deficit or aggression are known to be in direct association 

with neurometabolic changes or deficiency (Knerr et al., 2008).  

Ctsb 

Also Ctsb is well known to play an important role to assure regular brain 

development, as neuronal loss and brain atrophy were found to be characteristic to 

Ctsb and cathepsin L (Ctsl) knockout mice. These knockout mice also exhibited 

deficiency in locomotor abilities (Felbor et al., 2002; Stahl et al., 2007), although 

behavioral alterations have never been screened in knockout mice for Ctsb only until 

now. This would make a great addition to the gene expression data obtained in this 

work, as a strongly increased expression could be verified for LAB mice, compared 

to HAB animals, with CD1 mice expressing this gene at intermediate levels. 

Furthermore a large number of genetic polymorphisms at this gene locus has been 

identified in sequencing HAB vs. LAB mice (Table 17), where the identified 

polymorphisms don’t affect protein structure, but could definitely affect either mRNA 

stability (Shabalina et al., 2006) or the recruitability of transcription enhancing or 

repressing factors.  

Mt1 

It has been demonstrated for Mt1 that neurodegenerative diseases as well as 

metabolic stress enhances its expression in perivascular regions of the cerebral 

cortex predominantly in astrocytes (Vorbrodt et al., 2006). Further experiments 

highlighted a connection of physical stress with increased Mt1 expression in a 

variety of brain regions and also increased expression has been observed upon 

subcutaneous administration of steroid hormones (Beltramini et al., 2004a; 

Beltramini et al., 2004b). High expression of Mt1 also has been proven to decrease 

the concentrations of zinc that is required to maintain efficient functioning of immune 

responses and might contribute to the effects of age-related degenerative diseases 

(Cipriano et al., 2003). According to all these indices, Mt1 might play a key role for 

the HAB/LAB mouse model, where besides the differential expression of Mt1, an 

increased stress response of CORT-release to physical stressors in LAB mice has 

been demonstrated (Keßler et al., in preparation). Most interestingly, the higher 

release of CORT in LAB mice upon a stressor could also be shown in an 

independent short-term breeding approach for trait anxiety (Salvamoser, 2008; 

Czibere, unpublished), connecting the higher stress response in LAB mice to the 

anxiety-related phenotype and excluding a co-selection of this trait or artifacts 
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related to genetic drift. Furthermore, no genetic polymorphisms have been identified 

in HAB vs. LAB mice that might underlie differential expression. Except of that, only 

epigenetic factors that affect regulation might play a role in the described expression 

differences (Majumder et al., 2006).  

Stx3 

Darios and Davletov (2006) described the importance of Stx3 that encodes a 

membrane protein required for neurite growth and neural development as an 

activator of SNARE complexes. Also arachidonic acid plays an important role for 

STX3 action, highlighting the impact of metabolism as a potential cofactor 

fundamental to neurometabolism and thereby brain function (Darios and Davletov, 

2006). In HAB vs. LAB mice expression differences in Stx3 have been identified with 

NAB mice expressing intermediate levels of that gene. Differential expression of this 

candidate gene points again to basic differences between HAB and LAB mice 

regarding neuronal function that has the potential to shape the phenotypic 

differences.  

Abca2 

Recently, a research group from Japan created a knockout mouse model for Abca2, 

showing a decrease in body weight and decreased locomotor abilities. Furthermore, 

the knockout mice displayed an increased susceptibility to environmental stress 

(Sakai et al., 2007). Especially the last point vindicates to draw parallels to LAB 

mice, as qPCR also confirmed that LAB only expressed 1/6th of the Abca2 mRNA as 

compared to HAB mice indicating a defined deficiency in LAB mice. Also, the results 

of the phenotype-genotype association in the F2 panel proved a highly significant 

association of the genomic location of Abca2 with locomotor activity that was also 

significantly associated with anxiety-related behavior, but to a lower extent (larger p-

value, absolute difference in locomotor activity difference (OF-based): 25%, 

absolute difference in anxiety-related behavior (EPM-based): 20%). In addition, F2 

mice carrying the HAB-specific genotype showed increased depression-like 

behavior spending much more time immobile in the TST and FST as their 

counterparts bearing the LAB-specific genotype. Taken together, this makes the 

genomic locus around Abca2 a valuable marker for locomotor activity as well as 

depression-like behavior, as the mice displaying increased locomotor activity were 

simultaneously displaying increased depression-like behavior. A possible role for 

other gene products in that region cannot be excluded, as the SNP (rs13476366 – a 

genomic marker for the region around it) covers a genomic region of more than 

5Mbp. Similarly strong associations might be given for any other gene locus around 

that marker which is also near Msrb2. The latter is described to possess cell-
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protective function in case of oxidative stress (Cabreiro et al., 2008). Differences 

regarding gene expression between HAB and LAB mice have also been identified in 

the microarray analyses for Msrb2 but have not been confirmed up to date.  

Enpp5 

This gene is encoding a nucleotide-metabolizing ecto-enzyme, a class of enzymes 

that is required to regulate the availability of extracellular nucleotides, thereby 

controlling the signaling through purinoceptors, like the P2X ion channels. 

Interestingly, especially one P2X ion channel, the P2RX7, has been identified by a 

number of studies as bearing polymorphic sites (SNPs) that are significantly 

associated with major depressive disorder in a large number of patients (Barden et 

al., 2006; Erhardt et al., 2007; Hejjas et al., 2008; Lucae et al., 2006). Further, in 

knockout mice it has been demonstrated that P2RX7 locates predominantly in the 

synaptic cleft that would make it interesting for neuronal transmission (Marin-Garcia 

et al., 2008). If thus a variant of Enpp5 is higher expressed in HAB compared to 

LAB, this gene becomes a major candidate gene bearing a high potential to 

contribute to the behavioral phenotype of our mice making this gene interesting for 

clinical treatment. Furthermore, the Enpp5 locus did not show any associations with 

anxiety or depression-like behavior, in contrast to the loci around P2rx7 

(Supplementary table 3). This gene is located on chromosome 5 in a region that 

also displayed highly significant association with anxiety-related behavior (p < 10-7). 

Thus, by the expression differences observed for Enpp5, the association in the F2 

panel can be directly observed as a highly significant effect on the respective 

behavior at the P2rx7 locus.  

Tac1 

As far as Tac1 expression is concerned, this study revealed quite discrepant results, 

if compared to the results of the microarray analysis. Indeed, an overexpression has 

been revealed in the PVN and BLA/LA of HAB mice (Fig. 17) that is the result of 

elevated levels of all splicing variants and especially γ-PPT in these brain regions. 

These differences were not confirmable regarding the tachykinin-derived peptides, 

but a different distribution of peptide expression patterns was revealed in the PVN 

and BLA/LA. Altogether, the discrepancies are most likely to be caused by 

differences in the sensitivity of the techniques applied. Gene expression differences 

between male and female mice for Tac1 might be explained by a sequence in its 

promoter that displays a homology of 85% to an estrogen-response element (Carter 

and Krause, 1990). Indeed, in many brain regions, among others the amygdala, 

differences for tachykinins between male and female animals were observed 

(Otsuka and Yoshioka, 1993). As the amygdala is considered essential for 
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processing emotions, whereas the PVN initiates the reaction to stressors (Herman 

and Cullinan, 1997), the expression differences of Tac1 might play a role at multiple 

levels of anxiety in males and females. As for all brain regions and genders a similar 

expression pattern of all splicing variants has been observed (Fig. 18), differential 

expression is unlikely to be caused by the increased or decreased expression of one 

single splicing variant. The cause for differential expression cannot be traced back 

to polymorphisms in the gene sequence, since at the whole Tac1 locus, no single 

polymorphic site has been identified in HAB vs. LAB mice. Alternatively, differences 

in promoter methylation could be an underlying cause of differential expression 

(Bock and Lengauer, 2008). For the quantification of tachykinin-peptides, no 

differences between the analyzed mouse lines could be detected. This might be due 

to technical reasons, as during the ELISA experiment, the measured optical density 

was highly variable within each peptide. Furthermore, even the quantified standards 

using the same amount of purified peptides showed variances that reached the 

variance reflected by inter-individual samples. Hence, even if different levels of 

peptides would be detectable, they might have been masked by the technical 

variance of the ELISA quantifying the small peptide amounts contained in brain 

tissue micropunches. Nevertheless, the result that Tac1 and its splicing variants are 

expressed at increased rates in highly vs. less anxious mice, is in one line with other 

studies, confirming the anxiogenic effect of Tac1 derived peptides and the anxiolytic 

effects of NK1 antagonist (Bilkei-Gorzo et al., 2002; Ebner and Singewald, 2006; 

Quinn et al., 2000; Saria, 1999). Importantly, NK1 antagonists have also been 

demonstrated to exert an anxiolytic effect in HAB mice (Sartori, unpublished). 

Glo1 

As revealed by all gene expression profiling assays, Glo1 was found to be 

overexpressed in all brain nuclei investigated in LAB compared to CD1 and HAB 

mice. As the overexpression in LAB mice was confirmed at peptide level using 

Western Blot analysis from the brain and even red blood cells (Kromer et al., 2005; 

Landgraf et al., 2007), confirmation of differential expression of Glo1 between the 

mouse lines by qPCR was waived. Overall effects of Glo1 overexpression in LAB 

mice were found to be negligible on lactate concentrations, as no differences could 

be detected between HAB and LAB mice. No differences could be detected between 

HAB and LAB mice regarding further metabolic parameters assessed from blood 

plasma samples. This is also important in respect to the function of the previously 

described Abca2, Pdhb, Stx3 or Enoph1.  

Interestingly, CD1 mice that were saccharose-soaked over ten weeks did not show 

any increase in body weight compared to control mice (Fig.21). This is remarkable, 
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as most studies on human health consider soft drinks as one of the main causes 

together with increased food consumption as the leading causes for increasing 

obesity in the general population, especially in adolescents (Harrington, 2008). If 

now considered together with food consumption, the effect of elevated water 

consumption (with saccharose solution) could not reach levels as expected, 

because increased water intake in those animals was accompanied by a significant 

decrease in food consumption. This is mirrored by the lower extent of total calorie 

intake compared to the clearly higher amount of water consumption. Decreased 

food intake in combination with elevated water intake, if the latter one was drugged 

with saccharose, has already been reported in other cases (Scalera and Tarozzi, 

2001). This only slight elevation of total caloric intake is probably the reason for the 

minor behavioral and molecular effects measured in the mice. The effects on 

physiology might be better mirrored by the measured osmolalities of urine and blood 

plasma. The clear effect on urine osmolality that was decreased by nearly 80% in 

the treated group was not accompanied by a decreased plasma osmolality (Fig. 22), 

so a dehydration effect that could have affected the test animals’ behavior can be 

excluded as a cause (Scalera and Tarozzi, 2001). 

Interestingly, saccharose-soaked mice were slightly more anxious as the results on 

the EPM suggested, although many parameters taken failed to show significant 

differences. Whereas the effects on anxiety-related behavior were significant in the 

first EPM test, even the latency time to the first entry onto an open arm failed to 

reach statistical significance in the second test, only reaching a statistical trend (Fig. 

23). Furthermore, a slight decrease in the percentaged time spent on the open arms 

of the EPM in both the treated and control group could be observed from the first to 

the second testing. This is not unusual, as this effect has been described for 

repeated testing on the EPM before (Stern et al., 2008).  

In line with our previous findings (Ditzen et al., 2006; Kromer et al., 2005), mice that 

were more anxious in the EPM test (saccharose-soaked mice) also displayed lower 

levels of GLO1 protein in their red blood cells after the first test (Fig. 24). In contrast 

to that, mice tested for GLO1 expression after the second EPM exhibited higher 

levels of the protein while still being anxious, what would be contrary to our findings 

and in one line with the findings published by another research group (Hovatta et al., 

2005). It is important to mention that in both cases of GLO1 measurement, the 

effects only reached a statistical trend, so in either way the effect of the saccharose 

treatment on GLO1 expression is marginal. Second, as the effects on the EPM were 

less divergent between the control and treatment group, probably first a direct effect 

of saccharose treatment was observed and by depletion of food intake a negative 
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regulation of GLO1 expression might have predominated. Longer treatment, over six 

weeks, could have elevated the protein levels and also caused the behavior to be 

less divergent between the treated and control group. Additional analysis of the 

brains of treated and control animals could reveal the causes for the difference, 

although another kind of treatment such as direct injection of methylglyoxal or a 

GLO1 inhibitor would be more promising to reveal the inducibility of this protein and 

demonstrate a behavioral effect, as there would be less enzymatic steps to be 

considered for their action (Kuhla et al., 2006; Thornalley, 2006). 

COX 

As cytochrome c oxidase activity is valid marker for long-term cellular activity and 

also mRNA expression (Christen, 2000; Simonian and Hyman, 1993), this enzyme 

activity-assessing assay revealed basal differences in long-term activity. 

Interestingly, in the PVN, HAB showed a decreased activity in comparison to LAB 

mice, whereas for both amygdala nuclei (the CeA and the BLA) HAB showed an 

increased activity compared to LAB mice. Thus, the results suggest that for the 

behavioral trait of high anxiety, a higher activity of the amygdala (i.e. for the 

processing of emotions) seems to be more important than an increased activity of 

the PVN. This is also supported by a number of other studies describing the 

amygdala as a key processor of anxiogenic stimuli and the PVN as the center to 

control the adequate stress response (Bishop et al., 2004; Bishop, 2008; Herman et 

al., 2003). Probably this holds also true for the analogous conclusion for LAB mice 

that a decreased long-term activity in the amygdala is necessary to allow for a low 

anxiety trait. On the other hand, a higher activity of the PVN in LAB mice explains 

the higher reactivity of the HPA axis in terms of higher CORT concentrations in 

response to a physical stressor, as already mentioned before. Although, generally, 

high levels of CORT response are described to be associated with high anxiety 

states (Maccari et al., 2003; Wigger et al., 2004), in HAB vs. LAB mice this seems to 

be the other way round. This finding was even replicated in a short-term breeding 

experiment (Salvamoser, 2008) and also in CD1 mice, bred for differences in CORT 

response to a stressor, mice exhibiting lower CORT reactivity tended to be more 

anxious (Touma et al., 2008). Additionally, even in the HAB/LAB rat model, a strong 

increase of CORT has been demonstrated after social defeat (strong social stressor) 

in LAB, but a less strong increase in HAB rats. This might be attributed to a more 

passive coping style in HAB animals in response to any kind of stressors (Frank et 

al., 2006). Analogously, the passive coping style of HAB mice in various tests for 

depression-like behavior might also be the reason for the observed decreased 

stress reactivity.  
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Taken together, these findings reveal that high anxiety can be accompanied by 

lower responsiveness concerning CORT release and suggest that the major effect 

on anxiety in CD1 mice is probably exerted by mechanisms largely independent of 

HPA axis function or the decreased responsiveness is connected to the passive 

coping strategy found in HAB mice. 

Further, the results reveal that no direct conclusions from the gene expression 

pattern of individual COX subunits can be drawn on overall COX activity, as Cox8a 

is similarly higher expressed in the PVN, BLA/LA and Cg of HAB mice, or the 

regulation in the same direction was found for Cox6a2 in all brain regions.  

Examining the effect of differential gene expression in HAB vs. LAB mice on the 

phenotype, the characteristics have been best evaluated in this study concerning 

Tmem132d, Avp and Enoph1. 

Avp 

Also for Avp, decreased expression of Avp mRNA in the hypothalamus of LAB 

animals under basal conditions compared to HAB and CD1 mice could be identified 

in combination with genetic polymorphisms underlying these Avp expression 

differences. Additional studies underline these findings by extending them to male 

mice and also including HABxLAB F1 intercross animals (Bunck et al., submitted). 

Correlative and causative evidence indicates that reduced Avp expression 

contributes to locomotion-independent reduction of anxiety, confirming 

corresponding results in HAB/LAB rats (Murgatroyd et al., 2004). Sequencing of the 

Avp gene, including the upstream promoter and the downstream enhancer region, 

resulted in the identification of nine polymorphic loci reliably differing between the 

HAB and LAB line (Fig. 27). These loci comprised eight SNPs and a 12bp deletion 

in LAB mice. Additionally, the allele frequency of the ∆(-2180-2191) deletion and the 

strictly linked C(40)T SNP was determined in CD1 and F2 populations (Table 16). 

Both polymorphic sites are likely to be involved in the regulation of gene expression 

and the processing of the AVP precursor (Kessler et al., 2007), respectively. While 

there were no polymorphisms identified in the noncoding (untranslated region and 

intronic) sequences, all three SNPs in the gene locus were located in the coding 

sequence. Two of these are silent mutations A(1431)G and T(1527)C and the third 

one C(40)T causes a substitution of alanine to valine in the third amino acid of the 

AVP signal peptide. As already reported (Kessler et al., 2007), this genetic marker 

co-segregated in an F2 panel with symptoms of central diabetes insipidus in LAB 

mice and, partially, with anxiety-related behavior, further confirming the strict linkage 

between the promoter deletion ∆(-2180-2191) and C(40)T. This linkage, also 

detected in 258 mice of a freely-segregating F2 panel, suggests an association of 
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specific polymorphisms in the Avp gene and its expression with the corresponding 

phenotype.  

The individual phenotype is known to be shaped by phenomena that are or are not 

mediated by sequence variations in DNA, i.e. inheritance is both genetic and 

behavioral (epigenetic), with the latter primarily relying on the quality of mother-

infant interaction (Champagne, 2008). To eliminate possible influences of different 

epigenetic effects, deriving from the fact that half of the F2 had HAB and the other 

half LAB grandmothers, split calculations according to the grandmaternal 

background were performed for associations. Indeed, in addition to correlative 

evidence, a moderate, though significant association between the promoter deletion 

and the C(40)T SNP and locomotion-independent anxiety-related behavior was 

demonstrated in a freely segregating F2 panel (Fig. 36). Thus, while the 

polymorphisms identified in the Avp gene are unlikely to generally cause hypo-

anxiety, their variation might contribute to the severity of the phenotype, further 

supporting the estimate that several dozen quantitative trait loci may be involved in 

anxiety regulation (Turri et al., 2004). Further studies have to focus on the 

importance of the (grand)parental background for anxiety-related behavior, as genes 

regulated by (grand)parent-specific epigenetic modifications can lead to monoallelic 

gene expression (Delaval and Feil, 2004; Wilkins and Haig, 2003a; Wilkins and 

Haig, 2003b) or are simply X-linked.  

Another explanation might be, based on the higher prevalence of anxiety and 

depression in women than in men (Jacobi et al., 2004), the (grand)parental influence 

on anxiety-related behavior, as revealed in our F2 panel, due to a modulating effect 

of a sex-specific locus. HAB/LAB mice might thus represent a model to further 

investigate the complex pattern of genetic vs. epigenetic inheritance.  

As LAB mice exhibit a deficit not only in AVP precursor processing and 

neuropeptide release from both dendrites and axon terminals (Kessler et al., 2007), 

but also in Avp expression, additive effects at multiple levels are likely to produce a 

“global” deficit in bioactive AVP. Remarkably, recent studies in Brattleboro rats and 

humans confirmed that an AVP deficit may be accompanied by symptoms of central 

diabetes insipidus, reduced anxiety-related or attenuated depression-like behavior 

(Mlynarik et al., 2007) and signs of diminished agoraphobia and impaired memory 

processing (Bruins et al., 2006), respectively, suggesting complementary inter-

species genetics. It is of note in this context that impaired social discrimination 

abilities in LAB mice have also been observed recently (Bunck, unpublished). Still, 

to make sure that Avp under-expression in LAB mice is definitely due to the 

described genetic polymorphisms rather than to differences in other variables 
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including epistatic gene-gene interactions or synaptic input to the hypothalamic 

nuclei an allele-specific transcription analysis was performed, which had already 

been successfully applied in HAB/LAB rats (Murgatroyd et al., 2004). By breeding 

HABxLAB F1 intercross animals that host both HAB and LAB line-specific alleles in 

each cell. Indeed, allele-specific transcription analysis of heterozygous F1 animals 

revealed a 75% reduced expression of the LAB-specific compared to the HAB-

specific allele (Fig. 31), suggesting a causal role of this hypomorphic allele in 

exerting a reduced drive on Avp expression and hypo-anxiety.  

