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Abstract

The increasing importance of distributed and decentralized software architectures
entails more and more attention for adaptive software. Obtaining adaptiveness,
however, is a difficult task as the software design needs to foresee and cope with a
variety of situations. Using reconfiguration of components facilitates this task, as
the adaptivity is conducted on an architecture level instead of directly in the code.
This results in a separation of concerns; the appropriate reconfiguration can be
devised on a coarse level, while the implementation of the components can remain
largely unaware of reconfiguration scenarios.

We study reconfiguration in component frameworks based on formal theory. We
first discuss programming with components, exemplified with the development of
the cmc model checker. This highly efficient model checker is made of C++ compo-
nents and serves as an example for component-based software development practice
in general, and also provides insights into the principles of adaptivity. However,
the component model focuses on high performance and is not geared towards using
the structuring principle of components for controlled reconfiguration. We thus
complement this highly optimized model by a message passing-based component
model which takes reconfigurability to be its central principle.

Supporting reconfiguration in a framework is about alleviating the program-
mer from caring about the peculiarities as much as possible. We utilize the formal
description of the component model to provide an algorithm for reconfiguration
that retains as much flexibility as possible, while avoiding most problems that arise
due to concurrency. This algorithm is embedded in a general four-stage adaptivity
model inspired by physical control loops. The reconfiguration is devised to work
with stateful components, retaining their data and unprocessed messages. Recon-
figuration plans, which are provided with a formal semantics, form the input of the
reconfiguration algorithm. We show that the algorithm achieves perceived atom-
icity of the reconfiguration process for an important class of plans, i.e., the whole
process of reconfiguration is perceived as one atomic step, while minimizing the
use of blocking of components. We illustrate the applicability of our approach to
reconfiguration by providing several examples like fault-tolerance and automated
resource control.



Zusammenfassung

Die wachsende Bedeutung von verteilter und dezentralisierter Software steigert das
Interesse an adaptiver Software. Adaptivität is jedoch schwierig zu erreichen, da
das Design der Software eine Vielzahl von unterschiedlichen Situationen vorherse-
hen und behandeln können muss. Rekonfiguration von Komponenten verspricht
diese Aufgabe zu vereinfachen, da die Adaptivität auf der Architekturebene und
nicht direkt auf der Codeebene stattfindet. Dadurch kann “separation of concerns”
erreicht werden – die Rekonfiguration wird auf einem grobgranularen Level geplant
und durchgeführt, während die feingranular geschriebenen Komponenten grössten-
teils unbehelligt bleiben und nicht angepasst werden müssen.

Wir untersuchen Rekonfiguration in Komponentenframeworks, die auf einer
formalen Theorie aufgebaut sind. Dazu diskutieren wir zuerst, wie mit Komponen-
ten Software entwickelt werden kann; dies wird exemplarisch an der Entwicklung
des cmc Model Checkers beschrieben. Dieser Model Checker ist extrem optimiert
und in C++ geschrieben; er dient als Beispiel für den Entwicklungsprozess und
zeigt erste Möglichkeiten für Adaptivität auf. Da das verwendete Komponenten-
modell jedoch Priorität auf Performanz legt, kann Rekonfiguration nur bedingt
Nutzen aus der strukturierenden Eigenschaft von komponentenorientierter Softwa-
reentwicklung ziehen. Wir wenden uns daher einem Komponentenmodell zu, das
durch exklusive Verwendung von “message passing” zur Kommunikation von Kom-
ponenten maximale Trennung der Komponenten erzielt und Rekonfigurierbarkeit
zu einem zentralen Prinzip erhebt.

Rekonfiguration kann von einem Framework unterstützt werden, indem vor
dem Programmierer möglichst viele Probleme des Rekonfigurationsprozesses ver-
borgen werden. Auf der Basis einer formalen Beschreibung des Komponenten-
modells entwickeln wir einen Algorithmus, der möglichst viel Flexibilität bezüglich
des Systems und der darauf realisierten Rekonfiguration bewahrt, gleichzeitig je-
doch Probleme mit nebenläufiger Komponentenausführung vermeidet. Diesen Al-
gorithmus betten wir in ein vierstufiges Adaptivitätsmodell ein, das physikalischen
Kontrollschleifen nachempfunden ist. Rekonfiguration betrachtet dabei zustandsbe-
haftete Komponenten, deren Daten und unbearbeitete Nachrichten bei der Rekon-
figuration erhalten bleiben sollen. Als Eingabe für den Rekonfigurationsalgorithmus
werden Rekonfigurationspläne mit einer klar definierten Semantik verwendet. Für
eine wichtige Klasse dieser Pläne zeigen wir, dass die Ausführung des Algorith-
mus als ein atomarer Schritt wahrgenommen wird, während nur eine unbedingt
notwendige Menge von Komponenten blockiert werden muss. Die Anwendbarkeit
dieses Ansatzes wird mit einer Reihe von Beispielen, wie Fehlertoleranz und au-
tomatisierter Ressourcenkontrolle, illustriert.
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CHAPTER 1

Introduction

Any improvement will be for the better.

— Jack McKay

1.1. Adaptive Software

Ubiquitous computing, a term coined in [Wei91], is becoming more and more
a reality (although maybe not exactly a reality as it was originally envisioned,
cf. [BD06]). While computers are involved in a variety of everyday scenarios, they
become less and less visible. When purchasing a washing machine, advertisement
no longer puts the fact that it is controlled by a small computer on top of the
features list. Computers in cars are no longer even avoidable, since their benefit is
so vast – in terms of improved comfort for the driver as well as cost-saving for the
car manufacturer. As computers become more and more commonplace, the concept
of computation also changes: Often, the role of a single computer is not to be a
powerful tool that is used under close observation by a knowledgeable user, but
to run unattended and unbeknownst to their owner for long times and preferably
never require interaction with an expert user anymore.

This changes the way the software running on those computers needs to be
written: Instead of requiring frequent action of the user to move away obstacles that
hinder the successful execution, software now needs to cope with problems on its
own. This even holds true for classical software run on regular personal computers
– it is more and more expected that the software runs on a variety of systems with
different hardware and software present; the days where a computer game could
dictate which sound-card was to be installed are long gone. The integration of
computers in everyday life requires the software to be more flexible.

If a software remains flexible while it is running, we consider it to be adaptive.
Instead of (or additionally to) being able to operate in a variety of environments,
adaptive software should hence be capable of responding to changes in the environ-
ment. Adapting to those changes comes in a variety of forms: Fault tolerance (i.e.,
to continue working even if some fault condition has been met, say by the loss of a
required communication partner), self-tuning (i.e., taking advantage of changes in
the environment to improve one’s performance) or hot code updates (i.e., integrat-
ing improved software into the running system) are aspects of adaptivity.

But adaptivity is not limited to those direct responses to changes of the environ-
ment. Instead, it is a very broadly defined approach towards writing any software.
In this thesis, we will investigate this software engineering approach rather than
individual adaptive solutions. This leads to the definition of a framework that
facilitates adaptiveness and allows for experimentation with such software.

1.2. Frameworks for Adaptive Software

Software usually interacts with its environment. Even for scientific computing,
where calculations are running autonomously for a very long time, the environment

1



1.2. FRAMEWORKS FOR ADAPTIVE SOFTWARE 2

needs to be considered, e.g., when requesting memory from the operating system.
Since the environment is usually prone to unexpected and sudden changes (e.g., by
having the memory taken away by an independent process), most software can be
considered to be adaptive.

But this is certainly not the kind of adaptiveness that is associated with the
term “adaptivity” and the work that analyzes it (e.g., [Lad00]). Rather, adap-
tiveness describes the way the software is devised; instead of writing a monolithic
program that checks whether the memory is available before it allocates some (and
usually fails with an error message if the memory available is insufficient), special
precautions are added to facilitate the process of adapting to a changed environ-
ment. Thus, the scientific computing applications might utilize a framework that
takes care of giving the memory to those pieces of software that need it most, and
possibly changes the structure of the software if this goal cannot be met. The main
topic of this thesis is to provide such a framework, and study the problems emerging
from its use.

Talking about goals immediately illustrates the close relationship to agent-style
reasoning and planning. Agents are usually written in a framework that facilitates
planning and reasoning [KMW03, Lin01]. Since planning is a difficult problem,
the agent community’s research interest is focused on its challenges. In this thesis,
however, we will place more emphasis on the utilization of a plan (which we consider
to be given by the user, most of the time), and rather research the problems related
to actually writing adaptive software. The resulting framework might then be used
to implement a software that enables planning and reasoning for agents.

Writing adaptive software is hard. Anyone who has implemented a complex
data structure knows the reason: For example, when implementing a hash table,
most of the code is required for the events encountered least often: Collision resolu-
tion and, possibly, table growth. It is quite easy to get a hash table implementation
correct with respect to a single element insertion at the first try, but it is equally
easy to screw up the code that reorganizes a hash table in an attempt to adapt
to a larger-than-anticipated data volume by hash table growth (preferably, without
keeping everything in memory twice). This illustrates the basic problem of adaptive
software: The code that is hardest to write is executed least often. Furthermore,
testing that only verifies the API (i.e., if an element added to the hash table indeed
shows up during a later search) is prone to missing such problems, as the coverage
is obviously insufficient – as the reorganization of the hash table is not experienced
during the (black-box) tests. Things are made worse if nondeterminism is involved
(possibly in the disguise of a concurrent system, or an open environment), as this
makes the discovery of bugs non-reproducible.

One of the major requirements for a framework supporting adaptiveness is to
ease the process of adaptation as much as possible, in order to relieve the soft-
ware designer from coping with most of the problems induced by adaptivity. Also,
the framework might provide valuable information to the designer if some known
causes of errors are detected and reported. For example, adaptation in concurrent
systems is very prone to deadlocks. The framework might help the user by avoiding
adaptation to happen in a way that induces a deadlock, or at least hint at the risk
of deadlocks, should the adaptation be attempted in a risky situation.

In this thesis, we describe adaptation as a process with a well-defined begin and
end; this is a design decision that stems from the idea of maintaining a software
system and changing its structure from time to time (and, as stated previously, only
in rather exceptional cases). This idea of adaptivity dominates all design decisions,
but it should be noted that, from a very broad point of view, adaptation does not
necessarily have to be a distinct process.
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A framework that helps a software developer in creating adaptive software
needs to fix the way in which adaptivity is achieved in order to provide some
guarantees and guidance. In the memory allocation example, adaptivity can only
be supported if the treatment of the memory shortage is more or less handled
by the framework. An abundance of possibilities how to achieve this has been
proposed; e.g., by employing an exception handling mechanism like it is done in
the Java programming language, or by supplying an event-handling architecture
(as most GUI frameworks do). In this thesis, we will employ components and
reconfiguration.

1.3. Components and Reconfiguration

The term “component” describes a very broad range of concepts, but all defini-
tions have a common denominator: The explicit declaration of the communication
partner requirements. Usually, this is done in the form of interfaces, i.e., sets of
methods that can be invoked on the component or that the component itself needs
to invoke (called the provided and required interfaces). Little more can be assumed
to be subsumed by the term “component” (we will clarify the use of the term in the
context of this thesis in Sect. 2.1), but this is already sufficient to see how reconfigu-
ration will fit into component models: Since components make their communication
capabilities and requirements explicit, we can substitute components with suitable
capabilities. This is a coarse-grained approach, as we will replace entire compo-
nents, but since the term “component” is so broad, this does not necessarily pose
a restriction yet. Since an important aspect of components is their configuration,
i.e., which component exists and how they are connected, we call the adaptivity of
component systems reconfiguration.

Using reconfiguration as a means to realize adaptivity helps to maintain a
separation of concerns, a term introduced by Dijkstra [Dij82]: Instead of putting
the normal functionality and the adaptivity-related functions into the same code,
the issues are addressed separately. The memory allocation problem, which could
be implemented using a mundane case distinction within a component (i.e., if not
enough memory is available, the program branches and takes appropriate action,
say, by asking other data structures to reorganize themselves in order to free some
memory), might be solved by adding a listener to out-of-memory errors: Such a
listener (which is maintained and invoked by the framework) might then be able
to devise a treatment for resolving the situation by conducting a reconfiguration
that replaces some memory-wasting components with other (maybe not so efficient
in terms of runtime, but more memory-preserving) components. The separation
of concerns is given by the fact that in the latter solution, the implementer of
the memory-requesting code does not have to worry about resolving the situation;
given a powerful enough framework, the code only needs to signal the error to a
listener and maybe wait for being notified that a solution has been found. How
this solution is obtained becomes somebody else’s concern, whereas in the case-
distinction solution, the implementer needs to think of such a solution at the time
the problem-prone code is written.

Of course, a clean distinction is hard and most of the time impossible. In the
course of this thesis, however, we will frequently encounter separation of concerns
again (usually manifested in a separation of roles), and see how we can benefit from
such an approach.

An important aspect of this thesis is the explicit consideration of component
states. The components we consider are stateful, i.e., the past communication
influences the future communication. This makes adaptation harder: Not only
has a suitable substitute to be found, but the state needs to be retained also. In
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Figure 1.1: Example of attaining adaptivity through reconfiguration

the memory-allocation example, substituting a component by a component that
requires less memory is an easy approach to resolve memory shortage, but the
state of the substituted component needs to be retained; hence the state of the old
component needs to be copied, which can become tricky if the memory is too scarce
to hold the old and new component in memory at once. However, the problems
we are interested in need to employ stateful components, and since we expect
reconfiguration being hard to debug, we need to consider the transferal of state
within the reconfiguration framework as well as the actual component substitution.

Fig. 1.1 illustrates how reconfiguration can be used to achieve adaptivity: Orig-
inally, a client component is connected to a store component, which it utilizes to
have some data stored. The client effects storing by sending communication to the
store component. The component is, however, not aware of the exact identity of the
store component, it just knows about the existence of some connection to another
component that provides data storing services.

Now, we might run into a situation where the store component cannot offer
these services any longer because the memory is exhausted. In order to adaptively
respond here, we want to compress the data that is stored, and all further data.
This is implemented by the addition of a compressor component that pre-processes
the data before storing it in a new store component. This component might be
a new copy of the old store component, if this one is generic enough to store the
compressed data as well, or a different implementation. During the reconfiguration,
the data accumulated in the old store component needs to be transported to the
new store component, and it needs to become compressed during this transfer.

The important property of such a reconfiguration is given by the fact that
the client component can stay completely ignorant of the substitution of the store
component. It may continue sending messages with data store requests, and does
not need to care that these messages are now received by a compressor rather than
the original store component.

1.4. Contributions and Scope

In this thesis, we investigate reconfiguration of component systems, which is
an area of increasing interest (cf. Sect. 3.5). Many frameworks have been built to
support and research reconfiguration, with varying scope and elaboration. In this
thesis, we make the following contributions to the area of reconfiguration and its
use in component-based software engineering:
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(1) The definition of the JComp component model, which is a formally de-
scribed component model with reconfiguration capabilities. The semantics
of this component model are described by means of term rewriting on a
small-step granularity, obtaining a component model that can be readily
implemented in a regular programming language.

(2) Within JComp, a reconfiguration algorithm is defined which is minimally
invasive as it stops only the components that are about to become re-
moved. We prove that this algorithm still appears as an atomic step to
an outside observer, i.e., it acts as if the entire system had been stopped
for the duration of the reconfiguration.

(3) We discuss ways to transfer a component’s state during reconfiguration,
based on a distinction introduced by Vandewoude [Van07]. We propose
a novel approach for state retainment that combines the benefits of the
proposed approaches.

(4) We report on the implementation of the JComp model in a component
framework, and report on a number of examples which exhibit various
domains where reconfiguration can be applicable.

(5) We present a case study of a high-performance model checker which uses
a novel algorithm for storing states in order to illustrate and justify the
design decisions we made for JComp.

(6) We report on ways to specify the behavior of components based on a novel
view on contracts in a concurrent environment. We extend this view to
reconfiguration and discuss how the prevalent theoretical consideration of
reconfiguration, namely the attaining of quiescent states [KM90], can be
substituted by state transferal in our approach.

We report on practical experience with reconfiguration and component-based
software engineering. The inclusion of both formal consideration and practical ex-
perience is important, as we believe that neither should be done without the other.
Reconfiguration in an asynchronously communicating, highly concurrent system is
difficult to maintain; it is important to have some guarantees that alleviate the
process of designing a working reconfiguration. A clear semantics of the reconfig-
uration process is indispensable for this. On the other hand, practical experience
is required to get a consistent idea on what reconfiguration has to provide (and,
sometimes, what is superfluous – this might be even more important).

A formal definition that carries over to practical implementations, however, re-
quires a severe limitation of features. While we feel that the reconfiguration-enabled
framework detailed in this thesis is fairly powerful, it lacks many features that a
production-grade framework needs. Some of these features are too complicated
or inconvenient for formal description. Others have not been added because their
utility only became apparent at a later point in time, or because they can be substi-
tuted by the means already present. Overall, the framework is highly experimental,
and its sole purpose should be seen in exploring the power of reconfiguration. Still,
we hope that it offers interesting insights into this field of software engineering and
contributes to a general understanding of the utility of reconfiguration.

1.5. Notational Conventions

In the context of this thesis, we use some notational conventions. Most of them
are introduced on-the-fly, but some are so fundamental that we will introduce them
here:

For mathematical functions, we write→ to indicate a function where no implicit
property is assumed (e.g., whether it is partial, injective, etc.). For partial functions,
we write ⇀ if the function being partial is critical to its understanding (e.g., for
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an infinite set C of component identifiers, the function that assigns a finite subset
of C a value from the state set S (and hence describes the active components with
their associated state), we write C ⇀ S). For a partial function f : A ⇀ B, we
name the subset of A for which f is defined the domain of f and denote it by
dom(f) = {a ∈ A | ∃b ∈ B.f(a) = b}. B is called the co-domain, and the subset
ran(f) = {b ∈ B | ∃a ∈ A . f(a) = b} the range.

We write f [x 7→ y] for the function

λz.

{
f(z), if z 6= x,
y, if z = x.

Often, we will explicitly define functions with a (very) finite domain, by writing
them as {v1 7→ v′1, . . . , vn 7→ v′n}, describing a (partial) function

f(x) =


v′1, if x = v1,
...
v′n, if x = vn.

For sequences, i.e., finite words over a given alphabet Σ, we write :: for con-
catenation (defined for all combinations of elements e ∈ Σ and sequences s ∈ Σ∗)
and ε for the empty sequence. We write 〈a, b, c〉 for the sequence consisting of the
elements a, b and c, hence 〈〉 = ε.

As for names, we will use small capitals to indicate that a name describes
a software (product), a programming language, or an algorithm with an artificial
name. So we will write about Java, Corba and the cmc model checker, and
about LTL and Bloom filters. We retain the capitalization chosen by the authors
if convenient.

1.6. Structure of this Thesis

In the next chapter, we will refine the idea of using components and runtime
reconfiguration to implement adaptivity a little more. We will discuss the various
definitions of components, and how their utility is described in the literature. In
Chapter 3, we discuss related work; we discuss the major component frameworks,
but the major focus is placed on component frameworks capable of reconfiguration,
as this is the central interest of this thesis.

We then build our own approach in a number of successive chapters: Chapter 4
presents the formal background that we use to describe our component model with,
as well as tools to investigate the dynamic behavior of applications. We then present
the cmc model checker with its dedicated component framework in Chapter 5. The
cmc model checker has been an interesting influence, and although it does not
directly contribute to the main approach of this thesis, we feel it offers a number
of interesting insights, and many design decisions done later can be related to the
specific properties of this application.

In Chapter 6, we introduce the JComp component model, which we use to
investigate reconfiguration with. In this chapter, we describe how the component
model was designed and how reconfiguration is integrated. This chapter extends
the results published in [HK08]. We prove some valuable properties for the re-
configuration approach, which is based on an implementation-related, small-step
semantics. We proceed to discuss how this approach can be implemented in Java,
while retaining the properties shown, in Chapter 7.

In Chapter 8, we give a number of examples for reconfiguration with the JComp
framework. We first introduce the so-called MAPE loop as a uniform framework
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for realizing reconfiguration, and show how different applications of reconfiguration
can be realized.

Chapter 9 discusses the specification of components, and how these specifica-
tions can be verified. This is extended to reconfiguration, discussing ways to ensure
the validity of a reconfiguration execution. We conclude this thesis in Chapter 10.



CHAPTER 2

Components and Reconfiguration

The modules we constructed were made to exhibit

a black-box characteristic, so that their

internal idiosyncrasies could be safely ignored.

— Tom DeMarco and Timothy Lister, Peopleware

We have chosen components as the basis for our approach towards adaptivity,
using the reconfiguration of component systems. It is quite challenging to find a
suitable definition from the wealth of different views on components. We will try to
give a general idea of components in Sect. 2.1, and refine our definition by pointing
out differences to similar approaches in Sect. 2.2. We will then fix the relevant terms
a little more in Sect. 2.3, and discuss why components are useful in our context in
Sect. 2.4.

2.1. What are Components?

The idea of “software components” has been among the first proposals towards
structuring software. The term was first used in the key-note talk by Douglas McIl-
roy at the famous NATO conference on software engineering in Garmisch [McI69].
McIlroy believed that using software components in a way similar to using hard-
ware components in complex machines might help overcome the so-called “software
crisis”. While his example – a sinus-function component that can be sold in vary-
ing degrees of accuracy and efficiency – has certainly been too fine-grained, many
commercially successful approaches have been built around the term of compo-
nents, most notable the various frameworks by Microsoft such as COM [Box98]
or ActiveX, and industry standards like Corba [OMG06a]. The idea of selling
components instead of whole shrink-wrapped software products or programming
services has ever since attracted programmers (e.g., [Cox90]); currently, it experi-
ences a renaissance in the form of web services.

The idea of what a “component” actually describes is surprisingly consistent
in industry and research, maybe because it capitalizes on the well-established un-
derstanding in the hardware industry. (Consider Fig. 2.1, which shows the major
components NASA’s Space Shuttle is comprised of. Most of the components are
built by different contractors, thus making use of their special skills and experi-
ences. The final assembly was conducted by Rockwell International [Hep02].) It
is, however, quite vague with respect to the granularity addressed, and usually has
to be seen in context. Some examples are:

• In the context of the Object Constraint Language (OCL) [OMG06b], a
component is given by a set of classes grouped together, for example in
a Java package. The term component visibility then refers to a visibility
granted to all classes within the same package.

• In a cryptography context, a component refers to a replaceable algorithm
like a cypher or a public key system [LB03].

8
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Figure 2.1: Components of the Space Shuttle, image courtesy of NASA

• In commercial component frameworks like Microsoft’s ActiveX, compo-
nents usually are complex libraries of code that provide a well-documented
interface (but usually do not require one).

• Other frameworks, like Corba [OMG06a] use components in a sense
similar to ours: Black boxes with explicitly declared provided and required
interfaces.

The most established definition of a component in the context of component-
based software engineering, i.e., a discipline of software engineering that perceives
components to be the main ingredient of building software systems, is due to
Clemens Szyperski. In [Szy98, pp. 30], he writes:

The characteristic properties of components are:
• A component is a unit of independent deployment.
• A component is a unit of third-party composition.
• A component has no persistent state.

The latter point then was changed to read “[A component] has no (externally)
observable state” in [SGM02, pp. 36]. Basically, this is just a rephrasing: In
both definitions, a component instance must not be distinguishable from another
instance of the same type by means of communication. Szyperski notes exceptions,
like attributes that do not influence functionality, or internal caches. Nevertheless,
he concludes that any component only needs to be instantiated once, as having a
copy does not make sense.
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We differ from Szyperski in the statelessness of components; instead, we con-
sider components to be inherently stateful. This is due to a different view on the
granularity of components: Szyperski exhibits a rather technical view, where a
“database” can be a component (although this example does not seem to work
well with not having a persistent state), whereas we see components as parts of a
system, which usually consists of nothing but components – hence requiring compo-
nents to store state. However, Szyperski proceeds to provide a more generic notion
of components [Szy98, pp. 34] that resulted from a discussion at a dedicated
workshop [Mue97]:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to
composition by third parties.

This is a widely accepted definition (cf. [Hop00, Völ03, GG03, GA04],
which are paper focused on the definition of components), but there is a broad
range of differing refinements of this definition, cf. the discussion in [BDH+98].
Also, the self-containment property (“can be deployed independently”) is a little
stronger than we envision it here – since we will place strong emphasis on required
interfaces, and the satisfaction of the connection requirements at system start-up
time.

One further aspect, namely the one of a component model, is given by George
Heineman and William Councill [CH01]:

A software component is a software element that conforms to a
component model and can be independently deployed and composed
without modification according to a composition standard.

A component model defines specific interaction and composi-
tion standards. A component model implementation is the ded-
icated set of executable software elements required to support the
execution of components that conform to the model.

This accentuation on the definition of interaction and composition standards is
unique to this definition; although no other definition directly disagrees. In this
thesis we will see that making the component model an integral part of the com-
ponent definition is very much desirable.

Another interesting definition – obtained by listing the key properties – is
provided by Bertrand Meyer. In [Mey00], he lists seven points that constitute a
component:

(1) May be used by other software elements (clients).
(2) May be used by clients without the intervention of the compo-

nent’s developers.
(3) Includes a specification of all dependencies (hardware and

software platform, versions, other components).
(4) Includes a precise specification of the functionalities it offers.
(5) Is usable on the sole basis of that specification.
(6) Is composable with other components.
(7) Can be integrated into a system quickly and smoothly.

Compared to Szyperski’s second definition, the explicit catering of a client and
the inclusion of specification is noteworthy. The latter is quite understand-
able given Meyer’s research background in contract-based software engineer-
ing [Mey97, NM06]. The consideration of a client addresses an interesting point:
Are components to be used by clients, or just by other components? The use of
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components is not described in Szyperski’s definitions. Both definitions also (pre-
sumably deliberately) lack a specification of granularity : is there any limit to the
functionality a single component might provide?

We will not exactly give a concise definition of our understanding of components
here, but answer those two questions for this thesis: We will consider components
to be used by other components only. If there is something as a client, it has to
be packaged to become a component itself. This results in a different viewpoint
on software development: In Meyer’s definition, a component is used to provide
some service, some functionality that a client needs. In our definition, components
are assembled to collaborate on a common computation, and all required code
will be provided in the form of components1. Also, we provide an understanding
of granularity, albeit a very informal one: A (non-composite) component should
group the functionality that cannot be broken down in such a way that some sub-
functionality might be replaced by some other implementation profitably.

This is rather vague, but in the course of this thesis, the idea should become
clear. An example often used is a hash table, i.e., a set implementation that cal-
culates the hash value of an object and puts it into an appropriate bucket. Such a
hash table could be used as a component – but it would violate the definition, as it
will work with any hash function. It is profitable to externalize the hash function,
since the proper choice of the actual implementation might depend on the data at
hand (a cheap hash function might work fine for objects that are cheap to compare,
but if collisions are expensive, a more elaborate hash function might pay off). So
part of the functionality – the hash function – needs to be externalized to a second
component. Of course, in other situations it might be judged to be unprofitable
to externalize the hash function, and it might become integrated in the hash table
component. Ultimately, such a decision needs to be made in the context of the ap-
plication that the component is written for. Nevertheless, a hash table component
that uses case distinction to choose from a number of hash functions (maybe at
compile time with preprocessor commands) violates our definition of a component
for sure.

2.2. What are No Components?

“Autistic computing”

— some merry people 2

As the term “component” is a fairly general one, it might be useful to refine
its meaning within this thesis a little more by pointing out the differences to other,
well-established concepts of software engineering. This investigates the idea of
components by finding out what is missing or not accurate enough in other software
engineering technologies.

2.2.1. Objects. Object-orientation has been one of the major advances in soft-
ware engineering [Mey97]. On a technical level, the concept is closely related to
components, and the concepts can be expected to have inspired each other. (We
will later elaborate on the use of object-oriented languages, i.e., C++ and Java,
as host languages utilized to actually implement a component framework.) There
are minor technical differences, like inheritance, which is usually not considered for
components (although the cmc model checker employs inheritance concepts, albeit

1There will be some exceptions, mostly related to reconfiguration, where further code is
required to steer it.

2Andreas Schroeder, Carolyn Talcott and me; trying to imagine what the opposite of
service-oriented computing might be.
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Service
View

Component Setup View

Figure 2.2: Extend of views for a component setup and services

just for avoidance of tedious redefinitions; see Sect. 5.2), or hierarchical compo-
nents, which have no language level correspondence in object-oriented languages
(but which can be easily provided on the implementation level by the Composite
pattern [GHJV95]).

The key difference of object-orientation is the lack of a differentiation of “control
structures” and “data structures”, which we desire for component systems. In a
Java-based web application, the central controller is defined in a class, as is the
tiniest data-storing bean. It is perfectly feasible to pass a reference to an instance
of that controller class to other objects, so it becomes a data object itself. This
is where components are requested to distinguish more strictly: Either some code
is concerned with processing data, managing calculations etc., in which case it is
part of a component, or it defines data structures (possibly with some elaborated
accessor functions), in which case it is a data object.

Of course, it takes little effort to just follow some simple rules and not pass a
reference to the main controller object to other objects. Then, object orientation
and component-based software quickly become identical, and in fact it takes little
overhead to enrich an object-oriented language to become “component-based” – the
programming language (we use C++ and Java in this thesis) then becomes a host
language for the component framework. The important point is that the distinction
of control-flow-managing components and data-encapsulating objects becomes more
visible; and even more enforced – which helps to obtain some invariants that cannot
be guaranteed in “fully-enabled” object-oriented languages.

However, components retain one of the most successful features of objects:
Clear borders, and explicit communication. As Kent Beck writes in [Bec00, pp.
24]:

Message sending is a powerful way to cheaply build many opportu-
nities for change. Each message becomes a potential point for fu-
ture modification, a modification that can take place without touch-
ing the existing code.

Components make communication even more explicit; this amplifies the benefits
Beck mentions.

2.2.2. Services. Being one of the major research topics in software engineering,
services have become a paradigm that offers both a new revenue model as well as
interesting research opportunities.

As mentioned before, the difference between components and services is small;
if services are considered as black-boxes that need to be connected, the term “com-
ponent” is describing the entities involved in just about the sense we are using it in
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this thesis. Actually, components offer functionality to other components, and this
is often referred to as provided services. If a difference is to be made, it can be found
here: Components also require functionality to be provided by other components,
which is not discussed for services.

Hence, the view on services is shallow and one-way only, as illustrated in
Fig. 2.2. This means that the user of a service – i.e., the programmer that writes an
application that queries a service – should only be aware of a single layer of services.
The internal processing of a query – which, of course, might involve further queries
to other services – should be opaque to the caller. In any case, the call should not
result in a call back to the caller – the call-graph should not contain circles.

For components as we understand them here, exactly the opposite is true: They
are assembled by a central instance that understands the whole of the application.
While services can be viewed like this as well (it is not strictly required to re-
main ignorant of the called service’s behavior), services are not supposed to require
application-wide restrictions of communication, like requiring circular data flow,
i.e., the called components sends data back to the caller on a different route than
the method return. While this situation seems artificial at first, we will encounter
it in some rather straightforward implementations like the cmc model checker in
Sect. 5.3.

Much of the research advances associated with services have impact on
component-based software engineering as well; but often, the focus is slightly, yet
articulately different. This especially holds true for service discovery, a process of
detecting and choosing suitable services for a given purpose [LMH07]. As dis-
cussed before, this might also be used for detecting components that provide the
services a given component requires; but these components might require further
services on their own, some of which might – or even must – be provided by existing
components, and others that need further components to be discovered and instan-
tiated. Components require that an overall architecture is adhered to, which needs
to be explicitly described [GS93]. As a result, the automated configuration of com-
ponents is a good deal more complicated, and rarely attempted (cf. Sect. 8.1.4),
whereas service discovery is a matured field of research [ZBBF07].

2.2.3. Agents. Among the concepts presented in this section, agents are undoubt-
edly least likely to be called components in our sense. It is still interesting to stress
the difference, which we perceive to be the absence of autonomy of components.

Autonomy is one of the key concepts of software agents [Fon93]:

“A more autonomous agent can pursue agenda independently of its
user. This requires aspects of periodic action, spontaneous execu-
tion, and initiative, in that the agent must be able to take preemp-
tive or independent actions that will eventually benefit the user.”

The significant difference to components is given by words like spontaneous
and preemptive, which require the agent to be capable of self-triggered actions;
components on the other hand are required to respond to external messages sent
over the interfaces. Everything else is subject to the black box metaphor – while we
certainly do not want to prohibit components from spontaneously sending messages,
we also cannot enforce it to be a key feature. Therefore, agents impose a more
restricted definition than generic software components; but there is evidence that
components as described here are a very good way to implement agents [KMW03].

For the purpose of this thesis, agents are interesting because they often require
mobility, i.e., the capability to change the computer they use for execution at run-
time. This requires migration [IKKW01, LS05], a special type of reconfiguration
(cf. Sect. 8.4).
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2.2.4. Modules. Interestingly, modules – i.e., groupings of functions, data types,
classes etc., as provided by a programming language – are sometimes called com-
ponents, e.g., in the OCL specification [OMG06b], where packages (in the sense
of the Java programming language; such packages constitute what we mean by
modules here) provide the scope for component invariants [HBKW01].

Of course, the altogether unspecified extend of a Java package (i.e., the lack of
a criteria which classes should be put in one package) makes them more generic than
the component definition used here. Furthermore, a module cannot be instantiated.
It describes a static code library, an assembly of structures that serve some purpose
together. While parts of a module can be instantiated – and might also be called
components in our sense – an entire module does not form a stateful entity at
runtime, which is exactly what we consider components to be.

2.3. Key Terms and Concepts

Let us briefly introduce the central terms in an informal way; the formal defi-
nition will be given in Chapter 4.

A component describes an entity that performs calculation, in the broadest
sense of the word. Usually, a component is an instance of some component type.
Depending on the actual component model, a component may have ports or in-
terfaces; in any case, the component has some connections to other components
over which communication is conducted. A component usually provides services
to the component it is connected to, and also requires services to be provided by
connected components. The components and their connections form a component
graph, also referred to as a component setup or a configuration. If the connections
bear some delicate semantics or have a state of their own, they are represented by
connectors, which can be made first-class entities of a component model [LEW05].
A component model describes how components are to be executed. A component
framework is a software that implements a component model.

Usually, components are considered to be black boxes, i.e., they are entities
whose inner operations cannot (or rather do not have to) be inspected (at least
at runtime), or as gray boxes [BW97, dB00], where some aspects of the inner
structure (of the component type) are known, but not accessible at runtime (e.g.,
by means of inspection). Contrary, the inter-component communication is usually
regarded as observable. In this thesis, we consider components to be stateful. Fol-
lowing the black box view, this state cannot be directly observed from the outside,
but it influences the communication behavior of the component. Likewise, commu-
nication received by the component changes its state. Depending on the component
model, state changes might also occur spontaneously.

Another ingredient is the assembly , which is some kind of startup code that
instantiates and connects components and maybe manages runtime reconfiguration
of the component graph. Developing components and assemblies is a discipline
called component-based software engineering.

As an example, we might consider a component type that implements the
hash table mentioned before3. This component type provides a service that can be
invoked to add an element and to query it, and requires a service, to be provided
by a connected component, that calculates the hash code for a given element. A
component can be created that instantiates this component type, and every such
instance needs to be connected to a hash function component in order to have
its requirements satisfied (which might be the same component for all hash table
instantiations, or a different one); this is done in the assembly code that builds the

3Stemming from the model checking experience, we use the word hash table for a set imple-
mentation; in Java this would be called a hash set.
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component graph. The component model will then describe how the communication
is conducted; for example, it might mandate that the query for existence of a certain
element is to be done by using the host programming language’s means of method
invocation. At runtime, we will either consider the hash table component as a
black box, knowing nothing about its internals, but being aware of its external
description, connections and communication behavior, or as a gray box, in which
case we might have the source code of the component available for inspection, but
no means to read internal data at runtime.

The state of the component is comprised of the contents of the hash table,
combined with structures that are defined by the component model – e.g., message
queues. The term “stateful” usually refers to the existence of the former state part,
which we refer to as the data state. The contents of the hash table influence the
communication: The response to an element query will depend on whether the hash
table already stores this element.

A word on the use of the term “component” itself: Usually, a proper distinction
between “component” and “component type” does not take place (cf. the discussion
in [KBHR08]). Instead, both are called “component” and the actual meaning can
(hopefully) be derived from the context. Usually, there is not much difference:
A component type is defined to become instantiated, and in many settings, it is
instantiated only once. In this thesis, we will not consider component types in the
formal parts – everything is embedded in the component definition. In the informal
parts, we will be a bit more vague and talk about the “hash table component” that
is connected to the “hash function component”, although these names both describe
component types which are instantiated once and connected in every component
graph we are currently considering.

2.4. Why Use Components?

2.4.1. Software Reuse. McIlroy introduced components as a means to reuse
implementations in the way that hardware is reused in product line assem-
blies [McI69]. Components are considered to be independently developed and mar-
keted as suitable processors of sub-tasks of complex applications. These “COTS”
(commercial-of-the-shelf) components are still perceived to be one of the major
benefits of component technology (cf. [Szy98]). There is, however, a serious draw-
back to overcome: Most of the time, components need to provide a functionality
more complex than originally discussed by McIlroy (who discussed sine function
implementations). For example, components might provide functionality for image
processing. Finding a component that does exactly what is required can be so
difficult that programmers seem to favor rewriting the code, an observation that
sparked the Amphion project of NASA [LPPU94]:

However, even when a subroutine library is developed following the
best conventional software engineering practices, users often have
neither the time nor the inclination to fully familiarize themselves
with it. The result is that most users lack the expertise to properly
identify and assemble the routines appropriate to their problems.
This represents an inherent knowledge barrier that lowers the util-
ity of even the best-engineered software libraries: The effort to ac-
quire the knowledge to effectively use a subroutine library is often
perceived as being more than the effort to develop the code from
scratch.

Amphion utilizes the Snark theorem prover [SWL+94] to find and assemble
appropriate components – requiring a specification of what is to be processed on
a physical level. The few research that investigates the utility of code reuse tends
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to draw a similar picture: While reuse seems to offer the possibility of adding
functionality for free, in practice much of it is consumed by the requirement of
understanding the specification and ironing out the minor (maybe undocumented)
discrepancies that emerge [Tra88, Tra94, Fav91, GAO95]. This has led some
people to claim that component reuse is not profitable, stating that a truly black-
box, reusable component takes 3-5 times the development effort a “good enough
component” needs [Lam04]4.

In this thesis, we will not discuss software reuse much. First of all, the research
we report on was done on projects too small to make credible statements about
the utility of components for software reuse. Instead, we understand component-
based software engineering as a different approach towards writing software, which
enhances the clarity of a software system (which, in the end, is a necessary prere-
quisite for reconfiguration). If we want to specify the behavior of components, this
will be done to reason about the correctness of an application, and not to identify
components that provide a given functionality – as would be required for reuse
considerations.

The impact of this choice is greater than it might first appear: When specifying
for correctness, the context is narrowed down significantly compared to a specifica-
tion for functionality. If we want to specify an image processing component such
that its utilization in a component application is verified for safety properties, we
might restrict ourselves to specifying “sane communication behavior” if this suf-
fices for the correctness properties (e.g., stating that the result of a method call
to findHumanFace is either a coordinate within the boundaries of the picture or
null). If we want to specify this image processing component for reuse, we would
have to fully describe the algorithm it implements. Obviously, the difference can
be huge.

2.4.2. Algorithm Substitution. McIlroy also provides another reason for using
components. His example of a sine function also discusses that these functions
might be provided in varying degrees of efficiency and accuracy. Obviously, this is
done to further stress the metaphor of hardware components (where simple things
like screws are available in immense ranges of quality). However, it also implies
an interesting view on components: Rather than writing a single sine function and
passing the required accuracy as a parameter, a number of sine functions with
preset accuracy are provided as components. The user then takes the component
with the appropriate accuracy and uses it as part of the component application.

We believe that this approach carries over to component-based development
even though only one person is involved. Although we write all the sine functions
ourselves, there is a conceptual difference between choosing a sine function com-
ponent and passing an accuracy parameter: The time the decision is made. When
passing a parameter, this time is not defined. The calling method might supply a
fixed parameter, or the accuracy might be given by the user on the command line
and passed through the entire application. With components, however, the choice
of accuracy is invariably postponed until the components are assembled.

This effects a changed view on the application. The choice of a different sine
function component produces a different application. We might choose a low-quality

4The author does not feel comfortable with this generalization. There are well-established
components that see frequent reuse, in domains like cryptography or when being shipped with a

programming language (note that [Lam04] lists these exceptions as well). But there are also some
domains where components are sold with considerable profit, e.g., as plug-ins for media editing
software. It is most likely true that software can never be assembled from pre-existing components
alone, but that does not void the general utility of reusable components (cf. the experience with
cmc, reported in Sect. 5.5).
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function for development, and a high-quality, mind-numbingly slow one for the final
production version. We might even select an especially bad performing one to check
out how errors propagate. And, with reconfiguration, we might add a monitor that,
from time to time, checks if the sine function currently in use is appropriate, and
might reconfigure the application to use one with better accuracy if this is deemed
beneficial.

All this is done at assembly time. We do not even have to know that we will
utilize different sine functions when first writing the components. This is what
we understand as the separation of concerns – when writing a single sine function
component, we do not have to care whether it is going to be replaced by a better
performing one – whereas, with an added accuracy parameter, we have to deal with
this usage scenario right away.

2.4.3. Programming-in-the-large. Programming-in-the-large, a term coined
by Frank DeRemer and Hans Kohn [DK75] describes a discipline of program-
ming that is concerned with wiring components on a high level, as opposed
to programming-in-the-small, which is about actually implementing algorithms.
Programming-in-the-large emphasizes or even enforces modularity of programs,
reaping many benefits like the possibility to do “proving-in-the-small” to establish
the correctness of components with respect to their specification, and to proceed
to do “proving-in-the-large” by combining components whose abstract behavior
description is then known.

Writing software in modular fashion has always been encouraged (cf. [Par72]),
but modularity can be achieved for a number of different aspects of software. For
example, the source code of an application written in C can be distributed over mul-
tiple files, or an application can utilize a library that is linked after the compilation
process or even just loaded at runtime. The software can also be written to run
distributed on a number of computers. Programming-in-the-large describes a dif-
ferent modularity: That of dividing functionality into a series of sub-functionalities
that are assembled on a different level.

This kind of programming encourages a different perspective on the program-
ming task at hand. Rather than asking “what needs to be added to get the program
running” the question becomes “what needs to be assembled” – an approach that
is less iterative, but also with an articulately succinct goal. With the experience
obtained throughout this thesis, this kind of consideration supports a different ap-
proach towards analyzing the software problem at hand, as it puts more emphasis
on the flow of data, which provides a different mental image as traditional “operate
on a given data structure” programming does.

For some problems, this might be very beneficial. It is most likely not
by coincidence that the best-known programming languages that implement the
programming-in-the-large paradigm are business process modelling languages like
the “business process execution language” BPEL [AAA+06] or YAWL [AH03],
a language based on workflow patterns [AHKB03]. Workflow patterns describe
repetitive structures in business processes, which are descriptive for the aforemen-
tioned class of problems where programming-in-the-large excels. Problems that can
be thought about as workflows – where multiple steps are executed in a sequential
or parallel fashion, each doing some work on data that is transported along the
workflow – seem especially suitable for component-based programming. Within
this thesis, a number of examples will be given for problems that are best viewed
from this perspective. In fact, almost all systems that do not require frequent user
interaction (and this exclusion is only necessary because this is outside the scope
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of this thesis – it may well be that GUI applications also work well with data-
flow considerations) can be viewed as workflow systems, but sometimes, efficiency
constraints will rule out this approach.

A slightly different view at the programming-in-the-large paradigm is given
by the notion of “architectural programming” [ACN02a, BHH+06]. Here, the
high-level assembly of components (which is still regarded as programming) is em-
phasized. By programming assemblies at a coarseness level that admits immediate
understanding, the code becomes its own model, suitable for describing the appli-
cation. This might remedy the problem of architectural erosion [PW92], which de-
scribes how a model – used to describe how a software is implemented – often is not
updated when the software is extended and modified, leading to an ever-increasing
gap between the source and the model that is supposed to describe it. Architectural
description languages (ADLs) aim at supporting such programming, examples be-
ing Wright [All97] and Darwin [MDK93] (cf. Sect. 3.1.3). While this thesis
lacks examples that are long-termed and large enough to truly illustrate the ben-
efits of this programming approach (although the cmc model checker described in
Chapter 5 draws near), it is encouraging to see the general idea of component-based
software engineering supported by such a multitude of approaches.

2.4.4. Separation of Roles. Programming-in-the-large also promotes a software
development process that involves at least two roles with distinct concerns. One of
these roles is concerned with writing components, the other one with plugging them
together “in-the-large”. Such a differentiation is often encountered when coarse-
level architectural programming languages are employed (e.g., Durra [Wei89,
BDWW89]). We will refer to the first role as the component implementer or
programmer or designer , and to the second role as the system designer . Discerning
these roles is an application of the separation of concerns paradigm to software
engineering [CBG+04]: it is the concern of the component implementer to write
components that offer some functionality and are optimized in one way or another,
and the concern of the system designer to choose appropriate components and
integrate them to a correct and efficient application. In the context of this thesis,
the difference between the two roles is very important, since it is the primary
motivation to do reconfiguration. We will thus mention this separation of roles
frequently.

It is not always possible to distinguish between the roles accurately. In hierar-
chical component models (e.g., Sofa [BHP06] or Java/A [Hac04]), the system
designer of a composite component acts as a component implementer in the next
hierarchy level. Also, pretty often the roles tend to mix; e.g., if the system designer
briefly takes the role of a component designer in order to write an adapter compo-
nent that is required to link two slightly incompatible components. And obviously,
roles can also be filled by teams of people.

The best separation of roles is obtained if the component designer is unaware
of the system designer. In scenarios like the one envisioned by McIlroy [McI69], a
programmer employed by a component vendor writes a whole series of components
without targeting a specific application. On the contrary, a wide range of nonfunc-
tional properties is covered in order to give the system designer more choices. Often,
the separation of roles is made more explicit by the maintenance of a component
repository [Ye01]. The concern of the component designer is to add components
to this repository, while the system designer queries the repository and uses the
components found.

Such a strong separation, however, is outside the scope of this thesis, as we
are more interested in building software more or less from the scratch; separating
the roles is done for obtaining a clean, robust software architecture rather than
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to emphasize component reuse. We argue that using component-based software
development is beneficial even if the software is written by a single person only –
as most of the examples in this thesis are. The roles involved are thus not to be
understood as distinct persons, but rather at distinct views on an application (or,
as separated concerns of application development).

2.4.5. Reconfiguration. We have so far described how component setups are
configured by programming-in-the-large. Configuration is a process that forgoes
the launch of the component application. Now, our focus shifts to dynamic recon-
figuration5, which describes the process of altering the component setup at runtime.
By employing reconfiguration, we can accommodate to behavior that we have not
foreseen or did not want to consider when building the initial application. Extend-
ing McIlroy’s sine function example, reconfiguration might be utilized to switch
to a component providing a more suitable sine function, if the former function no
longer suffices.

Reconfiguration is a way to achieve adaptivity. It might be arguable if the gran-
ularity of components is suitable, but reconfiguration of components offers a number
of benefits: First, since configuration is a fairly straightforward concept (discussing
component instances, their inter-connections, and possibly their parameters), a re-
configuration plan is also quite straightforward – in essence, it just describes the
transition of one configuration to another. Second, reconfiguration can be facili-
tated by a component framework, which can take care of some of the problems that
are given with adaptivity. Reconfiguration is thus a generic approach for build-
ing adaptive systems, and because of the clean separation of components, much
less troublesome to understand and use than related concepts like self-modifying
code [TY05].

For pointing out the uses of reconfiguration, let us briefly discuss how this
concept is discussed in the literature:

2.4.5.1. Reconfiguration for Hot Code Update. Not all reconfiguration is done to
provide adaptivity. Early research of component reconfiguration (e.g. [Blo83,
Lim93, BISZ98, TMMS01]) focused on the problem of hot code deploy, i.e.,
the updating of the implementation of a running application, and interest has not
ceased ever since. For large, distributed systems, the merit is obvious: A shutdown
of the entire application, stretching over a number of machines, with lots of compo-
nents possibly involved in complicated transactions is tedious and also quite prone
to problems with partially completed transactions which result in corrupted compo-
nent states. Instead, the system is only stopped partially where this is unavoidable,
and the remainder of the system is allowed to keep running.

Using reconfiguration for component update provides another interesting as-
pect: Since the old component is replaced rather than modified internally, it can be
kept for a little while to see if the new version behaves well [SRG96]. If the new
version has errors, a further reconfiguration can switch back to the old version, thus
providing some fault-tolerance for component updates. Investigating such solutions
is what we are interested in in this thesis, independently of hot code update.

2.4.5.2. Reconfiguration for Architectural Change. Being able to perform hot code
updates requires an infrastructure that usually allows for a different application
as well: Instead of updating a component with an improved behavior, the compo-
nent might be replaced by an altogether different implementation that exhibits a
different behavior (cf. [Med96]). For example, a component that loads data from

5We will use the term reconfiguration to describe dynamic or runtime reconfiguration, unless
explicitly noted otherwise throughout this thesis.
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a file might become replaced by a component that loads the data from some net-
work source. Going one step further, the application’s architecture might become
changed beyond a mere replacing of components: Components might be added,
removed, and connected differently (the latter being a process often referred to as a
“rewiring”). A filter component might be added to an application to further process
the communication between two components, or, in the example above, a forking
component might be introduced that replays communication to both the new and
the old version of a component, judging their response and triggering reconfigura-
tion to either remove a faulty new version or eventually dispose the superfluous old
one.

The programming-in-the-large paradigm suggests that explicitly defining an
application’s architecture can be beneficial in some interesting contexts. Reasoning
about architectural reconfiguration on the same, abstract level takes this argument
a bit further: Instead of just defining the flow of information statically, possible
changes are also considered. The benefits are twofold: First, flexibility is enhanced,
since not all possible scenarios the application is subjected to need to be consid-
ered when the configuration is devised. This argument is tempting, but a little
problematic, since the reconfiguration needs to be envisioned all the same, and be
prepared in some way. But second, the separation of roles is amplified by dealing
with changed situations on the architectural level rather than on the level of com-
ponents. If the aforementioned component reading data from a disk is to be made
robust against disk failure, it needs to have provisions for obtaining data from the
network programmed into its structure. If, on the other hand, the application is
to be made robust, reconfiguration can be used to substitute the component read-
ing from the disk by the component utilizing the network. Both the components
are written without their actual usage in mind (especially, the component using
the network can be employed in a different scenario where it is not a substitute,
but a prime choice for obtaining the data). Thus, the load of providing adaptivity
is taken from the component implementer and given to the system designer, who
might then be able to provide solutions with less effort, since they are described on
a level more coarse.

Still, the benefit of reconfiguration needs to be compared to its costs. Compo-
nents imply a certain level of granularity, which we have described informally as
being “not to be divided profitably”. This might not be sufficient for a fine-grained
adaptivity. And reconfiguration does not come for free: It requires the same plan-
ning effort as a custom-written adaptivity requires, it just handles the concern on
a different level.

The ability to modify an application’s structure at runtime is a special case
of self-adaptivity. In [RLS01], an interesting argument is proposed: It is easier to
write a software that responds by adaptively modifying itself to unforeseen problems
with its environment than to write a software that foresees every possible situation
and change. This argument, if not further refined, is difficult to accept: First, a
genuinely unforeseen problem cannot be dealt with by the software, no matter how
capable of self-modification – it has to fit some kind of description by the software in
order to be treatable (of course, it might be possible to have a software that actually
understands every possible problem, but then no problem is genuinely unforeseen)
– and second, writing self-adaptive software (e.g., self-modifying code) is so tedious
and error-prone that a large number of situations can be foreseen when writing the
initial code and have a treatment implemented before an adaptive approach will
start to pay off. But if the argument is refined by the consideration of a separation
of concerns regarding the normal function and adaptivity scenarios, the benefits we
might hope to gain from employing reconfiguration become obvious.



2.4. WHY USE COMPONENTS? 21

strategy
Context Strategy

StrategyA StrategyB

+op

+op +op

Figure 2.3: Strategy pattern

Reconfiguration hence addresses applications where a number of factors are
given:

• There must be foreseeable problems that can be accounted for by a re-
structuring of the application (e.g., using a different data source if the
physical medium fails).

• These problems should require a strategy that transgresses the responsi-
bility of a single component (i.e., the problem should not be foreseeable
and treatable within a single component; a component that reads user
input should take some precautions against malformed input on its own).

• The problems should be so infrequent that building a special architecture
that handles the problems right away should not be required.

• The application itself should require continued operation (e.g., a simple
shutdown and restart with a new configuration should not be feasible).

The latter point is not undisputed: Reconfiguration can also describe the process
of altering a configuration before conducting a restart [ALF00]. But in this the-
sis, we are mostly concerned with applications that are to become subjected to
reconfiguration while they are running.

So far, we have described reconfiguration to be a cure for problems. This is
somewhat unfounded, since an anticipated change of the situation might also be
deemed as a welcome or a, at least, normal process. Reconfiguration is a general
tool to respond to the perceived change. This is best illustrated with the Strategy
pattern [GHJV95].

The Strategy pattern (Fig. 2.3) uses subclasses of a Strategy class to provide
different implementations of a task. The client obtains an instance of the subclass
that provides the functionality that is required. If the requirement changes, a differ-
ent subclass is instantiated and used. For example, the semantics of a mouse-click
in a painting program will differ according to the currently selected painting tool.
Hence, we have a PointMouseClickStrategy and a TextMouseClickStrategy,
with the former containing code to draw a point and the latter code to write some
text. Depending on which tool is currently selected, one of the strategies is allo-
cated and made available to a mouse click handler. When a mouse click needs to be
processed, the current strategy is asked to perform the job, which it does according
to its particular definition.

The strategy pattern separates the concern of implementing different strategies
from the choice of the suitable strategy. If a case distinction was to be used, both
the choice of the strategy and its implementation would be performed at the same
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place. By separating these two things, the application gets a cleaner structure; this
supports extensibility.

For reconfiguration of component-based systems, a similar separation is envi-
sioned. Using components can be helpful to enhance an application by subsequently
replacing components by improved versions, without the need to tamper with the
code of other components. With reconfiguration, this benefit is even amplified:
Writing adaptive components (i.e., components that are inherently adaptive, maybe
by using dynamic code substitution) is hard, but writing two components and have
one component substitute the other by the framework is easy, if the framework
provides sufficient control over that process.

This comes at the price of being coarse: For practical applications like the cmc
model checker described in Chapter 5, components can contain a few hundred lines
of code, and the smallest model checker consists of altogether just four components.
Replacing any of those four components amounts to a massive modification of the
application, and finding such applications is not always easy. This is a remark-
able problem: While component frameworks are very well suited for theoretical
and practical considerations of reconfiguration because of the ideal granularity that
components provide, components appear to be too coarse-grained for many practi-
cal applications. We will discuss this in greater detail later in Chapter 8. However,
we will place great emphasis on the examples that are provided with the already
quite numerous reconfiguration-enabled component frameworks, as good examples
might be harder to come by than good component frameworks.

2.4.5.3. Separation of Roles for Reconfiguration. In Sect. 2.4.4, we have discussed
the two roles involved in building a component application: The component imple-
menter and the system designer. As reconfiguration operates on the system design
level, it is reasonable to assume that the separation of roles is also given for recon-
figuration: It is the concern of the system designer to devise the reconfiguration and
see to the correct execution, whereas the component implementer remains mostly
uninvolved. Just as the system designer assembles an application from existing
components, reconfiguration modifies an application, possibly adding further (but
nevertheless already existing) components.

It is sometimes convenient to introduce a further role, the reconfiguration de-
signer. We will not discuss a distinction to the system designer here. It is never-
theless important to stress that the component designer is even less concerned with
reconfiguration as with configuration: Possible reconfiguration scenarios should be
completely ignored when devising a component. This is not always possible: In
Sect. 6.8, we will see that in order to transfer the state from an old to a new com-
ponent, some provisions need to be added to the component by the component
implementer. It is, however, a major goal of this thesis to keep this necessary
provisions as marginal as possible.

This is necessary to retain the major benefit of reconfiguration: To operate on
a purely coarse level, as discussed in the last section. If a component implementer
was to be tasked with providing numerous reconfiguration-related provisions (unless
they are entirely generic), there is little perceivable difference to implementing the
adaptivity in the component right away. On the other hand, if the component
implementer can remain oblivious to possible reconfiguration scenarios, the task of
writing a component is not aggravated by the adaptivity aspects of the application.
Since we assume that implementing adaptivity directly into the components is
a error-prone and tedious way, we will discuss the necessity to retain a strong
repeatedly in this part.
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2.5. The Difficulty of Reconfiguration

While reconfiguration is an easy concept, in realizing it we need to cope with
different problems, some of which are severe enough to place the utility of recon-
figuration in doubt. Given that we wish to utilize reconfiguration in large-scale,
concurrent systems, and given that we wish to address infrequent, but demanding
problems, reconfiguration can become arbitrarily complex if the framework does
not provide sufficient guarantees and steering capabilities that help to control the
reconfiguration and ensure the progression of the overall application.

Given the concurrency of the applications we wish to address, the interleaving
of reconfiguration with the system’s progression needs to be addressed: Reconfig-
uration takes some time, and the remainder of the system needs to be allowed to
continue with as little restrictions as possible. For large-scale, distributed applica-
tions, we can hardly enforce a global lock during reconfiguration; instead, we need
to provide provisions that allow reconfiguration to commence in parallel to ongoing
system activities. These might include sending of messages to components that are
just about to become replaced – and if an ongoing reconfiguration is not careful
about these messages, some messages might become lost, making the outcome of
the reconfiguration very unpredictable and prone to stalling the overall progress of
the computation.

We have argued in Sect. 1.2 that realizing adaptivity is hard because it happens
only infrequently, while being difficult and error-prone to implement. We hence
require the support of the framework to obtain as much guarantees as possible.
In this thesis, we will require the framework to guarantee that the reconfiguration
is perceived as an atomic step by an outside observer, such that interleaving the
reconfiguration process with normal system execution does not produce deadlocks
or unanticipated behavior. This has to be achieved with only minimal stopping of
components.

Of course, a system cannot be stopped even partially without some precautions,
which poses the problem of maneuvering the system into a state where such a partial
stop is safe to do. If reconfiguration just interrupts the system at an arbitrary
point in time, components that are removed by the reconfiguration might still be
in the middle of an ongoing communication. States where such communication is
known not to exist have been called quiescent [KM90], tranquil [VEBD07] or
safe [Weg03]. The problems associated with reaching such a state actually provide
an argument for reconfiguration opposed to performing a system restart: It is
conceivably easier to reach such a safe state for only a small number of components
than it is to reach it for all components – which is required for a safe application
shutdown. But waiting for quiescent states contradicts the demand for immediate
reconfiguration – which is required for substituting failed components or coping
with errors that will soon lead to an irrevocable failure of the application.

Another problem reconfiguration needs to solve (or, at least, discuss) is the
problem of state transfer. As we are interested in stateful components, the recon-
figuration process might be required to initialize a component not in the state that
would have resulted from an initialization in an initial configuration, but in a state
that is calculated from the state of other components. For example, if we replace a
store component with a different version (cf. the example of Fig. 1.1), we will often
be required to transport the data that has accumulated in the hash table to the
new version, in order to make it a genuine substitute. We will later see that this
is not hard to do technically; yet it requires some effort to fit consistently into the
separation of roles paradigm.

State retainment is an issue that can hardly be avoided when considering hot
code updates by reconfiguration, and often required for reconfiguration that changes
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an application’s behavior. Hot code update by reconfiguration is but one approach
to modifying components with an updated implementation – programming lan-
guages like Erlang or LISP support direct code replacement. Using reconfigu-
ration, we build new components and replace the components to be updated by
these new versions. Obviously, in order to have the new components act as suit-
able replacements, they need to copy the data state of the old versions. Such a
duplication of a state may appear unnecessary if the state layout does not change,
and the old component might just continue to operate on the previous data state.
Things change drastically if the state needs to be modified because of the new
component implementations using a different state structure: By doing an explicit
transfer of the state during reconfiguration, the modifications can be applied in a
well-defined way, which, if done in a certain fashion, does not require additional
code on behalf of the components. State retainment is investigated in a number of
papers [GJ93, Van07, Pre07, RS07a], with many of the approaches focusing on
an automated approach of associating state elements of the old component version
with elements of the new one. This is beyond the scope of this thesis; we expect
state retainment to be supplied as an element of the reconfiguration plan. While
this provides more flexibility than an automated approach, we still consider the
planning of state retainment as one of the most difficult problems during planning
a reconfiguration, which is sort of a position statement: Many other works does not
consider state retainment at all (cf. Tab. 3.1 on page 41).

This thesis is concerned with two major questions: How to conduct reconfig-
uration in a way such that it becomes less troublesome to define it, and how to
utilize such a reconfiguration for building advanced software. Surprisingly, in some
aspects the latter question proved to be somewhat harder to answer.

2.5.1. Ingredients. Fig. 2.4 illustrates the basic ingredients that are required for
reconfiguration, as we consider it in this thesis. They split in three large parts:

(1) The detection of a need for reconfiguration. For hot code update, this
is not necessary, or rather, entirely provided by the user. Otherwise, the
need for reconfiguration has to be found out by monitoring the application
and its environment and analyzing the data obtained.

(2) The planning of reconfiguration. Again, this is fairly easy for hot code
updates, and becomes challenging for generic reconfiguration. It consists
of planning the reconfiguration (by stating which modifications need to
be done) and scheduling it. Scheduling needs to provide a point in time
when to commence reconfiguration, and, if a choice is provided by the
framework, in what order to execute the atomic steps. For multimedia
applications, this scheduling might need to consider realtime-constraints
so that the reconfiguration can be executed in a way ensuring that the
latency stays below some threshold, cf. [MNCK99]. In the JComp frame-
work, however, the reconfiguration algorithm is fixed, and scheduling is
only concerned with determining a suitable point in time.

Obviously, planning is also connected to the way the need for recon-
figuration is detected; if a certain need for reconfiguration is detected in
the analysis phase, the planning should strive to satisfy that need. In
practice, the opposite dependency also requires consideration: Only those
situations that can be mended by a reconfiguration that can actually be
planned should be considered during analysis (e.g., if no provisions are
provided for handling depletion of memory resources, reconfiguration will
hardly be able to save an application that has just encountered an out-
of-memory error). Together with the detection of a reconfiguration need,
this is discussed in Chapter 8.1
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Figure 2.4: Ingredients of reconfiguration

(3) The execution of reconfiguration. This part has the most aspects to it, and
the focus of this thesis as well as most other works is placed here (cf. the
last two columns of Tab. 3.1). First, the pure technical realization, dubbed
“rewiring” (although it also contains addition, removal and possibly up-
dating of components), needs to be provided. This might also require an
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update to the code-base (e.g., substitution of underlying data structures
like classes), which can become very complex in practice (since many host
languages do not provide means to accommodate updated code).

Reconfiguration cannot just be started without considering the re-
mainder of the system. Instead, some precautions have to be taken to
provide something akin to the ACID (atomicity, consistency, isolation,
durability) of database systems. For reconfiguration, durability is usually
less of a concern, unless perhaps for extensive distributed architectures,
which we do not consider here. The other three aspects are captured un-
der the term “quiescence” [KM90], which is a denomination for a state
of a system where reconfiguration will not interfere with ongoing trans-
actions. This is partly to be ensured by the planning phase, but might
also require active steps to avoid problems with concurrent components.
Isolation is a related concept, but stressing the non-interference of a re-
configuration with other reconfigurations. Finally, fault tolerance stresses
the aspect of consistency; since reconfiguration might fail or introduce
faulty components into a system, special precautions might be required.

If components are stateful, their state should be retained. There are
two ways of doing this [Van07]: The direct approach, where such a state
transferal is part of the reconfiguration plan, and the indirect approach,
where the components are put in charge of retrieving the relevant state
from their precursors. Also, pending messages (and other framework ar-
tifacts) need to be retained.

There is quite a consensus about these ingredients of reconfiguration, although
different approaches accentuate different aspects, and often various aspects are
neglected (in this thesis, we consider the ACID aspect to be handled by the user
mostly, while placing emphasis on state transferal, which only few other approaches
do).



CHAPTER 3

Related Work

Ein Mann, der recht zu wirken denkt,

Muß auf das beste Werkzeug halten.

Bedenkt, Ihr habet weiches Holz zu spalten.

— Johann Wolfgang Goethe, Faust I

There is an abundance of work on components and reconfiguration, dynamic
updates, autonomous adaptivity and related topics. Even a patent for dynamic up-
dates of operation system components [Mar94] has been issued. The research area
is obviously defined way too broadly to give a really comprehensive overview since
many techniques and approaches are related and can spark new ideas. In this chap-
ter, we will first try to give an overview over well-known component frameworks,
and then discuss the literature on component frameworks supporting reconfigura-
tion, as well as some frameworks and approaches that are not directly concerned
with components, but also relate closely to the approach discussed in this thesis.

A very complete (and frequently revised) overview of component models, cov-
ering both commercial and research models, is due to Lau and Wang [LW05a,
LW06, LW07]. Applying a taxonomy presented in [LW05b], a number of com-
ponent models (note the emphasis on component models instead of frameworks,
which is no coincidence – the overview focuses on the model behind the actual
framework implementations) is investigated, including most of those presented in
the remainder of this chapter. An interesting classification of phases is proposed:
The design phase, where components are designed and implemented, the deploy-
ment phase, where binaries are generated and deployed, and the run-time phase,
where the component binaries are instantiated and initialized. Based on how com-
posite components (i.e., component assemblies) can be created in the three phases,
a further taxonomy is presented in [Lau06].

In [NFH+03], a survey of literature discussing component-based software en-
gineering, techniques and architecture description languages (ADLs) is given. This
survey has been made as a part of the SAVE project, sponsored by the Swedish
Foundation for Strategic Research – a project that tried to devise ways of system-
atic development of component-based systems for safety critical systems [Han01]
– and the papers presented in the survey are chosen by their applicability to that
project.

The “Common Component Modelling Example” (CoCoME) [RRMP08] offers
an interesting insight into various research frameworks and their modelling capa-
bility. An example application of a supermarket trading system application was
provided [HKW+08]. It was then modeled in various component models, includ-
ing SOFA [BDH+08], Fractal [BBC+08] and Java/A [KJH+08]. Applying
different component modelling techniques to a common example sheds an interest-
ing light on their individual capabilities, as well as their common features.

Concerning reconfiguration, there are two often-cited publications: [KM90] by
Kramer and Magee (and refined in [MGK96]), which introduced quiescent states;
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these are necessary for conducting the reconfiguration in a situation where it does
not interrupt active communication. The other one is [Hof93], the dissertation
of Christine Hofmeister, which introduced Polylith, a reconfiguration framework
that considers component state (see also [HP93]). The former publication can
be regarded as influential since its definition of quiescence is used by many other
works, whereas in the areas discussed by the latter publication, every framework
tends to come up with own ideas. Besides these two (early) works, the research field
appears very divided – maybe due to the varying incentives to do reconfiguration.