Importantly, differences in Avp expression were not associated with changes in V1a 

receptors that could confound the analysis of the behavioral involvement of AVP in 

these lines (Bunck et al., submitted) Several groups independently reported an 

association of the V1a receptor with anxiety-related behavior. V1a receptor knockout 

mice, although at times providing inconsistent results, showed impaired social 

interaction, social recognition and reduced anxiety-related behavior (Bielsky et al., 

2004; Bielsky et al., 2005; Egashira et al., 2007). Furthermore, V1a antisense RNA, 

targeting the septum, made rats less anxious (Landgraf et al., 1995). In HAB vs. 

LAB mice, V1a receptor autoradiography revealed no differences in a variety of 

anxiety-associated brain regions, suggesting that line-specific divergences in 

behavior are due to events upstream of the receptor, i.e. differential expression and 

release of AVP, rather than to differences in V1a receptor binding (Bunck et al., 

submitted). The functional relevance of central AVP and its V1a receptor subtype is 

underlined by anxiogenic effects of centrally administered AVP in LAB mice (Bosch, 

unpublished).  

How may the identified polymorphisms in the promoter region translate into different 

expression profiles and phenotypes? While the C(-1422)T SNP is not located in a 

transcription factor binding site, the T(-2521)C SNP and the ∆(-2180-2191) deletion 

are located directly in the center of a binding site for nuclear factor 1 (NF-1), a well-

known transcription factor in the brain that promotes transcription in combination 

with C/EBPalpha or C/EBPbeta (Ji et al., 1999). Impaired binding of NF-1, here 

driven by both polymorphisms, the T(-2521)C SNP and the ∆(-2180-2191) deletion, 

has recently been demonstrated to result in decreased gene transcription (Alikhani-

Koupaei et al., 2007). Both polymorphic sites are also in the proximity of a C/EBP 

binding site, but only the ∆(-2180-2191) site flanks a C/EBPbeta binding site. Even 

the T(-2521)C SNP might have a minor effect on reduced Avp expression in LABs, 

though it creates a binding site for NF-1 in LABs, but NF-1 might act as a repressor 

(Kraus et al., 2001) if a neighboring C/EBP binding site is lacking. Although there is 

a C/EBPalpha binding site, C/EBPalpha expression is much lower than that of 
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C/EBPbeta (Horvath, unpublished). Also SNPs in the DER can have an impact on 

expression, as recently described. There is a repetition of motifs from that 178-bp 

region mentioned in the publication on the Avp DER (Fields et al., 2003) between 

+370bp and +480bp, where two HAB- and LAB-specific SNPs have been identified. 

Analysis of this region resulted in the identification of a binding site for c-Ets-2 near 

to a binding site of C/EBPbeta (Chakrabarty and Roberts, 2007). In the center of the 

c-Ets-2 binding site, the A(+399)G polymorphism would allow for an enhanced 

transcription rate in the HAB-specific but not the LAB-specific DNA sequence. 

Finally, even polymorphisms in the coding region are likely to contribute to lower 

Avp mRNA content by negatively influencing mRNA secondary structure and 

stability (Shabalina et al., 2006). Determining the most common genotypes in CD1 

mice revealed that the HAB-specific polymorphisms represent the most common 

genetic variant (Table 16). More than 70% of the CD1 mice were found to be 

homozygous for the HAB-specific sequence, whereas less than 1% carried the LAB-

specific allele homozygously. Nevertheless, the respective distribution is in Hardy-

Weinberg equilibrium, although with the LAB-specific allele at a decreased 

frequency.  

Despite the higher long-term activity of the PVN in LAB as revealed by the COX 

activity measurement, Avp was found to be expressed at lower level in the PVN as 

compared to HABs. As mentioned before, probably mechanisms independent of 

HPA axis function might be involved in mediating the HAB and LAB mouse line-

specific effects. Anxiolytic activity of decreased AVP concentrations in LAB and a 

more anxiogenic activity of AVP in HAB mice might thus be mediated by 

intracerebral axonal or dendritic release e.g. in the amygdala (Caldwell et al., 2008; 

Landgraf and Neumann, 2004; Wotjak et al., 1994), rather than by differential 

activation of the HPA axis. Interestingly, gene expression of Avp was significantly 

elevated in LAB but not in HAB mice 3h after a stressor (TST; Bunck, unpublished), 

although this might be an effect caused by a more severe shortage of AVP in LAB 

mice. Nevertheless, this phenomenon requires further investigation, probably AVP 

localization in different stages after a stressor and electrophysiological studies 

conducted in the PVN and amygdala might shed light on mechanisms underlying 

this phenomenon.  

Hrnr 

Highest association was detected for Hrnr regarding the whole genotype-phenotype 

association study in F2 mice with CORT response to a physical stressor (Fig. 37). 

No other phenotype showed association with that locus and altogether the 

differences between the HAB- and LAB-specific homozygous genotypes in CORT-
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mirrored stress responsiveness reached nearly 50% of the complete difference that 

is reachable by selective breeding for that phenotype (Touma et al., 2008). The 

gene seems to play a role for keratinization, but a function in the central nervous 

function is not described yet. As one domain (S100B) of the protein putatively has 

the capacity of binding calcium ions (NCBI), a concentration dependant influence of 

HRNR on neuronal cells in the brain (Sorci et al., 2003) has to be investigated in 

detail.  

Enoph1 

Two different isoforms of the E-1 enzyme (encoded by Enoph1) could be detected in 

the HAB and LAB mouse lines (Ditzen et al., 2006). As the HAB isoform displayed 

decreased mobility in SDS gels, sequencing of the underlying gene revealed two 

SNPs that result in two amino acid changes in the protein’s sequence. The altered 

mobility is likely due to a slightly different structure of the HAB vs. LAB E-1 enzyme 

isoforms, since the two amino acid differences only result in a minor change in 

molecular weight between the two proteins. Another consequence of the altered 

HAB E-1 enzyme sequence is a lower enzymatic activity compared to the LAB 

isoform (Ditzen et al., submitted). The activity difference can have consequences for 

the methionine salvage pathway, of which E-1 enzyme is a member. However, S-

adenosyl-L-methionine is one of the major methylating agents in the cell and hence 

a necessary compound for epigenetic mechanisms, which are receiving increased 

attention in the affective disorder field (Mill and Petronis, 2007). S-adenosyl-L-

methionine is also known to be involved in the biosynthesis of the polyamines that 

exert potent effects on neurotransmission due to their modulation of different types 

of ion channels (Williams, 1997) creating a direct link to affective disorders 

(Skolnick, 1999). Furthermore, significantly increased amounts of two polyamines 

were found in HAB relative to LAB mice. Although the evidence is still lacking yet, 

one can speculate that the reduced E-1 enzyme activity affects the synthesis of the 

polyamines in HAB mice. As a consequence, a differential modulation of glutamate 

receptors may result in altered channel properties known to play a role in behavioral 

phenotypes related to anxiety and depression (Ditzen et al., submitted; Skolnick, 

1999). Due to the comorbidity of anxiety and depression and the high probability of 

shared underlying neuronal circuits (Levine et al., 2001), the lower enzymatic activity 

of the HAB E-1 enzyme isoform is likely involved in the pathophysiology of the HAB 

phenotype. Yet, this hypothesis remains to be tested in further experiments.  

In F2 mice it was demonstrated that the two SNPs in Enoph1 likely contribute to 

both enzymatic activity and phenotype. Indeed, AA and TT mice spent significantly 

more time on the open arms of the EPM than their GG and CC counterparts (Fig. 
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32), thus confirming the hypothesized association between the SNPs and also the 

E-1 enzyme isoform enzymatic activity, metabolic consequences and their functional 

contribution to the phenotype. Importantly, it was also demonstrated that the co-

segregation of genotype and phenotype is independent of locomotor activity, which 

often contaminates anxiety-related behavior (Kromer et al., 2005). The latter is a 

polygenic, multifactorial trait presumed to have a complex inheritance and to involve 

the interaction of multiple genes with epigenetic and environmental factors 

(Henderson et al., 2004; Landgraf et al., 2007; Turri et al., 2004). It is therefore quite 

remarkable that F2 animals adopt an anxiety-related behavior if their genetic 

constellation at the E-1 enzyme locus is HAB-like, i.e. homozygous GG and CC.  

Tmem132d 

A first genome-wide association study of panic disorder has detected and replicated 

evidence for association with the gene TMEM132D in samples collected from three 

independent studies with a combined number of 876 cases and 915 controls 

(Erhardt et al., submitted). A haplotype consisting of two SNP remained significant 

after genome-wide correction for multiple testing in the combined sample. Although 

the size of the discovery sample (216 cases) was modest, the study had adequate 

power to detect an effect size of odds ratio 1.4 in the combined sample of 876 

cases. Genetic effect sizes of this magnitude are probably the exception in complex 

psychiatric disorders and thus very likely important genes of more modest effects in 

panic disorder were missed. In addition, the Illumina HumanHap300 chip is 

providing good but not complete coverage of the european genome so that some 

susceptibility loci might have been missed due to insufficient marker density (Baum 

et al., 2008; Consortium, 2007; Erhardt et al., submitted). The top SNPs were 

retested in two additional samples, where a haplotype association with genome-

wide significance in the combined sample (despite the lack of genome-wide 

significance in the discovery sample) could be confirmed.  

In the initial sample, only non-comorbid panic disorder patients were analyzed 

against “super-healthy” controls, whereas in the second sample panic patients were 

compared to blood donor controls and in the third sample comorbid panic and 

anxiety patients were compared to controls screened with a brief questionnaire. The 

additional evidence from associations with dimensional anxiety measures, as well as 

human gene expression provided strong support for a role of TMEM132D in anxiety-

related disorders. Two SNPs in this gene were associated with anticipatory anxiety 

in patients with panic disorder as well as the severity of anxiety symptoms in 

patients with major depression and a population-based cohort but not the severity of 

depressive symptoms. This pointed towards the possibility that these genetic effects 
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are specific for anxiety-related symptoms but not restricted to a certain disorder, 

which is further supported by the fact that the case-control associations could be 

replicated in a sample containing panic disorder patients comorbid with major 

depression, bipolar disorder and schizophrenia. The two associated loci were 

located in intron 3 and 4 of TMEM132D, respectively. The linkage disequilibrium 

structure of both regions suggested that the potential functional variants tagged by 

these associations do not likely lie in exonic or classic 5’ regulatory regions. (Erhardt 

et al., submitted). Regulatory regions, however, have also been described for introns 

(Hubler and Scammell, 2004).  

In HAB vs. LAB mice, it could be shown that Tmem132d mRNA expression in the 

cingulate cortex was increased with CD1 mice displaying intermediate levels (Fig. 

19). This observation was consistent in both microarray and qPCR experiments in 

male and female HAB, CD1 and LAB animals, suggesting a relationship of 

Tmem132d with anxiety-related behavior independent of gender. The correlation of 

higher Tmem132d expression with extreme anxiety-related behaviors in this animal 

model is consistent with the finding that the risk genotype AA of rs11060369, over-

represented in panic disorder patients, was also associated with increased 

TMEM132D expression in the frontal cortex. Importantly, this anxiety-dependent 

difference in HAB vs. LAB mice was specific for the Cg. Only the Cg but not the 

BLA, CeA, DG and PVN showed an upregulation of Tmem132d in HAB animals in 

the microarray experiment. The cingulate cortex is closely connected to the 

amygdala, the brain region central to the generation of fear and anxiety and its 

activation seems to modulate the response of the amygdala to anxiety-evoking 

stimuli and expression of fear in humans (Coplan and Lydiard, 1998; Milad et al., 

2007; Milad and Rauch, 2007; Ohman, 2005). A series of functional imaging studies 

have implicated activity changes in the anterior cingulate cortex not only in fear but 

also in pathological anxiety states in humans such as phobic fear, panic disorder, 

generalized anxiety disorder, social anxiety disorder and post traumatic stress 

disorder studies (Etkin and Wager, 2007; Hasler et al., 2007; Mobbs et al., 2007; 

Straube et al., 2007). Given the fact that anxiety-related brain circuits seem to be 

strongly conserved across species, these results could suggest that an altered 

expression of Tmem132d in the Cg may contribute to an altered activation profile of 

this brain region in the presence of anxiogenic stimuli and thus to a predisposition to 

pathological states of anxiety. 

In addition to differences in expression, an exonic Tmem132d SNP was found to co-

segregate with anxiety-related behavior in an F2 panel independent of both 

depression-like behavior and locomotor activity (Fig. 33), thus suggesting an 
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evolutionary conserved, causal involvement of this gene in anxiety-related 

phenomena. The molecular function of the gene product, also called 

transmembrane protein 132D, KIAA1944 and MOLT, is still unclear. TMEM132D is 

predicted as a single pass type I membrane protein. The predicted 1,099-amino acid 

protein has a calculated molecular mass of about 130kDa and contains an N-

terminal hydrophobic signal peptide, 7 predicted N-glycosylation sites, 2 predicted 

O-glycosylation sites, a number of phosphorylation sites, and a C-terminal 

transmembrane domain (NCBI). Immunohistochemical studies showed a 5:1 ratio of 

TMEM132D expression in white matter compared to gray matter in the cerebral 

cortex (Nagase et al., 2001). TMEM132D was also detected in corpus callosum and 

in white matter in the spinal cord and optic nerve. Using cultured rat oligodendrocyte 

lineage cells and stage-specific markers, they showed that TMEM132D was 

expressed by mature oligodendrocytes but not by oligodendrocyte precursor cells. 

The conclusion was that oligodendrocytes start expressing TMEM132D in the 

course of maturation and that this protein could be involved in the neural 

interconnection and also signaling (Nomoto et al., 2003). Its involvement in 

oligodendrocyte maturation may be relevant for the efficient connection of the Cg to 

other anxiety-related brain regions.  

Furthermore, sequencing revealed ten more polymorphic sites in and around the 

Tmem132d locus differing between HAB and LAB mice. As the complete gene 

covers a genomic distance of more than half a million bp, a complete linkage of all 

variable Tmem132d loci in all F2 mice is not expected. Furthermore, a glucocorticoid 

response element has been identified in the gene with one SNP located directly in 

its center, what could be the reason of differential expression but its functionality 

remains to be elucidated.  

 

Altogether, this study demonstrates the strength of combined sequence-, 

transcriptome- and proteome-based analyses best in further combination with cross-

species studies. Using a robust and valid animal model resulted in the identification 

of candidate genes that are part of neuronal and metabolic pathways pertinent to the 

disease phenotype.  

By genotype-phenotype association analyses in F2 mice, strong evidence for the 

involvement of specific genomic loci, selected candidate genes and polymorphisms 

in shaping the anxiety-related, depression-like and stress responsiveness 

phenotypes could be validated. Although the role of specific mechanisms 

contributing to the respective phenotypes remains still elusive, a definite 

involvement can be assured for Enpp5 (via P2RX7), Abca2 or Msrb2, Zfp672, 
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Enoph1 and Hrnr. Additionally, cross-species approaches further highlight the 

causal role of Tmem132d (in HAB/LAB mice and in panic disorder patients) and of 

Avp (HAB/LAB mice, HAB/LAB rats and patients) in direct connection to the anxiety-

related phenotype (Erhardt et al., submitted; Frank and Landgraf, 2008; Murgatroyd 

et al., 2004; Scott and Dinan, 2002).  

Also other gene transcripts identified by gene expression profiling but showing no 

direct association within the F2 study, can be defined as valuable candidate genes 

for the respective traits. These include 2900019G14Rik, Tac1, Mmp15, Mt1, Coro7, 

Ctsb and Slc25a17, as they all show robust and reproducible expression differences 

between HAB and LAB mice. Nevertheless, possible interactions of these genes 

with loci highly associated in the F2 mice are possible, however due to the lack of 

obvious connections like for Enpp5 they require further investigation. But already 

today, all of these candidate genes may serve as valuable targets for further 

molecular characterization of anxiety- and depression-related phenotypes, not 

restricted to mice. Furthermore, they might also play a vital role for the development 

of novel therapeutics, facilitating the treatment of anxiety disorders and depression. 
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5. Perspectives 

 

Having identified some important molecular players that shape anxiety and 

emotionality in mice and humans, one major focus in future studies should be the 

development and testing of substances that are capable of inhibiting or activating 

the described proteins, thus allowing for the development of novel therapeutics. 

Therefore, as a first step, targeted overexpression of some gene products might be 

the tool of choice, as this in general creates less problems as compared to knockout 

of the respective genes, where the total loss might even cause lethality of the 

animals. Furthermore, the influence on other genes around the targeted location 

might be less pronounced than in knockout mice. Also a further functional 

characterization of some genes and their products is required, as hardly anything is 

known about the molecular functionality of Tmem132d or Zfp672, to name just few. 

Enzyme binding assays, localization in the brain and the identification of further 

polymorphisms that might interfere with enzyme or protein activity are required for 

most of the described genes and gene products. For 2900019G14Rik, absolutely 

nothing is known, so first of all an identification of the complete gene structure is 

required.  

Testing of already existing knockout mice for some of the described genes might be 

a complementary approach to investigate gene products that were identified in the 

gene expression analyses but show no obvious association in the F2 panel, like 

Ctsb. Also siRNA, antisense targeting and other methods directly acting on the 

transcripts might be the method of choice for further investigations. Similarly, the 

functional relevance of other gene products not yet mentioned or characterized in 

the literature published up to date, should be investigated especially with the focus 

on connections to other phenotypes associated with anxiety, e.g. cognitive abilities. 

Furthermore, whole-genome sequencing (as it is now available with the “Genome 

Analyzer II” technique and provided by Illumina based on the Solexa system) of 

HAB vs. LAB mice would be necessary to receive a complete picture of genetic 

diversity in these animals, thus providing the basis for a comprehensive overview on 

genomic interactions. 

Furthermore, this study highlighted the genetically stable predisposition of HAB and 

LAB mice for their line-typical traits. The association of Avp with anxiety-related 

behavior points to an additional effect of inheritable epigenetic factors directly 

connected to the described phenotypes. Therefore special emphasis is required to 

unveil the epigenetic factors contributing to this complex trait. 
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Thus, HAB and LAB mice are a valuable animal model for the future testing some of 

the hypotheses arising from this study with the potential to provide promising targets 

for psychiatric and pharmacopsychiatric research, independent of their usage in 

basic research on mechanisms influencing behavior or as model to test anxiolytic 

and antidepressant compounds. Considering the genome itself as a target for 

pharmacological intervention may be a first step in the development of a new 

generation of anxiolytic drugs. 
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6. Supplementary tables  

Supplementary table 1: Excerpt of transcripts identified on the MPI24K gene 
expression screening platform, with positive fold regulation values meaning an 
overexpression in HAB compared to LAB and negative an overexpression of LAB 
compared to HAB mice. P-values are adjusted to multiple testing. Number of brain 
regions for significant regulation differences between HAB and LAB mice. Data are 
presented as means. Most transcripts are at least differentially regulated in three 
brain regions. 
 

Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

-8.81 0.0002 1 Ttr Transthyretin 

-3.47 0.0059 7 Slc25a17 
Solute carrier family 25, member 
17 

-2.29 0.0016 3 A430106J12Rik RIKEN cDNA A430106J12 gene 

-2.26 0.0147 6 Ctsb Cathepsin B 

-2.26 0.0147 6 Mmp15 Matrix metallopeptidase 15 

-2.09 0.0020 3 Gnao1 
Guanine nucleotide binding 
protein, alpha o 

-2.09 0.0123 3 Tbl3 Transducin (beta)-like 3 

-2.06 0.0002 3 Loxl3 Lysyl oxidase-like 3 

-2.02 0.0004 3 AI854703 Expressed sequence AI854703 

-2.00 0.0100 7 Zfp672 Zinc finger protein 672 

-1.96 0.0011 3 Chtf18 
CTF18, chromosome 
transmission fidelity factor 18   

-1.95 0.0003 3 B930037P14Rik RIKEN cDNA B930037P14 gene 

-1.93 0.0001 3 Gpx4 Glutathione peroxidase 4 

-1.89 0.0197 7 Glo1 Glyoxalase 1 

-1.88 0.0082 7 5230400G24Rik RIKEN cDNA 5230400G24 gene 

-1.85 0.0087 3 Spata2 Spermatogenesis associated 2 

-1.81 0.0094 3 9030612M13Rik RIKEN cDNA 9030612M13 gene 

-1.75 0.0235 3 Il1b Interleukin 1 beta 

-1.71 0.0230 5 Coro7 Coronin 7 

-1.71 0.0334 4 Pias4 
Protein inhibitor of activated 
STAT, 4 

-1.66 0.0005 3 Spnb3 Spectrin beta 3 

Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

-1.66 0.0023 3 Tebp Prostaglandin E synthase 3  

-1.66 0.0244 5 Ccdc104 Coiled-coil domain containing 104 

-1.66 0.0244 5 4931428D14Rik RIKEN cDNA 4931428D14 gene 

-1.64 0.0010 3 Sparcl1 SPARC-like 1 (mast9, hevin) 

-1.64 0.0073 4 4930438D12Rik RIKEN cDNA 4930438D12 gene 

-1.63 0.0317 4 Sdc2 Syndecan 2 

-1.62 0.0014 3 Adpn Adiponutrin 

-1.62 0.0019 3 4933427L07Rik Dymeclin 

-1.61 0.0016 3 Slc1a3 solute carrier family 1, member 3 

-1.60 0.0578 3 Mocs2 Molybdenum cofactor synthesis 2 

-1.58 0.0002 3 Phtf2 RIKEN cDNA 9330189K18 gene 

-1.56 0.0347 5 Ep400 E1A binding protein p400 

-1.55 0.0004 3 A730042J05Rik RIKEN cDNA A730042J05 gene 

-1.55 0.0012 3 Kif21b Kinesin family member 21B 

-1.55 0.0050 3 Nts Neurotensin 

-1.55 0.0077 3 Arl6ip1 
ADP-ribosylation factor-like 6 
interacting protein 1 

-1.55 0.0182 4 Extl2 Exotoses-like 2 

-1.54 0.0019 3 5830417I10Rik RIKEN cDNA 5830417I10 gene 

-1.54 0.0051 3 Mgrn1 Mahogunin, ring finger 1 

-1.54 0.0270 3 Ctss Cathepsin S 

-1.54 0.0532 4 Ptprz1 
Protein tyrosine phosphatase, 
receptor type Z, polypeptide 1 

-1.53 0.0018 4 2510009E07Rik RIKEN cDNA 2510009E07 gene 

-1.53 0.0070 4 Mt1 Metallothionein 1 

-1.52 0.0012 3 1700030A21Rik Zinc finger, CSL-type containing 3 

-1.52 0.0091 3 Deadc1 Deaminase domain containing 1 

-1.51 0.0016 3 Epm2aip1 
EPM2A (laforin) interacting 
protein 1 

-1.51 0.0048 3 BC026585 cDNA sequence BC026585 

-1.50 0.0256 4 Pycs 
Aldehyde dehydrogenase 18 
family, member A1 

-1.50 0.0352 4 Sqrdl Sulfide quinone reductase-like  
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Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

-1.50 0.0436 3 Prkcb1 Acid phosphatase 1, soluble 

-1.49 0.0223 3 Zfp148 Zinc finger protein 148 

-1.49 0.0474 4 Btrc 
Beta-transducin repeat containing 
protein 

-1.48 0.0016 3 Ndufv1 
NADH dehydrogenase 
(ubiquinone) flavoprotein 1 

-1.48 0.0334 3 Tcf1 Transcription factor 1 

-1.47 0.0111 3 Bace2 Beta-site APP-cleaving enzyme 2 

-1.47 0.0245 3 Aldoc Aldolase 3, C isoform 

-1.44 0.0008 3 Cox6c 
Cytochrome c oxidase, subunit 
VIc  

-1.44 0.0306 3 Bteb1 RIKEN cDNA 2310051E17 gene 

-1.44 0.1045 1 Npy Neuropeptide Y 

-1.43 0.0015 3 Hrmt1l1 
Heterogeneous nuclear 
ribonucleoprotein 
methyltransferase-like 1  

-1.43 0.0414 3 C6.1A C6.1a protein 

-1.42 0.0341 4 Tac1 Tachykinin 1 

-1.41 0.0030 3 Galnt10 

UDP-N-acetyl-alpha-D-
galactosamine:polypeptide N-
acetylgalactosaminyltransferase 
10 

-1.40 0.0011 4 2410066E13Rik RIKEN cDNA 2410066E13 gene 

-1.40 0.0048 4 Mef2d Myocyte enhancer factor 2D 

-1.40 0.0346 3 Polm Polymerase (DNA directed), mu 

-1.39 0.0117 3 Igsf4c 
Immunoglobulin superfamily, 
member 4C 

-1.39 0.0134 4 8430420C20Rik RIKEN cDNA 8430420C20 gene 

-1.39 0.0184 3 Tcf19 Transcription factor 19 

-1.39 0.0290 3 AI851716 Expressed sequence AI851716 

-1.39 0.0411 4 Gpd2 
Glycerol phosphate 
dehydrogenase 2, mitochondrial 

-1.39 0.0744 3 Ssbp4 
Single stranded DNA binding 
protein 4 

-1.38 0.0258 3 Ehf Ets homologous factor 

Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

-1.37 0.0094 3 Dusp18 Dual specificity phosphatase 18 

-1.37 0.0332 3 Ube2m 
Ubiquitin-conjugating enzyme 
E2M (UBC12 homolog, yeast) 

-1.36 0.0395 5 Actb Actin, beta, cytoplasmic 

-1.36 0.0368 3 Mef2c Myocyte enhancer factor 2C 

-1.36 0.0498 4 Hkr2 
GLI-Kruppel family member 
HKR2 

-1.35 0.0386 4 1110015K06Rik RIKEN cDNA 1110015K06 gene 

-1.35 0.0561 3 Sepp1 Selenoprotein P, plasma, 1 

-1.34 0.0002 3 Tpd52 Tumor protein D52 

-1.34 0.0245 3 Rad21 RAD21 homolog (S. pombe) 

-1.34 0.0321 3 AI481105 Expressed sequence AI481105 

-1.33 0.0192 4 1110018D06Rik RIKEN cDNA 1110018D06 gene 

-1.33 0.0561 3 Cog3 
Component of oligomeric golgi 
complex 3 

-1.32 0.0026 3 Serpini1 
Serine (or cysteine) peptidase 
inhibitor, clade I, member 1 

-1.32 0.0486 3 Egfl7 EGF-like domain 7 

-1.31 0.0030 3 Idh1 
Isocitrate dehydrogenase 1 
(NADP+), soluble 

-1.31 0.0087 3 Aarsl Alanyl-tRNA synthetase like 

-1.31 0.0238 3 Fbxw8 
F-box and WD-40 domain protein 
8 

-1.31 0.0957 3 Gprasp2 
G protein-coupled receptor 
associated sorting protein 2 

-1.31 0.0994 3 Gusb Glucuronidase, beta 

-1.29 0.0005 3 Wdr45l Wdr45 like 

-1.29 0.0118 3 Gas1 Growth arrest specific 1 

-1.29 0.0179 3 Rarb Retinoic acid receptor, beta 

-1.29 0.0643 3 Ppt2 Palmitoyl-protein thioesterase 2 

-1.29 0.0049 3 2900010J23Rik RIKEN cDNA 2900010J23 gene 

-1.28 0.0379 3 Nckap1 NCK-associated protein 1 

-1.28 0.0055 3 Rnpep 
Arginyl aminopeptidase 
(aminopeptidase B) 
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Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

-1.28 0.0141 3 Ddx58 
DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 58 

-1.28 0.0144 3 Adam10 
A disintegrin and 
metallopeptidase domain 10 

-1.28 0.0207 3 Sod2 
Superoxide dismutase 2, 
mitochondrial 

-1.27 0.0383 3 4933402J24Rik RIKEN cDNA 4933402J24 gene 

-1.26 0.0098 3 Ckmt1 
Creatine kinase, mitochondrial 1, 
ubiquitous 

-1.26 0.0574 3 Rpl27a Ribosomal protein L27a 

-1.26 0.0665 3 AI196514 Expressed sequence AI196514 

-1.25 0.0129 3 Ubb Ubiquitin B 

-1.24 0.0712 5 Smo 
smoothened homolog 
(Drosophila) 

-1.24 0.0024 3 Max Max protein 

-1.23 0.0606 3 Zfp162 Zinc finger protein 162 

-1.22 0.0291 3 Lu Lutheran blood group 

-1.21 0.0115 3 Tgfb1i4 
Transforming growth factor beta 1 
induced transcript 4 

-1.21 0.0749 4 Ubc Ubiquitin C 

-1.20 0.0237 3 2310047M10Rik RIKEN cDNA 2310047M10 gene 

-1.20 0.0258 3 Mrps33 
Mitochondrial ribosomal protein 
S33 

-1.20 0.0555 3 Pros1 Protein S (alpha) 

-1.18 0.0463 3 E430002G05Rik RIKEN cDNA E430002G05 gene 

-1.18 0.0626 3 Glul Glutamate-ammonia ligase  

-1.17 0.0745 3 Slc26a3 
Solute carrier family 26, member 
3 

-1.17 0.0840 4 Sap18 Sin3-associated polypeptide 18 

-1.17 0.0041 3 Calm1 Calmodulin 1 

-1.15 0.0269 3 Nsg2 
Neuron specific gene family 
member 2 

-1.15 0.0603 3 Olfml3 Olfactomedin-like 3 

 

Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

-1.15 0.0924 3 Taf6l 
TAF6-like RNA polymerase II, 
p300/CBP-associated factor 
(PCAF)-associated factor 

-1.14 0.0516 3 Hap1 Huntingtin-associated protein 1 

-1.12 0.0263 3 Abca2 
ATP-binding cassette, sub-family 
A (ABC1), member 2 

1.09 0.0482 3 Tgfb1i4 
Transforming growth factor beta 1 
induced transcript 4 

1.11 0.0585 3 Rit2 Ras-like without CAAX 2 

1.13 0.0224 3 Rpl17 Ribosomal protein L17 

1.14 0.0401 3 Tde2 Tumor differentially expressed 2 

1.16 0.0851 3 Atrx RIKEN cDNA 4833408C14 gene 

1.20 0.0072 3 Cpe Carboxypeptidase E 

1.20 0.0503 3 Canx Calnexin 

1.20 0.0528 3 Smn1 Survival motor neuron 1 

1.21 0.0074 3 Rbbp7 Retinoblastoma binding protein 7 

1.21 0.0144 3 D2Bwg1356e 
DNA segment, Chr 2, Brigham & 
Women's Genetics 1356 
expressed 

1.21 0.0394 3 Dctn6 Dynactin 6 

1.21 0.0670 3 Nap1l5 
Nucleosome assembly protein 1-
like 5 

1.22 0.0023 3 Nme4 
Expressed in non-metastatic cells 
4, protein 

1.22 0.0453 3 Rab10 RIKEN cDNA 1700012B15 gene 

1.22 0.0723 3 D9Wsu20e Transmembrane protein 30A 

1.23 0.0164 3 BC051244 CDNA sequence BC051244 

1.24 0.0149 3 9130413I22Rik Morf4 family associated protein 1 

1.24 0.0218 3 2700046G09Rik RIKEN cDNA 2700046G09 gene 

1.24 0.0253 4 Spnb2 Spectrin beta 2 

1.24 0.0639 3 Golga7 
Golgi autoantigen, golgin 
subfamily a, 7 

1.25 0.0768 3 Pcoln3 
procollagen (type III) N-
endopeptidase 

1.25 0.0074 3 Gpm6a Glycoprotein m6a 
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Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

1.26 0.0288 3 Qdpr 
Quininoid dihydropteridine 
reductase 

1.26 0.0904 3 Ndfip1 Nedd4 family interacting protein 1 

1.27 0.0406 5 3830421F13Rik 
Forty-two-three domain 
containing 1 

1.27 0.0027 3 D19Ertd144e CDK2-associated protein 2 

1.27 0.0029 3 Ap1s2 
Adaptor-related protein complex 
1, sigma 2 subunit 

1.27 0.0634 3 Arhgap5 Rho GTPase activating protein 5 

1.28 0.0006 3 Idh3a 
Isocitrate dehydrogenase 3 
(NAD+) alpha 

1.29 0.0288 3 Snap91 
Synaptosomal-associated protein 
91 

1.29 0.0451 3 Elovl5 
ELOVL family member 5, 
elongation of long chain fatty 
acids (yeast) 

1.29 0.0775 3 Luzp2 Leucine zipper protein 2 

1.31 0.0225 4 Slc25a12 RIKEN cDNA 5730410E19 gene 

1.31 0.0874 3 Syt11 Synaptotagmin XI 

1.32 0.0241 3 Rps3a ribosomal protein S3a 

1.33 0.0153 3 Slc39a6 
Solute carrier family 39 (metal ion 
transporter), member 6 

1.33 0.0268 4 Peg3 Paternally expressed 3 

1.33 0.0404 4 Cldn12 Claudin 12 

1.33 0.0154 5 Ext2 Exostoses 2 

1.34 0.0253 4 Zmynd11 
Zinc finger, MYND domain 
containing 11 

1.35 0.0110 3 Ncald Neurocalcin delta 

1.35 0.0266 4 Rab11a 
RAB11a, member RAS oncogene 
family 

1.36 0.0020 4 Raf1 V-raf-1 leukemia viral oncogene 1 

1.36 0.0118 3 1300006C19Rik RIKEN cDNA 1300006C19 gene 

1.36 0.0394 3 Hspca Heat shock protein 1, alpha 

1.37 0.0368 3 Nap1l5 
Nucleosome assembly protein 1-
like 5 

Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

1.37 0.0498 3 Mbp Myelin basic protein 

1.38 0.0411 3 Slc36a4 
Solute carrier family 36 
(proton/amino acid symporter), 
member 4 

1.39 0.0012 3 Stmn1 Stathmin 1 

1.39 0.0046 3 Calm2 Calmodulin 2 

1.39 0.0266 3 6330439K17Rik RIKEN cDNA 6330439K17 gene 

1.39 0.0270 4 Gnas GNAS complex locus 

1.41 0.0085 3 Clic4 Chloride intracellular channel 4  

1.41 0.0144 4 Incenp Inner centromere protein 

1.41 0.0177 4 Ctso Cathepsin O 

1.41 0.0189 5 Gprasp1 
G protein-coupled receptor 
associated sorting protein 1 

1.41 0.0291 3 Wnt10b 
Wingless related MMTV 
integration site 10b 

1.42 0.0053 4 1700045I19Rik RIKEN cDNA 1700045I19 gene 

1.42 0.0712 3 Aak1 AP2 associated kinase 1 

1.43 0.0040 3 Sfrs10 
Splicing factor, arginine/serine-
rich 10  

1.44 0.0284 4 Mtss1 Metastasis suppressor 1 

1.45 0.0130 3 Ywhaq 

Tyrosine 3-
monooxygenase/tryptophan 5-
monooxygenase activation 
protein, theta polypeptide 

1.45 0.0424 4 Suclg2 
Succinate-Coenzyme A ligase, 
GDP-forming, beta subunit 

1.46 0.0002 3 Ddx27 
DEAD (Asp-Glu-Ala-Asp) box 
polypeptide 27 

1.46 0.0020 3 Atp6ap2 
ATPase, H+ transporting, 
lysosomal accessory protein 2 

1.46 0.0022 4 Rtn1 Reticulon 1 

1.46 0.0584 4 Ogfrl1 
Opioid growth factor receptor-like 
1 
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Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

1.47 0.0267 5 Wsb2 
WD repeat and SOCS box-
containing 2 

1.47 0.0017 3 Kctd12 
Potassium channel 
tetramerisation domain containing 
12 

1.47 0.0018 3 Hspa8 Heat shock protein 8 

1.48 0.0009 4 Matr3 Matrin 3 

1.48 0.0018 3 Nedd4l 
Neural precursor cell expressed, 
developmentally down-regulated 
gene 4-like 

1.48 0.0031 3 Mtpn Myotrophin 

1.48 0.0112 3 Hnrpk 
Heterogeneous nuclear 
ribonucleoprotein K 

1.49 0.0014 4 Rab25 
RAB25, member RAS oncogene 
family 

1.50 0.0019 3 Sdha 
Succinate dehydrogenase 
complex, subunit A, flavoprotein 
(Fp) 

1.50 0.0077 4 Prph1 Peripherin 1 

1.51 0.0056 4 Elavl2 
ELAV (embryonic lethal, 
abnormal vision, Drosophila)-like 
2 (Hu antigen B) 

1.53 0.0005 3 Dusp6 Dual specificity phosphatase 6 

1.53 0.0017 3 Spag9 Sperm associated antigen 9 

1.53 0.0048 3 Uhmk1 
U2AF homology motif (UHM) 
kinase 1 

1.53 0.0105 4 Amd1 
Regulator of G-protein signaling 
12 

1.54 0.0029 3 Ppp3ca RIKEN cDNA 4930599N24 gene 

1.54 0.0207 4 Hadhb 

Hydroxyacyl-Coenzyme A 
dehydrogenase/3-ketoacyl-
Coenzyme A thiolase/enoyl-
Coenzyme A hydratase beta 
subunit 

1.54 0.0534 4 Ppia Peptidylprolyl isomerase A 

1.56 0.0110 3 Stmn2 Stathmin-like 2 

Fold 
regulation 

p-
value 

# of  
regions 

Gene symbol Gene name 

1.58 0.0014 3 Sdccag33 
Serologically defined colon 
cancer antigen 33 

1.58 0.0073 3 Nudt4 Nudix-type motif 4 

1.58 0.0118 3 Ddx3x 
DEAD/H box polypeptide 3, X-
linked 

1.59 0.0042 3 Hbb-y 
Hemoglobin Y, beta-like 
embryonic chain 

1.59 0.0175 5 Pgm2l1 Phosphoglucomutase 2-like 1 

1.59 0.0018 3 Clcn3 RIKEN cDNA 9030622M22 gene 

1.60 0.0154 4 Foxp1 Forkhead box P1 

1.64 0.0022 4 Slc36a2 Solute carrier family 36 member 2 

1.64 0.0055 3 Rpa2 Replication protein A2 

1.66 0.0163 3 Dpysl2 Dihydropyrimidinase-like 2 

1.68 0.0160 5 Hmgb1 High mobility group box 1 

1.68 0.0038 4 Vipr1 
Vasoactive intestinal peptide 
receptor 1 

1.68 0.0110 4 Rab20 
RAB20, member RAS oncogene 
family 

1.68 0.0409 4 Wsb1 
WD repeat and SOCS box-
containing 1 

1.74 0.0006 3 Rnf11 Ring finger protein 11 

1.74 0.0210 6 Hmgn3 
High mobility group nucleosomal 
binding domain 3 

1.77 0.0026 4 Egr1 Early growth response 1 

1.80 0.0484 2 Avp Arginine vasopressin 

1.87 0.0005 3 Snap25 
Synaptosomal-associated protein 
25 

1.89 0.0670 4 Loxl3 Lysyl oxidase-like 3 

2.08 0.0085 4 Syt4 Synaptotagmin IV 

2.09 0.0110 3 Slc12a3 
Solute carrier family 12, member 
3 

2.49 0.0123 3 Atp9a ATPase, class II, type 9A 

2.62 0.0051 4 Unc84a Unc-84 homolog A 

4.36 0.0029 7 Rab6 RAB6, member RAS oncogene 
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Supplementary table 2: Excerpt of transcripts identified on the Illumina mouse gene 
expression screening platform, with positive fold regulation values meaning an 
overexpression in HAB compared to LAB mice and negative values an 
overexpression of LAB compared to HAB mice. P-values are adjusted to multiple 
testing. Number of brain regions for significant regulation differences between HAB 
and LAB mice. Last columns shows fold regulation of HAB vs. NAB mice. Data are 
presented as means.  
 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-14.15 8.35E-12 5 Enpp5 
ectonucleotide 
pyrophosphatase/ 
phosphodiesterase 5  

-5.05 

-12.29 4.18E-35 5 Ctsb cathepsin B  -13.61 

-5.79 1.29E-32 5 Sc4mol sterol-C4-methyl oxidase-like  -5.86 

-5.74 3.13E-27 5 Slco1c1 
solute carrier organic anion 
transporter family 

-0.75 

-5.37 1.67E-39 5 B3galt6 UDP-Gal:betaGal beta 1 -5.56 

-4.09 2.48E-25 5 2610511O17Rik 
RIKEN cDNA 2610511O17 
gene  

0.61 

-4.06 1.83E-30 5 Ccrn4l 
CCR4 carbon catabolite 
repression 4-like  

-4.30 

-3.93 1.44E-10 5 Mela melanoma antigen  -0.81 

-3.85 5.56E-26 5 Kras2 
Kirsten rat sarcoma oncogene 
2 

-4.31 

-3.75 9.28E-10 5 9030612M13Rik 
RIKEN cDNA 9030612M13 
gene  

-2.13 

-3.61 3.79E-19 5 A430106J12Rik 
RIKEN cDNA A430106J12 
gene  

-1.25 

-3.58 1.19E-09 5 Kcnh1 
potassium voltage-gated 
channel 1 

-2.59 

-3.26 9.18E-29 5 4933421G18Rik 
RIKEN cDNA 4933421G18 
gene  

-3.96 

-2.97 1.12E-25 5 Pygb brain glycogen phosphorylase  -3.07 

-2.84 4.53E-20 5 6330416L07Rik 
RIKEN cDNA 6330416L07 
gene  

-2.68 

-2.71 1.19E-18 5 Mipep 
mitochondrial intermediate 
peptidase  

0.19 

-2.68 3.51E-20 5 Cntn2 contactin 2  -1.09 

-2.63 1.72E-12 5 Mrps27 mitochondrial rib. protein S27  -0.92 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-2.62 3.15E-11 5 Pip5k2a 
phosphatidylinositol-4-
phosphate 5-kinase 