Vandewoude and Berbers [VB02] present an overview of approaches towards
dynamically updating component systems, with emphasis placed on embedded sys-
tems. Dynamic software updates are concerned with version upgrades of existing
components, and the challenges are both technical (like loading the same Java class
again, which is not supported natively by the virtual machines class-loader) and
conceptual, which is mostly concerned with updating the state. Vandewoude and
Berbes present a classification of approaches based on their usability, and the re-
quirements, restrictions and suitability for embedded systems. We will not repeat
the approaches they investigated here, save for [CD99] and [SRG96]; the mere
updating of code tends to be more technical than the focus of this thesis.

Sadjadi et al. [MSKC04b], extending (and making more accessible) the work
in [SM03] and building on the taxonomy presented in [MSKC04a], present an
overview of middle-ware that supports adaptive behavior. After an overview of
traditional middle-ware, which places emphasis on commercial implementations
like Corba or DCOM [CHY+98], they introduce some key paradigms for adaptive
systems, which are

• computational reflection – allowing a program to obtain information
about its own structure,

• component-based design – based on the Szyperski definition [Szy98,
SGM02], they emphasize the ability of late binding, i.e., the ability to
link components after application startup,

• aspect-oriented programming – in order to allow for composition of
cross-cutting concerns, AOP is required to build variations of existing
middle-ware suitable for adaptation,

• software design patterns – in order to make adaptation less expensive
in development, the repeated patterns should be identified, like the virtual
component pattern [CSKO02].

The authors proceed to propose a taxonomy based on the questions “how”, “when”
and “where” – the former describing the applied pattern (e.g., proxies or aspect
weaving), the second describing the point in the application lifetime to do the
adaptation (notable, they consider also adaptation at compile or load-time), and
the latter describing the layer where the adaptation is conducted. 40 middle-ware
frameworks are then categorized according to this taxonomy. The scope of this
overview is broad, including the rather generic AspectJ [KLL+02] aspect-oriented
programming framework as well as Boeing Bold Stroke [Sha00], a rather com-
prehensive framework for component-based development of avionics software. Still,
this overview is an excellent starting point, and covers many of the related work we
will discuss later. Yet the scope on middle-ware systems similar to the heavyweight
industrial component frameworks rules out many more experimental component
frameworks.

The overview of Bradbury [Bra04], with a shortened version in [BCDW04],
focuses on formal means to describe adaptive systems. Based on a distinction of
the underlying formalism (graphs, process algebras, logic and others) they present
14 approaches towards describing systems that support reconfiguration. Bradbury
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focuses on self-managing systems, giving a concise definition based on four stages of
reconfiguration: Initiation, selection, implementation and assessment, and requir-
ing that for a self-managing system, all stages need to be triggered and managed
internally. This is only interesting for the first stage, the initiation, as it can be
observed that any formalism supporting internal initiation also supports internal
progression of the latter stages. Apart from this characterization, Bradbury intro-
duces a taxonomy based on the supported reconfiguration operations, the selection
abilities (i.e., how the reconfiguration scheme is chosen among a series of candi-
dates), and whether the reconfiguration is managed centralized or distributed.

Elkhodary and Whittle [EW07] present a survey focused on adaptivity with
respect to application security. It uses the taxonomy and adaptation requirements
of [MSKC04a], extends them with goals for security services (authentication, au-
thorization and (fault-)tolerance), and applies them to four adaptive security frame-
works. For most of these system, reconfiguration is fairly technical and not within
the scope of this thesis (mostly, it is more of a tuning than an actual redesign),
with the exception of [KHW+01b].

The DySCAS project (“Dynamically Self-Configuring Automotive Systems”)
provides a deliverable [Ant07] that discusses work relevant for their idea of an adap-
tive system, which is to support self-configurability of embedded systems in the au-
tomotive domain. The actual applicability of the concepts is discussed in [Jah07].
While not directly concerned with component-based systems, this survey discusses
lots of work covering different aspects of adaptivity. Their focus is the field of
automotive software, but the broad discussion of control theory and adaptivity-
enabled middle-ware provides a very good overview on the techniques and frame-
works available. Further relevant areas are also presented: Automotive security,
mobile communication and quality of service considerations.

Finally, a recently published survey by Markus Huebscher and Julie Mc-
Cann [HM08] provides a very interesting insight into the various ingredients re-
quired for adaptive software. This survey is centered around the MAPE-K loop, a
five-stage general approach towards adaptivity, and discusses the various approaches
and the extent of adaptivity obtained.

3.1. Component Frameworks

In this section, we will introduce some well-known component frameworks.
Compared to the listing of reconfiguration-enabled frameworks in Sect. 3.2, this
overview is very limited. Still, the various approaches to the topic of components
and component-based software engineering supply an impression on the topics that
need to be considered, and areas where components can be successfully utilized.

Traditionally, component frameworks are divided into industrial frameworks
whose primary purpose is to support the development of commercial products,
and research frameworks that investigate ways to benefit from component-based
software engineering as well as research ways to provide the user of the framework
with support based on formal reasoning. Obviously, the border between these two
fields is blurred, and we will later, in Sect. 3.2, see a number of examples where an
industrial framework is used as a basis for researching reconfiguration.

3.1.1. Industrial Component Frameworks. Industrial component frameworks
have seen considerable success, mostly due to the activities of Microsoft, which
actually built large parts of the Windows operating system and related APIs like
ActiveX with components, Sun Microsystems (in the context of Java) and the
Object Management Group (OMG), providing the standard of Corba [OMG08].
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3.1.1.1. Corba. Corba is highly influential, also for scientific research of compo-
nents – as the large number of extensions towards reconfigurability demonstrates
(cf. Sect. 3.2.7). Being the first specification the influential Object Management
Group (OMG) pursued, it has matured to its current version 3.1 [OMG08].

Standard Corba revolves around the idea of objects, which is not necessarily
what we would understand as components. At the heart of the definition is the
object request broker (ORB) which handles object location and communication,
hiding possible remote access, platform-dependency and programming language
issues from the client. Being a specification, a large number of ORBs has been
created by different vendors; in [Pud08] over 50 different ORBs are listed. Starting
with version 2.0, Corba also allows inter-ORB communication (meaning that a
client request issued to its ORB on one machine can be forwarded to a different
ORB implementation running on another machine) by means of a special protocol,
the GIOP (General Inter-ORB Protocol, cf. [KL00]).

ORBs need to provide interfaces to the clients in order to allow them to invoke
services (which are then delegated to the proper target). In order to abstract
from the underlying programming language, a special interface definition language
(IDL) is used. This abstract language is then mapped to a programming language
for which a mapping has been provided (which is true for most production-grade
languages).

Starting with Corba 3.0, a component model has been included in the specifi-
cation: The Corba Component Model (CCM) Specification 4.0 [OMG06a]. This
formerly stand-alone specification was included to address some shortcomings of
Corba 2.4, among which are the lack of a specified way of deploying objects in an
ORB, leading to ad-hoc solutions and the lack of a standardized object life-cycle
management [WSO01].

Components use the IDL to provide services and are run in component servers
that are placed on top of the ORB. Components define ports for communication. A
number of port types is defined, with port types fixing the communication means:
Facets are what we call provided interfaces, receptacles, corresponding to required
interfaces, event sources and sinks, which allow for a purely event-based commu-
nication with a publish/subscribe scheme and attributes which allow the setting of
parameters from the outside. All these component features are declared in the IDL.
Communication between components can be synchronous or asynchronous.

Using a special declarative Component Implementation Definition Language
(CIDL), components can declare parts of their implementation and state, having it
persisted at runtime by the component server. This CIDL and the IDL definition
can be used to generate implementation skeletons, which can be combined with
code written in one of many possible programming languages, resulting in the final
executable component. CIDL allows to define a large number of properties of
components, like their threading policy. The resulting component model is quite
generic and complex, with a multi-stage component creation process.

3.1.1.2. COM. If the commercial success of Microsoft was attributed to
the software engineering techniques adopted, COM (the Component Object
Model) [Box98] would be the most significant success story of components. Sum-
marizing a number of technologies like DCOM, ActiveX and COM+, it is part
of the backbone architecture of Windows and has led to the widespread use of
software components in desktop applications like Microsoft Word, which uses
OLE controls (which are defined on top of COM) to insert elements handled by
other programs (like an Excel sheet) into a document.

At its core, COM is fairly simple, using the notion of interfaces and objects,
the latter implementing the former. Objects are created by an object server, which
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Figure 3.1: Java BeanBuilder screen-shot

comes in the form of an executable or a DLL (dynamic link library). COM en-
courages the use of factories, which, being COM objects themselves, are used to
create other COM objects at runtime. The communication of objects is specified
by a binary standard (which is proprietary and has subsequently been abandoned
for certain domains like web services, where Microsoft now propagates the use of
SOAP). COM itself is language independent, though the definition of the com-
munication protocol suggests close relation to C++. Interfaces are described in
Microsoft’s own interface definition language MIDL. From these definitions, proxy
stub code is generated. The assembly of component applications is not consid-
ered; instances of components are obtained via calls to the factories, which can be
obtained from the dreaded Windows Registry.

COM serves as a basis for various extensions: DCOM, which uses special proxy
stubs to enable transparent remote procedure calls (interestingly, this is perceived
as a problem, since the generated code is fixed; in [WL98], an extension is pro-
posed that enables customized connectors), COM+ providing enterprise features
like distributed transactions, or ActiveX, used for embedding code in documents
like web pages or Office documents. The former two extensions are similar to
Enterprise Java Beans (see Sect. 3.1.1.3) and Corba, and COM is frequently
compared to those [CHY+98]. The concept of using componentized code to em-
bed content from a foreign application in a document is appealing enough to have
the two big open-source frameworks Gnome and KDE each work on their own
component model, Bonobo and KParts, respectively [Rei07].

3.1.1.3. Java’s Component Models. Components were introduced in the context of
Java by the introduction of Java Beans [Sun97]. The idea is fairly simple: Beans
are special Java classes that follow certain conventions, like providing a default
(parameter-less) constructor, getter and setter methods for their attributes and
being serializable by implementing java.io.Serializable. The primary intent of
Java Beans is their assembly and editing in graphical tools:

“A Java Bean is a reusable software component that can be ma-
nipulated visually in a builder tool.” [Sun97]

A reference implementation of such an editor – the Java BeanBuilder – is
shown in Fig. 3.1. GUI components are connected such that an event triggered in
one component (here, a text input field) triggers an update in another component.
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Although the success of such a visual approach was limited, many elements of the
Swing GUI library follow the Java Bean conventions.

Enterprise Java Beans are an extension of that idea to enterprise server
applications. Being embedded in a host of APIs for building such enterprise appli-
cations (e.g., JNDI, the Java naming and directory interface, or JSP, the Java
server pages technology), they provide a component framework that is suitable for
developing distributed applications much alike (and, in fact, compatible to) the
approach of Corba.

At the heart of EJB are the beans, similar to the pure Java Beans, but more
elaborated. Beans come in different flavors: Session beans, that are used to store a
state for a short-termed session, and entity beans that persist data over multiple ses-
sions, providing transactional integrity (the ACID principle known from databases).
Message-driven beans facilitate asynchronous communication with legacy systems,
and also the utilization of web services can be encapsulated as a bean. Beans are
written as Java classes and supplied with deployment descriptors, which describe
their (implementation-independent) properties in an XML file. Enterprise Java
Beans are then deployed in an EJB-container that manages their life-cycle and
the persistence of entity beans. The container hides the details of the execution of
the beans, their communication and persistence. For example, a suitable container
can allow an enterprise application to be distributed, and even redistribute it in
case of server failure or server addition.

These EJB containers are notorious for their resource requirements [CMZ02].
Often, this is more attributable to misconfiguration than to a genuine problem of the
EJB architecture, which offers interesting possibilities for adaptation [DMM04].

A vast number of techniques have been developed around the Java platform
that provide or support adaptivity without explicitly making use of the concept of
components, e.g., Jini, a framework for dynamically discovered services [Arn99].
Java’s features like object serialization, platform independence and reflection ca-
pabilities, combined with the rather rigid type system (compared to languages like
Ruby) and competitive performance, make it an ideal host language for frameworks
that support a special kind of computing. Other examples for frameworks based on
Java that offer similar functionalities as we desire are OSGi [CH03] (a framework
that offers services which are hot reloadable; recent developments named “declar-
ative services” suggest that OSGi shifts from pure services to the ideas central to
components) or JXTA [Gon01] (a peer-to-peer networking framework).

3.1.1.4. Koala. Developed by Philips, Koala [Omm98, OLKM00] is a compo-
nent model for consumer electronics. Among the industrial framework, it stands
out because of its utilization of hierarchical components and its background in the
Darwin ADL [MDK93]. Koala extends Darwin with the possibility to add glue
code outside of components, and an increased emphasis on parameters.

Components in Koala declare provided and required interfaces. Provided in-
terfaces can become connected to an arbitrary number of required interfaces, which
in turn need to be connected to exactly one provided interfaces. Compound com-
ponents are groupings of components (i.e., higher-level hierarchical components),
exporting provided and required interfaces. Glue code can be introduced by mod-
ules, allowing for generic (e.g., multi-cast) communication.

Koala is a relatively thin wrapper of the C programming language. Multi-
threading is possible, but is declared on the composition level; component commu-
nication is done by the standard C method invocation. Its aims are architectural
programming and handling diversity , i.e., to provide a structured approach towards
component reuse and software product lines. To support diversity, component pa-
rameters become important, as to keep components reusable as much as possible.
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Koala supports this by the notion of diversity interfaces that require the param-
eters’ values. Also, a component repository is provided, which has some provisions
for evolving components in a consistent way.

3.1.1.5. Spring. The Spring framework [WB05, NK08] does not declare itself
to be concerned with components. Instead of components, the basic entities are
“POJOs” (plain old Java objects). Spring then performs dependency injection by
setting the associations of objects from within the framework. Basically, an XML
file specifies which POJOs are to be instantiated, and how they are to be connected.
The big advantage of Spring is given by the fact that this is basically all it does
(except for provisions for aspect-oriented programming, but again they are quite
lean [Col06]). Instead of providing extensive communication mechanisms or object
persisting provisions, it provides this lean mechanism of assembling applications,
and then proceeds to provide an abundance of wrappers to existing APIs and helper
POJOs.

The success of Spring is encouraging, as it basically revives the idea of the
separation of roles for large-scale, enterprise applications. The type of applica-
tions targeted by Spring is governed by large-scale software reuse (in the form of
heavyweight APIs like Hibernate). Spring shows that only minimal provisions
reminiscent of components are required to facilitate the building of applications.
The APIs have been there before, but the making explicit of how they become
assembled seems to make the difference.

3.1.2. Research Frameworks.

3.1.2.1. SOFA. The SOFA 2.0 (SOFtware Appliances) component frame-
work [BHP06, BHP07] emphasizes the use of a hierarchical component model.
Components can be either primitive, in which case they are in principle programmed
in common Java code, or composite, i.e., built from other components [BHP06].
Any component is embedded in a frame, which provides a black-box view on the
component; i.e., only the provided and required interfaces are made visible to the
outside world.

SOFA 2.0 also provides a clear definition of controllers – small components
that are conceptually located in a frame’s border and control the execution of
components within the frame. This concept is very generic and allows a user-defined
treatment of the component’s life-cycle and provides a well-defined attachment
point for reconfiguration.

SOFA 2.0 supports various means of communication by making connectors
first-class objects of their component model. This means that connectors, like com-
ponents, can be custom-written to support different means (like message passing or
regular stack-based method invocation) and cardinalities (single target vs. broad-
casting) [BMH08].

One of the remarkable things about SOFA 2.0 is that a software engineering
process is provided, i.e., a description on how an application should be created. The
process described in [BHP07] starts with a process of creating composite compo-
nents and writing primitive ones. The repository is used to find components of
finer scale and to store the resulting composite component. The next stage is a
top-down approach towards assembling the component, starting with the applica-
tion frame and subsequently refining it. Finally, the component is deployed, which
requires specification of a deployment plan. This plan handles the distribution of
components on the available nodes.

SOFA 2.0 supports advanced features like reconfiguration [HP06], which we
will describe in a dedicated section (cf. Sect. 3.2.8). One outstanding contribution
is the support for a definition of interface semantics by modelling them with frame
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protocols, defined as extended behavior protocols [Kol07]. Behavior protocols spec-
ify allowable sequences of events received at the component’s ports. Syntactically,
they are regular expressions with a special operator | for specifying parallelism.
Extended behavior protocols enrich this specification approach by introducing fea-
tures known from programming languages like local variables, event parameter and
guarded loops. Model checking of extended behavior protocols can be conducted
with Java PathFinder [PPK06] or Spin [Kof07].

3.1.2.2. FRACTAL. The FRACTAL [BCL+04, BCL+06] component model is
quite similar to SOFA. It emphasizes the use of hierarchical components with
sharing – i.e., breaking of the strict tree structure for components providing common
services like memory management. Another feature emphasized is introspection
of components, and modularized control – i.e., components can be given varying
degrees of “intercession capabilities” [BCL+06].

FRACTAL itself is not a component framework, but describes how compo-
nents should be declared and connected, with the actual implementation (and con-
siderable parts of the semantics, like the interpretation of communication) left open.
Like SOFA 2.0, components are encapsulated with control functionality embedded
in the component frame, here called a membrane. Interfaces are used as communi-
cation points to the outside world and the content components.

A large number of implementations of the FRACTAL component model
exist [CS06], e.g., the reference implementation Julia [BCL+06] or ProAc-
tive [BBC+06]; both are written in Java. Julia’s basic concern is the membrane,
and the contained controllers; it provides a mix-in mechanism as well as a bytecode
generator for interceptors. Optimizations are provided as well, for merging con-
trollers on the bytecode level as well as bypassing unused membrane call intercep-
tors. ProActive, on the other hand, is geared explicitly at Grid systems; it places
much emphasis on communication, making futures [CHM08] and one-to-many
communication (broadcast for 1 : n, and gather-cast [NS00] for n : 1 connections)
available on top of the Active Object pattern [LS96]. The communication styles
supported by ProActive are formally described by the ASP calculus [CH05].

FRACTAL is an open and versatile model that can be extended in many
directions, like adding reconfiguration capabilities; cf. Sect. 3.2.25.

3.1.2.3. ArchJava. ArchJava [ACN02b, ACN02a] is a Java extension for ar-
chitectural programming with components. The primary concern is to make the
architecture of component-based applications more explicit, and to avoid the ar-
chitectural erosion [PW92] that is encountered if the architecture model is kept in
addition (and not as an integral part) of the application.

ArchJava is part of the PhD of John Aldrich [Ald03], and is not updated
anymore. It was, however, quite influential for Java/A, which in turn was influen-
tial for JComp. Apart from this influence, ArchJava is interesting to us because
it emphasizes a single aspect and builds the entire design around that idea. The
resulting framework is very lean and requires only very few additions to its host
language Java.

ArchJava utilizes bidirectional ports which declare provided and two kinds
of required methods: Normal ones, which get invoked by normal Java method in-
vocation, and broadcast methods. The architecture is then declared in assembly
files, which are components themselves: By using hierarchical components, the en-
veloping components are responsible for the creation and assembly of the contained
components. The component definition, which largely consists of Java code with a
few keywords added, is then translated to genuine Java code that generates ports
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and introspection facilities. In an extension of ArchJava, custom connectors are
made available that can realize user-defined communication means [ASCN03].

Apart from defining the Java language extension with a type system used for
ensuring correct component connection [Ald08], the papers on ArchJava report
on experience with refactoring object-oriented programs to the ArchJava compo-
nent model. Modest code changing requirements are reported, and a “rediscovery”
of the program architecture that is known to the programmer (although in an ide-
alized way that needs to be refined), but not made explicit in the normal Java
code.

3.1.2.4. Java/A. Java/A [Hac04, BHH+06] is a component framework similar
to ArchJava in that it emphasizes architectural programming. It has been in-
fluential for JComp, and at the same time is one of the few component models
with a throughout formalization [BHH+06, KJH+08] based on I/O transition
systems [dAH01].

Java/A sees itself as an extension of the Java programming language. A
central concept, aside from components, are ports. Ports provide and require an
interface, and are connected by connectors, which provide a 1:1 connection only.
Components are hierarchical, composite components define their structure in as-
semblies. Java/A supports synchronous and asynchronous communication. All
these specification elements are realized by special keywords, which are translated
by a preprocessor to genuine Java.

One notable aspect of Java/A is the utilization of port protocols as a first-
class ingredient in the component model (whereas, for the other component models,
protocol considerations are usually added to the existing model). These protocols
are given by (a textual representation of) UML state machines. Java/A utilizes
the Hugo model checker [KM02] for checking deadlock-freedom of the protocols.

The component model of Java/A has also been used to model the CoCoME
(example) [KJH+08].

3.1.3. ADLs. Architectural description languages (ADLs) are languages that de-
scribe the structure of a software system, i.e., the instantiation and connection
of components. ArchJava and Java/A already comprehend language extensions
for specifying the architecture within the program code. But many other compo-
nent frameworks provide just an API for instantiating and connecting components,
even if they provide special languages for describing the actual components (e.g.,
Corba’s IDL and CIDL).

ADLs seek to fill this gap by providing a language suitable for defining com-
ponent setups. Frameworks like EJB or Spring use XML files to instantiate the
components and connect them, but here we will focus on special-purpose languages.
A classification of such languages, which also provides a comprehensive overview,
can be found in [MT00]. Here, we will focus on ADLs that are in some way
connected to component models that allow for adaptivity.

3.1.3.1. Darwin. Darwin [MDK93] is a language that stems from the experience
obtained with Conic and is part of the REX project (cf. Sect. 3.2.2). Explicitly
referencing the difference between programming-in-the-large and programming-in-
the-small [DK75], Darwin aims at being a programming language for in-the-large
programs.

At its core, Darwin is very much alike a regular programming language that
describes a number of processes, which communicate by sending instances of basic
data types. As an example, a prime number sieve is given, with a process for each
prime number that filters out their multiples. These processes are organized in a
chain, which is described in a component – here, similar to an assembly or to a
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higher-level hierarchical component. Components can allocate their processes to
a number of abstract machines, which allows for load balancing on a fine-grained
level, suitable for highly parallelized machines like transputers [WS85].

Later, the architectural description of components and the constraining of
their architecture was emphasized [GMK02], with a translation to the Alloy
language [Jac02] which provides automated verification capabilities.

Darwin uses components with provided and required ports, both named and
typed, but not related; the connection of provided and required ports is done by a
binding ; there is no additional semantics to the connection in form of a connector.

Darwin provides different views on a component system, including a be-
havioral view that makes component interaction explicit; this is extended by
Tracta [GKC99], which is an approach that allows for compositional verification,
where each component is checked in a local context, and the results are combined
to eventually verify correctness criteria for the entire system.

3.1.3.2. Wright. Wright [All97, AG97] is an ADL that emphasizes the sepa-
ration of roles even more by making a distinction between styles, which describe
components, connectors and architectural constraints, and configurations, which
describe an actual component system. Part of the styles are connectors, which are
hence maintained as first-class objects in Wright. Their “glueing”, i.e., how they
transport communication between components, and the behavior of the compo-
nents is explicitly described in the “communicating sequential processes” calculus
(CSP) [Hoa83]. Architectural constraints are defined in first-order logic.

Wright uses ports, but does not distinguish required and provided ports –
a port protocol, given in CSP, is used for specifying whether communication is
incoming, outgoing, or both; making each port effectively a bidirectional port.
Connectors declare roles which are connected to ports of components, hence, other
connectors than just 1:1-connectors can be realized. Again, the roles get annotated
with CSP protocols; together with the glue specification, the semantics of connec-
tors and components is defined. Of course, the multitude of specifications requires
consistency verification, which can be automated by model checking [All97].

In [All97], a discussion on the utility of Wright (compared to CSP alone) is
given, which is quite interesting as it addresses, besides technical issues like encap-
sulation and typing, an objection often encountered: Making components, ports
and connectors first-class helps to get a mapping to the informal understanding of
component systems, it “elucidates” the architecture more and also uses a common
and well-established vocabulary.

3.1.3.3. Olan. The Olan configuration language [BABR96], categorized as a
module interconnection language, is given a precise message semantics by means of
the ICCS (Interconnected Component Calculus) [VDBM97], which is based on the
CCS calculus [Mil89]. It extends CCS by not only allowing message passing, but
also synchronous calls with thread passing (called activity flow, cf. the discussion of
the cmc framework in Sect. 5.2.4). ICCS distinguishes between active and passive
components; and allows coupling of active and passive components, extending CCS
by this special kind of communication. While CCS is capable of simulating such
synchronous calls (by explicit locking and callbacks), making synchronous calls
first-class calculus operations helps to describe the true behavior of a system in a
concise way.

3.1.4. Comparison. The component frameworks and ADLs described here are
merely the tip of an iceberg, although those presented here are encountered most
often in the literature; especially the scientific literature discussing reconfiguration.
But even as the number of component frameworks abounds, some features, most



3.2. COMPONENT FRAMEWORKS SUPPORTING RECONFIGURATION 37

notably the concept of a component, are mostly undisputed. It appears that compo-
nent frameworks do not differ so much in their concepts, but rather in the accentu-
ation of different ideas, like the accentuation of communication (highly emphasized
in frameworks with first-class connectors like SOFA, and not much considered in
Koala) or the accentuation of the architecture (made first-class in ArchJava and
Java/A and left to API calls in COM).

A similar variation in the focus is found between industrial and research com-
ponent frameworks. Research frameworks utilize hierarchical components, which
is not found in industrial component frameworks (safe for Koala). On the other
hand, industrial frameworks often place emphasis on interoperability (especially in
Corba) and vendor-supplied implementations of a common model (Corba, EJB
and, with limitations, COM) which only Fractal proposes. ADLs do not see
widespread use in industry, although some attempts were made (Koala extending
Darwin).

As a trend, an increased interest in components is observable, e.g., in Corba’s
inclusion of the CCM. Similar tendencies can be observed for OSGi; while the
commercial success of single-component sales seems not to come to pass, the general
idea of components and the separation of roles still seems highly attractive.

3.2. Component Frameworks Supporting Reconfiguration

Mit Eifer hab ich mich der Studien beflissen.

Zwar weiss ich viel, doch will ich alles wissen.

— Johann Wolfgang Goethe, Faust I

Many papers describe the adaptation of existing frameworks [BISZ98,
KRL+00, BR00, TMMS01, Weg03, BNS+05, RAC+02, BJC05, LLC07,
KB04, CS02, JDMV04], mostly for Corba [OMG06a], or the implementation
of an own, dedicated framework [Blo83, KM90, MKSD92, MDK94, Hof93,
Lim93, CHS01, KHW+01b, BHP06, HC03, HW04, MG04, GS02, Hac04,
ASS07, Van07, RP08, IFMW08], and it is very interesting to note which aspects
of reconfiguration are given special attention – sometimes real-time properties are of
importance [MNCK98], sometimes formal describability is emphasized [Kni98].
Additionally, a number of calculi exist [FZ06, CH05, SC06] which highlight the
theoretical aspects of reconfiguration.

In this section we will give an overview of adaptive component frameworks.
Two things should me mentioned before: First, the order in which the works are
presented is roughly chronological, sorting the various frameworks and approaches
by the date of their first publication. Sometimes, when it is convenient, we will
group frameworks that work in a similar manner (e.g., in Sect. 3.2.7 we will discuss
frameworks that extend Corba). Second, although this overview was started with
the intend of giving an exhaustive overview, we are not able to give any guarantee of
exhaustiveness. The wealth of research makes it difficult to get an idea of the extent
of related work, especially since lots of work is conducted in parallel and, judging
from the related work sections, often unaware of concurrent research. Furthermore,
there are vast areas of research that are closely related, but are investigated by
a different community, e.g., migration of agents [BU97, IKWK00] or adaptive
workflow management [HSB98].

Following the taxonomy of Sadjadi et al [MSKC04a], we are interested in the
“how” question (i.e., the question which means are used to do reconfiguration), fix
the “when” question to runtime only, and omit the “where” question, since not all
frameworks are made up of distinguishable layers. Instead, in the spirit of [ZL07],
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we will ask a “what” question, trying to identify the class of applications that is
targeted by the framework. This question can be divided into a number of sub-
questions:

• The class of problems that are to be solved by applications written in the
framework,

• whether an explicit state and its retainment are considered,
• how reconfiguration is triggered and how its goal is described, as investi-

gated in [BCDW04],
• how the reconfiguration is guarded against concurrent operation of unin-

fluenced components, and
• which examples, if any, are given.

The latter point is of particular interest, since good examples are scarce, as we will
discuss in Chapter 8. Tab. 3.1 lists the frameworks under comparison, and gives a
quick overview on whether they are state aware, how logical atomicity is ensured,
how the reconfiguration is triggered and how it is described. We will next give brief
introductions to the frameworks, along with the answers to the aforementioned
questions of “how” and “what”. For stateful frameworks, further considerations
about the state are given in Tab. 3.2.

Framework State Atomicity Trigger Reconfiguration
ret.? description

Argus
[Blo83]

X atomicity is
used for all
actions, using
two-phase
commit

external external

Conic
[KM90]

− quiescence external change
specification (own
language)

REX
[MKSD90,
MKSD92]

− quiescence programmed Darwin [MDK93]

Regis
[MDK94]

− quiescence programmed Darwin

Polylith
[Hof93,
HP93]

X interfaces and
components
can be blocked

external Clipper [AHP94]

Flexiphant
[Lim93,
Lim96]

X ensured by a
pre-calculated
schedule

external (hot
code update)

series of
reconfiguration
transitions

Simplex
[SRG96]

X − external (hot
code update)

hot code update,
with user-supplied
correctness monitor

Hercules
[CD99]

− − external (hot
code update)

hot code update,
with user-supplied
constraint-
evaluator

Bidan et al.
[BISZ98]

X local blocking external −
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Framework State Atomicity Trigger Reconfiguration
ret.? description

dynamicTAO
[KRL+00]

− − external or
triggered by
inspection

from a graphical
administration
interface a
reconfiguration
agent is generated

LuaSpace
[BR00]

− − user
interaction

user level

Eternal
System
[TMMS01]

X atomic
switchover,
quiescence

external (hot
code update)

calculated from
static analysis

Wegdam et al.
[AWSN01,
Weg03]

X a safe state is
reached, which
is similar to
quiescence

external −

SwapCIAO
[BNS+05]

− portable
object adapter
(POA) –
Corba
internal,
ensures an
empty
message queue

external CIDL extension
with special
update directive

SOFA/DCUP
[PBJ98]

X transactions
(discussed)

user-level programmed

SOFA 2.0
[BHP07]

− − user-level
(requested by
existing
components)

component request

OpenCOM
[CBCP01]

− local blocking
by special
receptables

user-level
(third party
reconfigura-
tion)

user-level

Cactus
[CHS01]

mess-
ages

three-phase
protocol

by inspection
and fitness
evaluation of
alternatives

single component
replacement only

Willow
[KHW+01a]

− − comparing
measurements
against finite
state machines
or human
interaction

prioritized,
decentralized
reconfiguration
requests or human
interaction

ArchJava
[ACN02b]

− − programmed programmed in
assembly

Gravity
[HC03]

− − dynamic
environment,
components
“arrive”

local component
contracts,
automated
discovery
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Framework State Atomicity Trigger Reconfiguration
ret.? description

ReMMoC
[GBS03]

− − external substitution of
components,
lookup of services

Planit
[AHW03]

− user level monitoring planning (major
focus)

OpenRec
[HW04]

user
level

user level user level user level

CASA
[MG04]

X atomic
replacement

Monitoring
and
investigating
application
contracts

set of alternatives

Rainbow
[GCH+04]

− − Monitoring by
probes and
gauges,
constraints

programmed
strategies

Plastic
[BJC05]

− transactions
(briefly
mentioned)

programmed
(monitoring)
or ad-hoc
(user-
triggered)

defined in extended
ACME

DEVS
[HZM05]

− globally
synchronized
steps (discrete
event
simulation)

implemented
in the
components

DSL for
adding/removing
components and
connections

GridKit
[GCB+06]

− blocking of
affected
subsystems

events local and global
reconfiguration,
based on
pre-calculated
plans

Java/A
[BHH+06]

− − user level programmed in
Java

Adapta
[ASS07]

user
level

user level monitoring,
value ranges

user-defined
strategy objects

Draco
[Van07]

X tranquility hot code
update

hot code update

Fractal
[PMSD07]

X quiescence
(ACID)

programmed programmed or by
FPath scripts

Jade
[TBB+05]

− − control loop,
quality of
service or
error detection

implemented in
reconfiguration
components

Bark
[RAC+02]

− transactions
(but actual
atomicity is
not discussed)

external
invocation

XML scripts
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Framework State Atomicity Trigger Reconfiguration
ret.? description

COMPAS
[DMM04]

−
(dis-
cussed)

atomic
switchover

control loop
with decision
policies

single component
replacement

Ketfi et al.
[KB04,
KBC02]

X − hot code up-
date

adaptability
relation with
scripts

Chen and
Simons
[CS02]

X similar to
quiescence,
monitoring of
communica-
tion

reorganization
of component
distribution,
hot code
update

−

NeCoMan
[JDMV04]

− quiescence by
atomic
rewiring and
monitoring

− weaving of aspects

ReDAC
[RP08]

X local blocking,
algorithm
similar to
quiescence

external –

CoBRA
[IFMW08]

X blocking
proxies

external addition, removal
and updating of
single components

Music
[REF+08]

− global blocking utility ranking
of alternative
plans and
current
situation

plans generated
based on functional
consistency

Table 3.1: Overview of component frameworks supporting reconfiguration

3.2.1. ArgusArgusArgus. Argus [Blo83], a framework by Toby Bloom, aims at enabling
replacement of distributed software components. These components are called
guardians, and their definition is that any guardian resides solely on a single phys-
ical machine. Guardians are comprised of objects and processes, and these objects
form the state of a guardian. The idea of well-defined interfaces as a prerequisite
for reconfiguration is introduced.

Reconfiguration is triggered by the user, e.g., for code replacement or feature
extension. There are considerations about the correctness of the reconfiguration,
based on abstract states and possible future events. Replacement is allowed if the
possible future event sequences are compatible.

As an example a mail system is chosen, and the process of updating the module
structure is illustrated, along with transferring the live component state.

3.2.2. Kramer and Magee: ConicConicConic → REXREXREX → RegisRegisRegis. Quiescence [KM90]
is undoubtedly the most influential contribution with respect to understanding
the theoretical aspects of reaching a reconfigurable state, i.e., a state in which
no communication is pending for a reconfiguration candidate node. This will be
discussed in Sect. 8.1.4.2.
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As a framework, Conic [KM90], and its successors REX [MKSD90,
MKSD92] and Regis [MDK94], are based on research dubbed “configuration
programming”, a term similar to architectural programming [ACN02a]. All the
frameworks are targeted at understanding the necessities of this kind of program-
ming, and the examples are highly artificial: Conic discusses the well-known exam-
ple of the “evolving philosophers”, a variant of the “drinking philosophers” [CM84]
due to Chandy and Misra; REX provides an extended example modelling a doctor’s
office, but the dynamism is not stressed here; instead, great emphasis is placed on
the description of the static structure. Regis provides a badge system example.
These examples are definitely non-trivial, but state is not discussed for reconfigu-
ration (although REX does discuss local component state for static structures).

Reconfiguration (called “dynamic configuration”) is triggered by the request
of other components. In the badge system example of Regis, badge components
mirroring the physical arrival of new badges (infrared-enabled devices to be carried
around in a building) are instantiated by the code of a master component. The re-
configuration actions are specified in the Darwin specification language [MDK93]
(cf. Sect. 3.1.3.1), keeping them separate from the actual component implementa-
tion.

3.2.3. PolylithPolylithPolylith. Polylith [Hof93, HP93] by Hofmeister and Purtilo can be
regarded almost as influential as Kramer and Magee’s work. Although the work
was published 10 years after Bloom’s work on Argus, Polylith is found as the
pioneer work’s reference in most papers in this field. Like the work of Kramer and
Magee, a more theoretical interest is taken; the examples are mostly easy examples,
including the evolving philosopher’s example of [KM90].

Polylith operates a software bus [Pur94], which is similar to Corba’s object
request broker, in that it takes the sole responsibility of transporting the commu-
nication between components, which can be implemented in different languages.
Using a set of fine-grained directives, components can be blocked from communi-
cation with this bus, making them available for reconfiguration.

With Clipper [AHP94], an abstraction language is provided that hides the
blocking from the developer (although no implementing algorithm is provided).
It provides a dumpstate directive that is used to write one component’s state to
another component using a common interface.

3.2.4. FlexiphantFlexiphantFlexiphant. Alvin Lim’s Flexiphant framework [Lim93, Lim96] tar-
gets complex systems in a heterogeneous environment. The example he introduces
is a manufacturing facility, with components representing physical entities or hier-
archical groupings of components. His interest is in updating the software of such
components for live systems. Finite state machine abstractions are considered, with
the abstraction of composite components being the product of the sub-component’s
abstractions. This gives rise to a definition of legal paths, which are used to define
correctness criteria for reconfiguration.

Reconfiguration is conducted following a schedule, which is calculated before
the reconfiguration commences. This schedule ensures correctness of the reconfig-
uration when executed by a control server.

3.2.5. SimplexSimplexSimplex. The Simplex system [SRG96] provides hot code update for
commercial-of-the-shelf (COTS) components (although no specific component
model is described). Much emphasis is placed on the evolution of systems – i.e.,
their subsequent improvement by new versions. The important feature of Simplex
is that it is fault-tolerant with respect to these new versions by employing a n-
version scheme: Instead of replacing a component by its update, both are run in
parallel for some time, until the safe operation of the update is confirmed. The
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criteria for this is given by a user-supplied monitor. This results in a lengthy recon-
figuration process, which is eventually concluded by replacing the old component
by the new one, only after which the next update may commence.

This work is fairly abstract and only reports on the concepts used (including a
brief description of state transferal, which, as it reads, is one of the few examples
of guided direct state transferal), but it reports on two examples where hot code
update was done in front of an audience that was invited to introduce bugs into
the update component’s code1.

3.2.6. HerculesHerculesHercules. Being quite similar to Simplex, Hercules [CD99] provides
fault-tolerant hot code update for components. The approach differs from Simplex
in that a more refined idea on how a component update should work is defined (it
should patch errors), and in the supply of the correctness criteria (in the form of
a formal specification, although a description of the specification method is not
given). The idea is similar: An arbiter acts as a facade to a number of different
components, and for any request queries each in turn. The responses are then
compared to the formal description. Statistics are built for each component, and
eventually, an engineer can choose which components to remove and which ones to
retain.

As an example, a three-step evolvement of a car steering algorithm is presented.

3.2.7. CorbaCorbaCorba extensions. Corba [OMG06a] is extended to dynamic reconfig-
uration capabilities in a number of works. Of course, the utility of extending the
leading framework for component-based software development is obvious, yet all
works tend to become a description of the Corba-specific problems that need to
be overcome. Nevertheless, just the fact that Corba can be extended to adap-
tive behavior underlines the capability of this model, and maybe component-based
programming in general.

3.2.7.1. Bidan et al. Their Corba extension [BISZ98] aims at long-running appli-
cations, and considers both program-triggered reconfiguration and external main-
tenance reconfiguration (although this is no further investigated, so we do not
represent this in Tab. 3.1. This is the first work (at least in this list) that stresses
the importance of separating reconfiguration from application specification. Consis-
tency (i.e., non-observability) of the reconfiguration is considered, and an algorithm
employing local blocking of components under reconfiguration is presented. How-
ever, no example other than a highly abstract one is given; this example is used for
obtaining measurements of real-time behavior of the approach.

3.2.7.2. dynamicTAO. The dynamicTAO object request broker
(ORB) [KRL+00] try to provide a framework for adapting software when
its environment – e.g., the available network bandwidth of a mobile computer –
changes. The TAO ORB is then extended to provide reflection and reconfigura-
tion capabilities. A rather massive framework for planning and conducting the
reconfiguration is presented, which is mostly concerned with technical aspects like
loading the implementation from a repository. No example is provided, but some
experience with a very large multimedia streaming system is reported.

1In a personal note, this work is my favorite among all those listed here, because of these
examples. Also, this work addresses one issue I cannot believe to be not of importance, although

nowhere else this issue is discussed: the risk of introducing malformed code during updates. It
even has a name: The upgrade paradox.
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3.2.7.3. LuaSpace. Another Corba extension, defined for the language Lua, is
LuaSpace [BR00]. This is a collection of tools, most importantly the LuaOrb
object request broker. This ORB is highly dynamic, as it profits from the under-
lying language Lua. Also, a generic connector is used for dynamically choosing
components for processing a task. Since this is very dynamic anyway, reconfigu-
ration here only addresses the inclusion of new components, making this approach
more service-orientation-like than most other frameworks. In an artificial example
discussing “nurse” and “bed-monitor” components, reconfiguration is also described
as a way of tuning the dynamic component selection algorithm.

3.2.7.4. Eternal Systems. Tewksbury et al. [TMMS01, MMST02] extend Corba
with fault tolerance to support “eternal systems” – systems that must never cease
to function. The focus is placed on hot code update, but with a remarkable twist:
Instead of just enabling the update of existing component’s code, they maintain
both the old and the new component in order to avoid decreasing system perfor-
mance or introducing bugs while updating to a new software version. Interestingly,
this is one of the few works that does not rely on local blocking, but rather takes
the approach of doing the reconfiguration in a preparation and post-reconfiguration
phase, with an atomic switchover handling the actual rewiring in between. The re-
configuration itself is mostly concerned with deriving the correct updates of the
state and the interfaces (even the case where calling code needs to be modified
in order to work with a new version is considered, which is an obvious departure
from the usual way of regarding the interfaces as fixed). However, even the atomic
switchover cannot always be done (or its prerequisites fulfilled), hence quiescence
is considered in order to reach a reconfiguration-compatible state. The example,
however, is restricted to the update of a counter class.

3.2.7.5. Wegdam et al. In this work [AWSN01, Weg03] a framework for highly
reliable systems with the ability to be updated without stopping them is described.
As for the other Corba extensions, the actual reconfiguration framework remains
fairly generic, and the theoretical consideration of consistency preservation carries
over to reconfiguration with a broader application range. This work is particularly
interesting, as design criteria for dynamic reconfiguration are given:

• Correctness – the system should ensure that code updates indeed work
as intended, and that assumptions about the communication (expressed
in the definition of mutual consistent states) and state invariants are pre-
served.

• General suitability – a broad applicability of reconfiguration should be
provided.

• Minimal impact on execution – reconfiguration should be cheap with re-
spect to computational overhead, and disrupt normal computation as little
as possible.

• Maximum transparency – reconfiguration should be of no concern to the
application developer.

• Minimum impact on the framework – if, like in this work, a framework is
to be extended, the extension should be minimal invasive.

The work proceeds to discuss the architecture that is employed at a practical level
and considers the impact on realtime behavior, but does not give an example.

3.2.7.6. SwapCIAO. SwapCIAO [BNS+05] is a Corba extension that estab-
lishes quality of service (QoS) functionality. The work introduces a rather extensive
case study, where a inventory tracking system is modeled. Components are given
by software controllers of physical entities, like a conveyor belt, and reconfiguration
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follows the physical changes of such a system, e.g., the addition of a machine, or the
software update that needs to be done in order to work with an improved version
of an existing machine. The paper is very technical, and mostly discusses problems
that need to be overcome in order to use their approach within the case study.

3.2.8. SOFASOFASOFA/DCUPDCUPDCUP → SOFA 2.0SOFA 2.0SOFA 2.0. DCUP components are a specialization of
SOFA components, which provide a clear interface that can be utilized for recon-
figuration [PBJ97, PBJ98]. Each component is composed of a permanent and a
replaceable part, and the replaceable part (which, hierarchically, can contain other
components) is subject to reconfiguration. Much emphasis is placed on the decou-
pling of various aspects of reconfiguration to different managers, which is illustrated
by short example of a bank implementation that is hot updated.

In the SOFA 2.0 component model, whose design is influenced by the experi-
ence obtained with SOFA/DCUP (cf. Sect. 3.1.2.1), reconfiguration is inherently
made possible [BHP06], but restricted by two patterns [HP06]: The “Nested Fac-
tory pattern” and the “Utility Interface pattern”. The purpose of utilizing such
patterns is to avoid architectural erosion [BHH+06], i.e., losing aspects of the
component setup design due to repeated introduction of components that do not
adhere to it.

The Nested Factory pattern describes how new components and their connec-
tions are to be established in the hierarchical component setups of SOFA. The
Utility Interface pattern describes the extraction of components from the normal
hierarchy, which makes frequently used components available to other components
directly. Component removal is also permitted in SOFA 2.0.

As SOFA 2.0 uses first-class connectors [BHP06, BMH08], the technical
process of reconfiguration is mostly concerned with detaching and attaching these
connectors [BHP07]. SOFA 2.0 is one of the few frameworks where actual com-
ponents request reconfiguration, which can be attributed to the strong emphasis of
a hierarchical structure. State retainment is not discussed, although the versatile
controller structure might be accommodated for that task.

3.2.9. OpenCOMOpenCOMOpenCOM. Building on Microsoft’s COM component model, Open-
COM [CBCP01, CBG+04] provides provisions for reconfiguration. These in-
clude an explicit description of inter-component requirements, and specialized re-
ceptables that act as connectors between components, providing locking provisions
and monitoring facilities. By requiring components to implement special inter-
faces, the provision of reconfiguration-relevant code in the components is ensured.
The component framework is very technical, and most of the problems (e.g., how a
connection can be reassigned) stem from peculiarities of the actual implementation.

For ensuring safe reconfiguration, receptables can be blocked; if they are
blocked, any request will be denied with an error message. This approach is unique,
as most other frameworks simply delay the communication instead of prohibiting
it. In [CBCP01], some performance measurement is given. [CBG+04] introduces
OpenCOM v2, which provides a similar approach to reconfigurability (although
the blocking mechanism is no longer discussed). In this work, the three-fold separa-
tion of roles (“development programmer, system programmer and meta-system pro-
grammer”) is presented. OpenCOM serves as a starting point for two interesting
extensions towards reconfigurability: ReMMoC [GBS03] and Plastic [BJC05],
both discussed below.

3.2.10. CactusCactusCactus. Cactus [CHS01] emphasizes graceful adaptation for compo-
nent systems. Components here are understood as the parts of the framework
itself, which is a layered structure for distributed applications. A component might
then be responsible for providing reliable message passing in the transport layer,
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and should be reconfigurable if a different algorithm is preferred. Reconfiguration is
triggered by monitoring (change detection); the possible reconfiguration candidates
are evaluated using a fitness function and accumulated information about their
behavior. If a local decision is made to proceed with a reconfiguration, a global
agreement of all nodes in the distributed system needs to be obtained. Finally,
the reconfiguration commences, using a three-step process that ensures proper syn-
chronization. Interestingly, this is one of the few works that explicitly discusses the
need to transport unprocessed messages to replacing components.

Since the focus of this work is precise, it is straightforward to give an example.
Here, a total ordering protocol that ensures the retainment of message sequence or-
dering is investigated, and a reliable transmission protocol that can be reconfigured
to respond either with ACK or NAK (acknowledged or not acknowledged). They
report on competitive results.

Overall, this is a remarkable work, if only to show a field where reconfiguration
can be employed successfully. The narrowed focus helps to provide an elegant way
of checking the need for reconfiguration by calculating the suitability of different
setups, an approach that can hardly be generalized.

3.2.11. WillowWillowWillow. The Willow Survivability Architecture [KHW+01b,
KHW+01a] is a component framework that tries to establish security against
attacks by reactive and proactive reconfiguration. This distinction is quite inter-
esting: Proactive reconfiguration, also known as posturing reacts to some possible,
but not yet immediately effective threat by tightening the security and disabling su-
perfluous services; while reactive reconfiguration tries to remedy security breaches
that have already occurred.

Proactive reconfiguration is triggered by human interaction. For reactive re-
configuration, Willow employs a control loop that uses sensors to measure the
systems state. a diagnostic component named Raptor maintains a set of state
machines that specify valid behavior and compares the measured data with them.
Reconfiguration requests are then prioritized to avoid conflicting reconfigurations
taking place at the same time – this problem is quite unique to Willow, as most
other frameworks use centralized control.

The case study presented is an implementation of the U.S. Air Force’s Joint
Battlespace Infosphere concept, which consists of a number of coarse-grained com-
ponents, i.e., applications that store data into a common network, where subscribers
can obtain these data. Attacks can be physical or virtual, or they can originate
from bugs within the system.

3.2.12. ArchJavaArchJavaArchJava. The ArchJava framework [ACN02b] provides basic recon-
figurability by providing component creation, connection and reconnection com-
mands to the assemblies (cf. Sect. 3.1.2.3). As reconfiguration is not the concern
of ArchJava, consideration of atomicity, state retainment or plan description are
not given. An interesting aspect of ArchJava’s reconfiguration approach is that
it does not allow explicit component removal. Instead, components are removed if
all their connections have been moved away. This approach is modeled after the
garbage collection mechanism of Java. Obviously, such an approach does not co-
operate well with state retainment, and ultimately relies on the single-threadedness
of ArchJava.

3.2.13. GravityGravityGravity. The framework Gravity [HC03, CH04] is situated in the
context of service-oriented computing, but is itself component-based, thereby pro-
viding an approach to context-aware computing [SAW94]. The basic idea is to
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dynamically use components that become available, and to cope with the disappear-
ance of components. Such changes of availability are triggered by the environment,
which is more common to service-oriented computing.

In [CH04], an interesting differentiation between components and services is
made, with describing the latter as more dynamic, with changes to the available
services at runtime, while components are mostly static. While we fully agree in
this thesis, this is a remarkable departure from those works concerned with hot code
update, which considers components to be available dynamically; of course, a major
difference is that dynamically arriving components will rarely provide genuinely new
functionality that can be harnessed.

Gravity is supporting a number of dynamic component reconfiguration sce-
narios that are triggered by dynamic environment changes (and “new” components
are referred to as “arriving”). Like for services, great emphasis is placed on auto-
matically discovering and choosing suitable components. As an example, a web-
browser is discussed where plug-ins for different document types can be installed
ad-hoc.

Gravity is interesting because it offers a different view on reconfiguration
that integrates the well-researched service-oriented programming with component
technology. In doing so, some assumptions differ very much from other works,
like the existence of explicit communication contracts. In [CH03], the application
of Gravity’s approach to OSGi is detailed; OSGi supports flexible loading of
services already and is further enhanced by the Gravity approach.

3.2.14. ReMMoCReMMoCReMMoC. The “Reflective Middle-ware for Mobile Computing”
(ReMMoC) [GBS03] extends the OpenCOM framework [CBG+04] by provid-
ing adaptive protocol choice for service access for mobile devices. The idea is to
reconfigure the service access; e.g., if a service can be used by SOAP calls at one
location and by publish-subscribe at another, the software should just reconfigure
the communication part. This is done to keep the memory impact of supporting
multiple communication means low – an interesting and unusual (yet historically
relevant, cf. the now ancient method of overlays [Pan68]) argument for reconfigu-
ration. The service description is obtained by WSDL files, and is used to lookup
appropriate components for the available communication means. Experience with
an experimental setup is reported, but ReMMoC’s most important contribution
(as perceived from the viewport of this thesis) is the description of a genuine need to
do reconfiguration for a cross-cutting concern – namely that of communication pro-
tocols. This is similar to NeCoMan [JDMV04] and Cactus [CHS01], thought
the level of abstraction is considerably higher.

3.2.15. PlanitPlanitPlanit. The focus of Planit [AHW03] is placed on planning the recon-
figuration rather than conducting it. Its role is seen as a producer of reconfiguration
plans, among which one can be chosen for reconfiguration. We nevertheless men-
tion it here, as many other aspects of reconfiguration of component systems are
mentioned in [AHW03] as well.

Planit plans the distribution of components on various machines, and con-
ducts a re-planning if components or machines fail. It thus seeks to reestablish the
component graph. A plan describing the necessary reconfiguration steps is then
calculated. For finding a better plan according to some metrics, further plans are
also calculated and compared, until a timeout is reached.

The component model assumed by Planit, with components being restartable
after unspecified errors to them, is quite restricted. Also, any consideration of
functional properties is missing. The main contribution of this work is to consider
automated reconfiguration plan generation.
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3.2.16. OpenRECOpenRECOpenREC. OpenREC [HW04] is a framework for reconfiguring com-
ponents that offers an interesting twist, as it is itself reconfigurable. Instead of
choosing algorithms for the various aspects of reconfiguration – in [HW04], the
problems of synchronization, state retainment and maintaining system integrity
(i.e., planning the reconfiguration) are mentioned – the framework allows users to
plug in their own algorithm, and even change it at runtime. OpenREC emphasizes
the separation of the reconfiguration trigger (the change driver), the reconfiguration
manager and the application. Also, the ability to reflect the component framework,
i.e., obtain runtime information on the configuration from within the framework, is
pointed out as an important ingredient for adaptive systems.

In [WSKW06], a formal verification method for checking the validity of a
reconfiguration plan using the Alloy modelling language [Jac02] and its associated
analyzer [JV00], using a similar, yet more automated approach than [GMK02].

The example provided in [HW04] is limited to simple component replacement
and just tries to illustrate the capabilities of the model. In [WH04], a case study
investigating a component-based router (similar to the Cactus framework men-
tioned above) is investigated, comparing two reconfiguration algorithms. The con-
tributions of OpenREC are twofold: First, the framework is an interesting testbed
to compare reconfiguration algorithms. Second, they point out the common ele-
ments of such algorithms, and thus provide an abstract view on the problem.

3.2.17. CASACASACASA. The aim of CASA [MG04] is to support reconfiguration of com-
ponents in a dynamic environment. Comparing to frameworks like Cactus, which
adapt lower-level services if physical changes require such an adaptation, they aim
to adapt on a changed environment, which is perceived to be on a higher level: An
example of a tourist guide application that needs to adapt to a changed location
(by providing different information) is given. The process of adaptation is triggered
by monitoring the environment and consulting application contracts. For actually
adapting the system, four mechanisms are provided: Changing lower-level services,
which is done by integrating with an adaptive middle-ware, aspect-oriented changes,
changing attributes (an interesting point which is usually subsumed by component
replacement) and component re-composition.

For component reconfiguration, a series of requirements is defined in [MG05b],
which contain the availability of alternatives to the current configuration, and that
any such alternative is consistent with the current configuration. CASA then takes
a remarkable departure from the usual approach of doing the actual reconfiguration
(which is only discussed as replacement of a single component): Instead of using
lazy replacement, which lets the component finish the currently executed method,
it tries to do eager replacement that suspends the component at a safe-point where
an alternative component can proceed. The reconfiguration follows a small pro-
tocol that uses a handle object: Similar to a proxy, it queues the requests during
reconfiguration and also serves for redirecting the connections of the retained com-
ponents to the new one. During the reconfiguration, the state of the component,
including the safe-point, is packaged and transferred to the new component.

In [MG05a], some experimental results are reported, but no actual example is
provided.

3.2.18. RainbowRainbowRainbow. The Rainbow framework [GS02, GCH+04] considers the
reconfiguration of applications built from reusable, but very coarse-grained compo-
nents (in the example, web server clusters form components). A control loop that
monitors and adapts the system from the outside is used, with probes measuring
data and gauges aggregating these data to provide decision criteria for reconfig-
uration. Reconfiguration is then triggered by rules that are based on the gauges
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output. It is carried out by effectors, but the actual algorithm remains vague; they
are distributed over a number of tools that are integrated in Rainbow.

For planning reconfiguration, great emphasis is placed on maintaining the archi-
tectural style [CGS+02]. This can be understood as an architecture classification;
in one example the abstract idea of “client-connects-to-server” is called a style.
Such a style then offers possibilities of monitoring (like bandwidth of clients) and
adaptation (called repair strategies). This is an interesting idea that aims at ab-
stracting from one concrete architecture and offering adaptability for a whole family
of architectures (i.e., a style).

The examples provided are mostly examples of evolving network-distributed
architectures like a video-conferencing system in [GCH+04] and an abstract client-
server example in [GS02, CGS+02]. Other than the use of architectural styles,
Rainbow is an interesting framework in that it combines a large number of tools
and languages. However, the resulting coarseness leaves a number of commonly
discussed problems (especially the atomicity of reconfiguration) open.

3.2.19. PlasticPlasticPlastic. Combining the ACME architectural description lan-
guage [GMW00] with the Armani extensions [Mon01] and the Open-
COM [CBG+04] framework, Plastic [BJC05] offers a complete framework for
reconfiguration. ACME ADL is extended with statements that define the trigger
of reconfiguration, the removal of elements – creation of elements is covered by
standard ACME – and the existence of dependencies; some components cannot
exist alone and their addition during reconfiguration needs to be accompanied by
the creation of the components it depends on.

Based on a number of extended ACME scripts, a finite state machine is built
that reflects the possible configurations and is used to decide how to reconfigure.
This is called programmed reconfiguration. Plastic also supports so-called ad-hoc
reconfiguration that is not defined at assembly time, but rather controlled by the
specification of invariants that must not be violated. Reconfiguration scripts are
then fed into the system, validated against the ADL and executed “transitional”.

As an example, the replacement of a decoder in a video streaming application is
presented. If network bandwidth is insufficient, a different decoder can be utilized
(programmed reconfiguration). Also, the user can submit a script that replaces a
buffer (ad-hoc reconfiguration).

3.2.20. DEVSDEVSDEVS. The Discrete EVent Simulation (DEVS) frame-
work [HZM05, ZBZ07] is a simulation framework for a variety of models
that adhere to the discrete event simulation paradigm (which imposes that the
model advances in discrete steps, similar to what is done in model checking,
opposing the continuous models often employed for physical simulation). Simu-
lation models are comprised from a number of components, which can become
connected and detached during simulation; also, the set of models can be modified.
DEVS is itself very technical, providing a number of distribution approaches
(e.g., Peer-2-Peer-based [CSPZ04]). A variety of examples of simulation models
is given, e.g., a robot scenario where one robot follows another robot in a convoy
setup [HZ04].

The work is interesting in the context of this thesis because, being in the regime
of a globally synchronized, step-based execution model, many of the usual prob-
lems with reconfiguration (especially the synchronization issues) do not have to be
considered. Also, the approach of having reconfiguration requests being made by
the components itself is quite unusual; it gives an example for a system where the
separation of roles is not given, but which still utilizes (hierarchical) components
as a means to structure the simulation model.
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3.2.21. GridKitGridKitGridKit. The GridKit framework aims at building adaptive sensor net-
work systems. Sensor networks are ad-hoc networks, and as such need to accommo-
date to changing environments; this is a vast area of research. Here, reconfiguration
is based on a control loop and the modification of component networks. This re-
configuration can remain local, or become global if it stretches over multiple nodes.
All nodes involved (respectively the components they host) need to be blocked
during reconfiguration for achieving quiescence. Reconfiguration is planned in ad-
vance; configurator components are defined to respond to events by selecting a
plan and executing a reconfiguration of the component graph. As an example, a
sensor network for detecting floods in river valleys is presented [HGP+06], with
a practical implementation at model scale. Reconfiguration is used to switch the
network topology from a power-saving configuration to a more robust one if a flood
is predicted.

3.2.22. Java/AJava/AJava/A. The component framework Java/A [Hac04, BHH+06] sup-
ports reconfiguration by a provided API that offers methods to add or remove
connections and components. Reconfiguration can be realized by writing code
that invokes this API. In [BHH+06], reconfiguration is described as guarded by
a try/catch-block, which is notable, as the possibility of reconfiguration failure is
usually neglected. The example given is the dynamic addition of new automated
teller machines to a bank, which amounts to reconfiguration following physical
change.

3.2.23. AdaptaAdaptaAdapta. Providing means for implementing adaptive applications in Grid
systems, Adapta [ASS07] is a framework that provides monitoring, event notifica-
tion and reconfiguration. Like OpenREC, Adapta is itself reconfigurable and allows
for pluggable reconfiguration algorithms. The monitoring capabilities are focused
on the host machine’s resources, as changes of these resources require a re-tuning of
the Grid application. The reconfiguration is planned by Adapta Component Con-
figurator objects, which basically implement the Strategy pattern. Also, the state
transferal during reconfiguration is handled by these objects, as is the synchroniza-
tion. Adapta provides a case study that extends a Grid framework by automating
the process of selecting the number of replicas (i.e., duplicates of components on
different machines to avoid loss of computation results if a Grid node shuts down)
and updating of parameters.

3.2.24. DracoDracoDraco. Vandewoude’s Draco [Van07] is a framework for hot code up-
date of components. This work extensively considers how state can be transferred
from old to new components. Since the topic of hot code updates narrows the state
transferal scenarios, (if a component is updated, fields with the same name can
be expected to capture the same data; if a component is replaced, maybe even by
more than one component or with a component that has a different purpose, such
target identification is much harder.), a number of heuristics, called harvesters,
are employed to automatize the state transfer. For reaching a safe state, tranquil-
ity [VEBD07] is used. Draco is part of the Fresco methodology [VB05], which
aims at supporting the programmer in devising direct state transferal.

3.2.25. FractalFractalFractal. One of the most well-known scientific component frameworks,
Fractal [BCL+06], also supports reconfiguration [DL06, LLC07, PMSD07].

In [DL06] FScript is presented, which is a domain-specific language for recon-
figuring Fractal component graphs. In [LLC07], the process of reconfiguration
is investigated. Interestingly, they discuss reconfiguration to be either structural
(which resembles almost all the reconfiguration approaches discussed here) or be-
havioral. Also, a unique feature is the utilization of the ACID principle, known
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from database transactions, not only for ensuring that concurrent communication
does not interfere with the reconfiguration process, but also to allow for rollback of
failed reconfiguration.

Reconfiguration is composed of a series of introspection and intercession oper-
ations, with the latter modifying the system, and the former merely investigating
it, acting as a guard to subsequent intercession operations. Intercession operations
are given an inverse operation to undo the effect during rollback. Consistency is
ensured by FPath constraints on various levels of detail. For isolation, a two-phase
locking protocol is used, with an added deadlock detection. Finally, logging is used
to obtain durability, as it is done in database systems.

In [PMSD07], experience with reconfiguration using Fractal and FPath
is reported. Using Think as the Fractal implementation, an embedded systems
operation system is created. Clearly, implementation issues dominate this work, and
hardly any report on actual reconfiguration is given. State transfer is mentioned,
but barely discussed, other than that it is completely left to the user.

Another approach building on Fractal is the Grid Component Model
(GCM) [BBGH08], which aims at providing flexibility for Grid systems. The
focus of this work is placed on using formal verification of the reconfiguration and
possibly rejecting reconfiguration attempts that might lead to problems.

3.2.26. JadeJadeJade. Another component framework building on the Fractal model is
Jade [TBB+05, PST06]. Jade aims at building self-manageable systems. For do-
ing this, a control loop is utilized, which distinguishes three stages (cf. Sect. 8.1.1.1
for a discussion of these stages):

(1) The detection of events by means of sensors,
(2) an analysis of the events observed, with a decision on how to reconfigure

the system,
(3) and finally, the utilization of actuators to implement the reconfiguration.

In Jade, this control loop is built from Fractal components, while the target of
the reconfiguration itself is much coarser. This is why Jade does not need atomicity
considerations, since reconfiguration amounts to restarting databases or adding
server replicas to a load balancer. As an example, self-management of a J2EE
application comprised of a number of servers is discussed; Fractal component
wrap these servers and control them. A number of experiments with this setup is
discussed, including the consideration of quality of service requirements exemplified
in the dynamic growth of a cluster of web servers.

3.2.27. JavaJavaJava extensions. Many reconfiguration-enabled frameworks are built us-
ing the Java programming language, e.g., Java/A [Hac04]. Java seems a good
choice, because it supports introspection and dynamism to some extent, but is rigid
enough to restrict reconfiguration abilities to a manageable set of options (e.g., by
hiding the state of components so that the state transfer needs to be made explicit).
Here, we will discuss some extensions of component frameworks that are already
written in Java.

3.2.27.1. Bark. Extending the Java EJB framework, Bark [RAC+02].
In [RAC+02], an interesting differentiation of reconfiguration, adaptation and up-
dating is proposed: Reconfiguration aims at following changes of the operational
requirements and is hence “driven by external pressures”, whereas adaptation tries
to maintain the application’s integrity and this is “driven by internal pressures”.
Updating refers to installing and running new configurations.
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As for many of the reconfiguration frameworks building on existing component
frameworks, Bark is mostly concerned with technical problems of fitting recon-
figuration into the given structures. An interesting example is given: A directory
synchronization software, which has components that are connected both locally
and remotely on different servers. The reconfiguration then copes with the arrival
of new directories or data channels, which makes for a very fine-grained reconfigu-
ration approach. Also, reconfiguration following software extensions is discussed.

3.2.27.2. COMPAS. Also operating on EJB container, the COMPAS framework
adds monitoring functionality to EJB applications. The monitoring aims on find-
ing performance problems, and much work is invested into pinpointing the source
of performance loss. The application is then adapted by switching components for
other, non-functionally different versions (so-called redundant components). Adap-
tation needs to find a better configuration, which is a nontrivial problem; here this is
solved by annotating the replacement candidates with information about their per-
formance (which is obtained from earlier monitoring), and decision policies, which
are sets of rules, are used to find a suitable substitute. Adaptation then commences
by atomic switchover, which utilized the EJB-provided request indirection. This
also provides sort of quiescence, since transactions are not interrupted, the authors
present this as a warrant not to consider state transferal.

3.2.27.3. Kefti et al. Building on the Java module framework OSGi and the Bean-
Builder GUI (cf. Sect. 3.1.1.3, Ketfi et al. discuss two reconfiguration frameworks
in [KB04] and [KBC02]. Their approach, however, is limited to simple algorithms
on how to reconnect components, not considering any consistency and not providing
any examples (thought some example scripts are shown in [KByC02]). Their main
contribution is the introduction of a replacability relation, which is presented as a
graph with its edges annotated with mapping scripts. Still, [KByC02] provides an
interesting classification of adaptivity.

3.2.27.4. Chen and Simons. In [CS02], a component model building on Java and
its remote method invocation (RMI) technology is described. The reconfiguration
supported is either hot code update of components, or the reorganization of dis-
tribution of components. This is an interesting field of reconfiguration; especially
since state retainment is more straightforward. [CS02] discusses the technical diffi-
culties of reconfiguration based on RMI: Finding a quiescent state, and consistently
rewiring components. Sadly, neither a discussion of reconfiguration causes nor an
example are given.

3.2.27.5. NeCoMan/ JBoss. NeCoMan [JDMV04] is a framework for dynamic
weaving of aspects in distributed system, which was implemented on top of the
JBoss EJB application server to provide adaptability [JTSJ07]. Distributed as-
pect weaving is a special form of reconfiguration that is restricted to modifying
cross-cutting concerns with respect to the remote connections – as an example,
they provide the addition of a fragmentation filter that fragments messages on the
server and reassembles the parts on the receiver. The challenging task here is to
find a safe state for weaving in the aspects such that the communication is not
interrupted, i.e., quiescent states.