-1.03 

-2.61 1.25E-11 5 Glo1 glyoxalase 1  -1.69 

-2.50 4.42E-10 5 Frs3 
fibroblast growth factor 
receptor substrate 3  

-1.57 

-2.47 2.85E-16 5 Pop4 processing of precursor 4 -0.14 

-2.39 6.34E-28 5 0610033H09Rik 
RIKEN cDNA 0610033H09 
gene  

-2.52 

-2.35 3.25E-12 5 Brf2 BRF2 -2.03 

-2.34 8.31E-12 5 Slc25a18 
solute carrier family 25  
member 18 

-7.57 

-2.30 4.90E-05 5 A630042L21Rik 
RIKEN cDNA A630042L21 
gene  

-1.67 

-2.23 2.33E-02 5 4933427D14Rik 
RIKEN cDNA 4933427D14 
gene  

-0.24 

-2.18 9.84E-17 5 Dutp deoxyuridine triphosphatase  -0.79 

-2.17 7.63E-22 5 D330038K10Rik 
RIKEN cDNA D330038K10 
gene  

-2.31 

-2.14 2.15E-17 5 Hbb-b2 hemoglobin -2.56 

-2.10 7.94E-14 5 Myst2 
MYST histone 
acetyltransferase 2  

-2.18 

-2.08 3.53E-33 2 Ghrh 
growth hormone releasing 
hormone  

-2.45 

-2.08 1.04E-25 5 Arl8 ADP-ribosylation factor-like 8  -2.16 

-2.06 3.70E-23 5 1200003M09Rik 
RIKEN cDNA 1200003M09 
gene  

-2.02 

-2.04 1.83E-24 5 2610040E16Rik 
RIKEN cDNA 2610040E16 
gene  

-2.09 

-2.03 3.05E-14 5 Slc25a17 
solute carrier family 25  
member 17 

-1.92 

-1.98 1.34E-29 2 1700008P20Rik 
RIKEN cDNA 1700008P20 
gene  

-1.71 

-1.98 1.64E-04 5 Fjx1 four jointed box 1  -1.58 

-1.97 2.35E-07 5 2410129H14Rik 
RIKEN cDNA 2410129H14 
gene  

-1.80 

-1.95 2.35E-07 5 Drctnnb1a down-regulated by Ctnnb1 0.22 
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HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-1.93 1.06E-05 5 Dok5 
downstream of tyrosine kinase 
5  

-0.24 

-1.92 2.27E-14 5 Rpp14 ribonuclease P 14kDa subunit  -1.73 

-1.92 9.14E-08 5 Rfng radical fringe gene homolog  -0.75 

-1.84 1.28E-16 5 Me2 malic enzyme 2 0.71 

-1.83 2.11E-06 5 Gukmi1 
guanylate kinase membrane-
associated inverted 1 

-1.42 

-1.83 5.66E-05 5 Baiap1 BAI1-associated protein 1  -1.42 

-1.83 1.24E-12 5 LOC381259 
similar to hypothetical protein 
FLJ33282  

-1.83 

-1.77 1.77E-17 5 E130307J04Rik 
RIKEN cDNA E130307J04 
gene  

-1.61 

-1.76 2.40E-12 5 Rpl30 ribosomal protein L30  3.81 

-1.76 4.63E-16 5 Aldh4a1 
aldehyde dehydrogenase 4 
family member 1 

-1.62 

-1.75 1.62E-08 5 2610524H06Rik 
RIKEN cDNA 2610524H06 
gene  

-0.68 

-1.71 6.06E-13 5 Pdk2 
pyruvate dehydrogenase 
kinase 2 

-1.57 

-1.68 2.05E-14 4 Pigl phosphatidylinositol glycan -0.79 

-1.66 2.40E-10 3 Nupr1 nuclear protein 1  -0.93 

-1.64 1.60E-09 5 Myh9 myosin heavy chain IX  -1.44 

-1.63 9.36E-08 3 Sepw1 selenoprotein W -0.74 

-1.62 5.08E-06 5 Sv2a 
synaptic vesicle glycoprotein 2 
a  

-0.38 

-1.62 4.56E-03 4 Omg 
oligodendrocyte myelin 
glycoprotein  

0.02 

-1.61 1.28E-14 3 Ube2i 
ubiquitin-conjugating enzyme 
E2I  

-1.58 

-1.59 1.00E-12 5 Aebp2 AE binding protein 2 -0.26 

-1.58 1.45E-12 4 Fads3 fatty acid desaturase 3  -1.77 

-1.57 3.63E-05 5 9230117N10Rik 
RIKEN cDNA 9230117N10 
gene  

-1.57 

-1.56 1.63E-06 5 4432411E13Rik 
RIKEN cDNA 4432411E13 
gene  

-0.70 

 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-1.52 1.03E-04 4 Bub3 
budding uninhibited by 
benzimidazoles 3 homolog  

-1.32 

-1.52 1.80E-14 4 Frmd3 FERM domain containing 3  -1.63 

-1.52 6.74E-07 5 F2r coagulation factor II  -1.25 

-1.52 1.94E-13 4 Spag1 sperm associated antigen 1  0.17 

-1.52 1.90E-13 5 Vars2l valyl-tRNA synthetase 2-like  -1.29 

-1.51 9.95E-12 5 1700009P03Rik 
RIKEN cDNA 1700009P03 
gene  

-0.25 

-1.51 9.43E-07 5 C1qb complement component 1 -1.26 

-1.50 5.36E-11 5 4930519N13Rik 
RIKEN cDNA 4930519N13 
gene  

-1.53 

-1.49 1.64E-18 2 Tmie transmembrane inner ear  -1.51 

-1.48 6.77E-05 2 2810036L13Rik 
RIKEN cDNA 2810036L13 
gene  

-0.69 

-1.48 1.71E-02 3 Dbt 
dihydrolipoamide branched 
chain transacylase E2  

-0.24 

-1.47 5.15E-14 5 9830001H06Rik 
RIKEN cDNA 9830001H06 
gene  

-1.53 

-1.47 8.11E-18 3 Reck 
reversion-inducing-cysteine-
rich protein with kazal motifs  

0.19 

-1.47 2.08E-05 4 D430033N04Rik 
RIKEN cDNA D430033N04 
gene  

-1.20 

-1.47 1.50E-10 4 C1qtnf5 
C1q and tumor necrosis factor 
related protein 5  

-1.54 

-1.46 3.22E-08 5 5430437P03Rik 
RIKEN cDNA 5430437P03 
gene  

-0.61 

-1.45 6.10E-08 4 4930455C21Rik 
RIKEN cDNA 4930455C21 
gene  

-1.34 

-1.45 4.38E-08 1 Zfp297b zinc finger protein 297B  -1.49 

-1.45 1.83E-07 4 2610319K07Rik 
RIKEN cDNA 2610319K07 
gene  

-1.19 

-1.44 9.23E-06 5 3200001K10Rik 
RIKEN cDNA 3200001K10 
gene  

-1.30 

-1.44 3.23E-12 4 Rrm1 ribonucleotide reductase M1  -1.38 

-1.42 5.19E-04 5 C1qg complement component 1 -0.75 

-1.42 1.07E-05 4 Epb7.2 erythrocyte protein band 7.2  -0.32 
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HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-1.42 3.63E-03 3 Igf2r 
insulin-like growth factor 2 
receptor  

-0.86 

-1.41 2.02E-08 3 Hist3h2ba histone 3 -0.73 

-1.41 1.25E-07 3 Brp17 brain protein 17  -1.38 

-1.41 2.45E-10 5 Pik3cg phosphoinositide-3-kinase -0.21 

-1.41 1.85E-06 3 Atpaf2 
ATP synthase mitochondrial 
F1 complex assembly factor 2  

-1.17 

-1.40 1.36E-13 2 BC003993 cDNA sequence BC003993  2.33 

-1.40 5.31E-05 2 Kptn kaptin  -1.32 

-1.40 1.73E-03 2 Arl10c 
ADP-ribosylation factor-like 
10C  

-1.24 

-1.40 8.25E-10 2 Gtf3c1 
general transcription factor III 
C 1  

-1.67 

-1.39 5.21E-06 3 2410012H22Rik 
RIKEN cDNA 2410012H22 
gene  

-0.69 

-1.38 4.96E-05 3 1200016B10Rik 
RIKEN cDNA 1200016B10 
gene  

-1.43 

-1.38 7.60E-02 1 Sep3 septin 3  -1.31 

-1.38 2.30E-02 4 Peg3 paternally expressed 3  -0.70 

-1.38 5.87E-18 3 Nkiras1 
NFKB inhibitor interacting 
Ras-like protein 1  

-1.39 

-1.38 5.85E-08 3 6330583M11Rik 

hypothetical 
Esterase/lipase/thioesterase 
family active site containing 
protein 

-1.34 

-1.37 4.65E-04 1 Cxcl12 chemokine  0.21 

-1.37 5.14E-13 2 Pdzk2 PDZ domain containing 2  -1.29 

-1.37 1.02E-03 3 Peg3 paternally expressed 3  -1.11 

-1.37 1.75E-04 3 Cln2 ceroid-lipofuscinosis 2 -1.26 

-1.36 1.14E-13 2 Mftc 
mitochondrial folate 
transporter/carrier  

0.60 

-1.36 1.37E-03 2 Lpin2 lipin 2  -1.18 

-1.36 4.17E-03 1 Dlk1 delta-like 1 homolog  -0.70 

-1.36 2.22E-09 2 Ogdh oxoglutarate dehydrogenase  -2.48 

-1.36 3.09E-14 3 Phtf1 
putative homeodomain 
transcription factor 1  

-1.41 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

-1.36 4.28E-02 2 Nefh neurofilament -0.68 

-1.36 1.21E-02 3 Ski 
Sloan-Kettering viral 
oncogene homolog  

-1.46 

-1.36 7.52E-06 3 A430079E08 
hypothetical protein 
A430079E08  

0.24 

-1.36 1.88E-08 3 A730017C20Rik 
RIKEN cDNA A730017C20 
gene  

-1.07 

-1.35 4.80E-10 2 9130404D08Rik 
RIKEN cDNA 9130404D08 
gene  

0.20 

-1.35 2.84E-06 5 Anxa6 annexin A6 -1.20 

-1.35 4.10E-03 2 Ttc4 
tetratricopeptide repeat 
domain 4  

-0.72 

-1.35 4.49E-08 2 Usp49 ubiquitin specific protease 49  -1.19 

-1.35 1.25E-05 2 1110054H05Rik 
RIKEN cDNA 1110054H05 
gene  

0.17 

-1.35 2.09E-03 3 Wars2 
tryptophanyl tRNA synthetase 
2  

-0.68 

-1.34 2.13E-03 1 Fjx1 four jointed box 1  -0.14 

-1.34 1.45E-05 2 Ssbp2 
single-stranded DNA binding 
protein 2 

-1.30 

-1.34 1.08E-04 4 4930471O16Rik 
RIKEN cDNA 4930471O16 
gene  

-0.62 

-1.34 5.15E-06 2 D130078K04Rik 
GRP1 BINDING PROTEIN 
GRSP1  

-1.29 

-1.33 4.70E-04 3 1500041J02Rik 
RIKEN cDNA 1500041J02 
gene  

-0.23 

-1.33 1.01E-03 2 AW060207 
expressed sequence 
AW060207  

0.12 

-1.33 6.00E-04 1 6820402O20Rik 
RIKEN cDNA 6820402O20 
gene  

-1.50 

-1.32 1.85E-07 3 1700064K09Rik 
RIKEN cDNA 1700064K09 
gene  

-0.22 

-1.30 5.35E-03 1 6030413G23Rik 
RIKEN cDNA 6030413G23 
gene  

-0.26 

1.30 3.95E-03 1 Noxo1 NADPH oxidase organizer 1  1.36 

1.30 7.48E-03 3 Rasgrp1 
RAS guanyl releasing protein 
1  

0.70 
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HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

1.30 3.65E-03 3 Ppil1 peptidylprolyl isomerase  1.14 

1.30 5.49E-10 2 Tnfrsf4 
tumor necrosis factor receptor 
superfamily 

1.32 

1.30 1.90E-04 1 Scp2 sterol carrier protein 2 1.14 

1.30 3.11E-02 2 Stim1 stromal interaction molecule 1 1.17 

1.31 2.49E-05 1 Aass 
aminoadipate-semialdehyde 
synthase  

1.35 

1.31 1.39E-03 4 Abcb4 ATP-binding cassette 0.72 

1.31 3.23E-02 3 Egr3 early growth response 3  -0.18 

1.31 9.77E-07 3 Gfpt2 
glutamine fructose-6-
phosphate transaminase 2  

1.12 

1.31 7.92E-04 2 Ltc4s leukotriene C4 synthase  1.30 

1.32 2.47E-09 2 Laptm4b 
lysosomal-associated protein 
transmembrane 4B  

0.24 

1.32 2.36E-02 2 Plvap 
plasmalemma vesicle 
associated protein  

0.65 

1.32 2.59E-16 1 2310012P17Rik 
RIKEN cDNA 2310012P17 
gene  

1.29 

1.32 2.23E-10 1 Ctsb cathepsin B  1.41 

1.33 4.52E-12 2 4933439J20Rik 
hypothetical XRCC1 N 
terminal domain containing 
protein 

1.26 

1.33 8.90E-10 3 1810009N02Rik 
RIKEN cDNA 1810009N02 
gene  

-1.71 

1.34 1.67E-03 4 H2-Q2 histocompatibility 2 1.35 

1.34 3.94E-13 3 4931440B09Rik 
RIKEN cDNA 4931440B09 
gene  

1.35 

1.35 4.73E-07 3 2410015N17Rik 
RIKEN cDNA 2410015N17 
gene  

-0.16 

1.35 9.60E-02 2 Timm10 
translocase of inner 
mitochondrial membrane 10 
homolog  

1.48 

1.35 1.03E-07 1 Mvp major vault protein  0.67 

1.35 1.20E-05 3 Dmwd 
dystrophia myotonica-
containing WD repeat motif  

0.91 

1.38 1.26E-04 3 Rbm9 RNA binding motif protein 9  0.65 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

1.38 3.38E-07 2 Elmo3 engulfment and cell motility 3 1.46 

1.38 1.18E-02 4 Rpo1-1 RNA polymerase 1-1  0.81 

1.38 3.40E-09 3 Gfra1 
glial cell line derived 
neurotrophic factor family 
receptor alpha 1  

0.82 

1.38 2.49E-03 4 Dnajc5 DnaJ  1.45 

1.39 2.35E-09 4 Mopt 
protein containing single 
MORN motif in testis  

-0.68 

1.39 2.36E-10 5 Tnfrsf13b 
tumor necrosis factor receptor 
superfamily 

1.16 

1.40 4.66E-05 4 Mad2l1bp MAD2L1 binding protein  0.65 

1.40 1.04E-08 4 1810073G14Rik 
RIKEN cDNA 1810073G14 
gene  

1.14 

1.40 7.17E-04 3 Mag 
myelin-associated 
glycoprotein  

1.30 

1.41 1.87E-15 4 Creb3 
cAMP responsive element 
binding protein 3  

0.22 

1.41 7.34E-05 1 Zfp68 zinc finger protein 68  -0.74 

1.43 7.85E-07 5 Slc35b1 solute carrier family 35 1.16 

1.43 1.61E-07 4 2610528C06Rik 
RIKEN cDNA 2610528C06 
gene  

0.73 

1.43 5.48E-05 3 Alad aminolevulinate 0.29 

1.44 2.43E-06 5 Ercc1 
excision repair cross-
complementing rodent repair 
deficiency 

1.47 

1.45 1.65E-10 4 Ntsr2 neurotensin receptor 2  1.55 

1.45 2.31E-02 5 2310007A19Rik 
RIKEN cDNA 2310007A19 
gene  

1.30 

1.45 1.99E-05 4 Laf4l 
lymphoid nuclear protein 
related to AF4-like  

0.74 

1.46 1.55E-06 4 9330196J05Rik 
RIKEN cDNA 9330196J05 
gene  

0.17 

1.46 1.94E-14 4 Map1lc3a 
microtubule-associated protein 
1 light chain 3 alpha  

1.59 

1.46 5.16E-09 5 Bcl2a1b 
B-cell leukemia/lymphoma 2 
related protein A1b  

0.68 

1.46 6.84E-08 3 6720463L11Rik SPLICING FACTOR -0.69 
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HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

1.47 5.07E-10 3 Alg1 
asparagine-linked 
glycosylation 1 homolog  

-0.18 

1.48 4.44E-10 4 Eml1 
echinoderm microtubule 
associated protein like 1  

0.66 

1.48 9.00E-08 4 6330530A05Rik 
RIKEN cDNA 6330530A05 
gene  

0.72 

1.48 1.41E-06 3 G2-pending G2 protein  1.40 

1.49 8.25E-07 5 1110012N22Rik 
RIKEN cDNA 1110012N22 
gene  

1.14 

1.49 5.53E-02 3 Hbb-b1 hemoglobin 0.86 

1.49 1.44E-07 4 Syt4 synaptotagmin 4  -0.29 

1.51 4.23E-06 4 Rutbc2 
RUN and TBC1 domain 
containing 2  

-0.25 

1.51 7.46E-07 5 Eppb9 
endothelial precursor protein 
B9  

1.28 

1.52 7.96E-10 2 BC034099 cDNA sequence BC034099  1.19 

1.52 4.27E-14 2 LOC226654 similar to KAT protein  0.66 

1.52 2.42E-19 4 H2-T23 histocompatibility 2 1.50 

1.52 5.10E-12 5 1110029E03Rik 
RIKEN cDNA 1110029E03 
gene  

-0.69 

1.53 1.77E-04 3 A530072M07Rik hypothetical protein 0.25 

1.54 1.71E-09 5 0610012D14Rik 
RIKEN cDNA 0610012D14 
gene  

1.58 

1.54 8.46E-15 5 LOC210245 similar to WTAP protein  0.63 

1.54 3.31E-06 5 Cd59a CD59a antigen  1.44 

1.55 1.76E-04 4 5031425E22Rik 
RIKEN cDNA 5031425E22 
gene  

0.28 

1.55 3.40E-10 5 1700023O11Rik 
RIKEN cDNA 1700023O11 
gene  

0.28 

1.55 3.26E-07 3 2310036D22Rik 
RIKEN cDNA 2310036D22 
gene  

3.32 

1.56 9.09E-17 5 1300019C06Rik 
RIKEN cDNA 1300019C06 
gene  

1.65 

1.56 5.76E-03 5 Prkag2 protein kinase 1.30 

1.57 1.96E-09 5 1110032N12Rik 
RIKEN cDNA 1110032N12 
gene  

-0.18 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

1.57 1.36E-08 4 Trim3 tripartite motif protein 3  1.12 

1.58 6.22E-05 2 Wnt9a 
wingless-type MMTV 
integration site 9A  

0.85 

1.59 2.15E-15 4 Elac1 elaC homolog 1  -0.18 

1.60 1.90E-11 5 1700027N10Rik 
RIKEN cDNA 1700027N10 
gene  

1.20 

1.60 6.26E-05 4 Rps3a ribosomal protein S3a  -0.79 

1.62 1.85E-08 4 Slc1a2 
solute carrier family 1 member 
2 

1.57 

1.62 3.48E-12 5 Slc35b1 
solute carrier family 35 
member b1 

1.13 

1.63 1.90E-07 3 Sox5 SRY-box containing gene 5 1.54 

1.65 4.36E-10 5 Zfp365 zinc finger protein 365  1.64 

1.65 3.95E-05 4 Zfp318 zinc finger protein 318  0.65 

1.67 7.06E-09 4 Twistnb TWIST neighbor  1.49 

1.68 5.71E-21 5 2700008N14Rik 
RIKEN cDNA 2700008N14 
gene  

1.86 

1.69 4.22E-14 5 1300010F03Rik 
RIKEN cDNA 1300010F03 
gene  

1.84 

1.70 7.59E-12 4 Chic1 
cysteine-rich hydrophobic 
domain 1 

-1.14 

1.71 1.50E-02 5 Hba-a1 hemoglobin alpha 0.90 

1.72 1.36E-02 5 Hbb-b1 hemoglobin beta 1.08 

1.77 2.08E-19 5 Mpeg1 
macrophage expressed gene 
1  

1.81 

1.80 1.03E-10 4 Vti1b arginase type II  0.63 

1.86 1.67E-11 5 LOC384154 
similar to ribosomal protein 
L31  

1.20 

1.87 1.34E-06 5 1700024K14Rik 
RIKEN cDNA 1700024K14 
gene  

0.87 

1.89 2.19E-14 5 Mpg 
N-methylpurine-DNA 
glycosylase  

0.61 

1.89 9.64E-10 4 Gtpbp4 GTP binding protein 4  1.87 

1.89 1.37E-12 4 Ddr1 
discoidin domain receptor 
family 

1.89 
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HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