The actual algorithm consists of a series of steps that turn out to guarantee
that a quiescent state is reached and that components are connected such that
reconfiguration proceeds without interfering with the running system. Incoming
messages are send to the new component, which does not yet process them, such
that the old component can finish its current operation and then be removed. Thus,
only the rewiring has to be made atomic.
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By restricting on a special branch of reconfiguration, any conceivable “do-undo”
filter combination (encryption, compression, etc.) serves as an example. This is
similar to Cactus [CHS01], but stresses the separation of concerns even more by
using aspect orientation. Other frameworks for distributed AOP exist, e.g. [TT06,
TJSJ08], but they fit less well into the perspective of this thesis.

3.2.28. ReDACReDACReDAC. ReDAC [RP08] is an algorithm that realizes reconfiguration
for multi-threaded applications. The authors claim to have developed this in the
context of a remote laboratory environment, but do not pick up that example again.
The algorithm discusses components (called capsules) that are made out of a series
of objects. For reconfiguration, a blocking set needs to be identified that contains
all components that are concerned with the reconfiguration. For this blocking set,
a quiescent state needs to be reached, which is done by blocking; transactions
extending over multiple messages are not considered.

ReDAC is remarkable in two aspects: First, they are the only work we are
aware of that discusses model checking of reconfiguration employing a Petri net
model checker, although the formal basis is not presented. Also, an extensive
discussion of state retainment is presented in [RS07a]. There, an algorithm for
automatically transferring the state of capsules is presented; which amounts to
a recursion of the object graph. While this is certainly not suitable for generic
situations, it is one of the few works where an explicit algorithm is provided.

3.2.29. CoBRACoBRACoBRA. The CoBRA framework [IFMW08] is described in the context
of service orientation, but since their service implementations are actual compo-
nents, as and they are well-aware of their proximity to component-based reconfig-
uration, we include this work here.

The reconfiguration is easy and entails only addition, update and removal of
single services. This is made up by a profound architecture for adaptation pro-
cessing, state retainment and consistency preservation. The latter is achieved by
introducing protection proxies that indirect communication, block adaptation until
all communication is over, and block service requests while reconfiguration is pend-
ing or underway. Although no example is given, this work contributes an interesting
view on reconfiguration if powerful plans are neglected in favor of a clean process.
It also considers the state transferal in terms coined by agent programming, and
describes the approach (which is, in this regard, identical to all others described
here) as weak state migration (cf. [IKWK00]), since only the data part of the state
is transferred, and the stack, registers etc. are not considered.

3.2.30. MadamMadamMadam/MusicMusicMusic. Building on and extending the Madam frame-
work [HFS05, AEHS06], Music [REF+08] tries to plan reconfiguration to im-
prove an applications quality of service. The basic idea is to assemble functionally
consistent plans and rank their utility. Similar to Planit [AHW03], the focus of
this work is placed on the plan generation rather than its execution. Reconfigura-
tion execution is discussed nevertheless, providing one of the few approaches where
global blocking is employed.

For plan utility reasoning, the domain of service oriented architecture (SOA)
is used, most notably by utilizing the idea of service-level agreements (SLAs). In
generating the plans, remote services (and their SLAs) are also considered. The
description of the actual utility ranking of plans remains fairly vague; but a utility
function for a case study is given.

3.2.31. Direct vs. Indirect State Transferal. For those frameworks that do
consider the state, two approaches can be distinguished: Either, the reconfiguration
manager (i.e., an external entity that controls the reconfiguration process) knows
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how to transfer the state, extracts the data from the old component and inserts
it into the new one, or the components itself know how to encode or serialize
their state, and how to decode it again, possibly from an old version, in order to
adopt some other component’s state. Following Vandewoude [Van07], the former
approach is called the direct approach, and consequently the latter the indirect
approach. Vandewoude uses a slightly different definition that defines an approach
where the old component is queried by the new component directly, but does not
provide provisions for it, as direct as well:

Direct State Transfer: The implementation of the old version is
used directly. Either the updating mechanism or the new version is
responsible for extracting, interpreting and in most cases convert-
ing the information contained in the active version. [Van07]

Hence, the distinction between a direct and indirect approach is given by the old
component and whether it provides provisions for externalizing its state during
reconfiguration. In our perception, however, the target component is considered.
This is because we perceive it as less likely to have a component provide setter
methods for all (relevant) parts of its state than to have a component provide
complete read access.

It is sometimes hard to differentiate the two approaches; we will judge all those
as indirect where a composite value is passed to the target component and this
component is required to understand the semantics.

Framework State
transferal

State transformation

Argus [Blo83,
pp. 109]

indirect accessor functions for the state, which is
returned as a record, user-defined conversion
functions can be used for non-1:1-mappings

Polylith [Hof93,
pp. 24]

indirect invocation of a mh objectstate move
method to have the old component send the
state over a special connection; the example
uses a 1:1 mapping, but theoretically
arbitrary mappings can be employed

Lim [Lim96, pp.
191]

indirect saving states to a state location loc, which
is accessible by a method restore(pid,
loc, f), with f being a state
transformation function, which needs to be
supplied by the designer

Bidan et al.
[BISZ98]

indirect reconfigurable objects need to implement an
interface RO Object, which defines methods
writeState and readState, which operate
on a RO state instance

SOFA/DCUP
[PBJ98]

indirect component state is externalized to a named
location (only briefly discussed)

Tewksbury et al.
[TMMS01, pp. 9]

direct,
fallback to
indirect

a direct transfer based on variables bearing
the same name is attempted (at compile
time, as the code is generated); if this is
insufficient, a user-defined conversion
routine is employed
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Framework State
transferal

State transformation

Wegdam [Weg03,
pp. 103, 167]

direct
(theory),
indirect
(imple-
mentation)

a state translation function is employed for
the theoretical consideration, but the actual
implementation employs Corba structures,
which amount to the indirect approach of
encoding the state in a special object

Casa [MG05b,
pp. 133]

indirect loadState and storeState methods are
required, which need to convert the state
into a “standard representation”

Draco [Van07,
pp. 43, 120, 158]

direct
(both
variants
are
discussed)

a series of strategies to identify matching
data fields of old and new components is
presented. These harvesters operate on the
class structure of the component in question.
The focus is placed on live code updates, so
a number of constraints can be defined. The
problems of semantical data changes is well
discussed. As a backup, user-defined
(indirect) state transferal is possible

Fractal
[PMSD07]

indirect a StateTransferController is
implemented by the components that grants
access to the component’s state

Kefti et al.
[KB04, KBC02]

direct user-defined scripts

Chen and Simons
[CS02]

indirect extractState and restoreState are
provided by each component and accessed
by the controller using a control interface

ReDAC [RP08] direct a recursive algorithm [RS07a] is used for
traversing the object graph, and thus
extracting the necessary data. a non-1:1
mapping is done by a user-supplied mapping
that is not specified further

CoBRA [IFMW08,
pp. 101]

indirect uses the Memento pattern [GHJV95] to
transfer the state; this pattern basically
captures the idea of the indirect approach:
The source component packages its
non-volatile data into an object of a
specially defined Memento class, which is
then injected into the target, which may use
the Memento’s accessor methods to retrieve
the state

Table 3.2: State-considering frameworks

Tab. 3.2 lists the approaches of the corresponding frameworks. Those that
attempt a direct transferal usually use reflection to get an insight into the compo-
nent’s structures; while most works discuss fallbacks, they are either insufficiently
defined or are themselves indirect.

Vandewoude [Van07] focuses on the transferal of state for component updates.
His work is placed in the context of hot code updates, which gives some constraints
on the data that need to be considered; a semi-automatic approach is presented
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that employs a series of strategies to copy the state. Both the direct and indi-
rect approaches are discussed, and the direct one is chosen because of its better
suitability. The ReDAC algorithm [RP08] also employs an elaborate approach
towards state transferal. Using an object-graph-traversal algorithm [RS07a] and
a mapping, they realize a semi-automatic, direct approach; however, the practical
applicability is very dependent on the problem at hand.

The indirect approach requires components to implement encode and decode
methods. The state can then be obtained from an old component and injected into
a new one. Lim [Lim96] employs this indirect approach. The work is otherwise
similar to ours in that it proposes the employment of schedules to guarantee suc-
cessful reconfiguration. [BISZ98] and [TMMS01] both enhance Corba with the
ability to do stateful dynamic updates. The former uses an indirect approach by
requiring state accessor methods in reconfigurable components, the latter work uses
a mixture, where the direct approach with a 1:1 mapping of variables is tried first,
with a fallback to the indirect approach.

3.3. Formal Approaches to Adaptive Component Systems

Very few component frameworks seek to describe the operation of component
applications in a formal way. Work has been done on the communication be-
havior of components in a framework, e.g., for SOFA [PV02, AP05]. Java/A
has a strong formal backing [BHH+06, KJH+08]. We are not aware, however,
of a formal description of reconfiguration in a component framework. The work
on quiescence [KM90] and tranquility [VEBD07] covers an aspect of reconfig-
uration, and extensive work has been done on describing sound reconfiguration
plans [WF99]. There are some calculi, however, that cover reconfiguration, but
lack a direct connection to a component framework.

The ASP calculus [Car07, CH05] (Asynchronous Sequential Processes) is a
calculus for asynchronous communication of entities that can be understood as com-
ponents. Strong emphasis is put on the concept of futures. This calculus defines
the formal basis of ProActiv, which is an implementation of the Grid Com-
ponent Model, an extension of Fractal (cf. Sect. 3.1.2.2). These frameworks
bear much resemblance to JComp: Mono-threaded components, utilization of the
Active Object pattern, no shared memory between components. Reconfiguration
only plays a minor role in this calculus, and mostly in the form of migration, i.e.,
the relocation of an active object. Reconfiguration is investigated in the context of
process networks, which can be translated to the ASP calculus, thus allowing for
reconfiguration on a higher level.

The λχ calculus [SC06] extends the λ calculus by provisions for defining, in-
stantiating and reconfiguring components. Among those reported here, it uses
the notion of components most directly, making communication requirements and
supplies explicit by means of interfaces. It is also closely connected to an actual
programming language, ComponentJ [SC02], which extends Java. The basic
calculus of [SC00] is modified and extended to the λχ calculus in [SC06, Sec06].
A type system is provided that ensures atomicity of reconfiguration, meaning that
reconfiguration either progresses to completion or does nothing at all. Sadly, the
results are not applied to ComponentJ.

For formally describing software updates, a number of formal frameworks have
been devised, e.g., the Update calculus [BHSS03]. This calculus extends the
simply-typed λ calculus; introducing versioned types to reflect different versions
of modules. The compatibility of an update can then be reasoned about within the
type system.
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Figure 3.2: Patch bays, in real life and virtual

The R calculus [FZ06, FZ07] is an example for module calculi, used for de-
scribing modules and their configuration. Reconfiguration is obtained by applying
module operators (connection, renaming, etc.) to configurations, thus interleaving
normal execution with reconfiguration steps. Building on this, various aspects of
reconfiguration can be investigated, e.g., deferred reconfiguration that is only exe-
cuted if a connection involved is actually used [AFZ05, FZ06] or the introduction
of external module definitions [FZ07].

3.4. Special Aspects and Applications of Reconfiguration

Reconfiguration is a very broad field; and many frameworks supporting it are
not concerned with components, although the differentiation is often subtle. In
this section, we list some frameworks that are concerned with adapting systems at
runtime, but are not included into the reconfigurable component framework list;
either because they do not directly address components, or use components in a
way that is different from ours. This holds particularly true for the first selection
of frameworks, which target the domain of real-time systems.

3.4.1. Real-Time Frameworks. Real-time frameworks are built to ensure some
real-time properties of an application, e.g., a bounded delivery time for messages
or a guaranteed throughput of components. Save for CADDMAS, the frameworks
reviewed here are concerned with multimedia, where audio and video signals need
to be delivered with a bounded latency and satisfying throughput.

Multimedia is a natural field for reconfiguration, as sources change (physically,
or in their being interesting; a camera becomes interesting as soon as something
unusual happens in its field of view) and since the data flow is more important
than the control flow (cf. [NGT92]), which eases the finding of alternatives (it is
easier to detect components that can consume a video feed than it is to find compo-
nents that offer the same interpretation for a set of control commands). Also, the
metaphor of “rewiring” is already well-known from multimedia systems, like patch
bays in studios (Fig. 3.2 shows an example). Hence, there is no shortage in good
examples, and also the triggering and planning of reconfiguration is easy. However,
the runtime requirements become much more critical – reconfiguration must take
care not to violate the realtime constraints too much. Such real-time requirements
are beyond the scope of this thesis, but the frameworks provide interesting examples
nevertheless.
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3.4.1.1. Cinema. Cinema [RBH94, Hel94] is a framework for multimedia ap-
plications, with rather limited reconfiguration capabilities that amount to filter
insertion. Reconfiguration (called “dynamic configuration”) is triggered by user
interaction, e.g., with a graphical editor [Bar96]. Since reconfiguration interrupts
a system that needs to adhere to real-time requirements, a “quality” can be associ-
ated with reconfiguration. Cinema discusses this under the name of QoS (quality
of service).

3.4.1.2. CADDMAS. Addressing general real-time signal-processing systems,
CADDMAS [SKB98] clearly boasts the most impressive examples: Sampling
of vibration sensors of the Space Shuttle Main Engine (SSME) beyond rates of
100KHz during engine tests. Although no further insight is provided into how
this can be achieved and ensured, this work is remarkable because of an unusual
approach towards planning the reconfiguration: Using a sort of model-driven archi-
tecture approach, alternatives to the initial model are defined. These alternatives
are then grouped in a finite state machine, and state transitions correspond to
reconfiguration.

3.4.1.3. Djinn/ QoS Dream. Djinn [MNCK98, MNCK99], a framework that
is geared towards “unnoticeable” reconfiguration by staying beyond certain latency
times, thus preserving “smoothness”. This work also addresses the issue of atomic-
ity and compares it to database transactions. Djinn, which handles media streams
only, is combined with a message passing architecture in the QoS Dream frame-
work for adaptive multimedia [MSBC00], which provides a very interesting case
study of an “intelligent hospital”, which allows communication of doctors in a hos-
pital regardless of their physical location (i.e., incoming calls are routed to their
present location).

3.4.1.4. RDF. The Reconfigurable Data Flow (RDF) framework [ZL07] tar-
gets “stateless data flow systems”, i.e., component networks where components act
as filters on data flow, but without maintaining an own persistent state (e.g., en-
cryption and decryption components operating on data streams).

Reconfiguration is described as having four distinguishable effects on the sys-
tem:

(1) Functional update – new functions are added as intended,
(2) functional side-effect – problems might be introduced by reconfiguration

(e.g., changed message semantics),
(3) logical influence on performance – plan execution might impact the per-

formance of the running system, and
(4) physical influence on performance – computational overhead of the recon-

figuration, affecting the overall system’s performance.
The framework then seeks to minimize these two impacts, as well as avoid

functional side-effects. In discussing how to avoid logical performance impact, the
reconfiguration steps are divided in three classes:

• Type I – operations that do not have an impact on the running system,
e.g., adding new components.

• Type II – operations which have impact, but are executed almost instan-
taneous, e.g., reconnecting components.

• Type III – operations that run for extended time and impact the perfor-
mance, e.g., state transfer.

In order to avoid logical performance impact, no transferal of states is allowed in
RDF, and the other reconfiguration steps are planned such that their impact is
limited. Avoiding functional side-effect is done by versionizing the data. In the
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example, an encryption/decryption framework, data is annotated with the version
of the encryption algorithm that was used such that the proper decryption version
(either the new or the old one) is used.

RDF is a unique in that considers quite a different reconfiguration execution
than most other frameworks, where reconfiguration “sneaks into” the currently
operating system without any major locking. This is similar to Djinn, but the
application domain is more generic. Its reconfiguration scenarios are, of course,
more limited than those considered by performance-unaware frameworks.

3.4.2. Legacy Systems. Legacy systems are systems that are too old to be mod-
ified (much) and too important to suffer a lengthy replacement period. Typically,
these are systems deeply embedded in a business workflow, with ever increasing
operation costs. Component systems can be used to wrap these legacy systems,
which is a gentle approach towards evolving the overall IT infrastructure despite
their existence [BLWG99]. Adding reconfiguration capabilities to such legacy sys-
tems may seem like a strange idea (given that legacy systems are perceived to be
unconfigurable anymore), but the approach of retrofitting reconfiguration capabili-
ties is interesting, as it neatly defines what a framework needs to provide in order
to support reconfiguration.

3.4.2.1. Darwin/ Lava. In [Kni98], reconfiguration of systems that are not im-
plemented in a special, reconfiguration-enabled framework is discussed. Here, dy-
namic reconfiguration (or even, load-time reconfiguration of a system that has a
fixed wiring) may require to add wrappers to existing components, leading to the
so-called self-problem: If a wrapper delegates a call to a legacy component, any self-
invocation of said component will bypass the wrapper, thus depriving it of a chance
to modify the self-calls execution. Solving this problem is surprisingly difficult.

Darwin2/Lava proceeds to solve these problems. This solution is then carried
over to component system, although this is more described as work in progress. We
mention this approach here because it offers an interesting view on reconfiguration
that is not anticipated at system and framework design time.

3.4.2.2. KX. Kinesthics eXtreme (KX) [KGK+02] is a system for retrofitting
existing (legacy) systems with adaptability. Large emphasis is placed on obtaining
data from the running system, using probes (software that gathers data), gauges
(software that accumulates said data), controllers (software that makes reconfigu-
ration decisions based on the gauges output) and effectors (software that does the
actual reconfiguration). This is quite similar to the Rainbow [GCH+04] system
described above, but there is no explicit consideration of the target system being
constructed from components. Reconfiguration is used for two effects: Modifying
the infrastructure of probes and gauges in order to provide better measurements,
and reconfiguration of the system using effectors. While the KX framework is in-
dependent of the application, the probes, gauges, etc. are customary chosen for the
target application.

In [VK02], a large-scale case study is presented. A server farm supporting
instant messaging on various channels is instrumented with probes and gauges, and
thus enabled to ensure a limited load by automatically activating new servers and
reconfiguring the load balancing, should one server exceed a preset load threshold.
Compared to component frameworks, the reconfiguration is very coarse, in that
entire servers are modified, yet the emphasis of KX is based on the process of
determining the need of reconfiguration, which can be applied to components with
only minor modifications.

2apparently a mere naming coincidence with respect to [MDK93]
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3.4.2.3. ACT. The Adaptive Corba Template (ACT) [SM04] of Sadjadi and
McKinley utilizes the generic interceptor capability of Corba to add adaptability
in the form of dynamic aspect-orientation to otherwise non-adaptive ORBs. The
generic interceptor is part of the Corba call stack and offers the capability to in-
spect and possibly modify calls. The work itself is very technical and can be seen as
a witness to Corba’s versatility; but it falls short of the possibilities of reconfigura-
tion. As an example, the QuO framework [ZBS97, VZL+98] for ensuring quality
of service properties of Corba components is retrofitted to existing systems.

3.4.3. Theory of Reconfiguration Frameworks. Many of the papers listed
here are very “narrative”: They describe how reconfiguration is to be done, often
in a showcase explanation, and often without mentioning the exact circumstances;
but usually backed by an implementation. Here, we will report on some work
that do not boast an implementation, but rather focus more on the theoretical
requirements for reconfiguration.

3.4.3.1. Warren and Sommerville. In [WS96], Warren and Sommerville discuss
how a component framework should be devised in order to maintain integrity.
Building on the PCL language [SD94], the peculiarities of reconfiguration of state-
ful, composite components are discussed. Data state retainment is discussed, using
an indirect approach of capturing and restoring the state which is based on Herlihy’s
work on abstract data types [HL82]. For transferring state between non-compatible
components, state coercion is used, which amounts to applying an arbitrary func-
tion to the state of the old component. While this idea is not further elaborated,
it is interesting because, usually, this problem is not explicitly discussed.

3.4.3.2. Wright. Wright (cf. Sect. 3.1.3.2) also provides provisions for reconfig-
uration [AGD97, ADG98]. Their approach is to describe reconfiguration as part
of the CSP calculus used for specifying the component/connector behavior. This
is done by fixing a set of possible configurations, and tagging the CSP terms with
the configuration they are to operate with. Reconfiguration is then also triggered
by CSP terms. In [ADG98], a number of checks are provided that can be used to
verify the consistency of reconfiguration.

3.4.3.3. CHAM. The Chemical Abstract Machine (CHAM) [IW95] is a pro-
gramming model that builds on a chemical metaphor – molecules, solvents (multi-
sets of molecules) and reactions (transformations of solvents). At its heart, CHAM
is a term rewriting system. Three kinds of rules are used: Heating rules that de-
compose molecules into its constituents (refining the view), cooling rules that build
larger molecules from other ones (abstracting the view) and reaction rules that ac-
tually transform modules. This very general approach allows for specification of
many systems, including component systems with reconfiguration [Wer98], where
the emphasis is placed on finding a consistent algorithm for distributing reconfigu-
ration over a sequence of rules, with possible nondeterministic choice of the order
of the rule executions.

3.4.3.4. Product Line Reconfiguration. In [MSTS99], reconfiguration of product
lines is discussed. This does not have anything to do with software, but since the
similarities are so striking and since the paper is so much better than many of the
others referenced here, we also mention it. Reconfiguration here refers to after-sales
operation: A sold product is modified by the manufacturer in accordance to the
buyer’s request. Providing provisions for this is a challenge to both engineering and
project planning. This work provides a comprehensive formal model of reconfigu-
ration, and a refined definition of the reconfiguration task. It is interesting to see
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that the purportedly vague field of product design bests most software frameworks
in this regard.

3.4.3.5. Global Consistency – De Palma, Laumay and Bellissard. In [PLB01], the
consistency of an application during reconfiguration is investigated. Their work is
inspired by distributed transaction systems (cf. their work on Olan [BABR96,
VDBM97]); it is very technical (e.g., describing maintaining proper links to com-
ponents moving to another machine as a primary problem of reconfiguration) and
focuses on the redistribution of otherwise static software architectures on multiple
nodes. Hence, their concern is about specific artifacts of reconfiguring on a coarse
level (migrating application parts rather than components in a dedicated frame-
work, e.g., having to care about messages in transit to a target node while moving
away the target component to another node). A timestamp-based optimistic wait-
die-algorithm is proposed.

In other work of this group, a reconfiguration protocol is formally specified and
model checked [CGMP01]. Migration was considered only, and the protocol does
not consider the data state of an agent, but this is one of the few works that actually
mentions and verifies correctness criteria (ten properties are considered, including
absence of deadlocks, termination and correct order of events).

3.4.3.6. Serfs. Serfs [SPW03], short for Service Facilities, is a combination of
patterns that can be used to decouple software so that dynamic replacement of mod-
ules becomes possible. Three patterns are involved: Abstract Factory, Strategy and
Memento. Serfs act as sort of a broker that indirects connections to targets. This
makes reconfiguration possible for tightly linked systems like OO-based systems,
and may also serve as a starting point for implementing reconfiguration-enabled
component systems. However, much of the work is concerned with technical diffi-
culties like garbage collection, and an example is missing.

3.4.3.7. Boinot et al. – Adaptive Components. In their work on active compo-
nents [BMMC00], Boinot et al. describe how an adaptive component can be
built. This work is only loosely related to the frameworks discussed here, in that it
seeks to provide a systematic approach towards building Java classes that adapt to
a changed environment. Although this amounts to an implementation of the Strat-
egy pattern directly in the classes, their work is very interesting since they also
describe a three-stage control loop, providing further support for the importance
of this concept (which we will discuss in Chapter 8.1).

3.4.4. Physical Systems. A number of paper exist that discuss reconfiguration
for physical systems in an abstract way. Chen [Che02] describes the requirements
for reconfiguration in the context of automotive software. Here, the component
application stretches over both the infrastructure (operated by the vehicle manu-
facturer) and the individual vehicles. The part of the application in the vehicle
is operated by a local configuration manager. This manager may trigger reconfig-
uration in order to improve the application’s performance on the vehicle. In this
very interesting setup, the various problems arising from dynamic reconfiguration
– safety issues, planning – are discussed.

In [MHW04], the requirements of reconfiguration for robot systems is de-
scribed. This is quite interesting, because three types of reconfiguration scenarios
are described: Reconfiguration for maintaining high reliability (e.g., fault tolerance
of the software), reconfiguration for handling physical environment changes, and re-
configuration for coping with hardware faults – however, the latter point is judged
as of lesser interest. The work proceeds to discuss various approaches towards
maintaining state consistency, which are to be implemented on top of the Corba
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component model. This work might be regarded as the theoretical considerations
underlying the OpenREC framework [HW04, WH04], or at least as influential
(see Sect. 3.2.16).

Kramer and Magee are currently working on an example with robots [KM07,
KM08a]. This work is highly interesting as they do a “complete revolution” of the
loop – i.e., providing solutions for all stages. A three-tier control loop architecture
is used; it consists of the component tier, a change management tier, and the top-
level goal management tier; this is an established architecture in robotics [Gat98].
Here, the monitoring and the execution phases of the MAPE loop are conducted
(cf. Sect. 8.1.1.1). The analysis and planning are done in the middle layer, where
plans are stored and maintained. These plans are modified by the topmost layer,
which tries to reach long-term goals. Kramer and Magee explicitly stress the im-
portance of the separation of concerns; and their work is most valuable in their
view on the software engineering requirements for developing adaptive software.

Another interesting example operating with robots is provided by the Runes
project [CLG+06, ÅBD+07]. They aim at disaster relief in tunnel fire scenarios,
obviously sparked by the problems that were observed at the Mont Blanc tunnel
fire in 1999. In the event of a disaster, an ad-hoc network is formed to provide
connectivity for rescue personnel and delivery of sensor data. This network is built
from nodes distributed at regular intervals in the tunnel. Since some of the nodes
might be destroyed in the fire, robots are used to provide additional temporary
network nodes, such that a network can be reestablished. The Runes project
covers a large number of necessary details, building on a component-based middle-
ware [MZP+05] and three-staged control loops. It has to be admitted that, for
the two previously mentioned projects, the execution of reconfiguration takes only a
minor part in the overall framework, and more emphasis is placed on the assessment
and planning stages of reconfiguration.

3.4.5. Distributed Systems – the Grid. Grid computing (and peer-to-peer
(P2P) systems, which often underlie grid architectures) is an emerging approach
towards large-scale computing. Traditional personal computers are used to collab-
orate on a common computation goal (one of the first and well-known examples
being SETI@home [WCL+01]). Obviously, such applications need to cope with a
very uncertain environment: Nodes and network connections may be taken offline,
crash or exhibit an unanticipated load. This is also what distinguishes the idea
of grid computing from clusters; although the approach is similar, the nodes in a
cluster are under central control and are, to some extent, guaranteed to be available
for the duration of the computation, whereas for a grid system, the loss of nodes is
somewhat constituent of nominal behavior.

Quite often, grid-enabled algorithms separate computation in another dimen-
sion as we do in this thesis: They partition the data, rather than the algorithm
(cf. the discussion in Sect. 5.3.2). Of course, it is an altogether different task to
reassign a SETI@home data package to another node than to redistribute an algo-
rithm that requires the joint effort of multiple computers to perform various stages
required for a computation task.

Some of the aforementioned frameworks explicitly target distributed systems,
e.g., Cactus [CHS01], the GCM extension of Fractal [BBGH08], and ReM-
MoC [GBS03]. These frameworks adapt parts of the communication mechanism
of distributed components. If the fixation on components (often merely a wording
issue) is relaxed, a vast body of research can be drawn from; exceeding this thesis’
scope by far. We will hence only discuss some examples.
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vGrid [KHP+03] is a framework for conducting large-scale simulations on
a grid. They focus on simulations that can only be parallelized to some ex-
tent – as an example, a cellular automaton-like forest fire simulation is proposed.
Cellular automata operate on a two-dimensional field, and neighboring cells af-
fect each other. Hence, no “clean” data separation is possible – if the field is
split and processed on different nodes, they need to synchronize on the border
cell’s behavior. Note that while this is the kind of separation we do not ad-
dress in this thesis, this is an example where multi-stage computing (as discussed
in Sect. 7.3) is not feasible at all. Reconfiguration now addresses the reloca-
tion of components (here named “computational units”) in order to fix a mis-
alignment in computation balance (a self-tuning approach). This is done using a
MAPE-K loop; the only example known to the author of an actual use of this
form a software control loop. Also, the forest fire example is quite interesting,
and subsequently picked up by Accord [PLL+05, LP06], another framework
for providing grid applications with self-? capabilities. Their approach towards
adaptivity, however, is merely rule based (“if isSystemOverLoaded = true then
invokeGraphAlgorithm() else invokeBlockAlgorithm();”).

3.4.6. Ad-Hoc Networks and Mobility. Another area of distributed systems
that can benefit from reconfigurability is that of ad-hoc networks and device mo-
bility. Ad-hoc networks form spontaneously by the linking of multiple nodes with
limited broadcasting capability. For example, cars can try to form temporary net-
works in order to send traffic volume or road condition information [ESE06]. Also,
ad-hoc networks can be built from a large number of cheap sensors/transmitters
that collaborate on sending measurements to gateway nodes that eventually process
it [CES04]. GridKit [GCB+06] is an example for a framework supporting such
ad-hoc networks, as is the Runes project [ÅBD+07].

A related concept is given by mobility, where a mobile device connects to a
(usually stationary) service in order to use location-based services. Here, reconfig-
uration can be used to adapt to changed situation, possibly by substituting their
communication means as exemplified by ReMMoC [GBS03]. The Dacia frame-
work [LP00], developed by Radu Litiu in his PhD thesis [Lit00] (which is a pro-
found source of related work covering the various topics that need to be considered)
explicitly concentrates on mobility in the form of a user moving to other machines,
migrating components in the wake. Also, during absence of a user, components can
be parked ; this maintains their state and allows for quick reconnection.

3.5. An Assessment

When reading the literature presented here, some observations can be made.
First of all, a general trend towards using reconfiguration as a programming means
can be observed. Obviously, this is influenced by emerging disciplines like service-
orientation. Hot code update continues to be of interest, however. This is quite
understandable, as the systems that truly require hot code update – large, dis-
tributed and heterogeneous systems – are becoming more important.

In Fig. 3.3, a comparison of some work listed in Tab. 3.1 on page 41 is presented.
The works are assigned a complexity measure, and the progress over time is shown.
This complexity measure was made out of the columns of the table; if a feature is
discussed, it counts as a point, and if it is discussed in a way that is convincingly
adequate for productive use, it counts as two. Of course, such a comparison is
highly subjective and does not reflect the “worthiness” of the research in any way
– just consider OpenRec [HW04], which scores a mere 2 points, because state
transfer and transactions are considered only. nodes depict the coordinates of
frameworks that explicitly discuss hot code update, whereas show the coordinates
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Figure 3.3: Complexity of related work

of frameworks that work with plans, and are the coordinates of frameworks where
the intend of reconfiguration is not declared explicitly.

An evaluation of this graphic is of course quite difficult. The “early work”
due to Bloom, Kramer and Magee, Hofmeister and Lim scores reasonably well,
with Hofmeister’s work being more practical and thus scoring low, and [KM90]
discussing quiescence only. Recent work seems to integrate more technologies and
hence scores higher. The four champions – Cactus [CHS01], CASA [MG04],
Fractal [PMSD07] and CoBRA [IFMW08] – provide credible approaches for
enabling reconfiguration. The augmentation of profound work within recent years
is raising hopes for a maturing of reconfiguration as a software engineering tool.

The downside of the graphic is the continuing presence of work that is mostly
ignorant of problems published by others. This can sometimes be attributed to
a narrow problem domain (e.g., NeCoMan [JTSJ07]) or a general open archi-
tecture that does not provide fixed implementations (e.g., OpenREC [HW04] or
SOFA 2.0 [BHP06]). Quite often, however, many problems are simply not con-
sidered [Par07]. This especially holds true for frameworks that are built on top of
heavyweight component frameworks like Corba.

Assessing state retainment, none of the works provides a truly satisfying so-
lution (which, considering the work done by Vandewoude [Van07] on that topic,
indicates that there is no such definitive solution). Mostly, the indirect approach is
chosen, but the resulting problems – i.e., the replacement component needs to be
written in a way that foresees reconfiguration, which is only acceptable in hot code
patching – are usually not discussed. Safe for the work of Kefti [KB04], a direct
approach is only attempted based on (extended) name-based matching – which is
a little bit strange, as the utilization of a state transferal script that is external to
any component is not that far off.

As for examples provided (note that we only looked at the publications, rather
than at available implementations), the situation is bleak. Often, no example is
provided at all, or the examples are trivial. For hot code update, this is quite
understandable. For generic reconfiguration, this is quite problematic, as an exam-
ple provides an important clarification of the problem domain addressed. Often,
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examples provided for generic reconfiguration are reflection of changes in the phys-
ical environment [MDK94, Lim93, BR00, RAC+02, Hac04], or they describe
known techniques like load balancing [GCH+04, TBB+05] or plug-in installa-
tion [CH04]. The most convincing examples are provided by those frameworks
whose intended application domain is narrowed, most notable Cactus [CHS01]
and NeCoMan [JDMV04]. Both are concerned with dynamic cross-cutting con-
cerns; this became a great influence for this thesis, as described in Sect. 8.4.



CHAPTER 4

Formal Foundation of Components

Wo ein Tritt tausend Fäden regt,

Die Schifflein herüber hinüber schießen,

Die Fäden ungesehen fließen,

Ein Schlag tausend Verbindungen schlägt.

— Johann Wolfgang Goethe, Faust I

In this chapter, we will define formally what a component model is. We have
given a basic idea of the concept of components in Sect. 2.1, here, we will formalize
these aspects common to the component models we consider. Altogether we try to
describe how a component application is built. In our context, such an application
comprises a set of components and a framework that provides services for connecting
and running them. This framework is to be built after a component model that
formally describes how components execute. In this thesis, we discuss two such
component models and their respective frameworks in Chapter 5 and Chapter 6.
These models are supporting different application scenarios, but their syntactical
foundation as well as the means to describe their semantical behavior are the same.

4.1. Components

We assume a set C of component identifiers, a set M of method names, that
are implemented by components, a set R of role names, through which components
access other components, and a set V of values which are communicated between
components. Interfaces, comprised in a set I , are finite subsets of method names.
All but the set V are assumed to be finite (but that is not really important), and
V is either finite or countably infinite.

Role names represent the communication partners known to a component.
When writing a component, we cannot know the exact identity of the components
we communicate with – these will be determined at configuration time, i.e., when
the application starts, or even later during reconfiguration. Instead, the component
knows which communication partners it requires. These are assigned an interface,
taken from I , and are known to the component under a role name. For example,
a hash table component might require a hash function component as a communica-
tion partner (to query hash values). The actual hash function implementation will
be chosen at configuration time, and is not known to the component. All it knows
is the presence of a rolehashfunction, and that any component eventually linked
to this role implements an interface HashFunction that provides an appropriate
hash calculation method (cf. role r in Fig. 4.1).

Let us recall that we are interested in stateful components. We define a set S
(usually of infinite or even uncountable size) that captures the user-accessible state
of components. S needs to store three different kinds of data:

(1) The data state that can be modified by the component’s implementation,

(2) the parameter of the current method call, a value from V,

66



4.1. COMPONENTS 67

rid
Ip Ir︸ ︷︷ ︸

c = (id , {Ip}, {r 7→ Ir}, ζ(c), ι(c))

Figure 4.1: Static elements of a component c

(3) and the return value of the last method called, also a value from V.
We hence require three functions: upd : S × S → S for updating a state with
another state; prm : S ×M × V → S for storing a parameter value for a method
name; and ret : S × V → S for storing a returned value.

The function prm takes the name of the method as a parameter, as this name
(which, practically, represents the method’s signature) will determine how to store
the parameter. It is convenient to just have every method accept a single value
v ∈ V; tuples can be encoded easily, and for methods without parameters, a dummy
value can be passed (an example set V can be found in Sect. 4.6).

Definition 4.1 (Component). A component c is a tuple

(id(c), IP (c), IR(c), ζ(c), ι(c))

with id(c) ∈ C the component identifier, IP (c) ⊆ I a finite set of provided inter-
faces and IR(c) : R ⇀ I a partial function with finite domain requiring interfaces
by role names. ζ(c) : M ⇀ P is a method evaluator, assigning an implementation
to each method the component provides; the set P of component process terms will
be defined in Sect. 4.2. ι(c) ∈ S is the initial state.

The set of required role names dom(IR(c)) is denoted by R(c).

To write the definition of a component c as a tuple (id(c), IP (c), IR(c), ζ(c), ι(c))
is done to abbreviate the notation, and we will use this approach throughout this
thesis. It is a compact way to introduce a component c ∈ C as a tuple (id , P,R, ζ, ι)
and then provide methods id : C → C , IP : C → ℘(I ) etc., with id(c) = id ,
IP (c) = P etc. We denote the universe of components with C.

The statical structure – i.e., the structure of a component prior to its use in
a component framework – is thus comprised of a name, which is used to uniquely
identify the component (the components themselves should not use it). The set of
provided interfaces describes the services offered by the component. As interfaces
are sets of methods, the provided interfaces actually describe a set of methods.
Often, this set is interpreted by the set of methods a component can “understand”,
but in our context the view of provided services is more coherent.

The set of required interfaces actually is a set of pairs of role names and inter-
faces. As discussed before, the role names are the identities of the connections of
a component from that component’s point of view. They are typed with the inter-
face, meaning that only methods inside the interface can be sent to the component
connected to the role (thus effectively prohibiting the sending of non-understood
messages). Note that it is quite possible (and quite often required) to have multiple
roles with the same interface, e.g., for a load balancing component that can relay
a message to multiple roles, each providing the same type.

These three elements comprise the signature of a component. Additionally, the
method environment ζ(c) assigns a component process term to each method of the
provided interfaces; this term describes how a call of this method will be handled.
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Figure 4.2: Provided interfaces and roles

The initial state ι(c) determines the component’s start-up state. Together, they
form the component’s implementation.

Of course, we need to add some constraints to disallow “irrational” use of this
definition. For a set C of components, we require:

• The component identifiers are assigned only once, i.e., ∀c, c′ ∈ C . id(c) =
id(c′)→ c = c′,

• the method evaluated covers all methods provided by the component:⋃
I∈IP (c)

I ⊆ dom(ζ(c)).

From now on, whenever we talk about a set of components, we silently assume that
these two constraints hold. The uniqueness of role names within a component is
ensured by IR(c) being a partial function; a uniqueness for all components is not
required.

4.1.1. A Brief Discussion of Ports. At this point, one of the most significant
design decision of our component model has already been taken, so let us briefly
investigate what we have specified so far.

Our definition of components is different from many component definitions,
e.g. [BHH+06]: IP (c) and IR(c) are asymmetric, i.e., do not have the same type.
From the point of view taken in this thesis, components have required interfaces,
which have a role name and a type, and provided interfaces which have a type only.
Hence, a component may be able to send messages to multiple components provid-
ing the same interface, but over connections with different role names; and we will
later see that calls are indeed addressed to these different role names (instead of to
the interfaces, as implemented in Java/A [Hac04]). On the other hand, compo-
nents provide interfaces types instead of ports, and if multiple components connect
to an interface, there is no way provided by the framework to determine which
component issued a certain message. Fig. 4.2 illustrates this idea: Component c1
maintains three roles r1, r2 and r3; it may issue messages to each. Component
c2 provides interfaces P1 and P2. The types of r1 and r2 are both P1, and the
type of r3 is P2, therefore a connection as depicted is admissible. c2 is not aware
of the multiple connections of roles typed with P1; if the source role of a message
is to make a difference, this has to be handled by adding a further parameter to
the message; the frameworks do not provide a user-accessible source indication for
messages. Note that c1 also does not need to know that all its roles are connected
to the same component – messages are addressed to the roles only, and hence the
actual target is unknown to the component.

Ports, on the other hand, also provide a role name for incoming connections, and
usually group them in pairs with input and output interfaces (e.g., in [BHH+06]).
Hence, for any received message, it is easy to determine where it was sent from;
and inter-component protocols can describe the communication sent and received
over one port, which eases the specification of such protocols.
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Caller 1 Caller 2

Node 1 Node 2 Target

↑ ↑

→ →

Figure 4.3: “Reverse” Chain of Responsibility pattern using ports (arrows indicat-
ing data-flow)

The question whether to use ports or unidirectional connections is hard to
answer; and the decision to use the latter was mostly based on the interest how
using interfaces only might relate to port-based component models, e.g. [Hac04]
or [HJK08].

However, some previous experience with the cmc model checker was also in-
fluential: cmc was originally designed with a component system that provided
bidirectional ports. Most of the time, however, one of the interfaces (output or
input) was empty; usually data flow proved to be unidirectional only, and if a
response was required, this was usually provided by the method’s return value.

While developing cmc, another problem emerged: In some situations, many
components need to send messages to the same, single component. For cmc, this
applies to the memory manager (cf. Fig. 5.13 on page 108), a component that man-
ages the allocated memory for new states (just using malloc and free is too slow
by orders of magnitude, since the operating system tries to optimize the allocation).
Many components need to connect to the memory manager (cf. Sect. 5.3), but the
memory manager itself needs no connection back (i.e., all the provided interfaces
of the ports to the memory manager are empty sets of methods), since the allo-
cated objects are passed back as method return values. It would be a breach of the
separations of roles paradigm to implement the memory manager with a separate
port for each component that connects to it, as a component should be developed
independently of its various concrete usage scenarios. It is technically possible to
use a “Chain of Responsibility” to gather the data as illustrated in Fig. 4.3 (note
that the data flow is inverted here; a more profound discussion of that pattern is
given in Sect. 8.3.1). However, there is no benefit given by such a structure, and it
slows the application by imposing a large communication overhead. Other examples
(cf. Sect. 7.4.2) also have similar configurations. Hence, a practical framework with
ports needs to provide multi-ports, which need careful treatment (cf. Sect. 8.3.1.1).

The benefit of ports is their “locality” when specifying components, i.e., with
ports, all connections to a component, both incoming and outgoing, are known
to the component. For reconfiguration, at some point we need to verify that a
component has become completely detached from other components. Using ports,
only local knowledge needs to be considered. With interfaces, all components have
to be checked in order to see whether any of them is still attached (cf. Sect. 6.6.2).

Also, when considering purely asynchronous systems, it is sometimes necessary
to know the identity of a caller. For example, if some component provides a com-
putation service to other components, and is connected to them using a multiport
(see Sect. 8.3.1.1), and needs to provide the service’s result back to the caller, it
needs to be able to identify the correct connection of the multiport to the caller.
This is easier with ports, as the outgoing port is the same port where the original
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ProvInt1

ProvInt2

ReqInt1

ReqInt2

ComponentName

Figure 4.4: A component in a UML component diagram

request was received; but it is possible to provide a complete substitute using just
unidirectional connections.

We do not utilize bidirectional ports in this thesis, and so far no problem has
emerged in the practical examples. For the sake of specification, however, there is
not a real reason why ports cannot be specified on a higher level. Also, there is no
technical reason why the identity of the caller should not be made known to the
callee. Fig. 4.4 shows the UML notation for components. Here, provided interfaces
are also given a role, but the required and provided interfaces are handled distinctly.
For obtaining ports, a provided and a required interface can be grouped. Similarly,
we can provide ports on a conceptual level even though they are not used in the
actual implementation of our model.

4.2. Component Process Terms

We will now define a formal language for describing the behavior of components
when processing a method.

Definition 4.2 (Component process term). The set of component process
terms P is defined by

P ∈P ::= call(r,m, v).P

| return(v).P

| set(σ).P

| choose((Σj .Pj)j∈J)

| success

| fail

| X
| µX ⇒ P

with r ∈ R, m ∈ M , v ∈ V, σ ∈ S, Σj ⊆ S. J is an index set, and X ∈ X is a
component process term variable.

We will just give the syntax here; the semantics are defined by the component
model (defined in Sect. 4.5). However, the informal semantics should be easy to
follow: “call(r,m, v)” calls method m on the component that acts as role r with the
parameter v, “return(v)” returns value v to the method caller, “set(σ)” updates the
component data state to σ, “choose” branches according to the current state (i.e.,
if the state σ is in Σj , then Pj is executed next), and “success” and “fail” terminate
the current method. Finally, “µX ⇒ P” is used for defining recursion, e.g., “µX ⇒
call(r,m, v).X” describes a never-ending repetition of method invocations.

Note that “return(v)” can be issued in the middle of a method; this is somewhat
like a co-future – the calling component will be given the result value, with the called
component still working on the method, e.g., for cleaning up. Nevertheless, we do
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not encourage such a use of the component process term. Also, a lot of illogical com-
ponent process terms can be defined, e.g., the term “return(v).return(v′).success”
or the term “choose(Σj .Pj)j∈{1,2}” with Σ1 ∪ Σ2 = S and P1 ≡ return(v).success
and P2 ≡ success. We will later see that such malformed terms lead to lockups in
the execution of the system, and assume this to be an error on the user-level: No
special restriction is put on the terms. This also applies for method invocations: It
is not syntactically enforced to call a method only on a role that actually provides
this method; but doing so will lock the execution. Another type of “user level error
producing” terms is given by unbound variables X ∈ X .

For a component process term P , we define P [Q/Q′] as the substitution of all
subterms Q by Q′. This can be given by a recursive definition, i.e., by

(call(r,m, v).P )[Q/Q′] =

{
Q′.(P [Q/Q′]), if Q ≡ call(r,m, v)
call(r,m, v).(P [Q/Q′]), otherwise

and similar for the other constructors.
We assume a special variable 0 ∈ X . We define the function sub : P → ℘(P)

recursively as

sub(call(r,m, v).P ) = {call(r,m, v).0} ∪ sub(P ),

sub(return(v).P ) = {return(v).0} ∪ sub(P ),

sub(set(σ).P ) = {set(σ).0} ∪ sub(P ),

sub(choose((Σj .Pj)j∈J)) = {choose((Σj ,0)j∈J)} ∪
⋃
j∈J sub(Pj),

sub(success) = {success},
sub(fail) = {fail},
sub(X) = ∅,
sub(µX ⇒ P ) = {µX ⇒ 0} ∪ sub(P ).

A component process term P is called nondeterministic if there exists P ′ ∈ sub(P )
such that

P ′ ≡ choose((Σj ,0)j∈J) and ∃k, l ∈ J . k 6= l ∧ Σk ∩ Σl 6= ∅

and deterministic otherwise. P is called recursive if µY ⇒ 0 ∈ sub(P ) for some
Y ∈ X . P is called a query term (and subsequently any method interpreted by it
is called a query), if set(σ).0 6∈ sub(P ) for any σ ∈ S.

If the sets J and S are of infinite size, component process terms are obviously
Turing-complete. If one of the sets is finite, not even a pushdown automaton can
be simulated: An infinite number of data states S has to be provided to represent
the stack configurations. If J is finite, only a finite number of data states can be
distinguished using choose, hence only a finite number of pushdown stacks can be
distinguished (or, for that matter, written). Hence, if either J or S are finite, only
a finite automaton can be simulated. However, finite sets are sufficient for Turing-
completeness if a sufficiently strong communication framework is provided (i.e., if
the communication can be used to encode a Turing machine tape, cf. Sect. 9.3.2).

4.3. Component Setups

Components are intended for composition. Informally, a composition consists
of a finite set of components and a mapping from their roles to other components.
Also, an entry point is provided – comprised of a component and one of its provided
methods. Of course, a component framework supporting concurrent components
might benefit from multiple entry points, but it is conceivably easy to trigger these
methods from a single starting point, so we do not generalize this here.
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Definition 4.3 (Component setup). A component setup (C,M, e) consists of
a set C ⊂ C of components, a mapping function M : C → R → C and an entry
point e = (c,m) with c ∈ C and m ∈

⋃
i∈IP (c) i.

Again, placing constraints on M is necessary. There are two constraints:
(1) Roles are connected to components that provide the interface required by

that role, and
(2) every role is connected.

We call the former requirement being well-connected and the latter begin completely
connected :

Definition 4.4 (Well- and completely connected). For a set of components
C ⊆ C and a component c ∈ C, we call a function f : R → C well-connected for c
if

∀r ∈ R(c) . IR(c)(r) ∈ IP (f(r)).

We call f completely connected for c if

dom(f) = R(c).

We call M well-connected if ∀c ∈ dom(M) .M(c) is well-connected for c, and
we call M completely connected if ∀c ∈ dom(M) .M(c) is completely connected for
c. We will usually omit the reference to the underlying set C of components if it is
clear from the context. We define the set CS to be the set of all component setups
that satisfy these requirements.

Unlike the requirements placed on sets of components (uniqueness of the com-
ponent identifier), we will always explicitly require the component connections to
be well- and completely connected. This is because the component connection is
provided by another “person” than the component identifiers (which we assume to
be generated by the framework) or the component’s roles (which are defined by
a component implementer, and are subsequently checked by the compiler before
the component can be deployed in a component framework). In this thesis, we
are mainly concerned with the problems of said person, which we call the system
designer . The task of this idealized person is to take the components provided
and assemble them to become a component application. We will elaborate the
responsibilities of this person more in Sect. 9.1.

A component setup forms a graph. Within this thesis, we will use all types of
graphs (in a sense, a component setup is a graph already), with the most generic
definition being as follows:

Definition 4.5 (Directed labelled graph). A directed labelled graph for a set
of labels Σ is a tuple G = (V,E, α, ω, λ) with

• V and E being a finite sets,
• α : E → V and ω : E → V ,
• λ : V ∪ E ⇀ Σ the labeling function.

We write v l−→ v′ to express ∃e ∈ E .α(e) = v∧ω(e) = v′∧λ(e) = l and v → v′ for
∃l ∈ λ . v l−→ v′. We inductively write v →∗ v′ for v = v′ ∨ ∃v′′ ∈ V .∃l ∈ λ . v l−→
v′′ ∧ v′′ →∗ v′. We write v →+ v′ for v →∗ v′ ∧ v 6= v′.

A directed labelled graph is acyclic if ∀v ∈ V .¬(v →+ v), otherwise it is cyclic.
It is (weakly) connected if ∀v, v′ ∈ V . v →∗ v′ ∨ v′ →∗ v, and strongly connected
if ∀v, v′ ∈ V . v →∗ v′.

A subgraph G′ of G is a graph (V ′, E′, α, ω, λ) with
• V ′ ⊆ V and
• E′ ⊆ E with e ∈ E′ → α(e) ∈ V ′ ∧ ω(e) ∈ V ′.
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A component setup (C,M, e) with M being completely connected then trans-
lates to a graph (C,E, α, ω, λ) over Σ = C ∪R with

• E =
⋃
c∈C

⋃
r∈R(c){(c, r)},

• α((c, r)) = c,
• ω((c, r)) = M(c)(r),
• λ(c) = id(c) and λ((c, r)) = r.

Usually, we want component setups to form a connected graph. While, in
principle, component applications might also be comprised of disjoint component
graphs, this would be not very interesting. We will not require it explicitly, but
assume connected component setup graphs tacitly unless it needs to be stated
explicitly.

4.4. Concepts for Describing Dynamic Behavior

We have described the definition of components and component setups; these
form the static structure of a component application. We will now proceed to define
component models, which give the dynamic behavior of a component application.
The static structure was mapped on the generic notion of a graph; here, we will
introduce a similar concept for dynamic behavior: Labelled transition systems.

4.4.1. Labelled Transition Systems. Such a dynamic behavior is a sequence
of states. We will neither describe how such a state looks like nor how its succes-
sors are determined; this information will be provided by the concrete component
models. States usually consist of a mapping from a set of components to their com-
ponent state, which consists of a data state, the currently executed method and
the component process term that will be executed next, and some data capturing
the communication of that component (e.g., message queues of incoming messages).
States evolve by communication of components and execution of component process
terms. How this happens exactly will be defined in Sect. 5.2.4 and Sect. 6.3. Right
here, we will just describe what a component model provides: A labelled transition
system, which is another way to write down a graph:

Definition 4.6 (Labelled transition system). A labelled transition system
(LTS) (S,L, T ) is given by

• a set of states S,
• a set of labels L, and
• a set of transitions T ⊆ S × L× S.

We write s l−→ s′ for (s, l, s′) ∈ T , and s −→ s′ for ∃l ∈ L . s l−→ s′. s→+ s′ and
s →∗ s′ are defined as the transitive respectively the transitive-reflexive closure of
−→.

An LTS with initial state (LTSi) (S,L, T, i) is defined as an LTS (S,L, T ) with
i ∈ S.

For an LTS (S,L, T ), the elements of the label set L are also sometimes called
actions. This is used if a more operational view is desired, i.e., a view where a
tuple (s, l, s′) ∈ T is to be understood as “s′ is the result of applying some changes
described by l to the state s”.

An LTS is a graph with implicit node and explicit transition labeling. An LTS
(S,L, T ) can be translated to a graph (V,E, α, ω, λ) over Σ = S ∪ L by setting

• V = S,
• E = T ,
• α((s, l, s′)) = s,
• ω((s, l, s′)) = s′,
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s0 s1

l0 = α

s2

l1 = β

s3

l2 = α

s4

l3 = α

s5

l4 = β

s6

l5 = β

s0 si1+1

li1 = l1

si2+1

li2 = l4

si3+1

li3 = l5

Figure 4.5: Example run reduction with ϕ = {β}

• λ(s) = s for s ∈ S and λ((s, l, s′)) = l.
Note that the notions like →+ are preserved, i.e., s→+ s′ in the LTS if s→+ s′ in
the graph.

For a set A ⊆ L of labels, we define s
A−→ s′ ≡ ∃l ∈ A . s

l−→ s′. We

define s
A

−→∗ s′ ≡ s = s′ ∨ ∃s′′ ∈ S . s
A−→ s′′ ∧ s′′

A

−→∗ s′. Finally, we define
s

A−→
S′

s′ ≡ s = s′ ∨ ∃s′′ ∈ S′ . s A−→ s′′ ∧ s′′ A−→
S′

s′, i.e., s A−→
S′

s′ if there is a path

from s to s′ using only labels from A and intermediate states from S′.

4.4.2. Runs and Traces. Runs and traces are execution sequences of component
systems. They are important means to characterize the behavior of an LTS. A
little problem lurks in their finiteness: Sometimes, runs are finite, if we investigate
a system that terminates, or if we take a look on the progress of a running system,
and sometimes we desire them to be infinite, if the execution of a non-terminating
system is to be discussed. It is well known that finite runs can always be made
infinite by infinitely repeating the last state with a τ -action (a technique called
stuttering), but here, we provide distinct definitions for finite and infinite runs:

Definition 4.7 (Run). A finite run (or execution fragment [BK08]) of an
LTS (S,L, T ) is a sequence s0l0s1l0 . . . ln−1sn with si ∈ S and li ∈ L, such that, for

all 0 ≤ i < n, si
li−→ si+1 holds. We write such a run as s0

l0−→ s1
l1−→ . . .

ln−1−→ sn.

For an LTSi (S,L, T, I), a run s0
l0−→ . . .

ln−1−→ sn is initial if s0 = I. A finite

run s0
l0−→ . . .

ln−1−→ sn is called maximal if (sn, l, s) 6∈ T for all l ∈ L, s ∈ S.
Likewise, we define infinite runs as a sequence s0

l0−→ s1
l1−→ . . . with si

li−→
si+1 for all i ≥ 0 (and, again s0 = I for infinite initial runs).

Let L be an LTSi. We are mostly interested in the set Runs(L) = Runsmi (L)∪
Runsωi (L) with Runsmi (L) the set of initial, maximal runs of L and Runsωi (L) the set
of initial, infinite runs of L. We call an LTSi terminating, if Runs(L) = Runsmi (L)
and non-terminating, if Runs(L) = Runsωi (L).

A run can be reduced by removing states and transitions that are not important

to us: Let s = s0
l0−→ . . .

ln−1−→ sn be a finite run and ϕ ⊆ L a set of observable labels.

The run reduction s|ϕ = s0

li1−→ si1+1

li2−→ . . .
lim−→ sim+1 is the run obtained by the

strictly monotonically increasing sequence i1, . . . , im with im < n and lij ∈ ϕ and
lk 6∈ ϕ for all ij < k < ij+1 for all 0 ≤ j < n. An example is given in Fig. 4.5,
here, the sequence {1, 4, 5} is used. Reduction for infinite runs is defined in the
obvious manner, but note that it is not always possible to build an infinite reduced
run (if only a finite number of labels is observable, the reduced run will be finite; if
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no labels are observable at all, it will consist of the sole state s0). We extend the
reduction to sets of runs by setting R|ϕ = {r|ϕ | r ∈ R}.

Sometimes, we are not interested in the states of a run, but only in its labels.
This is especially true for components, where communication is observable, but the
data state is not; communication produces transitions, so it is sufficient to just
observe them. We hence define traces, which are just sequences of labels:

Definition 4.8 (Trace). The trace of a run s0
l0−→ . . .

ln−1−→ sn is the sequence
〈l0, . . . , ln−1〉 of labels.

For an LTS L, we set Traces(L) = {t | t is a trace of a run r ∈ Runs(L)}.

Infinite traces are defined in the obvious manner, as is the reduction t|L′′ of a
trace t for L′′ ⊆ L′.

Traces hide the states, but sometimes the labels still bear too much information.
We hence introduce trace abstractions:

Definition 4.9 (Trace abstraction). Let A be a set and α : L → A ∪ {τ}
be a function. The α-trace abstraction of a trace 〈l0, l1, . . . , ln〉 is the trace
〈α(l0), α(l1), . . . , α(ln)〉|A\{τ}.

We will use these trace abstractions to throw away all information we are not
interested in.

4.4.3. Weak Bisimulation. Weak bisimulation is a concept useful for comparing
LTS. Basically, it states that any progress in one LTS can be simulated by the other,
and vice versa, allowing for hidden actions in between. These hidden actions are
usually required if an LTS is more refined than another, breaking a single step into
multiple substeps. Hence, weak bisimulation is defined with respect to a set of
labels, which are assumed to be visible.

Technically, weak bisimulation is a relation on states for an LTS (a single one,
see below), and defined via the definition of weak simulation:

Definition 4.10 (Weak simulation). For a set L′ ⊆ L, a relation ∼ ⊆ S × S
is a weak simulation relation with respect to L′ if, for all s, s′ ∈ S with s ∼ s′ we
have, for all t ∈ S, l ∈ L, if s l−→ t, then

• if l ∈ L′, then there exists t′, t′′, t′′′ ∈ S with s′
L\L′

−→∗ t′′ l−→ t′′′
L\L′

−→∗ t′ and
t ∼ t′,

• if l 6∈ L′, then there exists t′ ∈ S with s′
L\L′

−→∗ t′ and t ∼ t′.

Weak simulation hence relates two states if the second state can mimic the
moves the first state can do by doing the same move (plus a possible empty sequence
of hidden moves) and reaching a relating state again.

Definition 4.11 (Weak bisimulation). A relation ∼ ⊆ S×S is a weak bisimu-
lation relation with respect to L′ ⊆ L if both ∼ and ∼−1 = {(s, s′) ∈ S×S | s′ ∼ s}
are weak simulation relations with respect to L′.

Weak bisimulation can be used to compare different LTS. As it is defined on
one LTS, we first combine two LTS by building the disjoint union:

Definition 4.12 (Disjoint union of LTS). Let L = (S,L, T ) and L′ =
(S′, L, T ′) be LTS with the same set of labels L. The disjoint union L′′ = (S′′, L, T ′′)
of L and L′ is given by:

• S′′ = (S × {1}) ∪ (S′ × {2}),
• T ′′ = {(q, l, q′) ∈ S′′ × L × S′′ | ∃(s, l, s′) ∈ T . q = (s, 1) ∧ q′ = (s′, 1)} ∪
{(q, l, q′) ∈ S′′ × L× S′′ | ∃(s, l, s′) ∈ T ′ . q = (s, 2) ∧ q′ = (s′, 2)}.
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By relating states within that disjoint union such that states from S are related
to states from S′, we can define what it means for two LTS to be weak bisimilar:

Definition 4.13 (Weak bisimilarity of LTS). Two LTS L = (S,L, T ) and
L′ = (S′, L, T ′) are weak bisimilar with respect to L′′ ⊆ L if there exists ∼ ⊆
((S ×{1})× (S′ ×{2})∪ (S′ ×{2})× (S ×{1}) such that ∼ is a weak bisimulation
relation with respect to L′′ of the disjoint union of L and L′.

Two LTSi L = (S,L, T, i) and L′ = (S′, L, T ′, i′) are weak bisimilar with respect
to L′′ ⊆ L if (S,L, T ) and (S′, L, T ′) are weak bisimilar with respect to L′′ due to
the weak bisimulation relation with respect to L′′ ∼ and (i, 1) ∼ (i′, 2) as well as
(i′, 2) ∼ (i, 1).

An important kind of weak bisimulation is (strong) bisimulation, which is de-
fined as weak bisimulation with respect to L, i.e., the entire set of labels. For
(strong) bisimulation, no hidden moves are allowed, and bisimilar LTS need to run
synchronously.

For weak bisimilar LTS, an important property (known as trace equivalence)
can be shown:

Lemma 4.1. Let L and L′ be weak bisimilar LTSi with respect to L′′. Then,
Traces(L)|L′′ = Traces(L′)|L′′ .

Proof. We consider an initial run r = s0
l0−→ s1

l1−→ . . . ∈ Runs(L) and
show the existence of a suitable run r′ = s′0

l0−→ s′1
l1−→ . . . ∈ Runs(L′) with

(si, 1) ∼ (s′ji , 2) for a monotonically increasing sequence j0, j1, j2, . . . with j0 = 0
by building this r′ by an induction on the length i of r:

• i = 0, since s0 = i and s′0 = i′ and by requirement i ∼ i′ we have s0 ∼ s′0,
• i→ i+ 1: By induction hypothesis, we have si ∼ s′ji .

– If si
l−→ si+1 for l ∈ L′′, then by weak bisimulation requirement,

there is an s′ with si+1 ∼ s′ and s′ji
L\L′′

−→∗ s′′ l−→ s′′′
L\L′′

−→∗ s′. We can
add this sequence to r′ and set ji+1 to the position of s′ in r′. Note
that only one l ∈ L′′ is used, hence both si

l−→ si+1 and s′ji →
∗ s′ji+1

account for a single entry in the L′′-reduction of the traces of r and
r′ each.

– If si
l−→ si+1 for l 6∈ L′′, then by weak bisimulation requirement,

there is an s′ with si+1 ∼ s′ and s′ji
L\L′′−→ s′. We add this sequence

to r′, setting ji+1 to the position of s′ in r′. Neither l nor any of the
labels between position ji and ji+1 show up in the L′′-reduction of
the traces of r and r′.

Therefore, we obtain Traces(L)|L′′ ⊆ Traces(L′)|L′′ . The other direction follows
from the symmetry of bisimulation. �

This lemma describes why weak bisimilarity is useful for us: If two component
systems are weakly bisimilar with respect to an interesting subset of labels, then
their sets of traces, reduced to these labels, are the same (for strong bisimilarity,
the set of traces is actually the same). If we consider just the communication –
which we regard as observable in the context of components – weak bisimilarity with
respect to the communication is sufficient to show that two LTS indeed cannot be
distinguished by observation, and thus, for all we are interested in, behave alike.

4.4.4. Term Rewriting Systems. Throughout this thesis, we will use a spe-
cial notation for states and their transition, which is inspired by the Maude lan-
guage [CDE+07]. Let us assume that we are provided with a set S of component
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states (note that this set is not identical to the free accessible data states set S,
but captures the entire state of a component, including connections, queues, etc.).
For a state function s : C ⇀ S with finite domain (and all such functions describing
component setup states will have a finite domain), we write c1, s1 ‖ . . . ‖ cn, sn for
s(c1) = s1 ∧ . . . ∧ s(cn) = sn ∧ dom(s) = {c1, . . . , cn}. This turns the function into
a relation, but as long as we make sure that ci 6= cj for i 6= j, this is equivalent.
Thus, the dynamic state of a component setup is written as a sequence of tuples.
For the component models we define and use later, the si are tuples themselves,
and we flatten them, so if s(ci) = (s1

i , . . . , s
n
i ) we write ci, s1

i , . . . , s
n
i .

It will be part of the component model to precisely state how a dynamic state
of a component setup looks like, but in this thesis, it will mostly consist of such a
mapping; and we can always write it in a similar fashion, allowing for definition of
a uniform way of advancing a state.

Let us fix a set V of variables. A rule is written as

t1 → t2 if ϕ (N)

with N being the rule’s name, t1 a term over V and t2 a term over free(t1) and ϕ a
condition over free(t1), where free(t) ⊆ V are the variables of t (actually, the free
variables, but there is not quantification involved, so all variables are free).

Given a term t without free variables and a rule N, a match is a mapping m of
free(t1) to subterms of t such that

• t1 with all variables substituted by their mapped subterms equals t, and
• ϕ with all variables substituted by their mapped subterms evaluates to

true.
The result of a rule matching by m to term t is t2 with all variables substituted

by their mapped subterms.
For example, the set of component states might be given as tuples out of (P,N),

i.e., a state consists of a component process term and a natural number: S = P×N.
The set S of component data states is given by the natural numbers N. We can
then define a rule

c, set(n).P,m ‖ C → c, P, n ‖ C if true (EXSET)

This rule, which is referenced by the name EXSET (“example set”, in order to avoid
confusion with rules given later), matches to the state

c1, set(5).return.success, 15 ‖ c2, fail, 2

by setting

m = {c 7→ c1, n 7→ 5, P 7→ return.success,m 7→ 15, C 7→ (c2, fail, 2)}.

The result will be a state of the form

c1, return.success, 5 ‖ c2, fail, 2.

For brevity – and, ultimately, clarity – we omit all those elements of the state
within a rule that do not contribute to the matching. So, even if we are given a much
bigger component state tuple, we would still write the rule EXSET like stated above
(and omit both the C and the “if true” part), since no further state information
is decisive for matching the terms the rule can be applied to:

c, set(n).P,m→ c, P, n. (EXSET)

Which element of the rule matches to which element of the state term will always be
clear from the context (i.e., the elements of a component state have disjoint types,
and from the syntax it will always be clear which element is addressed within a
rule).
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For a given rule and a given state, more than one match might be possible.
In our context, this often applies to the choice of the component to move. For
example, the rule EXSET has two matches in the state

c1, set(5).return.success, 15 ‖ c2, set(7).fail, 2.

To declare which match is to be taken, a rule can be instantiated, that is, the
variables of the left side of the rule can be bound explicitly to matching elements of
the (state) term, thus producing a new state by inserting these variables in the right
hand side. For a rule R with free variables x1, . . . , xn, we write R(x1 : v1, . . . , xn :
vn) to indicate that R is instantiated with variable xi bound to vi in the state
representation. So, in the example given above, we can write EXSET(c : c1, n : 5, P :
return.success,m : 15) to indicate the first of the two possible matches. Sometimes,
we wish to talk about sets of rule instantiations, which we denote by underspecified
rule instantiations, meaning the set of all rule instantiations for which the non-
mentioned (or free in the current context) variables are assigned any value; for
example, we write EXSET() for the set {EXSET(c : c1, n : 5, P : return.success,m :
15), EXSET(c : c2, n : 7, P : fail,m : 2)}. For convenience, we will assume that
choosing an element from the set binds the formerly free variables to the values
chosen. So we write l ∈ EXSET(c : c1, n : N) meaning that l is of the form EXSET(c :
c1, n : N,P : P ′,m : M) for arbitrary N , P ′ and M , and we will bind N to the
value that is actually used in l. In order to facilitate the reading of such sets, we
write n : N to indicate that N is supposed to be a free variable that becomes bound
to the value used.