1.91 9.30E-09 5 Rapgef5 
Rap guanine nucleotide 
exchange factor  5 

0.70 

1.91 6.08E-04 4 Ppfibp1 PTPRF interacting protein 1.49 

1.93 1.76E-14 5 Dgkq diacylglycerol kinase theta 0.20 

1.94 1.02E-10 5 Tnnt1 troponin T1 2.42 

1.96 8.43E-15 5 Add3 adducin 3  -0.28 

1.99 1.70E-18 5 Ercc5 
excision repair cross-
complementing rodent repair 
deficiency 

1.99 

1.99 4.51E-09 5 Arhgef10 
Rho guanine nucleotide 
exchange factor  

1.47 

2.00 5.35E-10 5 Rapgef5 
Rap guanine nucleotide 
exchange factor  

0.75 

2.03 5.24E-20 5 1110032N12Rik 
RIKEN cDNA 1110032N12 
gene  

0.71 

2.05 3.35E-19 5 Hmgn3 
high mobility group 
nucleosomal binding domain 3  

2.08 

2.05 1.61E-06 5 Rapgef5 
Rap guanine nucleotide 
exchange factor 5 

0.86 

2.06 3.66E-18 5 Trim11 tripartite motif protein 11  1.20 

2.08 1.80E-13 5 Sirt7 sirtuin 7  0.29 

2.08 6.89E-25 5 Rtn4 reticulon 4  2.09 

2.08 7.65E-05 4 Erdr1 
erythroid differentiation 
regulator 1  

-0.48 

2.12 1.51E-17 5 Usp29 ubiquitin specific protease 29  0.26 

2.12 9.72E-16 5 Ahcy 
S-adenosylhomocysteine 
hydrolase  

2.18 

2.14 3.38E-26 5 Pdhb pyruvate dehydrogenase  -1.58 

2.14 3.23E-10 5 Cox6a2 cytochrome c oxidase 1.23 

2.15 2.31E-12 4 Cxadr 
coxsackievirus and adenovirus 
receptor  

0.30 

2.16 2.87E-04 4 Hspcb heat shock protein 1 0.63 

2.18 4.78E-23 5 Tpr translocated promoter region  2.15 

2.21 2.10E-08 4 Mef2c myocyte enhancer factor 2C 0.78 

2.21 1.25E-14 5 Dgkh diacylglycerol kinase eta 2.58 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

2.21 6.97E-14 5 Elovl4 
elongation of very long chain 
fatty acids  

1.32 

2.22 1.20E-15 5 Fstl5 ollistatin-like 5  2.27 

2.22 6.02E-05 5 Ehd3 EH-domain containing 3  0.82 

2.23 8.50E-22 4 H2-T9 histocompatibility 2 2.39 

2.26 5.26E-25 5 2310034L04Rik 
RIKEN cDNA 2310034L04 
gene  

-0.27 

2.27 2.66E-13 4 Kcnj16 
potassium inwardly-rectifying 
channel 

0.69 

2.29 1.75E-14 5 6430559E15Rik 
RIKEN cDNA 6430559E15 
gene  

0.17 

2.30 3.83E-12 5 Map4k3 
mitogen-activated protein 
kinase kinase kinase kinase 3  

0.15 

2.31 3.74E-09 5 Twistnb TWIST neighbor  1.86 

2.34 3.12E-24 5 Vars2l valyl-tRNA synthetase 2-like  2.38 

2.38 1.97E-24 5 1110015E22Rik 
RIKEN cDNA 1110015E22 
gene  

2.79 

2.47 2.71E-22 5 1600014C10Rik 
RIKEN cDNA 1600014C10 
gene  

-0.21 

2.51 1.24E-18 5 2410131K14Rik 
RIKEN cDNA 2410131K14 
gene  

1.84 

2.55 1.80E-14 5 Sdf4 stromal cell derived factor 4  2.51 

2.56 4.35E-17 5 Pmp22 peripheral myelin protein  1.34 

2.57 4.15E-16 5 Abca2 ATP-binding cassette 0.63 

2.60 5.51E-08 5 Hbb-b1 hemoglobin beta 1 2.23 

2.61 2.03E-16 5 Cars cysteinyl-tRNA synthetase  0.14 

2.62 8.59E-20 5  
16 days neonate cerebellum 
cDNA 

0.15 

2.73 7.58E-08 5 Erdr1 
erythroid differentiation 
regulator 1  

0.37 

3.05 1.26E-11 5 LOC380983 
similar to 60S ribosomal 
protein L15  

3.09 

3.07 1.59E-10 5 Slc25a3 
solute carrier family 25 
member 3  

3.09 

3.39 1.17E-21 5 Rfng radical fringe gene homolog  0.71 
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HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

3.46 3.35E-22 5 Aldh3a2 
aldehyde dehydrogenase 
family 3 

1.48 

3.60 8.56E-26 5 Gnaq 
guanine nucleotide binding 
protein 

3.72 

3.63 7.16E-12 5 BC018472 cDNA sequence BC018472  1.91 

3.76 2.46E-13 5 Satb1 
special AT-rich sequence 
binding protein 1  

0.90 

3.79 6.53E-29 5 BC002216 cDNA sequence BC002216  4.13 

4.05 9.41E-13 5 Hbb-b1 hemoglobin 3.41 

4.05 2.76E-42 5 Stx3 syntaxin 3  4.25 

4.31 1.14E-13 5 Msr2 
macrophage scavenger 
receptor 2  

1.43 

HAB 
vs. LAB 

p-value 
# of 

regions 
Gene symbol Gene name 

HAB vs. 
NAB 

4.34 5.47E-30 5 BC003331 cDNA sequence BC003331  5.10 

4.54 4.05E-16 5 Gig1 glucocorticoid induced gene 1  1.56 

4.75 5.85E-38 5 H2-T17 histocompatibility 2 5.03 

5.23 4.68E-08 5 2900019G14Rik 
RIKEN cDNA 2900019G14 
gene 

2.16 

6.12 6.54E-12 5 C330008L01Rik 
RIKEN cDNA C330008L01 
gene  

1.73 

6.27 1.19E-24 5 Grim19 
genes associated with 
retinoid-IFN-induced mortality 
19  

0.24 

17.58 1.38E-17 5 Hbb-b1 Hemoglobin beta 1 14.41 
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Supplementary Table 3: Association between 
selected phenotypes and selected chromosomal loci.  
Distance (OF) refers to the total distance travelled in 
the open field, immobility time to the tail suspension 
test, percent time to the elevated plus-maze test and 
response to the level of corticosterone concentration 
increase in blood plasma after 15 minutes of restraint 
stress.  
 

SNP Phenotype p-value 

mCV23695025 distance (OF) 6.05E-01 

mCV24784983 distance (OF) 5.86E-01 

rs3677683 distance (OF) 5.63E-01 

rs4137502 distance (OF) 5.60E-01 

rs3707642 distance (OF) 5.99E-01 

rs3683997 distance (OF) 4.25E-01 

rs13475827 distance (OF) 3.62E-01 

CEL-1_44668113 distance (OF) 7.98E-01 

rs13475881 distance (OF) 6.71E-01 

rs13475919 distance (OF) 6.38E-01 

rs30238169 distance (OF) 4.68E-01 

rs30238168 distance (OF) 4.68E-01 

rs30237262 distance (OF) 4.68E-01 

rs30236408 distance (OF) 4.68E-01 

rs30242174 distance (OF) 4.68E-01 

UT_1_89.100476 distance (OF) 4.88E-01 

rs13476012 distance (OF) 4.07E-01 

CEL-1_103251925 distance (OF) 3.73E-01 

rs3685919 distance (OF) 2.99E-01 

rs13476050 distance (OF) 2.76E-01 

rs3699561 distance (OF) 9.81E-02 

rs3672697 distance (OF) 7.17E-01 

rs13476163 distance (OF) 7.17E-01 

rs6393307 distance (OF) 7.75E-01 

rs13476187 distance (OF) 7.06E-01 

SNP Phenotype p-value 

rs6157620 distance (OF) 2.87E-01 

rs3667164 distance (OF) 6.90E-02 

rs6240512 distance (OF) 5.84E-05 

CZECH-
2_15618849 

distance (OF) 2.06E-07 

rs13476366 distance (OF) 3.38E-07 

rs4223189 distance (OF) 1.95E-01 

rs3664661 distance (OF) 6.78E-01 

CEL-2_73370728 distance (OF) 6.61E-01 

rs13476639 distance (OF) 8.35E-01 

rs6406705 distance (OF) 6.18E-01 

rs13476666 distance (OF) 6.26E-01 

rs13476689 distance (OF) 7.06E-01 

rs13476723 distance (OF) 4.90E-01 

cmlcsnpavp1 distance (OF) 4.99E-01 

rs13476783 distance (OF) 4.97E-01 

CEL-2_168586738 distance (OF) 1.53E-02 

rs13477043 distance (OF) 5.72E-02 

gnf03.030.222 distance (OF) 7.36E-02 

rs6376008 distance (OF) 3.52E-01 

rs6211610 distance (OF) 1.91E-02 

rs13477268 distance (OF) 2.39E-01 

rs4138887 distance (OF) 1.61E-01 

CEL-3_120379605 distance (OF) 1.21E-01 

rs13477379 distance (OF) 8.29E-02 

rs3671119 distance (OF) 4.25E-01 

rs3676039 distance (OF) 3.38E-01 

rs6407142 distance (OF) 2.61E-01 

gnf03.160.599 distance (OF) 7.21E-03 

CEL-4_30653207 distance (OF) 3.92E-01 

rs3708471 distance (OF) 5.85E-01 

rs3023025 distance (OF) 4.56E-01 

SNP Phenotype p-value 

rs13478110 distance (OF) 8.48E-01 

rs3714258 distance (OF) 8.41E-01 

rs6341620 distance (OF) 1.12E-01 

CEL-5_45872918 distance (OF) 1.75E-02 

rs3664008 distance (OF) 1.10E-02 

mCV23386455 distance (OF) 1.01E-02 

rs3667334 distance (OF) 4.21E-03 

rs13459087 distance (OF) 9.54E-03 

rs3673049 distance (OF) 9.54E-03 

rs3661241 distance (OF) 2.06E-02 

rs13460000 distance (OF) 3.81E-02 

rs13460001 distance (OF) 3.81E-02 

rs13478433 distance (OF) 9.14E-03 

rs13459186 distance (OF) 1.48E-02 

rs13478483 distance (OF) 7.76E-02 

rs13478518 distance (OF) 5.94E-02 

rs13478520 distance (OF) 6.21E-02 

rs36247439 distance (OF) 2.03E-01 

rs33343556 distance (OF) 2.03E-01 

rs36309698 distance (OF) 2.03E-01 

rs37452785 distance (OF) 2.03E-01 

mCV23695025 immobility time 7.88E-02 

mCV24784983 immobility time 1.76E-02 

rs3677683 immobility time 1.45E-02 

rs4137502 immobility time 1.28E-02 

rs3707642 immobility time 1.89E-02 

rs3683997 immobility time 1.93E-02 

rs13475827 immobility time 1.14E-01 

CEL-1_44668113 immobility time 5.90E-01 

rs13475881 immobility time 6.69E-02 

rs13475919 immobility time 4.18E-01 

rs30238169 immobility time 1.06E-01 
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SNP Phenotype p-value 

rs30238168 immobility time 1.06E-01 

rs30237262 immobility time 1.06E-01 

rs30236408 immobility time 1.06E-01 

rs30242174 immobility time 1.06E-01 

UT_1_89.100476 immobility time 8.20E-03 

rs13476012 immobility time 3.93E-03 

CEL-1_103251925 immobility time 3.72E-03 

rs3685919 immobility time 1.04E-03 

rs13476050 immobility time 1.17E-03 

rs3699561 immobility time 5.66E-06 

rs3672697 immobility time 7.45E-08 

rs13476163 immobility time 7.45E-08 

rs6393307 immobility time 3.77E-08 

rs13476187 immobility time 1.00E-07 

rs6157620 immobility time 1.04E-04 

rs3667164 immobility time 9.25E-04 

rs6240512 immobility time 1.76E-13 

CZECH-
2_15618849 

immobility time 1.42E-17 

rs13476366 immobility time 4.66E-19 

rs4223189 immobility time 3.40E-05 

rs3664661 immobility time 2.15E-03 

CEL-2_73370728 immobility time 6.18E-03 

rs13476639 immobility time 1.78E-01 

rs6406705 immobility time 1.71E-01 

rs13476666 immobility time 3.11E-01 

rs13476689 immobility time 3.53E-01 

rs13476723 immobility time 6.47E-01 

cmlcsnpavp1 immobility time 7.31E-01 

rs13476783 immobility time 8.21E-01 

CEL-2_168586738 immobility time 4.56E-02 

rs13477043 immobility time 3.25E-01 

SNP Phenotype p-value 

gnf03.030.222 immobility time 3.21E-01 

rs6376008 immobility time 2.75E-01 

rs6211610 immobility time 5.94E-01 

rs13477268 immobility time 2.64E-01 

rs4138887 immobility time 2.22E-01 

CEL-3_120379605 immobility time 2.46E-01 

rs13477379 immobility time 7.71E-01 

rs3671119 immobility time 7.01E-01 

rs3676039 immobility time 7.80E-01 

rs6407142 immobility time 3.94E-01 

gnf03.160.599 immobility time 9.32E-01 

CEL-4_30653207 immobility time 7.07E-01 

rs3708471 immobility time 5.89E-02 

rs3023025 immobility time 3.23E-01 

rs13478110 immobility time 9.04E-01 

rs3714258 immobility time 8.84E-01 

rs6341620 immobility time 4.77E-01 

CEL-5_45872918 immobility time 2.75E-01 

rs3664008 immobility time 1.91E-01 

mCV23386455 immobility time 1.99E-01 

rs3667334 immobility time 1.38E-01 

rs13459087 immobility time 2.19E-01 

rs3673049 immobility time 2.19E-01 

rs3661241 immobility time 2.22E-01 

rs13460000 immobility time 2.32E-01 

rs13460001 immobility time 2.32E-01 

rs13478433 immobility time 1.31E-01 

rs13459186 immobility time 7.36E-02 

rs13478483 immobility time 4.98E-01 

rs13478518 immobility time 4.58E-01 

rs13478520 immobility time 3.18E-01 

rs36247439 immobility time 8.67E-01 

SNP Phenotype p-value 

rs33343556 immobility time 8.67E-01 

rs36309698 immobility time 8.67E-01 

rs37452785 immobility time 8.67E-01 

mCV23695025 percent time 5.81E-01 

mCV24784983 percent time 4.13E-01 

rs3677683 percent time 4.49E-01 

rs4137502 percent time 3.72E-01 

rs3707642 percent time 3.40E-01 

rs3683997 percent time 3.32E-01 

rs13475827 percent time 9.41E-02 

CEL-1_44668113 percent time 6.98E-02 

rs13475881 percent time 3.19E-01 

rs13475919 percent time 8.13E-01 

rs30238169 percent time 7.90E-01 

rs30238168 percent time 7.90E-01 

rs30237262 percent time 7.90E-01 

rs30236408 percent time 7.90E-01 

rs30242174 percent time 7.90E-01 

UT_1_89.100476 percent time 7.88E-01 

rs13476012 percent time 3.86E-01 

CEL-1_103251925 percent time 1.75E-01 

rs3685919 percent time 2.83E-01 

rs13476050 percent time 3.00E-01 

rs3699561 percent time 2.50E-01 

rs3672697 percent time 5.52E-01 

rs13476163 percent time 5.52E-01 

rs6393307 percent time 4.83E-01 

rs13476187 percent time 5.48E-01 

rs6157620 percent time 2.23E-01 

rs3667164 percent time 1.65E-01 

rs6240512 percent time 6.41E-04 
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SNP Phenotype p-value 

CZECH-
2_15618849 

percent time 1.20E-03 

rs13476366 percent time 3.73E-04 

rs4223189 percent time 5.13E-01 

rs3664661 percent time 2.03E-01 

CEL-2_73370728 percent time 3.13E-01 

rs13476639 percent time 9.96E-02 

rs6406705 percent time 3.56E-02 

rs13476666 percent time 2.16E-02 

rs13476689 percent time 5.41E-02 

rs13476723 percent time 5.65E-02 

cmlcsnpavp1 percent time 1.84E-01 

rs13476783 percent time 3.18E-01 

CEL-2_168586738 percent time 2.89E-01 

rs13477043 percent time 1.41E-05 

gnf03.030.222 percent time 1.01E-05 

rs6376008 percent time 8.12E-02 

rs6211610 percent time 2.29E-02 

rs13477268 percent time 1.30E-01 

rs4138887 percent time 8.75E-02 

CEL-3_120379605 percent time 9.00E-02 

rs13477379 percent time 3.06E-02 

rs3671119 percent time 4.09E-01 

rs3676039 percent time 3.13E-01 

rs6407142 percent time 2.03E-01 

gnf03.160.599 percent time 2.06E-02 

CEL-4_30653207 percent time 7.52E-01 

rs3708471 percent time 2.41E-01 

rs3023025 percent time 2.19E-01 

rs13478110 percent time 5.05E-01 

rs3714258 percent time 7.44E-01 

rs6341620 percent time 2.28E-01 

SNP Phenotype p-value 

CEL-5_45872918 percent time 3.85E-02 

rs3664008 percent time 2.63E-04 

mCV23386455 percent time 1.24E-04 

rs3667334 percent time 9.66E-07 

rs13459087 percent time 2.06E-06 

rs3673049 percent time 2.06E-06 

rs3661241 percent time 7.94E-07 

rs13460000 percent time 1.05E-06 

rs13460001 percent time 1.05E-06 

rs13478433 percent time 3.52E-07 

rs13459186 percent time 2.44E-07 

rs13478483 percent time 9.97E-08 

rs13478518 percent time 2.04E-03 

rs13478520 percent time 9.80E-04 

rs36247439 percent time 6.98E-01 

rs33343556 percent time 6.98E-01 

rs36309698 percent time 6.98E-01 

rs37452785 percent time 6.98E-01 

mCV23695025 response 5.88E-01 

mCV24784983 response 6.27E-01 

rs3677683 response 5.63E-01 

rs4137502 response 5.30E-01 

rs3707642 response 4.82E-01 

rs3683997 response 4.79E-01 

rs13475827 response 3.62E-02 

CEL-1_44668113 response 1.27E-01 

rs13475881 response 3.63E-01 

rs13475919 response 7.74E-02 

rs30238169 response 7.97E-02 

rs30238168 response 7.97E-02 

rs30237262 response 7.97E-02 

rs30236408 response 7.97E-02 

SNP Phenotype p-value 

rs30242174 response 7.97E-02 

UT_1_89.100476 response 1.32E-01 

rs13476012 response 3.63E-01 

CEL-1_103251925 response 4.22E-01 

rs3685919 response 5.43E-01 

rs13476050 response 5.43E-01 

rs3699561 response 5.02E-01 

rs3672697 response 8.92E-01 

rs13476163 response 8.92E-01 

rs6393307 response 7.76E-01 

rs13476187 response 8.38E-01 

rs6157620 response 1.94E-01 

rs3667164 response 1.26E-01 

rs6240512 response 7.93E-01 

CZECH-
2_15618849 

response 5.78E-01 

rs13476366 response 3.28E-01 

rs4223189 response 5.97E-01 

rs3664661 response 1.08E-01 

CEL-2_73370728 response 9.86E-02 

rs13476639 response 2.49E-01 

rs6406705 response 1.25E-01 

rs13476666 response 1.33E-01 

rs13476689 response 3.60E-01 

rs13476723 response 2.53E-01 

cmlcsnpavp1 response 9.82E-02 

rs13476783 response 5.38E-02 

CEL-2_168586738 response 9.89E-02 

rs13477043 response 2.04E-07 

gnf03.030.222 response 3.98E-07 

rs6376008 response 7.35E-46 

rs6211610 response 5.56E-23 
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SNP Phenotype p-value 

rs13477268 response 1.20E-50 

rs4138887 response 2.31E-50 

CEL-3_120379605 response 2.02E-34 

rs13477379 response 1.64E-30 

rs3671119 response 7.01E-28 

rs3676039 response 4.13E-16 

rs6407142 response 9.80E-10 

gnf03.160.599 response 1.96E-03 

CEL-4_30653207 response 9.84E-02 

rs3708471 response 3.51E-01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SNP Phenotype p-value 

rs3023025 response 5.49E-01 

rs13478110 response 1.44E-01 

rs3714258 response 1.47E-01 

rs6341620 response 4.34E-01 

CEL-5_45872918 response 4.68E-01 

rs3664008 response 3.80E-01 

mCV23386455 response 2.41E-01 

rs3667334 response 2.38E-01 

rs13459087 response 2.43E-01 

rs3673049 response 2.43E-01 

rs13460000 response 9.15E-02 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SNP Phenotype p-value 

rs3661241 response 6.70E-02 

rs13460001 response 9.15E-02 

rs13478433 response 1.57E-01 

rs13459186 response 1.23E-01 

rs13478483 response 6.09E-02 

rs13478518 response 3.74E-01 

rs13478520 response 4.88E-01 

rs36247439 response 5.34E-01 

rs33343556 response 5.34E-01 

rs36309698 response 5.34E-01 

rs37452785 response 5.34E-01 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
References 

127 

7. References 

Alikhani-Koupaei, R., Fouladkou, F., Fustier, P., Cenni, B., Sharma, A. M., Deter, H. 
C., Frey, B. M. and Frey, F. J. (2007): Identification of polymorphisms in the human 
11beta-hydroxysteroid dehydrogenase type 2 gene promoter: functional 
characterization and relevance for salt sensitivity. Faseb J. 21(13): p. 3618-28. 