Rule instantiations act as labels of an LTS (S,L, T ), where we set
• S the set of terms as mandated by the component model,
• L the set of rule instantiations,
• (s, l, s′) ∈ T if s can be transformed to s′ by application of rule instantia-

tion l.
Thus, we obtain a concise notion for a rewriting system [DJ90]. However, as

we perceive each rule application as a step of the system described, we are not
interested in properties like confluence or normal forms. Instead, we are interested
in properties that the resulting LTS yields, most importantly its finiteness (which
is usually not given) and whether states satisfying a certain property are reachable
(violation of a safety property) or can be avoided forever (violation of a liveness
property).

The concept of hiding superfluous information in the rule instantiations carries
over to the definition of weak bisimilarity of LTS obtained from term rewriting sys-
tems. If no information is hidden, only identical systems would be weakly bisimilar,
since any difference in a term would yield different rule instantiations. By only dis-
cussing rules instantiated with as few variables as required to consistently produce
the resulting state, the concept of weak bisimilarity is retained for term rewriting
systems.

4.5. Component Models

We can now define what a component model actually is. In the previous sec-
tions, we have assembled the ingredients:

Definition 4.14 (Component model). A component model is comprised of
• a set S of states (which are to be written as terms),
• a set of rules with names {(r1), . . . , (rm)},
• and a function ι : CS → S that, given a component setup as defined in

Sect. 4.3, produces the initial state.
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A component model produces a labelled transition system L = (S′, L, T ) by
setting

• S′ = S,
• L are all instantiations of the rules {r1, . . . ,rm},
• (s, l, s′) ∈ T if s′ is the result of applying the rule instantiation l to s.

As an example, the component model mentioned in the previous section defines
the component data states by setting S = N (neglecting the functions upd etc. for
the sake of simplicity) and defining the component state tuples as S = {(p, n) ∈
(P,N)}. The model states S are then given as mappings C ⇀ S .

The states of the induced labelled transition system are now all mappings
of finite sets of component identifiers to pairs of component process terms and a
natural number.

An initial state I ∈ S is calculated for a component setup (C,M, e) by the
function ι. It needs to come up with a state based on the information of the com-
ponents C (which components are to be included), M (how are they connected)
and e (which component is initialized in a special state that can be used to have
rules applied to it). Note that no reference to the initial component setup is made
by other states of the labelled transition system – this is due to the requirement to
accommodate reconfiguration, where the set of components might change. Compo-
nent models can define arbitrary rules for reconfiguration that can also introduce
components.

A component framework is an implementation of a component model. It needs
to provide a concise way to implement components (e.g., a special programming
language; if this language is based on an existing programming language, the lat-
ter is called the host language) and a system to run a component setup such that
the component execution and communication is conducted in the way described
in the model. For some component models (e.g., Corba [OMG08] or Frac-
tal [BCL+06]), multiple frameworks have been developed for the same component
model. In this thesis, a 1:1 mapping is given – each model is implemented in one
framework.

Next, we will introduce a concise language for defining the behavior of compo-
nents that translates to the more abstract component process terms.

4.6. A “Programming Language” for Components

The component process terms presented in Sect. 4.2 are quite generic. Here,
we will provide a series of macros that makes the language more readable.

First, let us fix a countable set N of variable names. We assume a function
var(m) : M → N ∗ that assigns a sequence of variable names to a method name .
For ease of reading, we assume that the method names are of the form m(v1, . . . , vn)
and subsequently use var(m(v1, . . . , vn)) = 〈v1, . . . , vn〉. The (untyped) parameters
are thereby made part of the method name (or signature), as it is done in many
programming languages like Java.

The set S of component data states is then a partial mapping of variable names
to values:

S = {N ⇀ V}.

A state hence assigns values to variables. To call a method, we need to provide a
tuple of parameter values, so we assume V to be closed under tuple construction,
i.e., if 〈v1, . . . , vn〉 ∈ V∗, then 〈v1, . . . , vn〉 ∈ V.

We then define the function prm : S ×M × V → S as

prm(σ,m(p1, . . . , pn), (v1, . . . , vn)) = σ[p1 7→ v1] . . . [pn 7→ vn].
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For updating of states, define

upd(σ, σ′) =

(
v 7→

{
σ′(v), if v ∈ dom(σ′)
σ(v), otherwise

)
.

The return value of methods utilizes a special variable res ∈ N :

ret(σ, v) = upd(σ, (res 7→ v)).

For writing down assignments, we introduce a macro of the form v ← t, with
v ∈ N and t being a predicate logic term over N (for brevity, we omit exact
specification and generously use common mathematical notations from arithmetic
and set theory). We denote the evaluation of a term t under the mapping σ : N →
V as JtKσ ∈ V. For a predicate ϕ, we write the evaluation in state σ ∈ S as JϕKσ ∈ B
and JϕK = {σ ∈ S | JϕKσ = true} ⊆ S.

Such an assignment translates to choose((ϕi.set({v 7→ i}))i∈V) with ϕi ≡ JtKσ =
i. Thus, the assignment of variable v is updated to the value JtKσ of term t in state
σ.

We also introduce a macro v′ ← call(r,m, v) for call(r,m, v).(v′ ← res) to
actively process the return value of method calls. We introduce return(n) with
n ∈ N for choose((ϕi.return(i).success)i∈V) with ϕi = {s ∈ S | s(n) = i}. We
write return for return(⊥).

Finally, we introduce a macro for case distinction: if ϕ thenP1 elseP2 fi trans-
lates to choose((JϕK.P1), (J¬ϕK.P2)) and makes things just more readable.

Of course, these definitions allow for a great many of malicious formulations:
Method calls parameter tuples might contain less elements than their method re-
quires, or variables might become addressed that are not bound (and thus undefined
in the state function, or, worse, defined by a parameter of a previously processed
method). We assume, however, that the programmer of a component’s method
evaluator does not make such (deliberate) errors. Since it is the programmer’s
responsibility to prove the correctness of a component’s specification, any such
erroneous specification will only hinder the task.

Example 4.1. Let us assume a component with two roles r1 and r2, which both
require interfaces that include a method m. We might specify a method m1() that
repeatedly calls this method alternately on the roles:

µL⇒ (cnt ← cnt + 1).if (cnt mod 2 = 0) then
call(r1,m, 〈〉).L

else
call(r2,m, 〈〉).L

fi
Another method m2(p) might check if the parameter p has been passed previ-

ously, and call m on r1 if it has not been seen before, otherwise on r2:
if (v ∈ seen) then

call(r2,m, 〈〉)
else

(seen ← seen ∪ {v}).call(r1,m, 〈〉)
fi.return

A third example calls m on both r1 and r2 and adds the results:
(v1 ← call(r1,m, 〈〉)).(v2 ← call(r2,m, 〈〉)).(v ← v1 + v2).return(v)

We need to calculate the result in v, as we have not defined return(v1 + v2), but it
would be fairly easy to define an appropriate macro.

Throughout this thesis, we will use this “programming language” liberally, and
since its informal intend is so obvious, often use it without explicitly mentioning it.



CHAPTER 5

A Case Study of a Synchronous Component
Model: The cmccmccmc Model Checker

Wenn ich sechs Hengste zahlen kann,

Sind ihre Kräfte nicht die meine?

Ich renne zu und bin ein rechter Mann,

Als hätt ich vierundzwanzig Beine.

— Johann Wolfgang Goethe, Faust I

Developing the “component-based model checker” (cmc) [HW06a] was an in-
teresting experience which profoundly influenced the view on components taken in
this thesis. The success of developing a model checker with fine-grained, “no longer
to be profitably divided” components led to adopt this perception of component
granularity for the research presented in this thesis. While cmc was never sub-
jected to (runtime) reconfiguration, we still report on the experience obtained, as it
justifies many design decision taken later. For a direct understanding of our recon-
figuration approach, this chapter is not required, however, and should be considered
as a (hopefully interesting) detour.

The idea of developing a component-based model checker stems from the ex-
perience obtained by implementing LwaaSpin [HKM05] which is an extension of
the Spin model checker [Hol03]. Spin, however, is not a model checker itself, but

Figure 5.1: State Space Visualization for Peterson’s Mutual Exclusion Proto-
col [Pet81], 3 processes
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a code generator. For a given Promela input file, source code of a customized
model checker is generated. By compiling it, a made-to-measure model checker is
obtained, which excels at saving time and memory (since many choices can be made
at compile time, e.g., user settings can be compiled into the model checker, mak-
ing case distinctions unnecessary). Extending such a framework requires a rather
hideous amount of hacking, and we hence became interested in developing a model
checker capable of quick module replacement; an approach that is of interest to a
wide user group (e.g., in personal communication regarding [SE05] and [LSW03]).

After some initial steps, a quite specialized model checker emerged which uti-
lizes a special technique. This is but one direction this research might have taken.
The idea of cmc was well-received by the scientific community [Eur06]. For this
thesis, the contribution is given by the insights obtained during the development
process. Both the benefits (e.g., rapid development of algorithm variations) and
the drawbacks (e.g., performance loss) of component-based software development
become evident in this rather narrowed view on the subject. Also, the design deci-
sions about the component model sparked ideas that influenced the design of the
more mature JComp component model, discussed in Sect. 6.2. Other than these
immaterial contributions to the overall view on components, and the most beautiful
illustrations of this work, this chapter can be considered to be a little detour within
this thesis, covering (and explaining) areas otherwise not of particular interest.

Model checking is a technique that has grown to become a well-established
approach of formal methods. Basically, it amounts to searching for a node (or,
more generally, a subgraph) satisfying a certain property in a finite graph (i.e.,
a graph with finite V and E). The graph, however, is not given in an explicit
description (i.e., by a tuple as introduced in Sect. 4.3). Instead, it is described,
e.g., by a term rewriting system as introduced in Sect. 4.4.4; but most often, an
(abstract) programming language is used. Obviously, such a description can be
vastly more succinct than the final graph.

Explicit model checking then progressively generates the graph from the de-
scription, and checks if the sought-after feature is found. For example, the graph
might be described by a short program, the formal semantics of the programming
language, and an initial state; with the graph representing program states as nodes
and statement executions as edges (usually, an LTS is used as the underlying formal-
ism for the graph). The search might then look for a node representing a program
state where some exception has been thrown, or where a deadlock is encountered;
or it might look for a run in which the program never does something that it is
desired to do (e.g., terminate).

The benefit of model checking is that many problems in computer science can
be transformed to graphs, with examples provided throughout this thesis. If a
matching state is found, a counter-example can be provided that shows a way
from the initial state to the state just found. Since the sought-after state usually
resembles an error, the series of events leading to this error can be assessed. The
downside of model checking is its vast memory requirement, since even very short
descriptions can produce exuberantly large graphs. From an abstract view, most
of the research done on model checking concerns ways to handle such large graphs,
and a large number of approaches have been proposed, cf. [CGP00]. The cmc
model checker described in this chapter offers a solution that combines some of the
well-established results, and provides competitive performance.

This chapter starts with a brief explanation of the genesis of the cmc model
checker, because it was an interesting experience with components in a field where
they are usually not utilized; followed by the formal description of the component
model, using the definition given in Chapter 4. We will then describe the cmc model
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Bitstate hashingState generator Tarjan’s algorithmus

Jenkin’s hash

Stack index

Generator Search Set representation

Figure 5.2: First ideas of cmc, with the three abstract components

checker as an example for the synchronous model, and briefly illustrate an extension
to parallelize it. For completeness, and for preparing the discussion related to
reconfigurability in Sect. 8.4.4, we will finish this chapter with some benchmarking
results.

5.1. Evolution of the cmccmccmc Model Checker

5.1.1. First Ideas. An explicit model checker basically consists of three abstract
components: First, a generator of the graph, as described above. This generator
can calculate the set of states directly reachable from a given state, as well as
produce the initial state from which the graph exploration starts. Second, a set
representation is used to store which states have already been seen, in order to
avoid revisits and generating a circle of states over and over again. Third, a search
component is required to coordinate these two components by fetching successor
states from the generator, querying the set of seen states about which ones are new,
and recursively process these. Obviously, a large number of components can (and
need to) be defined that refine these three basic components.

We need to mentioned that the set representation (which is almost always done
with a hash table, with a notable distinction presented in [HP99]) is where. more
or less, most of the memory is spent. Ultimately, the memory requirements of this
set representation become the limiting factor of the model checker’s capabilities.

After pursuing some initial ideas on how a component-based model checker
might be built (as shown in Fig. 5.2), a lightweight component framework was
programmed that employs the standard method invocation of C++ to perform
component communication. After a meeting with Michael Weber, we used the
NipsVM [Web07] to investigate ideas introduced in [BLP03] which amount to
not storing every state during a search, but only a few, while deliberately accepting
parts of the search-space to be visited twice. This helps to preserve memory, at
the cost of running time. But we were not able to reproduce the good results re-
ported in [BLP03] (also cf. [PITZ02]) and achieved little more than good-looking
graphics, generated to understand the structure of state spaces (cf. Fig. 5.1).

We called the hash table that was allowed to forget states a lossy hash table. It is
an under-approximation of a set, i.e., it can tell you that an element is in a set, but it
cannot be sure if an element is not included (as it might have been lost earlier). The
key idea of cmc is to combine this with another component that provides a over-
approximation of a set, which is provided by Bloom filters [Blo70, Hol98, DM04].
Together, we obtain a three-valued decision algorithm, and for those states that get
a “don’t know” answer, the (large and cheap) magnetic disk can be used to resolve
their state.
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open ← {initialState}
candidate ← ∅
disk ← ∅

while(true) do
if open = ∅ then diskLookup() fi
State s ← open.removeState()
for s′ ∈ succ(s) do

if bloom.isUnvisited(s′) then
addToOpen(s′)

else
if¬lossy .isVisited(s′) then

candidate ← candidate ∪ {s′}
fi

fi
od

od

funct addToOpen(State s) body
open ← open ∪ {s}
bloom.add(s)

if lossy .isFull() then
State s′ ← lossy .reclaim()
disk ← disk ∪ {s′}

fi
lossy .add(s)

endfunct

funct diskLookup() body
for s ∈ disk do

if s ∈ candidate then
candidate ← candidate \ {s}

fi
od
if candidate = ∅ then

terminateSearch()
fi
for s ∈ candidate do

addToOpen(s)
od

endfunct

Figure 5.3: Pseudo-code for the cmc algorithm

Thus, the first version of cmc involved a chain of approximations of sets, each
of which could either declare a definitive result, or delegate the check to the next
element of the chain. For example, the lossy hash table can give either a “state
visited” if the state is found in the hash table, or a “state unvisited” if it is not
found and no state has yet been removed from the table to free its memory. If both
criteria are not met, the next element in the chain is queried – as can be seen from
Fig. 5.13 on page 108, this happens to be a “terminator” component that closes the
chain (the exact pattern will be discussed in Sect. 8.3.1). The only purpose of this
component is to declare that the approximations all failed, to count the number
of times this happens, and to return the call to the search component, which then
adds the state to the candidate set. Thus, a series of components act together to
implement an algorithm that is given in pseudo-code notation in Fig. 5.3.

5.1.2. Speeding Up the Disk Access. When we use the disk to resolve states
that cannot be resolved by the in-memory caches we need to consider the technical
constraints imposed by using a magnetic disk: Linear reading is quite fast, while
random access becomes prohibitively slow. The usual approach to address this issue
is to do a sequential scan of the disk [SD98, BJ05] and compare the read states
to those in memory, the so-called candidate set. We also employed this approach,
but still found it to be slow – during a disk lookup (done when the candidate
set becomes too large to be kept in memory) the CPU is mostly idling. Hence,
we had computation time available during the I/O operations, which we spent on
compressing the data written to disk using the zLIB [GA95]. This produces not
only much smaller disk files, but it also speeds up the entire process as the CPU is
now fully involved during a disk lookup (cf. Fig. 5.5).
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pages relative time formethod
written read

runtime
I/O preparation

HC, 5 byte 896 6872 9:21 7.89% 2.13%
HC, 8 byte 1472 11285 9:48 12.36% 2.02%
zLIB 2880 23205 14:03 4.13% 22.27%
plain disk 56816 438896 47:12 74.84% —

Table 5.1: I/O effort for verifying the pftp protocol (queue size 11, 12.9 million
states), as provided with the Spin model checker. preparation describes the part
of the algorithm that processes data that is written to or read from disk; for hash
compaction (HC, [WL93]), this consists of calculating hash values for the state,
whereas for the zLIB-using algorithm, this contains de- and inflating disk pages.

non-AA AA zLIB avg. SV
Model States

states
Edges

revisits compr. SV 0’s

Hugo: Hot Failover1 4.5M 3.8M 8.5M 5.1M 3.20% 756.6 68%

Peterson, n = 5 68.9M 68.9M 378.9M 0.0M 9.06% 148.5 72%

pftp, queuesize=11 14.3M 12.9M 38.7M 5.8M 4.15% 298.0 56%

Lunar, scenario 4(b) 3.3M 0.7M 3.9M 0.9M 5.04% 595.5 42%

Dining Phil., n = 9 4.6M 4.5M 12.2M 3.2M 9.95% 95.0 51%

Leader election 8.2M 8.2M 58.4M 0.0M 2.42% 788.0 70%

1 This is a scaled-down model. For the full model, see Table 5.4

Table 5.2: Some statistics for smaller models checked in cmc. States is the total
number of states, non-AA states the number of states with more than one successor,
Edges the number of totally generated states (including revisits), AA revisits the
number of revisits that are made to auto-atomic-filtered states, zLIB compr. the
compression ratio achieved by compressing the states written to disk (5% is a
twenty-fold compression), avg. SV is the average state vector size in bytes, and SV
0’s the percentage of bytes that are 0 in the state vectors.

Tab. 5.2 shows the compression obtained for some models. A twenty-fold com-
pression is regularly achieved, which is quite comprehensible given the large size of
a state vector for large models, and the comparatively limited number of states – if
the states did not contain large sequences of zeroes and many repetitions, the state
space size obtained for a model with v state vector bytes would be much closer
to the theoretical limit of 8v. For example, scenario 4(b) of the Lunar protocol
suite [WPP04] has an average state vector size of 664 bytes and a state space
with 248 million states; obviously, large parts of the state vector need to be rather
similar, and as the last column of Tab. 5.2 shows, a large fraction of the state vector
actually consists of zeroes.

Adding a state compression is made easy by the component model: It just re-
quires the addition of a component, located between the candidate resolving com-
ponent and the disk query component (Æ in Fig. 5.7). For a different compression
algorithm, one just needs to replace the compression component; given a little care
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(a) Lasso-style infinite paths

×

×

(b) Revisited single-successor

states (marked with ×)

Figure 5.4: Problems with the “Auto-Atomic Filter” improvement of cmc

at the interface design, no surrounding code needs to be modified. Assembling dif-
ferent configurations that compare different approaches as shown in Tab. 5.1 can
be done in a matter of a few minutes, once the different components are written.

5.1.3. Further Experiments. Another invention utilized in the cmc model
checker is the “auto-atomic filter”. This component is plugged between the search
and the state generator component. The state generator is asked by the search
component to produce a list of successor states for a given state. If there is a single
successor state only, the auto-atomic filter queries that state again, until a list with
more than one successor state is found; only this list is returned to the search. This
is a very easy (and controllable) variation of the ideas we first pursued, building
on [BLP03].

There are two problems associated with this approach, illustrated in Fig. 5.4:
First, the search might get stuck in a lasso-style infinite path. Second, some states
might be revisited multiple times, if a state within a single-successor chain is the
successor of multiple states. The first problem – which actually exists, e.g., in the
GIOP protocol [KL00] – can be mended by allowing only a limited length for single-
successor chains; when pursuing the lasso, eventually a state will be recognized as
revisited. The second problem is deliberately accepted: While a certain number of
states is revisited (and this might account for as much as half of the total of visited
states) the reduction of the number of states that need to be considered is often
worth the effort (cf. Tab 5.2, the difference between the first data column (total
number of states) and the second column is the number of states not stored due to
the auto-atomic filtering; the forth column gives the number of states superfluously
revisited). Even if more states are visited, the number of states that need to
be stored is cut down, and their number ultimately becomes the limiting factor
regarding the ability to check a given model.

5.2. The Component Framework of cmccmccmc

The cmc model checker utilizes the modularity of components, but at the
same time tries to be as efficient as justifiable. This is reflected in the choice of its
implementation language (which also serves as the component host language), and
the design of the component model.
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5.2.1. Choice of Programming Language and Communication Para-
digm. cmc is written in C++ [Str86]. Most model checkers are written in C,
e.g., Spin [Hol03], NuSMV [CCGR99] and Murϕ [DDHY92], or C++, e.g.,
Magic [CCG+03]. Notable exceptions are Blast [HJMS03], which is written
in OCaml, or the Java PathFinder [VHB+03], which is written in Java, but
both model checkers are struggling with theoretical limitations more than with ac-
tual efficiency concerns. C and C++ are still superior in terms of abilities to save
memory, and in the availability of highly optimized components like hash functions,
e.g. [Jen97, App08]. We chose C++ since the component model could benefit from
the provided class mechanism, but inside the components, the actual language we
use is C (i.e., there is no object orientation within the components, save for a few
minor examples where structures might have been used as well). Communication is
conducted by using the standard C++ method invocation on the required interface;
the reference to the providing component is directly injected into the caller com-
ponent. This is quite similar to the approach of Koala [Omm98, OLKM00],
which also uses direct C method invocation for inter-component communication.

5.2.2. The Component Preprocessor. The component model utilizes code
generation for the glue code. The components are defined in a number of header
files, with some macros defining their specific properties (e.g., which attributes are
to be understood as communication roles and to be bound by the assembly glue
code). The assembly is defined in a special file. Given such a set of header files and
an assembly, a preprocessor generates component wrappers (i.e., subclasses of the
actual components that provide methods for attaching the ports and setting the
parameters) and the assembly glue code. All this is then compiled into the model
checker. If multiple assembly files are provided, glue code is generated for each, and
the actual assembly can be chosen using a runtime switch. However, we never used
that feature, since compiling the assembly code becomes time-consuming quickly.

The preprocessor also generates filter code. Using the filter pattern described
in Sect. 8.1.2.1, a number of debugging/profiling filters is generated. They can be
used to monitor the communication of components. For example, Fig. 5.5 was built
using a filter that stored which component the current thread is in (as discussed
below, there is only one thread in standard cmc). Using a timer, this value was
frequently written to a file, and then accumulated for a set of “tasks”, which are
shown in the diagrams.

More interesting than the structure are the decisions made about the communi-
cation of components. For many component models, it is somewhat silently assumed
that components each run in their own thread. For cmc, however, this is infeasi-
ble, as the overhead of thread switching is too high, as later proven by experiments
with a multi-threaded version (see Sect. 5.3.2). Instead, a single thread “traverses
between components”, using the usual method call mechanism of C++. So, instead
of enqueueing a method object into the target component’s queue and wait for the
dedicated thread of the target component to dequeue and process it, the current
active thread loads the context of the target component and starts processing the
method. Hence, all calls are synchronous, with the possibility of synchronous call-
backs (which are often forbidden for concurrent components, cf. Sect. 6.2). A nice
picture of such a communication is a token that is passed between components, car-
rying data with it (either parameters or return values) and eventually going back
the path it came (cf. [CTTV04] for an interesting approach to model checking
such systems). This is known as activity flow [VDBM97].

5.2.3. Shared Memory. For performance reasons, the components of cmc need
to share memory. This is highly problematic for a generic component framework,
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Figure 5.5: Distribution of CPU time for cmc runs

and proved to be a major source of problems in cmc. However, the largest run we
did with cmc (Lunar Scenario 4(f) [WPP04]) produced 2.5 billion states, most of
them 745 bytes large (1.72 terabyte within 38 hours and 36 minutes – of course,
many of these states are duplicates of already visited ones). Passing a 64 bit
pointer requires 93 times less memory than serializing and deserializing the state
data. Given that each state is passed to at least six components, and possibly to
many more, the infeasibility of not using shared memory should be obvious.

During developing cmc, shared memory became a big problem. Many compo-
nents can conclude that they no longer need to store a state and need to free its
memory (cf. Fig. 5.13, all components connected to the memory manager might
free states). For example, any state that is put in the open set needs to be stored
in the caches – to avoid adding the state to the open set a second time before the
first copy is processed. When memory becomes scarce, the lossy hash table chooses
some states to be swapped to disk. Depending on the heuristic used, some of these
states might also be stored in the open set. Due to the utilization of shared memory,
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both the open set and the lossy hash table point to the same state representations.
The lossy hash table might then proceed to write the states to disk and remove
them from memory, leading to problems when the state is taken from the open set
for processing in the search algorithm.

In the better case, a segmentation fault is encountered which indicates that
a state was freed by one component, but is still used by another. However, seg-
mentation faults are a risky business compared to a NullPointerException, as
they are not guaranteed to happen when a problem occurs – if the memory that is
falsely addressed is already given to another component, no such error occurs, and
even worse, this can trigger other segmentation faults because of misinterpreted
data, which is almost impossible to debug (although nowadays, tools like Val-
grind [NS07] are available to find the cause of such problems, but the vast size of
many models averts their application, requiring a tedious search for a reproduction
of the problem for a small model).

Even worse are memory leaks. cmc is all about saving memory – for the run
of Lunar Scenario 4(f) (cf. Tab. 5.4), a total of 232.15 gigabyte of state data was
stored in the disk/cache combination. As this vastly exceeds available RAM, there
must not be a leakage of even a small fraction of states. However, as states are
shared, the various buffers need to execute great care not to invalidate data that
is still referenced by another component. Finding memory leaks required a lot of
code reading and lengthy test runs.

This experience with cmc illustrate the benefits of a clean separation of the
memory space of components, as we realized it in JComp later. For cmc, however,
the focus is different. We refer to this approach as lightweight components, as they
form a mere wrapper on the host programming language C++ and are not at all
restrictive. Components are thus understood as a design concept, and support is
provided for their use, but nothing is prohibited or hidden. This has been criticized
as being nothing but “mere object orientation” – and of course, we use even less than
object orientation usually provides (e.g., no inheritance – although we use inheriting
components to avoid duplicate code, we do not use dynamic dispatch other than for
port interfaces). Components for cmc are a means for reasoning about algorithms,
understanding the data flow, and rearranging them for easy comparisons.

5.2.4. The Formal Model. We will now describe the LTS that defines the dy-
namic behavior of a component setup in the cmc framework. As mentioned before,
components share memory, hence the accessible data is global – all of it, since
components are free to communicate a pointer to any data to other components.
This approach is possible because we model a closed system (cf. [KS99]) – there is
no “attacker” that might manipulate publicly accessible data. Instead, all compo-
nents are known, and if there is some misuse of shared memory, this is a fault of
the system designer who assembled incompatible components (cf. the discussion in
Sect. 9.1.2.2).

However, there is data to be stored for each component that cannot be ac-
cessed by the other components: A stack that keeps track of the currently executed
method, the method invocation parameters and the component process term to be
executed next. Further component-private data are the return value of the last
method called on some other component and a function γ(c), which tells us how
this component is connected to other components. This function needs to be part
of the state, as the connection of components might change during runtime due to
reconfiguration. Additionally, each component has a flag that indicates whether it
is running, i.e., currently executing a method, or blocked – waiting for becoming
called, or for a method call to return.
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cr1, 〈(c11.m1
1(p1

1), call(r,m, v).P ), π1〉, γ1 ‖ cb2 , 〈π2〉 → (CALL)
cb1 , 〈(c11.m1

1(p1
1), P ), π1〉, γ1 ‖ cr2, 〈(c1.m(v), ζ(c2)(m)), π2〉

if c2 = γ1(r)

cr1, 〈(c1.m1(p1), call(r,m, v).P ), π〉, γ → (SCALL)
cr1, 〈(c.m(v), ζ(c)(m)), (c1.m1(p1), P ), π〉, γ
if c = γ(r)

cr1, 〈(c2.m(p), return(r).P ), π1〉 ‖ cb2 , r2 → cb1 , 〈π1〉 ‖ cr2, r (RET)

cr1, 〈(c.m(p), return(r).P ), π〉, r′ → cr1, 〈π〉, r (SRET)

σ | cr, 〈(c2.m(p), set(σ′).P ), π〉 → upd(σ, σ′) | cr, 〈(c2.m(p), P ), π〉 (SET)

σ | cr, 〈(c2.m(p), choose((Σj .Pj)j∈J)), π〉, r → cr, 〈(c2.m(p), Pi), π〉, r (IF)
if ret(prm(σ,m, p), r) ∈ Σi

cr, 〈(c2.m(p), µX.P ), π〉 → cr, 〈(c2.m(p), P [X/(µX.P )]), π〉 (LOOP)

Table 5.3: Rules for the cmc component model

Given the universe C of components and a set S of component data states, we
define the set S of states to be comprised of tuples (σ, c) with σ ∈ S and c : C ⇀ S .
S is the set of component configurations, which are tuples of the form

(id , f, π, r, γ)

with f ∈ {r,b} being the running flag, π ∈ (C ∪ {⊥} ×M × V × P)∗ the stack of
invocations and component process terms, r ∈ V the return value last received, and
γ ∈ (R ⇀ C) the connections of the roles.

The universe C is intended to capture all defined components – which makes it
of infinite size, since components might be generated. The domain of the function
c must be finite – and those components for which c is defined are the nodes of the
component graph of that state. For each ci(c) = (id , f, π, r, γ), we require γ to be
well-connected and completely connected for c.

For a more readable state representation, we write

σ | cf11 , 〈(c11.m1
1(p1

1), P 1
1 ), . . . , (cm1

1 .mm1
1 (pm1

1 ), Pm1
1 )〉, r1, γ1 ‖ . . . ‖

cfn
n , 〈(c1n.m1

n(p1
n), P 1

n), . . . , (cmn
n .mmn

n (pmn
n ), Pmn

n )〉, rn, γn
for a state (σ, c) with c(ci) = (fi, 〈(c1i ,m1

i , p
1
i , P

1
i ), . . . , (cmi

i ,mmi
i , pmi

i , Pmi
i )〉, ri, γi).

Tab. 5.3 displays the rules in the format described in Sect. 4.4.4. CALL per-
forms a method call. It blocks the calling component and pushes a new component
process term, which is determined by the environment ζ, on the stack of the target
component. The target component is unblocked and may then process the com-
ponent process term. Only four terms are interpreted: return, the setting of the
global data, method calls on roles, branching and looping. Hence, neither success
nor fail are used. SCALL works just like the rule CALL, but for a self-invocation of a
component; it needs to be handled by a distinct rule since no component becomes
blocked. Likewise, RET returns a call to another component, while SRET returns a
self-invocation.

The blocking and unblocking of components due to the rules CALL and RET

models that the current thread is sent to the new component, where it continues;
a procedure called activity flow [VDBM97] that is known from most imperative
programming languages.
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RET handles a return statement by setting the last return statement of the
calling component to the value given, blocking the called component (and removing
its topmost stack element – thus also removing any component process term that is
following the return statement) and unblocking the calling component. The calling
component’s process term is already stripped off the call subterm, so execution
continues with the next term.

SET sets the global data value. IF selects a process term according to the current
global data state, as well as the (component-local) method parameters and the last
return value. (This return value is not put on the stack, as it is overwritten by
method return anyway.) Finally, LOOP realizes one iteration of a loop µX ⇒ P by
taking the loop body P and replacing any occurrence of X with another instance
of the loop.

Obviously, if a state has exactly one component running, any subsequent state
will also only have one component running. The rules do not really support multiple
components running, unless they do not interfere – i.e., no component is ever called
while it is running itself. We will consider such a scenario in Sect. 5.3.2.

Given a component setup (C,M, e) with C = (c1, . . . , cn) and e = (cs,m), the
initial state ss = (σ, c) is built by setting σ = upd(. . . upd(ι(c1), ι(c2)), . . . , ι(cn))
and

c(ci) =

{
(b, 〈〉,⊥,M(ci)), if ci 6= cs

(r, 〈⊥.m(⊥), ζ(ci)(m)〉,⊥,M(ci)), if ci = cs.

Obviously, the method m inserted into the initial component cs cannot ever be
left, as the RET rule is not applicable (there is no component named ⊥). Hence,
either the system never exits the method – e.g., by using a loop somewhere – or it
blocks at the final return statement.

Given this initial state, the rules now induce a labelled transition system, with
the rule instantiations being the labels. Note that a component setup with no
method of any component being interpreted by a nondeterministic component pro-
cess term produces a transition system that consists of a single path, i.e., if s→ s′

and s→ s′′, then s′ = s′′ for any state s with ss →∗ s.

5.2.4.1. Formulation of Loops by Self-Invocations. As it turns out, terms of the
form µX ⇒ P are not truly required – from an external viewpoint. They can be
substituted by a so-called self-invocation: Instead of substituting µX ⇒ P for every
X, we can also substitute a method call to the current component that realizes P :
µX ⇒ P has a comparable effect as P [X/call(self ,mP , v).return(r).success] has.