Altschuler, E. L. (2000): Plague as HIV vaccine adjuvant. Med Hypotheses. 54(6): p. 
1003-4. 

Ayi, K., Turrini, F., Piga, A. and Arese, P. (2004): Enhanced phagocytosis of ring-
parasitized mutant erythrocytes: a common mechanism that may explain protection 
against falciparum malaria in sickle trait and beta-thalassemia trait. Blood. 104(10): 
p. 3364-71. 

Barden, N., Harvey, M., Gagne, B., Shink, E., Tremblay, M., Raymond, C., Labbe, 
M., Villeneuve, A., Rochette, D., Bordeleau, L., Stadler, H., Holsboer, F. and Muller-
Myhsok, B. (2006): Analysis of single nucleotide polymorphisms in genes in the 
chromosome 12Q24.31 region points to P2RX7 as a susceptibility gene to bipolar 
affective disorder. Am J Med Genet B Neuropsychiatr Genet. 141B(4): p. 374-82. 

Baum, A. E., Akula, N., Cabanero, M., Cardona, I., Corona, W., Klemens, B., 
Schulze, T. G., Cichon, S., Rietschel, M., Nothen, M. M., Georgi, A., Schumacher, 
J., Schwarz, M., Abou Jamra, R., Hofels, S., Propping, P., Satagopan, J., Detera-
Wadleigh, S. D., Hardy, J. and McMahon, F. J. (2008): A genome-wide association 
study implicates diacylglycerol kinase eta (DGKH) and several other genes in the 
etiology of bipolar disorder. Mol Psychiatry. 13(2): p. 197-207. 

Beck, J. A., Lloyd, S., Hafezparast, M., Lennon-Pierce, M., Eppig, J. T., Festing, M. 
F. and Fisher, E. M. (2000): Genealogies of mouse inbred strains. Nat Genet. 24(1): 
p. 23-5. 

Belknap, J. K., Richards, S. P., O'Toole, L. A., Helms, M. L. and Phillips, T. J. 
(1997): Short-term selective breeding as a tool for QTL mapping: ethanol preference 
drinking in mice. Behav Genet. 27(1): p. 55-66. 

Beltramini, M., Di Pisa, C., Zambenedetti, P., Wittkowski, W., Mocchegiani, E., 
Musicco, M. and Zatta, P. (2004a): Zn and Cu alteration in connection with astrocyte 
metallothionein I/II overexpression in the mouse brain upon physical stress. Glia. 
47(1): p. 30-4. 

Beltramini, M., Zambenedetti, P., Wittkowski, W. and Zatta, P. (2004b): Effects of 
steroid hormones on the Zn, Cu and MTI/II levels in the mouse brain. Brain Res. 
1013(1): p. 134-41. 

Belzung, C. and Philippot, P. (2007): Anxiety from a phylogenetic perspective: is 
there a qualitative difference between human and animal anxiety? Neural Plast. 
2007: p. 59676. 

Bielsky, I. F., Hu, S. B., Szegda, K. L., Westphal, H. and Young, L. J. (2004): 
Profound impairment in social recognition and reduction in anxiety-like behavior in 
vasopressin V1a receptor knockout mice. Neuropsychopharmacology. 29(3): p. 483-
93. 

Bielsky, I. F., Hu, S. B., Ren, X., Terwilliger, E. F. and Young, L. J. (2005): The V1a 
vasopressin receptor is necessary and sufficient for normal social recognition: a 
gene replacement study. Neuron. 47(4): p. 503-13. 



 
References 

128 

Bilkei-Gorzo, A., Racz, I., Michel, K. and Zimmer, A. (2002): Diminished anxiety- and 
depression-related behaviors in mice with selective deletion of the Tac1 gene. J 
Neurosci. 22(22): p. 10046-52. 

Bishop, S. J., Duncan, J. and Lawrence, A. D. (2004): State anxiety modulation of 
the amygdala response to unattended threat-related stimuli. J Neurosci. 24(46): p. 
10364-8. 

Bishop, S. J. (2008): Neural mechanisms underlying selective attention to threat. 
Ann N Y Acad Sci. 1129: p. 141-52. 

Bittner, A., Goodwin, R. D., Wittchen, H. U., Beesdo, K., Hofler, M. and Lieb, R. 
(2004): What characteristics of primary anxiety disorders predict subsequent major 
depressive disorder? J Clin Psychiatry. 65(5): p. 618-26, quiz 730. 

Bock, C. and Lengauer, T. (2008): Computational epigenetics. Bioinformatics. 24(1): 
p. 1-10. 

Bourin, M., Petit-Demouliere, B., Dhonnchadha, B. N. and Hascoet, M. (2007): 
Animal models of anxiety in mice. Fundam Clin Pharmacol. 21(6): p. 567-74. 

Bruins, J., Kovacs, G. L., Abbes, A. P., Burbach, J. P., van den Akker, E. L., Engel, 
H., Franken, A. A. and de Wied, D. (2006): Minor disturbances in central nervous 
system function in familial neurohypophysial diabetes insipidus. 
Psychoneuroendocrinology. 31(1): p. 80-91. 

Buckland, P. R., Hoogendoorn, B., Guy, C. A., Coleman, S. L., Smith, S. K., 
Buxbaum, J. D., Haroutunian, V. and O'Donovan, M. C. (2004): A high proportion of 
polymorphisms in the promoters of brain expressed genes influences transcriptional 
activity. Biochim Biophys Acta. 1690(3): p. 238-49. 

Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E. and Blake, J. A. (2008): The 
Mouse Genome Database (MGD): mouse biology and model systems. Nucleic 
Acids Res. 36(Database issue): p. D724-8. 

Bunck, M. (2008): Behavioral phenotyping, gene expression profiles and cognitive 
aspects in a mouse model of trait anxiety. Dissertation at the LMU München, Faculty 
of Biology. 

Bunck, M., Czibere, L., Horvath, C., Graf, C., Murgatroyd, C., Muller-Myhsok, B., 
Gonik, M., Muigg, P., Singewald, N., Kessler, M. S., Frank, E., Bettecken, T., 
Deussing, J. M., Holsboer, F., Spengler, D. and Landgraf, R. (2009): A hypomorphic 
vasopressin allele prevents anxiety-related behavior. PLoS ONE: 4(4):e5129. Epub 
2009 Apr 9. 

Cabreiro, F., Picot, C. R., Perichon, M., Castel, J., Friguet, B. and Petropoulos, I. 
(2008): Overexpression of mitochondrial methionine sulfoxide reductase B2 protects 
leukemia cells from oxidative stress-induced cell death and protein damage. J Biol 
Chem. 283(24): p. 16673-81. 

Caldji, C., Tannenbaum, B., Sharma, S., Francis, D., Plotsky, P. M. and Meaney, M. 
J. (1998): Maternal care during infancy regulates the development of neural systems 
mediating the expression of fearfulness in the rat. Proc Natl Acad Sci U S A. 95(9): 
p. 5335-40. 



 
References 

129 

Caldwell, H. K., Lee, H. J., Macbeth, A. H. and Young, W. S., 3rd (2008): 
Vasopressin: behavioral roles of an "original" neuropeptide. Prog Neurobiol. 84(1): 
p. 1-24. 

Carter, M. S. and Krause, J. E. (1990): Structure, expression, and some regulatory 
mechanisms of the rat preprotachykinin gene encoding substance P, neurokinin A, 
neuropeptide K, and neuropeptide gamma. J Neurosci. 10(7): p. 2203-14. 

Chakrabarty, A. and Roberts, M. R. (2007): Ets-2 and C/EBP-beta are important 
mediators of ovine trophoblast Kunitz domain protein-1 gene expression in 
trophoblast. BMC Mol Biol. 8: p. 14. 

Champagne, F. A. (2008): Epigenetic mechanisms and the transgenerational effects 
of maternal care. Front Neuroendocrinol. 29(3): p. 386-97. 

Chesler, E. J., Wilson, S. G., Lariviere, W. R., Rodriguez-Zas, S. L. and Mogil, J. S. 
(2002): Identification and ranking of genetic and laboratory environment factors 
influencing a behavioral trait, thermal nociception, via computational analysis of a 
large data archive. Neurosci Biobehav Rev. 26(8): p. 907-23. 

Chia, R., Achilli, F., Festing, M. F. and Fisher, E. M. (2005): The origins and uses of 
mouse outbred stocks. Nat Genet. 37(11): p. 1181-6. 

Christen, Y. (2000): Oxidative stress and Alzheimer disease. Am J Clin Nutr. 71(2): 
p. 621S-629S. 

Cipriano, C., Giacconi, R., Muzzioli, M., Gasparini, N., Orlando, F., Corradi, A., 
Cabassi, E. and Mocchegiani, E. (2003): Metallothionein (I+II) confers, via c-myc, 
immune plasticity in oldest mice: model of partial hepatectomy/liver regeneration. 
Mech Ageing Dev. 124(8-9): p. 877-86. 

Consortium, T. W. T. C. C. (2007): Genome-wide association study of 14,000 cases 
of seven common diseases and 3,000 shared controls. Nature. 447(7145): p. 661-
78. 

Conti, L. H., Jirout, M., Breen, L., Vanella, J. J., Schork, N. J. and Printz, M. P. 
(2004): Identification of quantitative trait loci for anxiety and locomotion phenotypes 
in rat recombinant inbred strains. Behav Genet. 34(1): p. 93-103. 

Coplan, J. D. and Lydiard, R. B. (1998): Brain circuits in panic disorder. Biol 
Psychiatry. 44(12): p. 1264-76. 

Coulson, D. T., Brockbank, S., Quinn, J. G., Murphy, S., Ravid, R., Irvine, G. B. and 
Johnston, J. A. (2008): Identification of valid reference genes for the normalization of 
RT qPCR gene expression data in human brain tissue. BMC Mol Biol. 9: p. 46. 

Cryan, J. F. and Mombereau, C. (2004): In search of a depressed mouse: utility of 
models for studying depression-related behavior in genetically modified mice. Mol 
Psychiatry. 9(4): p. 326-57. 

Cryan, J. F. and Holmes, A. (2005): The ascent of mouse: advances in modelling 
human depression and anxiety. Nat Rev Drug Discov. 4(9): p. 775-90. 

Czeh, B., Fuchs, E. and Simon, M. (2006): NK1 receptor antagonists under 
investigation for the treatment of affective disorders. Expert Opin Investig Drugs. 
15(5): p. 479-86. 



 
References 

130 

Darios, F. and Davletov, B. (2006): Omega-3 and omega-6 fatty acids stimulate cell 
membrane expansion by acting on syntaxin 3. Nature. 440(7085): p. 813-7. 

Delaval, K. and Feil, R. (2004): Epigenetic regulation of mammalian genomic 
imprinting. Curr Opin Genet Dev. 14(2): p. 188-95. 

Denes, A. S., Jekely, G., Steinmetz, P. R., Raible, F., Snyman, H., Prud'homme, B., 
Ferrier, D. E., Balavoine, G. and Arendt, D. (2007): Molecular architecture of annelid 
nerve cord supports common origin of nervous system centralization in bilateria. 
Cell. 129(2): p. 277-88. 

Deussing, J. M., Kuhne, C., Putz, B., Panhuysen, M., Breu, J., Stenzel-Poore, M. P., 
Holsboer, F. and Wurst, W. (2007): Expression profiling identifies the CRH/CRH-R1 
system as a modulator of neurovascular gene activity. J Cereb Blood Flow Metab. 
27(8): p. 1476-95. 

Dierick, H. A. and Greenspan, R. J. (2006): Molecular analysis of flies selected for 
aggressive behavior. Nat Genet. 38(9): p. 1023-31. 

Ditzen, C., Jastorff, A. M., Kessler, M. S., Bunck, M., Teplytska, L., Erhardt, A., 
Kromer, S. A., Varadarajulu, J., Targosz, B. S., Sayan-Ayata, E. F., Holsboer, F., 
Landgraf, R. and Turck, C. W. (2006): Protein biomarkers in a mouse model of 
extremes in trait anxiety. Mol Cell Proteomics. 5(10): p. 1914-20. 

Ditzen, C., Varadarajulu, J., Czibere, L., Gonik, M., Targosz, B.-S., Hambsch, B., 
Bettecken, T., Kessler, M. S., Frank, E., Bunck, M., Teplytska, L., Muller-Myhsok, B., 
Holsboer, F., Landgraf, R. and Turck, C. W. (2009): Proteomic genotyping in a 
mouse model of trait anxiety exposes disease-relevant pathways. Mol Psychiatry: 
Jan 13, [Epub ahead of print]. 

Do, M. S., Jeong, H. S., Choi, B. H., Hunter, L., Langley, S., Pazmany, L. and 
Trayhurn, P. (2006): Inflammatory gene expression patterns revealed by DNA 
microarray analysis in TNF-alpha-treated SGBS human adipocytes. Yonsei Med J. 
47(5): p. 729-36. 

Duarte, C. R., Schutz, B. and Zimmer, A. (2006): Incongruent pattern of neurokinin 
B expression in rat and mouse brains. Cell Tissue Res. 323(1): p. 43-51. 

Dudoit, S., Yang, Y. H., Callow, M. J. and Speed, T. P. (2002): Statistical methods 
for identifying differentially expressed genes in replicated cDNA microarray 
experiments. Statistica Sinica. 12(1): p. 111-139. 

Ebner, K., Rupniak, N. M., Saria, A. and Singewald, N. (2004): Substance P in the 
medial amygdala: emotional stress-sensitive release and modulation of anxiety-
related behavior in rats. Proc Natl Acad Sci U S A. 101(12): p. 4280-5. 

Ebner, K. and Singewald, N. (2006): The role of substance P in stress and anxiety 
responses. Amino Acids. 31(3): p. 251-72. 

Egashira, N., Tanoue, A., Matsuda, T., Koushi, E., Harada, S., Takano, Y., 
Tsujimoto, G., Mishima, K., Iwasaki, K. and Fujiwara, M. (2007): Impaired social 
interaction and reduced anxiety-related behavior in vasopressin V1a receptor 
knockout mice. Behav Brain Res. 178(1): p. 123-7. 

Engel, J. D., Beug, H., LaVail, J. H., Zenke, M. W., Mayo, K., Leonard, M. W., Foley, 
K. P., Yang, Z., Kornhauser, J. M., Ko, L. J. and et al. (1992): cis and trans 
regulation of tissue-specific transcription. J Cell Sci Suppl. 16: p. 21-31. 



 
References 

131 

Erhardt, A., Lucae, S., Unschuld, P. G., Ising, M., Kern, N., Salyakina, D., Lieb, R., 
Uhr, M., Binder, E. B., Keck, M. E., Muller-Myhsok, B. and Holsboer, F. (2007): 
Association of polymorphisms in P2RX7 and CaMKKb with anxiety disorders. J 
Affect Disord. 101(1-3): p. 159-68. 

Erhardt, A., Czibere, L., Roeske, D., Lucae, S., Unschuld, P. G., Ripke, S., Specht, 
M., Kohli, M., Kloiber, S., Weber, P., Deussing, J. M., Ising, M., Heck, A., 
Zimmermann, P., Pfister, H., Lieb, R., Putz, B., Uhr, M., Hohoff, C., Domschke, K., 
Krakowitzky, P., Maier, W., Bandelow, B., Jacob, C., Deckert, J., Landgraf, R., 
Gonik, M., Bunck, M., Kessler, M. S., Frank, E., Schreiber, S., Strohmaier, J., 
Nothen, M., Cichon, S., Rietschel, M., Bettecken, T., Keck, M. E., Landgraf, R., 
Muller-Myhsok, B., Holsboer, F. and Binder, E. B. (submitted): Genomewide 
association study in panic disorder identifies transmembrane protein 132D 
(TMEM132D) as susceptibility gene for anxiety-related phenotypes: evidence from 
human and mice studies. Mol Psychiatry. 

Etkin, A. and Wager, T. D. (2007): Functional neuroimaging of anxiety: a meta-
analysis of emotional processing in PTSD, social anxiety disorder, and specific 
phobia. Am J Psychiatry. 164(10): p. 1476-88. 

Felbor, U., Kessler, B., Mothes, W., Goebel, H. H., Ploegh, H. L., Bronson, R. T. and 
Olsen, B. R. (2002): Neuronal loss and brain atrophy in mice lacking cathepsins B 
and L. Proc Natl Acad Sci U S A. 99(12): p. 7883-8. 

Feuk, L., Marshall, C. R., Wintle, R. F. and Scherer, S. W. (2006): Structural 
variants: changing the landscape of chromosomes and design of disease studies. 
Hum Mol Genet. 15 Spec No 1: p. R57-66. 

Fields, R. L., House, S. B. and Gainer, H. (2003): Regulatory domains in the 
intergenic region of the oxytocin and vasopressin genes that control their 
hypothalamus-specific expression in vitro. J Neurosci. 23(21): p. 7801-9. 

File, S. E. (2001): Factors controlling measures of anxiety and responses to novelty 
in the mouse. Behav Brain Res. 125(1-2): p. 151-7. 

Flannelly, K. J., Koenig, H. G., Galek, K. and Ellison, C. G. (2007): Beliefs, mental 
health, and evolutionary threat assessment systems in the brain. J Nerv Ment Dis. 
195(12): p. 996-1003. 

Fox, C., Merali, Z. and Harrison, C. (2006): Therapeutic and protective effect of 
environmental enrichment against psychogenic and neurogenic stress. Behav Brain 
Res. 175(1): p. 1-8. 

Francis, D. D. and Meaney, M. J. (1999): Maternal care and the development of 
stress responses. Curr Opin Neurobiol. 9(1): p. 128-34. 

Frank, E., Salchner, P., Aldag, J. M., Salome, N., Singewald, N., Landgraf, R. and 
Wigger, A. (2006): Genetic predisposition to anxiety-related behavior determines 
coping style, neuroendocrine responses, and neuronal activation during social 
defeat. Behav Neurosci. 120(1): p. 60-71. 

Frank, E. and Landgraf, R. (2008): The vasopressin system - from antidiuresis to 
psychopathology. Eur J Pharmacol. 583(2-3): p. 226-42. 

Green, J. E., Desai, K. V., Ye, Y., Kavanaugh, C., Calvo, A. and Huh, J. I. (2004): 
Application of gene expression profiling for validating models of human breast 
cancer. Toxicol Pathol. 32 Suppl 1: p. 84-9. 



 
References 

132 

Gwee, P. C., Amemiya, C. T., Brenner, S. and Venkatesh, B. (2008): Sequence and 
organization of coelacanth neurohypophysial hormone genes: evolutionary history of 
the vertebrate neurohypophysial hormone gene locus. BMC Evol Biol. 8: p. 93. 

Harrington, S. (2008): The role of sugar-sweetened beverage consumption in 
adolescent obesity: A review of the literature. The Journal of School Nursing. 24(1): 
p. 3-12. 

Hasler, G., Fromm, S., Alvarez, R. P., Luckenbaugh, D. A., Drevets, W. C. and 
Grillon, C. (2007): Cerebral blood flow in immediate and sustained anxiety. J 
Neurosci. 27(23): p. 6313-9. 

Hejjas, K., Szekely, A., Domotor, E., Halmai, Z., Balogh, G., Schilling, B., Sarosi, A., 
Faludi, G., Sasvari-Szekely, M. and Nemoda, Z. (2008): Association between 
depression and the Gln460Arg polymorphism of P2RX7 Gene: A dimensional 
approach. Am J Med Genet B Neuropsychiatr Genet. 

Henderson, N. D., Turri, M. G., DeFries, J. C. and Flint, J. (2004): QTL analysis of 
multiple behavioral measures of anxiety in mice. Behav Genet. 34(3): p. 267-93. 

Herman, J. P. and Cullinan, W. E. (1997): Neurocircuitry of stress: central control of 
the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20(2): p. 78-84. 

Herman, J. P., Figueiredo, H., Mueller, N. K., Ulrich-Lai, Y., Ostrander, M. M., Choi, 
D. C. and Cullinan, W. E. (2003): Central mechanisms of stress integration: 
hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical 
responsiveness. Front Neuroendocrinol. 24(3): p. 151-80. 

Hettema, J. M., Prescott, C. A. and Kendler, K. S. (2004): Genetic and 
environmental sources of covariation between generalized anxiety disorder and 
neuroticism. Am J Psychiatry. 161(9): p. 1581-7. 

Hettema, J. M., Prescott, C. A., Myers, J. M., Neale, M. C. and Kendler, K. S. 
(2005): The structure of genetic and environmental risk factors for anxiety disorders 
in men and women. Arch Gen Psychiatry. 62(2): p. 182-9. 

Hitzemann, R., Malmanger, B., Belknap, J., Darakjian, P. and McWeeney, S. (2008): 
Short-term selective breeding for High and Low prepulse inhibition of the acoustic 
startle response; pharmacological characterization and QTL mapping in the selected 
lines. Pharmacol Biochem Behav. 

Holland, N. D. (2003): Early central nervous system evolution: an era of skin brains? 
Nat Rev Neurosci. 4(8): p. 617-27. 

Holmes, A., Wrenn, C. C., Harris, A. P., Thayer, K. E. and Crawley, J. N. (2002): 
Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests 
for reference memory in mice. Genes Brain Behav. 1(1): p. 55-69. 

Holsboer, F. (2008): How can we realize the promise of personalized antidepressant 
medicines? Nat Rev Neurosci. 9(8): p. 638-46. 

Hovatta, I., Tennant, R. S., Helton, R., Marr, R. A., Singer, O., Redwine, J. M., 
Ellison, J. A., Schadt, E. E., Verma, I. M., Lockhart, D. J. and Barlow, C. (2005): 
Glyoxalase 1 and glutathione reductase 1 regulate anxiety in mice. Nature. 
438(7068): p. 662-6. 



 
References 

133 

Hovatta, I. and Barlow, C. (2008): Molecular genetics of anxiety in mice and men. 
Ann Med. 40(2): p. 92-109. 

Hubler, T. R. and Scammell, J. G. (2004): Intronic hormone response elements 
mediate regulation of FKBP5 by progestins and glucocorticoids. Cell Stress 
Chaperones. 9(3): p. 243-52. 

Jacobi, F., Wittchen, H. U., Holting, C., Hofler, M., Pfister, H., Muller, N. and Lieb, R. 
(2004): Prevalence, co-morbidity and correlates of mental disorders in the general 
population: results from the German Health Interview and Examination Survey 
(GHS). Psychol Med. 34(4): p. 597-611. 

Ji, C., Chen, Y., Centrella, M. and McCarthy, T. L. (1999): Activation of the insulin-
like growth factor-binding protein-5 promoter in osteoblasts by cooperative E box, 
CCAAT enhancer-binding protein, and nuclear factor-1 deoxyribonucleic acid-
binding sequences. Endocrinology. 140(10): p. 4564-72. 

Kavushansky, A. and Richter-Levin, G. (2006): Effects of stress and corticosterone 
on activity and plasticity in the amygdala. J Neurosci Res. 84(7): p. 1580-7. 

Kessler, M. S. (2007): The AVP deficit in LAB mice: physiological and behavioral 
effects. Dissertation at the LMU München, Faculty of Biology. 

Kessler, M. S., Murgatroyd, C., Bunck, M., Czibere, L., Frank, E., Jacob, W., 
Horvath, C., Muigg, P., Holsboer, F., Singewald, N., Spengler, D. and Landgraf, R. 
(2007): Diabetes insipidus and, partially, low anxiety-related behaviour are linked to 
a SNP-associated vasopressin deficit in LAB mice. Eur J Neurosci. 26(10): p. 2857-
64. 

Kim, J. and Gorman, J. (2005): The psychobiology of anxiety. Clinical Neuroscience 
Research. 4(5-6): p. 335-347. 

Knerr, I., Gibson, K. M., Jakobs, C. and Pearl, P. L. (2008): Neuropsychiatric 
morbidity in adolescent and adult succinic semialdehyde dehydrogenase deficiency 
patients. CNS Spectr. 13(7): p. 598-605. 

Kraus, R. J., Shadley, L. and Mertz, J. E. (2001): Nuclear factor 1 family members 
mediate repression of the BK virus late promoter. Virology. 287(1): p. 89-104. 

Kromer, S. A., Kessler, M. S., Milfay, D., Birg, I. N., Bunck, M., Czibere, L., 
Panhuysen, M., Putz, B., Deussing, J. M., Holsboer, F., Landgraf, R. and Turck, C. 
W. (2005): Identification of glyoxalase-I as a protein marker in a mouse model of 
extremes in trait anxiety. J Neurosci. 25(17): p. 4375-84. 

Kuhla, B., Luth, H. J., Haferburg, D., Weick, M., Reichenbach, A., Arendt, T. and 
Munch, G. (2006): Pathological effects of glyoxalase I inhibition in SH-SY5Y 
neuroblastoma cells. J Neurosci Res. 83(8): p. 1591-600. 

Landgraf, R., Gerstberger, R., Montkowski, A., Probst, J. C., Wotjak, C. T., 
Holsboer, F. and Engelmann, M. (1995): V1 vasopressin receptor antisense 
oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination 
abilities, and anxiety-related behavior in rats. J Neurosci. 15(6): p. 4250-8. 

Landgraf, R. (2001a): Neuropeptides and anxiety-related behavior. Endocr J. 48(5): 
p. 517-33. 

Landgraf, R. (2001b): Neuropeptides and anxiety. Stress. 4: p. 273-276. 



 
References 

134 

Landgraf, R. and Wigger, A. (2002): High vs low anxiety-related behavior rats: an 
animal model of extremes in trait anxiety. Behav Genet. 32(5): p. 301-14. 

Landgraf, R. and Neumann, I. D. (2004): Vasopressin and oxytocin release within 
the brain: a dynamic concept of multiple and variable modes of neuropeptide 
communication. Front Neuroendocrinol. 25(3-4): p. 150-76. 

Landgraf, R. and Holsboer, F. (2005): The involvement of neuropeptides in 
evolution, signaling, behavioral regulation and psychopathology: focus on 
vasopressin. Drug Development Research. 65: p. 185-90. 

Landgraf, R., Kessler, M. S., Bunck, M., Murgatroyd, C., Spengler, D., Zimbelmann, 
M., Nussbaumer, M., Czibere, L., Turck, C. W., Singewald, N., Rujescu, D. and 
Frank, E. (2007): Candidate genes of anxiety-related behavior in HAB/LAB rats and 
mice: focus on vasopressin and glyoxalase-I. Neurosci Biobehav Rev. 31(1): p. 89-
102. 

Lang, P. J., Davis, M. and Ohman, A. (2000): Fear and anxiety: animal models and 
human cognitive psychophysiology. J Affect Disord. 61(3): p. 137-59. 

Levine, J., Cole, D. P., Chengappa, K. N. and Gershon, S. (2001): Anxiety disorders 
and major depression, together or apart. Depress Anxiety. 14(2): p. 94-104. 

Levine, M. and Tjian, R. (2003): Transcription regulation and animal diversity. 
Nature. 424(6945): p. 147-51. 

Lewin, B., Genes VIII. 2004, London: Pearson Education Ltd. 1027. 

Liebsch, G., Linthorst, A. C., Neumann, I. D., Reul, J. M., Holsboer, F. and Landgraf, 
R. (1998a): Behavioral, physiological, and neuroendocrine stress responses and 
differential sensitivity to diazepam in two Wistar rat lines selectively bred for high- 
and low-anxiety-related behavior. Neuropsychopharmacology. 19(5): p. 381-96. 

Liebsch, G., Montkowski, A., Holsboer, F. and Landgraf, R. (1998b): Behavioural 
profiles of two Wistar rat lines selectively bred for high or low anxiety-related 
behaviour. Behav Brain Res. 94(2): p. 301-10. 

Livak, K. J. and Schmittgen, T. D. (2001): Analysis of relative gene expression data 
using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 
25(4): p. 402-8. 

Lonnstedt, I. and Speed, T. P. (2002): Replicated microarray data. Statistica 
Sinica(12): p. 31-46. 

Lucae, S., Salyakina, D., Barden, N., Harvey, M., Gagne, B., Labbe, M., Binder, E. 
B., Uhr, M., Paez-Pereda, M., Sillaber, I., Ising, M., Bruckl, T., Lieb, R., Holsboer, F. 
and Muller-Myhsok, B. (2006): P2RX7, a gene coding for a purinergic ligand-gated 
ion channel, is associated with major depressive disorder. Hum Mol Genet. 15(16): 
p. 2438-45. 

Maccari, S., Darnaudery, M., Morley-Fletcher, S., Zuena, A. R., Cinque, C. and Van 
Reeth, O. (2003): Prenatal stress and long-term consequences: implications of 
glucocorticoid hormones. Neurosci Biobehav Rev. 27(1-2): p. 119-27. 

 

 



 
References 

135 

Majumder, S., Kutay, H., Datta, J., Summers, D., Jacob, S. T. and Ghoshal, K. 
(2006): Epigenetic regulation of metallothionein-i gene expression: differential 
regulation of methylated and unmethylated promoters by DNA methyltransferases 
and methyl CpG binding proteins. J Cell Biochem. 97(6): p. 1300-16. 

Marin-Garcia, P., Sanchez-Nogueiro, J., Gomez-Villafuertes, R., Leon, D. and 
Miras-Portugal, M. T. (2008): Synaptic terminals from mice midbrain exhibit 
functional P2X7 receptor. Neuroscience. 151(2): p. 361-73. 

Milad, M. R., Quirk, G. J., Pitman, R. K., Orr, S. P., Fischl, B. and Rauch, S. L. 
(2007): A role for the human dorsal anterior cingulate cortex in fear expression. Biol 
Psychiatry. 62(10): p. 1191-4. 

Milad, M. R. and Rauch, S. L. (2007): The role of the orbitofrontal cortex in anxiety 
disorders. Ann N Y Acad Sci. 1121: p. 546-61. 

Mill, J. and Petronis, A. (2007): Molecular studies of major depressive disorder: the 
epigenetic perspective. Mol Psychiatry. 12(9): p. 799-814. 

Mlynarik, M., Zelena, D., Bagdy, G., Makara, G. B. and Jezova, D. (2007): Signs of 
attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm 
Behav. 51(3): p. 395-405. 

Mobbs, D., Petrovic, P., Marchant, J. L., Hassabis, D., Weiskopf, N., Seymour, B., 
Dolan, R. J. and Frith, C. D. (2007): When fear is near: threat imminence elicits 
prefrontal-periaqueductal gray shifts in humans. Science. 317(5841): p. 1079-83. 

Muller, M. B., Preil, J., Renner, U., Zimmermann, S., Kresse, A. E., Stalla, G. K., 
Keck, M. E., Holsboer, F. and Wurst, W. (2001): Expression of CRHR1 and CRHR2 
in mouse pituitary and adrenal gland: implications for HPA system regulation. 
Endocrinology. 142(9): p. 4150-3. 

Murgatroyd, C., Wigger, A., Frank, E., Singewald, N., Bunck, M., Holsboer, F., 
Landgraf, R. and Spengler, D. (2004): Impaired repression at a vasopressin 
promoter polymorphism underlies overexpression of vasopressin in a rat model of 
trait anxiety. J Neurosci. 24(35): p. 7762-70. 

Nagase, T., Kikuno, R. and Ohara, O. (2001): Prediction of the coding sequences of 
unidentified human genes. XXII. The complete sequences of 50 new cDNA clones 
which code for large proteins. DNA Res. 8(6): p. 319-27. 

Nomoto, H., Yonezawa, T., Itoh, K., Ono, K., Yamamoto, K., Oohashi, T., Shiraga, 
F., Ohtsuki, H. and Ninomiya, Y. (2003): Molecular cloning of a novel 
transmembrane protein MOLT expressed by mature oligodendrocytes. J Biochem. 
134(2): p. 231-8. 

Nygard, A. B., Jorgensen, C. B., Cirera, S. and Fredholm, M. (2007): Selection of 
reference genes for gene expression studies in pig tissues using SYBR green 
qPCR. BMC Mol Biol. 8: p. 67. 

Ohman, A. (2005): The role of the amygdala in human fear: automatic detection of 
threat. Psychoneuroendocrinology. 30(10): p. 953-8. 

Okajima, K., Korotchkina, L. G., Prasad, C., Rupar, T., Phillips, J. A., 3rd, Ficicioglu, 
C., Hertecant, J., Patel, M. S. and Kerr, D. S. (2008): Mutations of the E1beta 
subunit gene (PDHB) in four families with pyruvate dehydrogenase deficiency. Mol 
Genet Metab. 93(4): p. 371-80. 



 
References 

136 

Otsuka, M. and Yoshioka, K. (1993): Neurotransmitter functions of mammalian 
tachykinins. Physiol Rev. 73(2): p. 229-308. 

Page, N. M. (2004): Hemokinins and endokinins. Cell Mol Life Sci. 61(13): p. 1652-
63. 

Palkovits, M. (1973): Isolated removal of hypothalamic or other brain nuclei of the 
rat. Brain Res. 59: p. 449-50. 

Palmer, A. A., Verbitsky, M., Suresh, R., Kamens, H. M., Reed, C. L., Li, N., 
Burkhart-Kasch, S., McKinnon, C. S., Belknap, J. K., Gilliam, T. C. and Phillips, T. J. 
(2005): Gene expression differences in mice divergently selected for 
methamphetamine sensitivity. Mamm Genome. 16(5): p. 291-305. 

Paxinos, G. and Franklin, K., The mouse brain in stereotaxic coordinates. 2nd ed. 
2001, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: 
Academic Press. 

Peters, L. L., Robledo, R. F., Bult, C. J., Churchill, G. A., Paigen, B. J. and Svenson, 
K. L. (2007): The mouse as a model for human biology: a resource guide for 
complex trait analysis. Nat Rev Genet. 8(1): p. 58-69. 

Ponder, C. A., Kliethermes, C. L., Drew, M. R., Muller, J., Das, K., Risbrough, V. B., 
Crabbe, J. C., Gilliam, T. C. and Palmer, A. A. (2007): Selection for contextual fear 
conditioning affects anxiety-like behaviors and gene expression. Genes Brain 
Behav. 6(8): p. 736-49. 

Quinn, J. P., Fiskerstrand, C. E., Gerrard, L., MacKenzie, A. and Payne, C. M. 
(2000): Molecular models to analyse preprotachykinin-A expression and function. 
Neuropeptides. 34(5): p. 292-302. 

Raison, C. L. and Miller, A. H. (2003): When not enough is too much: the role of 
insufficient glucocorticoid signaling in the pathophysiology of stress-related 
disorders. Am J Psychiatry. 160(9): p. 1554-65. 

Ramos, A., Pereira, E., Martins, G. C., Wehrmeister, T. D. and Izidio, G. S. (2008): 
Integrating the open field, elevated plus maze and light/dark box to assess different 
types of emotional behaviors in one single trial. Behav Brain Res. 193(2): p. 277-88. 

Rosen, J. B. and Schulkin, J. (1998): From normal fear to pathological anxiety. 
Psychol Rev. 105(2): p. 325-50. 

Rozen, S. and Skaletsky, H. (2000): Primer3 on the WWW for general users and for 
biologist programmers. Methods Mol Biol. 132: p. 365-86. 

Rybakin, V., Stumpf, M., Schulze, A., Majoul, I. V., Noegel, A. A. and Hasse, A. 
(2004): Coronin 7, the mammalian POD-1 homologue, localizes to the Golgi 
apparatus. FEBS Lett. 573(1-3): p. 161-7. 

Rybakin, V., Gounko, N. V., Spate, K., Honing, S., Majoul, I. V., Duden, R. and 
Noegel, A. A. (2006): Crn7 interacts with AP-1 and is required for the maintenance 
of Golgi morphology and protein export from the Golgi. J Biol Chem. 281(41): p. 
31070-8. 

 



 
References 

137 

Sakai, H., Tanaka, Y., Tanaka, M., Ban, N., Yamada, K., Matsumura, Y., Watanabe, 
D., Sasaki, M., Kita, T. and Inagaki, N. (2007): ABCA2 deficiency results in 
abnormal sphingolipid metabolism in mouse brain. J Biol Chem. 282(27): p. 19692-
9. 

Salvamoser, J. (2008): Einfluss von exogenem AVP auf LAB und CD1-Mäuse, 
sowie die Charekterisierung der Replikation einer Mauszucht für Angstextreme. 
Diploma-thesis at the LMU München, Faculty of Biology. 

Saria, A. (1999): The tachykinin NK1 receptor in the brain: pharmacology and 
putative functions. Eur J Pharmacol. 375(1-3): p. 51-60. 

Scalera, G. and Tarozzi, G. (2001): Sapid solutions and food intake in repeated 
dehydration and rehydration periods in rats. Exp Physiol. 86(4): p. 489-98. 

Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D., Sieberts, 
S. K., Monks, S., Reitman, M., Zhang, C., Lum, P. Y., Leonardson, A., Thieringer, 
R., Metzger, J. M., Yang, L., Castle, J., Zhu, H., Kash, S. F., Drake, T. A., Sachs, A. 
and Lusis, A. J. (2005): An integrative genomics approach to infer causal 
associations between gene expression and disease. Nat Genet. 37(7): p. 710-7. 

Schormair, B., Kemlink, D., Roeske, D., Eckstein, G., Xiong, L., Lichtner, P., Ripke, 
S., Trenkwalder, C., Zimprich, A., Stiasny-Kolster, K., Oertel, W., Bachmann, C. G., 
Paulus, W., Hogl, B., Frauscher, B., Gschliesser, V., Poewe, W., Peglau, I., Vodicka, 
P., Vavrova, J., Sonka, K., Nevsimalova, S., Montplaisir, J., Turecki, G., Rouleau, 
G., Gieger, C., Illig, T., Wichmann, H. E., Holsboer, F., Muller-Myhsok, B., Meitinger, 
T. and Winkelmann, J. (2008): PTPRD (protein tyrosine phosphatase receptor type 
delta) is associated with restless legs syndrome. Nat Genet. 40(8): p. 946-8. 

Scott, L. V. and Dinan, T. G. (2002): Vasopressin as a target for antidepressant 
development: an assessment of the available evidence. J Affect Disord. 72(2): p. 
113-24. 

Severini, C., Improta, G., Falconieri-Erspamer, G., Salvadori, S. and Erspamer, V. 
(2002): The tachykinin peptide family. Pharmacol Rev. 54(2): p. 285-322. 

Shabalina, S. A., Ogurtsov, A. Y. and Spiridonov, N. A. (2006): A periodic pattern of 
mRNA secondary structure created by the genetic code. Nucleic Acids Res. 34(8): 
p. 2428-37. 

Simon, N. G., Guillon, C., Fabio, K., Heindel, N. D., Lu, S. F., Miller, M., Ferris, C. F., 
Brownstein, M. J., Garripa, C. and Koppel, G. A. (2008): Vasopressin antagonists as 
anxiolytics and antidepressants: recent developments. Recent Patents CNS Drug 
Discov. 3(2): p. 77-93. 

Simonian, N. A. and Hyman, B. T. (1993): Functional alterations in Alzheimer's 
disease: diminution of cytochrome oxidase in the hippocampal formation. J 
Neuropathol Exp Neurol. 52(6): p. 580-5. 

Skolnick, P. (1999): Antidepressants for the new millennium. Eur J Pharmacol. 
375(1-3): p. 31-40. 

Smoller, J. W., Finn, C. and White, C. (2000): The genetics of anxiety disorders: An 
overview. Psychiatric Annals. 30(12): p. 745-753. 



 
References 

138 

Smyth, G. K. (2004): Linear models and empirical bayes methods for assessing 
differential expression in microarray experiments. Stat Appl Genet Mol Biol. 3: p. 
Article3. 

Sorci, G., Riuzzi, F., Agneletti, A. L., Marchetti, C., Donato, R. (2003): S100B inhibits 
myogenic differentiation and myotube formation in a RAGE-independent manner. 
Mol Cell Biol. 23(14): p. 4870-4881. 
 
Stahl, S., Reinders, Y., Asan, E., Mothes, W., Conzelmann, E., Sickmann, A. and 
Felbor, U. (2007): Proteomic analysis of cathepsin B- and L-deficient mouse brain 
lysosomes. Biochim Biophys Acta. 1774(10): p. 1237-46. 

Stern, C. A., Carobrez, A. P. and Bertoglio, L. J. (2008): Aversive learning as a 
mechanism for lack of repeated anxiolytic-like effect in the elevated plus-maze. 
Pharmacol Biochem Behav. 

Straube, T., Mentzel, H. J. and Miltner, W. H. (2007): Waiting for spiders: brain 
activation during anticipatory anxiety in spider phobics. Neuroimage. 37(4): p. 1427-
36. 

Strohle, A. and Holsboer, F. (2003): Stress responsive neurohormones in 
depression and anxiety. Pharmacopsychiatry. 36 Suppl 3: p. S207-14. 

Thornalley, P. J. (2006): Unease on the role of glyoxalase 1 in high-anxiety-related 
behaviour. Trends Mol Med. 12(5): p. 195-9. 

Touma, C., Bunck, M., Glasl, L., Nussbaumer, M., Palme, R., Stein, H., 
Wolferstatter, M., Zeh, R., Zimbelmann, M., Holsboer, F. and Landgraf, R. (2008): 
Mice selected for high versus low stress reactivity: A new animal model for affective 
disorders. Psychoneuroendocrinology. 

Tsigos, C. and Chrousos, G. P. (2002): Hypothalamic-pituitary-adrenal axis, 
neuroendocrine factors and stress. J Psychosom Res. 53(4): p. 865-71. 

Turri, M. G., Talbot, C. J., Radcliffe, R. A., Wehner, J. M. and Flint, J. (1999): High-
resolution mapping of quantitative trait loci for emotionality in selected strains of 
mice. Mamm Genome. 10(11): p. 1098-101. 

Turri, M. G., DeFries, J. C., Henderson, N. D. and Flint, J. (2004): Multivariate 
analysis of quantitative trait loci influencing variation in anxiety-related behavior in 
laboratory mice. Mamm Genome. 15(2): p. 69-76. 

Ungar, D. and Hughson, F. M. (2003): SNARE protein structure and function. Annu 
Rev Cell Dev Biol. 19: p. 493-517. 

Valdar, W., Solberg, L. C., Gauguier, D., Burnett, S., Klenerman, P., Cookson, W. 
O., Taylor, M. S., Rawlins, J. N., Mott, R. and Flint, J. (2006): Genome-wide genetic 
association of complex traits in heterogeneous stock mice. Nat Genet. 38(8): p. 879-
87. 

Visser, W. F., van Roermund, C. W., Waterham, H. R. and Wanders, R. J. (2002): 
Identification of human PMP34 as a peroxisomal ATP transporter. Biochem Biophys 
Res Commun. 299(3): p. 494-7. 

 



 
References 

139 

Vorbrodt, A. W., Dobrogowska, D. H., Meeker, H. C. and Carp, R. I. (2006): 
Quantitative immunogold study of increased expression of metallothionein-I/II in the 
brain perivascular areas of diabetic scrapie-infected mice. J Mol Histol. 37(3-4): p. 
143-51. 

Wang, Q., Li, M., Wang, Y., Zhang, Y., Jin, S., Xie, G., Liu, Z., Wang, S., Zhang, H., 
Shen, L. and Ge, H. (2008): RNA interference targeting CML66, a novel tumor 
antigen, inhibits proliferation, invasion and metastasis of HeLa cells. Cancer Lett. 
269(1): p. 127-38. 

Weaver, I. C., Meaney, M. J. and Szyf, M. (2006): Maternal care effects on the 
hippocampal transcriptome and anxiety-mediated behaviors in the offspring that are 
reversible in adulthood. Proc Natl Acad Sci U S A. 103(9): p. 3480-5. 

West, K. L., Castellini, M. A., Duncan, M. K. and Bustin, M. (2004): Chromosomal 
proteins HMGN3a and HMGN3b regulate the expression of glycine transporter 1. 
Mol Cell Biol. 24(9): p. 3747-56. 

Wigger, A., Loerscher, P., Weissenbacher, P., Holsboer, F. and Landgraf, R. (2001): 
Cross-fostering and cross-breeding of HAB and LAB rats: a genetic rat model of 
anxiety. Behav Genet. 31(4): p. 371-82. 

Wigger, A., Sanchez, M. M., Mathys, K. C., Ebner, K., Frank, E., Liu, D., Kresse, A., 
Neumann, I. D., Holsboer, F., Plotsky, P. M. and Landgraf, R. (2004): Alterations in 
central neuropeptide expression, release, and receptor binding in rats bred for high 
anxiety: critical role of vasopressin. Neuropsychopharmacology. 29(1): p. 1-14. 

Wilhelm, C. J., Reeves, J. M., Phillips, T. J. and Mitchell, S. H. (2007): Mouse lines 
selected for alcohol consumption differ on certain measures of impulsivity. Alcohol 
Clin Exp Res. 31(11): p. 1839-45. 

Wilkins, J. F. and Haig, D. (2003a): Inbreeding, maternal care and genomic 
imprinting. J Theor Biol. 221(4): p. 559-64. 

Wilkins, J. F. and Haig, D. (2003b): What good is genomic imprinting: the function of 
parent-specific gene expression. Nat Rev Genet. 4(5): p. 359-68. 

Williams, K. (1997): Interactions of polyamines with ion channels. Biochem J. 325 
(Pt 2): p. 289-97. 

Williams, P. (2007): Quorum sensing, communication and cross-kingdom signalling 
in the bacterial world. Microbiology. 153(Pt 12): p. 3923-38. 

Winkelmann, J., Schormair, B., Lichtner, P., Ripke, S., Xiong, L., Jalilzadeh, S., 
Fulda, S., Putz, B., Eckstein, G., Hauk, S., Trenkwalder, C., Zimprich, A., Stiasny-
Kolster, K., Oertel, W., Bachmann, C. G., Paulus, W., Peglau, I., Eisensehr, I., 
Montplaisir, J., Turecki, G., Rouleau, G., Gieger, C., Illig, T., Wichmann, H. E., 
Holsboer, F., Muller-Myhsok, B. and Meitinger, T. (2007): Genome-wide association 
study of restless legs syndrome identifies common variants in three genomic 
regions. Nat Genet. 39(8): p. 1000-6. 

Winkelmann, J., Lichtner, P., Schormair, B., Uhr, M., Hauk, S., Stiasny-Kolster, K., 
Trenkwalder, C., Paulus, W., Peglau, I., Eisensehr, I., Illig, T., Wichmann, H. E., 
Pfister, H., Golic, J., Bettecken, T., Putz, B., Holsboer, F., Meitinger, T. and Muller-
Myhsok, B. (2008): Variants in the neuronal nitric oxide synthase (nNOS, NOS1) 
gene are associated with restless legs syndrome. Mov Disord. 23(3): p. 350-8. 



 
References 

140 

Wotjak, C. T., Ludwig, M. and Landgraf, R. (1994): Vasopressin facilitates its own 
release within the rat supraoptic nucleus in vivo. Neuroreport. 5(10): p. 1181-4. 

Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J. and Speed, T. P. 
(2002): Normalization for cDNA microarray data: a robust composite method 
addressing single and multiple slide systematic variation. Nucleic Acids Res. 30(4): 
p. e15. 

Yauk, C. L. and Berndt, M. L. (2007): Review of the literature examining the 
correlation among DNA microarray technologies. Environ Mol Mutagen. 48(5): p. 
380-94. 

Yvert, G., Brem, R. B., Whittle, J., Akey, J. M., Foss, E., Smith, E. N., Mackelprang, 
R. and Kruglyak, L. (2003): Trans-acting regulatory variation in Saccharomyces 
cerevisiae and the role of transcription factors. Nat Genet. 35(1): p. 57-64. 

Zafra, F. and Gimenez, C. (2008): Glycine transporters and synaptic function. 
IUBMB Life. 

Zurmuehlen, R. (2007): Untersuchungen zum Zusammenhang von Emotionalität 
und kognitiver Fähigkeit in einem Mausmodell für Angsterkrankung. Diplomathesis 
at the LMU, Faculty of Biology. 
 



 
Acknowledgements 

141 

7. Acknowledgements 
First of all, I want to express my gratitude to Prof. Rainer Landgraf, the supervisor of my 
doctoral thesis, for the opportunity to work on these fascinating topics in his research group. I 
pay tribute to him for the helpful guidance, his support, his faith in my abilities and for giving 
me the opportunity to develop and pursue own ideas. 
I would also like to thank Prof. Thomas Cremer for his readiness to invest his time in the 
second evaluation of my thesis.  
 
Furthermore I would like to mention our institute’s head, Prof Florian Holsboer, who always 
assured the financial support for these projects. Parts of the projects were funded by the 
“Bundesministerium für Bildung und Forschung”. I also thank Dr. Dietmar Spengler, Dr. 
Thomas Bettecken, Dr. Jan Deussing, Dr. Elisabeth Binder, Dr. Marcus Ising, PD Dr. 
Bertram Müller-Myhsok, PD Dr. Gabriele Rieder, Prof. Christoph Turck, Dr. Carsten Wotjak 
and Dr. Theo Rein for the meritorious, fruitful discussions and cooperations.  
 
I would like to highlight the names of those people especially, whose help and knowledge 
were always available to me, whenever I needed. Therefore I’m deeply indebted to my 
colleagues and – in part – meanwhile friends Dr. Chris Murgatroyd, Claudia Kühne, Cornelia 
Graf and Dr. Mirjam Bunck, whose professional support and advice saved my work (and life) 
so often. Special thanks also go to Peter Weber, Dr. Benno Pütz and Dr. Mariya Gonik for 
their vital support in the evaluation of all the high-throughput data, as without them, I’d 
probably sit in a room filled with calculations on paper that I’d have to light to find the way out 
again. 
 
And to give all those helpful hands a name, who made my work speed up many times, I say 
thank you to: Katja Zeiner, Andrea Steiner, Charlotte Horvath, Laura Baur-Jaronownski, Dr. 
Elisabeth Frank, Dr. Melanie Keßler, Josephine Salvamoser, Jennifer Prigl and Nafees 
Ahmad. Further to: Anke Hoffmann, Maria Lebar, Bernica Kubat, Julia Bär, Lisa Halbsgut, 
Nariné Mousissian, Maria Roßbauer, Nikola Müller, Martina Schifferer, Jan-Michael 
Heinzmann, Daniela Harbich, Michael Specht, Tobias Wiedemann, Yvonne Wegerich, 
Yonghe Wu, Helena Kronsbein, Yi-Chun Yen and Ursula Genning. 
 
I would also like to point out the helping hands of our technicians Marina Zimbelmann and 
Markus Nußbaumer. Without them, our lab would have already drowned years ago!  
 
Our work would also be harder - if not impossible - without the caring help of our animal 
facility led by Albin Varga, the technical service and of course the IT section.  
 
Many small but powerful hints and ideas were contributed by: Dr. Amalia Tsolakidou, Alana 
Knapman, Carola Hetzel, Christiane Rewerts, Claudia Liebl, Dr. Alexandra Wigger, Dr. 
Angelika Erhardt, Dr. Anja Siegmund, Dr. Guiseppina Maccarone, Dr. Jeeva Daravarajulu, 
Dr. Kornelia Kamprath, Dr. Markus Panhuysen, Dr. Mathias Schmidt, Dr. Jürgen Zschokke, 
Dr. Melanie Scheibel, Dr. Chadi Touma, Dr. Boris Hambsch, Dr. Peter Lichtner, Dr. Karin 
Ganea, Hélène Savignac, Dr. Christoph Thöringer, Dr. Corinna Storch, Dr. Dr. Susanne 
Lucae, Evelyn Weiß, Gabriella Czepek, Hendrik Stein, Jadranka Doric, Jelena Golic, Julia 
Baier, Julianna Ranzmeyer, Larysa Teplytska, Lisa Glasl, Michael Wolferstätter, Michaela 
Filiou, Nicole Zimmermann, Ramona Zeh, Regina Knapp, Dr. Martin Kohli, Jan Schülke, 
Sabine Damast, Stephanie Siegl, Susann Sauer, Tanja Holjevac and Yvonne Grübler. 
 
Insbesondere bedanke ich mich bei meinen Freunden, die mich über all die Jahre tatkräftig 
unterstützten (besonderer Dank an Susa!), mich von der Arbeit auch ablenkten und freue 
mich auch neue Freunde über die Arbeit gefunden haben, die mir auch in Zukunft hoffentlich 
erhalten bleiben. Danke Miri, Jenny und Nele!  
 
Valamint utoljára, de nem utolso sorban szüleimnek és öcsémnek köszönöm az örökké tartó 
támogatást és köszönöm, hogy velem vagytok! 
 



 
Curriculum vitae 

142 

9. Curriculum vitae 
 

Name:  Ludwig Czibere 
DOB:  13/05/1979 
POB:  Budapest, Hungary 
Address:  Paul-Ehrlich-Weg 26, 80999 Munich, Germany 
Email:      ludwig@czibere.de 
Nationality:  German, Hungarian 

 
 
Educational Qualifications: 

Since 2005 Ph.D. student at the Ludwig Maximilians University, Faculty of 
Biology 
Thesis title: Assessing the complex nature of behavior: 
Sequence-based and transcriptomic analyses in a mouse 
model of extremes in trait anxiety 

1999-2005  Diploma-student in biology, Ludwig Maximilians University, 
Munich, Germany 
Primary subject: neurobiology; secondary subjects: human 
biology, genetics, pharmacology and toxicology; 
Diploma thesis (2004/2005): Gene expression profiling in a 
mouse model of trait anxiety, Max Planck Institute of 
Psychiatry, Department of Behavioral Neuroendocrinology, 
Munich, Germany  

1989-1998  High School Louise-Schroeder-Gymnasium, Munich, 
Germany 

       
Employment History: 
 

Since 2005 Ph.D. student at the Max Planck Institute of Psychiatry, 
Department of Behavioral Neuroendocrinology, Munich, 
Germany 

2001-2005 Assistant in a bacteriological laboratory, Labor Dr. Becker, Dr. 
Olgemöller, Munich, Germany 

03/-05/2003 Internship at QIMR, Queensland Institute of Medical Research 
Genetic Epidemiology, Brisbane, Australia 

08/-10/2000 Assistant at GSF Research Centre for Environment and 
Health, Neuherberg, Germany 

 Expositional Chambers (EPOKA) 
 
Awards:  
 

2005:  Invited talk at the 24th Symposium of the Consortium for 
Neuropsychopharmacology and Pharmacopsychiatry (AGNP), 
Munich 

 
Munich, September 30th 2008   
 



 
List of publications 

143 

10. List of publications and other contributions 
 
Krömer S. A., Keßler M. S., Milfay D., Birg I. N., Bunck M., Czibere L., Panhuysen M., Pütz 
B., Deussing J. M., Holsboer F., Landgraf R. and Turck C. W. (2005): Identification of 
glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 
25:4375-4384. 
 
Landgraf R., Keßler M. S., Bunck M., Murgatroyd C., Spengler D., Zimbelmann M., 
Nußbaumer M., Czibere L., Turck C. W., Singewald N., Rujescu D. and Frank E. (2007): 
Candidate genes of anxiety-related behavior in HAB/LAB rats and mice: focus on 
vasopressin and glyoxalase-I. Neurosci Biobehav Rev 31:89-102. 
 
Keßler M. S., Murgatroyd C., Bunck M., Czibere L., Frank E., Jacob W., Horvath C., Muigg 
P., Holsboer F., Singewald N., Spengler D. and Landgraf R. (2007): Diabetes insipidus and, 
partially, low anxiety-related behaviour are linked to a SNPassociated vasopressin deficit in 
LAB mice. Eur J Neurosci 26:2857-2864. # 
 
Ditzen C.*, Varadarajulu J.*, Czibere L.*, Gonik M., Targosz B.-S., Hambsch B., Bettecken 
T., Kessler M. S., Frank E., Bunck M., Teplytska L., Müller-Myhsok B., Holsboer F., Landgraf 
R. and Turck C. W. (2009): Proteomic genotyping in a mouse model of trait anxiety exposes 
disease-relevant pathways. Mol Psychiatry: Jan 13, [Epub ahead of print]. # 
* Authors contributed equally 
 
Bunck M.*, Czibere L.*, Horvath C., Graf C., Frank E., Keßler M. S., Murgatroyd C., Müller-
Myhsok B., Gonik M., Weber P., Pütz B., Muigg P., Panhuysen M., Singewald N., Bettecken 
T., Deussing J. M., Holsboer F., Spengler D. and Landgraf R. (2009): A hypomorphic 
vasopressin allele prevents anxiety-related behavior. PLoS ONE: 4(4):e5129. Epub 2009 Apr 
9. # 
* Authors contributed equally 
 
Hambsch B., Czibere L., Landgraf R. and Touma C. (2009): Genetic transmission of 
behavior and its neuroendocrine correlates. In: Pfaff D., Arnold A. P., Etgen A. M., Fahrbach 
S. E. and Rubin R. T. (Eds.): Hormones, Brain and Behavior 2nd ed., Elsevier Science, San 
Diego, CA, USA pp. 
 
Erhardt A., Czibere L., Roeske D., Lucae S., Unschuld P. G., Ripke S., Specht M., Kohli M., 
Kloiber S., Weber P., Deussing J. M., Ising M., Heck A., Zimmermann P., Pfister H., Lieb R., 
Pütz B., Uhr M., Hohoff C., Domschke K., Krakowitzky P., Maier W., Bandelow B., Jacob C., 
Deckert J., Landgraf R., Gonik M., Bunck M., Keßler M. S., Frank E., Schreiber S., 
Strohmaier J., Nothen M., Cichon S., Rietschel M., Bettecken T., Keck M. E., Landgraf R., 
Muller-Myhsok B., Holsboer F. and Binder E. B. (submitted): Genomewide association study 
in panic disorder identifies transmembrane protein 132D (TMEM132D) as susceptibility gene 
for anxiety-related phenotypes: evidence from human and mice studies. Mol Psychiatry. # 
 
Czibere L., Baur-Jaronowski L. A., Zeiner K., Bunck M., Prigl J., Weber P., Pütz B., Graf C., 
Kühne C., Panhuysen M., Holsboer F., Deussing J. M. and Landgraf

 
R. (in preparation): 

Profiling anxiety: A comprehensive gene expression study in mice bred for extremes in trait 
anxiety.  
 
Czibere L., Gonik M., Frank E., Keßler M. S., Bunck M., Nußbaumer M., Müller-Myhsok B., 
Bettecken T. and Landgraf R. (in preparation): Genes of anxiety: freely segregating alleles in 
an F2-panel based on mice bred for extremes in trait anxiety reveal their association with 
behavior. 
.  
 
# parts of this thesis were published in these articles.  



 
Declaration / Erklärung 

144 

11. Declaration / Erklärung 

 

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig und nur mit den 

angegebenen Quellen und Hilfsmitteln angefertigt habe. Alle Ausführungen, die 

wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. 

Auch habe ich nicht anderweitig versucht, eine Dissertation einzureichen oder mich 

der Doktorprüfung zu unterziehen. 

 

 

 

München, 30. September 2008 

 

 

 

 

 

Ludwig Czibere 
 
 