Of course, at the level of labelled transition systems, a slightly different behavior
will be observed: For every iteration using such a self-call, a CALL rule will be
applied, whereas for the iteration with substitution, we use the rule LOOP. For the
former, the stack will also grow. This is illustrated in Fig. 5.6; the arrows are
arbitrary sequences of states, being the same (with respect to the labels executed;
the stack obviously differs) in both run variants. But if we take a point of view
distant enough, the systems act the same: They are weakly bisimilar with respect
to a set of labels that does not contain the rule instantiations of LOOP and the
self-invocations. For example, we might restrict our interest to truly outgoing
communication:

Lemma 5.1. Let c be a component with self-invocation capabilities as described
above in a component setup (C,M, e). Then the communication behavior of c
(excluding self-invocations) remains the same if we substitute, for each method
m ∈

⋃
i∈IP (c) i, µ(c)(m) by µ(c)(m)[µX ⇒ P/P [X/r ← call(self ,mP , v).return(r)].
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ζ(m) :: π

µX ⇒ P :: π

P [X/µX ⇒ P ] :: π

µX ⇒ P :: π

P [X/µX ⇒ P ] :: π

return(r).P ′ :: π

π

LOOP

LOOP

RET

CALL

ζ(m) :: π

call(self ,mP , v).return(r) :: π

P [X/call(self ,mP , v).return(r)] :: return(r) :: π

call(self ,mP , v).return(r) :: return(r) :: π

P [X/call(self ,mP , v).return(r)]
:: return(r) :: return(r) :: π

return(r).P ′ :: return(r) :: return(r) :: π

return(r) :: return(r) :: π

return(r) :: π

π

SCALL

SCALL

SRET

SRET

RET

CALL

Figure 5.6: Example runs comparing loops and self-invocations

Proof. We show that the LTS L of (C,M, e) is “almost” weakly bisimilar
– with respect to the outgoing communication of c – to the LTS L′ of (C ′,M, e)
with C ′ being identical to C with exception of the method evaluator of c, which
is modified as described. “Almost” refers to the fact that a rule l ∈ CALL(c1 : c)
applied in L cannot be applied directly in L′ – since the stack of c is different. But
if l ∈ CALL(c1 : c, c2 : c2) can be applied to a state s of L, then a l′ ∈ CALL(c1 :
c, c2 : c2) can be applied to a state s′ of L′ with s ∼ s′. Hence, by restricting the set
of labels of L and L′ such that the stack is not explicitly mentioned in the labels,
we obtain weakly bisimilar systems, and Lemma 4.1 still applies, which is sufficient
to show that the communication traces are the same. For an LTS L′′ = (S,L, T )
write L′′|comm for the LTS (S, {τ} ∪

⋃
c′∈C CALL(c1 : c1, c2 : c2), T ′) with

T ′ = {(s, l, s′) | (s, l′, s′) ∈ T ∧

l =

{
CALL(c1 : c1, c2 : c2), if l′ ∈ CALL(c1 : c1, c2 : c2)
τ, otherwise.

}

We set L =
⋃
c1,c2∈C CALL(c1 : c1, c2 : c2). L|comm and L′|comm are weak

bisimilar with respect to L due to the relation ∼, which is the largest relation
satisfying: If s ∼ s′, then s = σ | cf , π, r, γ ‖ cf11 , π1, r1, γ1 ‖ . . . ‖ cfn

n , πn, rn, γn and
s′ = σ | cf , π′, r, γ ‖ cf11 , π1, r1, γ1 ‖ . . . ‖ cfn

n , πn, rn, γn, and π ≈ π′ for a relation ≈
that is defined as the smallest relation with

• ε ≈ ε,
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• if π = 〈(S, P1), π1〉 and π′ = 〈(S, P2), π2〉 with P2 = P1[µX ⇒
P ′/(P ′[X/call(self ,mP ′ , v).return(r))]] and π1 ≈ π2, then π ≈ π′,

• if π = 〈(S, P1), π1〉 and

π′ = 〈((c.mP ′′(v), P2), (c.mP ′′′(v), return(r).P ′′), π2〉

with P2 = P1[µX ⇒ P ′/(P ′[X/call(self ,mP ′ , v).return(r))] and π1 ≈ π2,
then π ≈ π′.

For s = σ | cf11 , π1, r1, γ1 ‖ . . . ‖ cfn
n , πn, rn, γn, we write π(s(ci)) for πi (hence, if

s ∼ s′, we have π(s(c)) ≈ π(s′(c)) and π(s(c′)) = π(s′(c′)) for all c′ 6= c).
∼ is indeed a weak bisimulation relation with respect to L:

• ∼ is a weak simulation relation: Let s ∼ s′, and s
l−→ t. Note that due

to π(s(c)) ≈ π(s′(c)), the next component process term to execute is the
same for s and s′, unless the next applicable rule is either LOOP or RET.

– l ∈ L. Since the component process terms to be consumed next are
the same in s and s′, and since all rule-relevant data is the same due
to s ∼ s′, we can advance s′ directly (with an almost similar rule
application that differs only in the stack) to t′ with t ∼ t′.

– l = τ . For most component process terms, the same reasoning ap-
plies. Two special cases need to be considered:
∗ The component process term to be executed next in s is

a loop construct µX ⇒ P : Since s ∼ s′, we know that
the component process term to be executed next in s′ is
a self-invocation with mP . The component process term
in t will be P [X/µX ⇒ P ]. By advancing s′, a new
method call will be pushed on the stack, which takes the form
〈(c.mP (v), P2), (c.mP (v), return(r).P ′), π2〉 with P2 as required
by substituting loops in P with self-invocations. Since π1 and
π2 are not modified, we have π1 ≈ π2 and hence t ∼ t′.

∗ The component process term to be executed next in s is a
return statement: the component process term to be executed
next in s′ is also a return statement, but once it is executed, fur-
ther return statements might be required to be processed. This
is possible since such a return processing is labelled with τ in
L′|ccomm . After executing as many additional return statements
as the loop had iterations, the method that got terminated in
the transition from s to t is also terminated, obtaining a t′ with
t ∼ t′.

• ∼−1 is a weak simulation relation: Similarly, most of the time the com-
ponent process terms are the same. They differ only if a self-invocation is
made in order to substitute a self-invocation, in which case the unmodified
term can execute a LOOP rule instantiation and obtain a matching stack
just as described above. They also differ if a number of return statements
needs to be executed after a loop has been terminated (by a regular return
component process term). Again, we are guaranteed that once sufficiently
many SRET rule instantiations are executed, we obtain a suitable stack.

Hence, L|comm and L′|comm are weak bisimilar with respect to L, and due to
Lemma 4.1, we have Traces(L)|L = Traces(L′)|L, and since L covers all com-
munication behavior of c excluding self-invocation, the communication behavior of
c in (C,M, e) and (C ′,M, e) is identical. �

This lemma is interesting because of two aspects: First, self-invocation as a
replacement for loops is an important prerequisite for reconfiguration, which usually
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Figure 5.7: Life-cycle of states in cmc; arrows depict the data-flow of states

does not interrupt method execution; it is often necessary to substitute loops by
self-invocation to allow for reconfiguration interrupting an otherwise eternal loop
(cf. Sect. 7.5.1.1 and reconfiguration examples like in Sect. 8.4). Second, it serves
as an example for the separation of roles: If we are just interested in the (outgoing)
communication of a component, the implementation detail (genuine loop versus its
emulation by self-invocation) does not concern us. Lemma 4.1 asserts us that weak
bisimilarity of the systems results in the same observable behavior of components,
here given by the sequence of outgoing communication.

5.3. Data Flow of the cmccmccmc Model Checker

In cmc, states are passed between components as indicated in Fig. 5.7. We
maintain different sets of states:

• The open set consists of all states that have been built, found to be un-
visited but not yet processed,

• the candidate set is a set of states that need to be checked against the
disk to verify that they have not yet been visited, and

• the reclaim set is a set of states that are stored in the lossy hashing, but
have been scheduled for write-out to disk in order to save memory.

New states are built as either the initial state or successor states to a state
taken from the open set. These states are passed to the main search algorithm (À
in Fig. 5.7).

The main search then queries the caches (Á), with a three-valued outcome:
Either the state is visited for sure – as it is found in the lossy hash table. Or it
is found to be definitely unvisited – as a bit is missing in the Bloom filter. Or
both caches are inconclusive. The further processing depends on that answer (Â):
Previously visited states are discarded; unvisited states are added to the open set,
which immediately inserts the fresh state into the caches so that it is not added to



5.3. DATA FLOW OF THE CMC MODEL CHECKER 95

Search

Open

set

Hash

table

open

hash

open

(a) Open set and non-lossy hash table

Search::main ≡ µL⇒ (call(open, fetch, ∗).
choose((S.call(hash, check , (si)).L)si∈States))

Openset::fetch ≡ choose([si ∈ open].
(open ← open \ {si}).return(si).success)si∈States

Openset::add(v) ≡ (open ← open ∪ {v}).success
Hashtable::check(v) ≡ if (v 6∈ hashtable)

hashtable ← hashtable ∪ {v}.
call(open, add , v)

end.success

(b) Component process terms

Figure 5.8: Specification of the simplified core algorithm

the open set a second time (Ã), and states without definitive information are added
to the candidate set.

By adding new states to the caches, the lossy hashing finally runs full, and a
reclaim set is chosen. This set is written to disk (Ä) and states from the set are
removed if room is required for new states sent from the open set. Writing states
to disk is done in pages, which can be compressed by zLIB (Æ, see Sect. 5.1.2).

Once the open set becomes empty, or the candidate set becomes too large,
a disk lookup is triggered. We use the approach of checking the complete set of
states written to disk in a linear fashion, comparing each state against an index built
from the candidate set; as discussed in Sect. 5.1.2, this circumvents the dreadful
performance of magnetic disks for random access requests. Unvisited states are
added to the open set, while visited states are discarded (Å). It is imperative to
maintain the invariant of having no duplicates within the open set. This is easily
achieved by removing duplicates when building the index.

In order to maintain a definitive upper bound on memory consumption, we
still need to avoid uncontrolled memory usage by the open set. Since each state
enters the open set only once, this is easy to do by dumping parts of it to disk,
should it become too large, and reloading them if the in-memory open set becomes
empty (Ç).

Finally, a fresh state is taken from the open set by the search algorithm to have
its successors computed (È).

5.3.1. Verifying the specification. We can proceed to prove properties of the
application itself. For example, a very abstract notion of the use of the open set
with a non-lossy hash table is given in Fig. 5.8, with the method specification in
Fig. 5.8b.

For simplicity, the main method fetches a state and produces another one non-
deterministically, without relating the fetched and the produced state. Similarly,
the open set takes a random element, removes it from its data state, and returns
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it. The interesting part is the hash table implementation and its use: Rather than
querying the hash table whether a new state has been visited, the hash table com-
ponent gets notified to process the state appropriately. If the state was previously
visited, it is discarded. Otherwise, the state gets added to the hash table’s internal
store and inserted into the open set by a call conducted by the hash table.

Obviously, we are requiring that once a state is added to the open set, it is
never added again:

∀q . r = q → 2q 6∈ openset

For showing this, we utilize three rules: The first one, called the effect rule, states
that if some condition is satisfied that was not satisfied at the initial state, then some
method has been called that executed a set statement that satisfied the condition.
The frame rule states the opposite: If some property is true and no set statement
ever changes it, then it remains true. A third rule is that of control flow, stating
that if some statement was executed, any preceding choose-statement must have
been in an appropriate state – this corresponds to a weakest precondition reasoning.

We will give the reasoning in very informal terms, utilizing the temporal logic
symbols 2ϕ for “ϕ holds now and forever”, 3ϕ for “ϕ will eventually hold” and
� ϕ for “ϕ has been true at some previous point in time”. We write call(c.r.m(p))
for the event of component c calling m on role r with parameter p. This is just
a brief glimpse of how we can reason about components and their behavior; and
how making communication explicit limits the amount of events that need to be
considered. We can show the aforementioned property by demonstrating that the
inverted formula is not satisfied:

∃q . r = q ∧3q ∈ openset

We prove this using some lemmas:

(1) q ∈ openset → q ∈ hashtable:
• We see that only add can modify openset .
• Initially, openset = ∅.
• Hence, by the effect rule, q ∈ openset →
� call(Hash table.open.add(q)).

• By control flow: call(ht .open.add(q))→ � q ∈ hashtable.
• By the rule A → � B,B → � C |= A → � C we obtain q ∈

openset → � q ∈ hashtable.
• By the frame rule, and the observation that nothing is ever re-

moved from the hash table (and the rule 2A → A), we obtain
(� q ∈ hashtable)→ q ∈ hashtable.

• By logical reasoning, we obtain q ∈ openset → q ∈ hashtable.
(2) r = q → q ∈ hashtable:

• By control flow: r = q → � q ∈ openset .
• Hence, with the first lemma (and the rule A→ � B,B → C |= A→
� C): r = q → � (q ∈ hashtable).

• By the frame rule (as in the first lemma’s proof), we obtain r = q →
q ∈ hashtable.

(3) By control flow and induction: q ∈ hashtable → 2¬call(ht .open.add(q)).
(4) By lemma 2 and 3: r = q → 2¬call(ht .open.add(q)).
(5) By the frame rule and lemma 4: r = q → 2q 6∈ openset .

Rewriting the last lemma gives r = q → ¬3q ∈ openset , and hence the inversion of
the original formula cannot be satisfied.

Note that this is only possible due to the abstraction of the open set being an
actual set – in a practical implementation, it is implemented as a list, thus acting as
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(a) Separated component setup

(b) CPU link filter component

Figure 5.9: Distributing cmc, pictures courtesy of Philipp Pracht

a multi-set, and the last lemma needs more work; it remains true, but this cannot
be deduced from the control flow directly.

5.3.2. Parallelizing the Model Checker. A feature of most modern CPUs is
their being equipped with at least two cores. It is always troublesome to see that
half the machine’s computation power is wasted during an exceptionally long model
checking run. Hence, one extension of the cmc model checker was to enable it to
run on multiple cores (two, to start with). This requires a parallelization of the
former sequential algorithm, providing an interesting case study for an emerging
discipline [PSJT08, PT08].

In the theory of parallel programs, domain and functional decomposition are
distinguished [Fos95]. Domain decomposition considers the data and separates
it in n equally large packages, handling each on one core (or, more generally, a
computation unit). This approach is taken by parallel model checkers [BLW02,
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LSW03, SD97]. The basic idea is to calculate a hash code for each successor state,
which determines the CPU that has to process it. Given a good hash function,
each machine has to bear an equal load. By organizing multiple machines in a grid
structure, a multiple of memory is made available, at the cost of heavy network
traffic.

Functional decomposition, however, considers the algorithm first and identifies
various stages that can be executed independently (to some extent). This is well-
known from modern pipelining architectures of CPUs [OV06], but we are not aware
of any attempt to apply this to model checking. The only work that covers multi-
core architectures for model checking is based on domain decomposition [HB07].

For cmc, we tried to do functional decomposition [Pra07]. The basic insight
here is that successor state generation is to some extent decoupled from the state
cache and disk store operation. Any state added to the open set will eventually be
handed to the VMSSG virtual machine, so there is no problem in having the suc-
cessor states calculated right away, in parallel with the revisit checks, as illustrated
in Fig. 5.9a.

The interesting thing about such an approach is that parallelizing an applica-
tion using functional decomposition is a cross-cutting concern, while parallelizing
it using domain decomposition changes the core concern (because, ultimately, it
changes the data processed by the previous core concern). In practice, handling a
cross-cutting concern amounts to adding code that interferes only very little with
the former code. For cmc, the “invasiveness” was indeed very limited: Only at the
“border” of the parallelization – i.e., between those components that were to be be
assigned to different cores – filters had to be added.

Fig. 5.9b illustrates the idea of such a filter. These filter components are the
only ones that are ever visited by more than one thread and need to take precautions
against race conditions with respect to data access. They implement ring-buffers
that decouple the consumption of data between the cores. This decoupling of
two sections of the algorithm is very elegant and requires little additional work. In
practice, however, things do not work that well: Memory management, a component
used by almost every other component, also needs to be provisioned to be queried
by more than one thread. This required some less elegant locking.

The results obtained from this parallelized cmc are somewhat discouraging: A
speedup was not obtained for most models unless some tedious search for optimal
buffer sizes was conducted [Pra07]. Although both cores got reasonable load, an
overall speedup was usually not obtained, and never exceeded 30%. This supports
the conclusion of [PSJT08]: An automated tuning of the distribution is indeed
indispensable. There is ample room for improvement in this regard: Some issues
like the calculation of hash codes can be done on either CPU (or even on both, by
calculating a free selectable fraction of hash codes on one CPU and the remainder on
the other), and the CPU utilization can be modified by changing initial the initial
choices. Also, the choices of the parameter values might be adaptively changed, as
we will discuss in Sect. 8.5.

5.4. Benchmarking cmccmccmc

cmc proved itself to be capable of checking very large models. Tab. 5.4 shows
some of the big models that we checked. The GIOP model [KL00] is a specification
of the General Inter-ORB Protocol of the Corba specification, cf. Sect. 3.1.1.1.
This model was originally checked in Spin with bitstate hashing. In our run,
we observed 363 thousand failures of the Bloom filter (which actually implements
bitstate hashing), and considerably more for the larger models. Each of these
failures would have amounted to not visiting a state that has not yet been visited,
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States States Time zLIB Uncom. Bloom Cache
Model

visited stored
Edges

elapsed com. stored fail. fail.

GIOP1 193M 163M 665M 13:34:21 4.81% 79GB 363K 91M

Hugo 556M 205M 865M 15:18:16 3.79% 167GB 128K 32M

Lunar 4(d) 1.3G 248M 1.9G 35:37:29 5.27% 153GB 1.7M 151M

Lunar 4(f) 1.6G 335M 2.6G 38:36:02 5.73% 230GB 13M 387M

Table 5.4: Large models checked in cmc

and possible many more solely reachable by that state. Whether this puts the utility
of standard Spin for such large models in doubt can hardly be judged. Still, the
cmc algorithm shows an approach at checking models of this size without relying
on probabilistic algorithms.

Hugo is a model of a hot fail-over protocol [Röl02]. The protocol was mod-
eled in the Hugo/RT model checker [KM02], which generates Promela sources.
Lunar [WPP04] is a suite of models for ad-hoc routing protocols. Some of the
Lunar scenarios have not been checked exhaustively before.

Fig. 5.10 shows two experiments conducted with smaller models by modifying
the sizes of the caches between 0 (all requests answered with “don’t know”) and
sufficient size to answer all requests correctly. As can be seen, the number of cache
misses (i.e., states that need to be checked on disk) soon diminishes if the caches
are given more memory.

Fig. 5.11 shows how the “throughput” of cmc diminishes for the Lunar 4(d)
scenario. Note that this scenario is so vast that only at the very beginning the
disk is not required. The “smooth degradation” – i.e., the not-too-sudden decrease
in throughput as more states are stored – can be attributed to two factors: The
decrease of cache efficiency, and the time required for each linear disk check run.
This plot also displays the degradation of the caches, which is a little surprising:
The caches seem to degrade rather quickly, then even recover a little, before a steady
degradation is found (also notice that a decline in the degradation of the throughput
and the improvement in cache quality are related). The source of this cache recovery
can only be guessed: The heuristic for choosing states for removal from the lossy
hash table is based on the assumption of transition locality [PITZ02]. Sometimes,
reorganizing the open set (which is also swapped to disk if it grows too big) can
devastate the effectiveness of this heuristic. But as one can see, the caches continue
to work for the entire run.

Fig. 5.12 shows how various compression levels for the zLIB library have an
impact on overall runtime and the compression ratio achieved. After a compression
level of 6, not much additional compression is achieved, but the additional effort
for compression results in a much larger overall time. Interestingly, a level of 3
also produces a good overall time. It is, however, quite easy to attribute this to
the model (in this case, Lunar scenario 4(b)), as a larger model would eventually
spend more time during disk look-ups due to the approximately 30% less com-
pression achieved at level 3. The speedup obtained from the zLIB compression is
illustrated in Tab. 5.1. HC stands for hash-compaction, a technique used by other
disk-based model checkers [PITZ02, BJ05] where, instead of storing the entire
state vector, only a hash value is stored [WL93]. While the risk of encountering a
collision can be minimized pretty much, the birthday paradox problem needs to be
considered [BK04]; but most importantly, the state information is lost.
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Figure 5.10: Effectiveness of caches with different parameters. Line intersections
represent actual measurements. Lower is better, as cache failures result in disk
look-ups.

5.5. Benefits of Component-Based Software Engineering for cmccmccmc

Using component technology to write a high-performance model checker is a
risky endeavor. In benchmarks, cmc performs at approximately 10% of the state-
per-second rate of Spin. Approximately half of that slow-down can be attributed
to employing the NipsVM virtual machine. The remainder can be expected to
be a mixture of missing optimization – often done deliberately, as many optimiza-
tions would contradict the clean separation imposed by the components – and
component overhead. The component model of cmc is fairly lightweight, making
cross-component calls just as expensive as a normal C++ call; however, many opti-
mization techniques, especially those employed by Spin, try to eliminate those calls
as much as possible.
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Figure 5.12: Speedup obtained by various zLIB compression levels

Components provide a good approach towards experimenting with different
algorithms and their combination. Adapting Spin to Tarjan’s algorithm [Tar72]
in [Ham04] took a few days of hard programming, following approximately a month
of code reading and preparation. For cmc, it would only require the definition of
an appropriate component, and some changes to the assembly file. But we found
other areas, some unexpected, where utilizing components proved helpful:

For example, when rewriting a component (in an attempt to optimize it), it was
quite easy to keep the old version and actually write a new one. Not only was the old
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Model LHT Random Incoming Outgoing Age Combined

9 Dining Phil. 2% 7,569,757 7,799,983 7,965,160 7,657,372 7,702,798
4,685,071 states 25% 3,282,324 4,913,862 4,366,858 3,251,002 5,143,714
12,234,622 trans. 80% 178,254 429,148 403,077 9,481 9,481

Lunar 4(b) 2% 225,960 233,010 259,499 228,485 194,332
3,335,917 states 25% 70,126 62,733 97,652 59,272 43,221
3,923,209 trans. 80% 8,124 4,861 13,249 64 4

Table 5.5: Comparison of different reclaiming strategies. “Random” removes arbi-
trary elements. “Incoming” removes the elements with least incoming edges first,
whereas “Outgoing” removes elements with fewest outgoing edges. “Age” imple-
ments a FIFO strategy that removes the oldest elements. “Combined” describes a
strategy where Incoming, Outgoing and Age are combined.

component kept in case the optimization attempt failed, but also the old component
assembly could be reconstructed easily for comparison tests. Also, the use of com-
ponents encouraged experimentation with regard to algorithm comparisons: It was
fairly easy to take a few hash functions (e.g., Jenkin’s hash [Jen97], SHA1 [EJ01]
as well as a recently developed hash function called MurmurHash [App08]), wrap
them in a few lines of component code and plug them into the model checker to
compare their performance.

Similarly, we wrote some components that implement different reclaiming
heuristics – i.e., heuristics that rank the states in the lossy hash table and try to
identify those that can be swapped to disk, because they are unlikely to be revisited.
This follows the ideas of [BLP03]. In Fig. 5.13, the ReclaimingStrategy compo-
nent provides such a strategy, in the depicted setup an EasyReclaimingStrategy,
which just uses random choice. The effect of the various heuristics is shown in
Tab. 5.5. Indicated are the number of revisited states that got swapped out of
a lossy hash table with a size of 2%, 25% and 80% of the total state number.
Evidently, no heuristic excels, but the experiment was easy to conduct.

Components also integrate well with the building of a parameter parsing frame-
work: For an experimental model checker like cmc, a large number of parameters
need to be made settable by the user. This can be facilitated by the use of com-
ponents by having them declare the parameters they require. For parameters, the
component annotations declare the name and default value of a parameter. The
glue code generator gathers the parameters defined by the various components and
generates a uniform parameter parsing. This greatly facilitates the provision of just
the parameters that are used by the current configuration.

Similarly, logging output is provided by each component, such that at the end
of the model checking run, all the relevant data can be output without having to
implement a complete traversal of the component graph – and Fig. 5.13 shows that
it is indeed a graph, not a tree and not even a DAG.

An extremely interesting application of components was encountered when de-
bugging cmc, as a model checker is pretty hard to debug. Often, errors emerge
only after a few million states, because some hash table overflow is handled in-
correctly or some weird sequence of events leads to accessing a state vector that
just got deleted due to its removal from some set (e.g., the candidate set). Com-
mon debuggers fail in such a scenario, and the implementer usually has to revert
to code reading. For cmc, another approach was used a few times: Some readily
available library was utilized to re-implement the behavior a component (or a set
of components) is supposed to provide. For example, the C++ standard hash table
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implementation was used to check the cache/disk lookup combination: As soon as
a state is added to the open set that has already been visited, an error is found
and can be signaled. Now, a trigger can be formulated for this erroneous state, and
a common debugger can be used to trace its processing within the model checker,
leading to the error. A similar approach has been employed to weed out memory
leaks, a persistent plague of a model checker that maintains a large number of state
sets.

Large cmc runs take hours, days and even weeks to complete. Quite often,
we became interested in the current state of the model checker: Are the caches
performing as expected? How much compression is provided by the zLIB? How
much memory will be consumed until the lossy hashing is fully operative? While
many data are written to a log file, the number of values usable for observing the
model checker’s behavior is too large to have all such values logged at frequent
intervals. A solution to this problem is provided by two methods every component
needs to implement: listNetworkCommands and processNetworkCommand. The
former needs to give a list of strings which the latter one can process. A user may
now connect with a running cmc instance using Telnet and a special port. The
user can obtain a list of components and the commands they understand. The
commands can then be issued to the component, obtaining some number or value
in response. Also, some steering functionality can be provided: For example, a
“TRAP” command can be sent to the Search component to request that the next
state that gets processed is stored, and can then be retrieved by issuing a “SHOW”
command. Such a “software-metry” proved a valuable asset to understanding the
model checker and its problems, without requiring numerous restarts.

We also were able verify one of the most important properties of component-
based software engineering, namely that components encourage discipline with re-
gard to a proper modularization, when including a different state space generator.
It has often been proposed that using interfaces encourages discipline with respect
to the level of abstraction that is used. Writing a state generator that does many
other things as well leads to many short-cuts and internal assumptions. Pack-
aging it into a component that can be linked with arbitrary other components
requires a much deeper consideration of the necessary abstraction level. It proved
to be quite easy to adapt the cmc model checker to a second virtual machine,
µCRL [GP95, BFG+01], although this was not planned when the first version
was written.

Are components the right paradigm to implement a model checker? Most
likely not, if industrial-grade performance is required. But for experimentation,
large-scale algorithm comparisons, and optimization research, components provide
welcome support. Although we suffer a substantial slowdown with cmc compared
to Spin, a quick look into the source code of Spin (or Murϕ [DDHY92], for that
matter) will convince anyone that it is far less troublesome to adapt cmc compared
to these highly optimized model checkers.

5.6. Future Work

cmc barely scratched the surface of what is possible with disk-based model
checking. With cmc being sort of a technology demonstrator, we did not pursue
them, but we will discuss some of these ideas here. This is, for most points given
here, a complete detour from the topics of this thesis, but these considerations
should be listed somewhere.

5.6.1. Mass Storage Media Beyond Magnetic Disks. The reason why we
use the magnetic disk in cmc is because it is so much cheaper than RAM memory.
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Besides, disk size has less practical limitations than RAM. This is paid for by having
to do the disk lookup in a linear fashion – as a true random access is too costly.

But since a few years, flash memory provides an interesting alternative. It is
faster than a magnetic disk, and supports random access just as RAM does. It has
not yet gained widespread use as a replacement of hard disks because the number
of write operations permissible for a single memory location is rather limited. MP3
players and digital cameras have long adopted this new media, despite the ongoing
miniaturization of hard disk drives. For our model checker, flash memory is an
interesting alternative to magnetic disk, and obviously more suitable since random
access is possible. Still, it can be expected that the cost of doing read access to
flash memory is considerably slower than RAM-only look-ups, hence the caches are
most likely still required. The number of write operations is limited to one per
model checking run – unless the flash memory is used as yet another lossy hash
table, acting as another cache for the still less expensive magnetic disk.

The utility of being able to do cheap random look-ups becomes immediately
obvious if the search algorithm is to be used for depth-first search. The algorithm
utilizing the caches relies on a broad search front; the order in which the states
are visited is not important for simple reachabilities. Algorithms that find loops or
strongly connected components [SE05] usually need to maintain an order in which
states are visited, and hence require short-termed decisions on whether a state is
visited. This would require very frequent disk look-ups, and void the feasibility of
the algorithm (we have counted the states where all successor states were answered
with “don’t know” by both caches, and found that up to 5% of the states would
require a disk lookup during an unmodified run – which, for the large runs, can be
as much as 60 million states, and each disk traversal can take up to half an hour at
the end of the search progression). Hence, non-random access and things like LTL
model checking are not reconcilable. But if using flash memory allowed for cheaper
random access, large-scale LTL models could also be attempted.

5.6.2. Classical Model Checker Improvements. There is a number of ad-
ditional improvements that could be added to our model checker in the form of
additional components – most notable, state compression, state collapse, partial
order and symmetry reduction. State compression compresses each state using a
normal data compression algorithm (similar to what we do with the zLIB, but not
considering data chunks larger than a single state, thus achieving far worse com-
pression rates [Hol97]). When doing state collapse, the state vector for a process
is stored separately, and the actual state (which consists of the state vectors of all
processes) is just a list of pointers to the state vector table [Hol97]. We have not
added this to the current cmc model checker because of the unforeseeable mem-
ory requirements of the state vector and state store, but of course, it would be
interesting to see how this can be achieved with our algorithm, and with the mem-
ory retainment techniques employed. Also, a comparison to the zLIB compression
(whose efficiency still surprises) would be interesting.

Partial order reduction [HP94] and symmetry reduction [DM07] as well as
slicing [MT98] are techniques that aim at removing large parts of the state space
without changing the reachability of possible error states. Slicing removes all those
variables that do not have a (direct or transitive) effect on those variables that
are used in describing the safety or liveness property under check. Partial order
reduction seeks to remove state space blowups due to (unobservable) interleaving
of concurrent processes. Symmetry reduction tries to avoid symmetric state space
parts due to isomorphic process instantiation sequences. We have not employed any
of these techniques in the model checking runtime algorithm, although the NipsVM
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provides some internal symmetry reduction and provides a path reduction tool that
can be used for pre-processing the input file [Ara06].

Implementing these improvements is sometimes hard because further depen-
dencies are required between components – e.g., the partial order reduction needs
to know about the semantics of state transitions, which up to now have been hid-
den in the state producer component – i.e., no component other than the NipsVM
wrapper considers the state to be anything different than a chunk of binary data.
We are not quite sure whether such component-data dependencies (i.e., the set of
involved components dictate the required information that needs to be added to
the data objects) can be handled beyond the complexity imposed by cmc at the
moment. Maybe, at some point in time, special provisions for defining the data
objects sent between components based on the assembly’s requirements become
necessary to keep the component design tractable.

5.6.3. Counter-Examples. The ability to produce a counter-example is one of
the arguments for the use of model checking. Depending on the search algorithm,
a more or less concise way to the error state is displayed, which can be used for
understanding how the error was produced (and, often equally important, whether
the property violation is really an error of the system that was modeled). One of
the nice properties of cmc is that, more or less, all the states are stored intact at
the disk (usually, those are lost in disk-based model checkers that utilize hash com-
paction [PITZ02, BJ05]). But currently, cmc does not produce counter-examples,
as states do not store where they got visited from. For depth-first searches, the
counter-example can be taken right from the stack, but for our “known-first-search”,
a stack is no longer used.

Obviously, a counter-example can be reconstructed if each state stored a copy
of its parent state. This state could be retrieved from the disk (or memory, if
still present), and have its parent state found again, and so on till the initial state
is reached. Of course, this is far from cheap, both memory-wise and in terms
of runtime requirements to assemble the counter-example. It would be far more
efficient to store just a pointer to the parent state; as long as the state is kept in
memory, this is sufficient, and as soon as it gets stored to the disk, the disk page
(and the entry number) can be referenced, requiring just the reading of a single page
for each parent state. However, there is a problem with externalizing states: All
the child states need to have their pointers updated, and those might even not be
in memory anymore (since most heuristics do not strictly require that parent states
are removed before their children). There might be a two-step schema involving
state IDs and a lookup table, but then again, this table might grow beyond memory
storage capabilities. Note that, however, utilizing the automated-atomic filter poses
no problem, as referencing an indirect parent state with a single-successor state
chain leading to the current state allows for re-generating that chain and obtaining
all missing states.

If the problem of referencing the parent state could be solved, cmc might gain
the truly unique property of generating counter-examples while using the disk for
obtaining more memory. This property is based on cmc’s way of retaining exact
state information on the disk, which is the true novelty of the algorithm.

5.6.4. Parallelization. In Michael Jones’ words, model checking with magnetic
disk is about “getting a larger hash table”1. Another way of exceeding one physical
machine’s memory is to distribute the model checking algorithm [Web06]. The
basic approach here is to calculate a hash value for each state, take it modulo the
number of machines n and send it to the machine designated by the result. This

1from the talk presenting [BJ05]
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results in a lot of network traffic, as most of the states need to be sent to other
machines (actually, an expected fraction of n−1

n ), but each machine only needs to
store 1

n of the states.
This can be easily combined with our approach as most of the components can

be reused. The open set is replaced by a “to-do queue” that is filled by the states
sent over the network (and those that are found on the same machine). A state in
this set is known to be reachable, but its being visited needs to be checked. Hence,
during the search, a state is taken from the to-do queue and sent to the caches. Any
state that is found to be unvisited (either directly by a success of the Bloom filter,
or later after a disk lookup) has its successor states calculated right away; these
successor states are then sent to their target machines where they are added to the
aforementioned to-do queue. This “tilts” the algorithm a little, since the open set
(where definitely unvisited states are stored) is replaced by the to-do queue (where
the states might be visited already), and the successor calculation is placed at the
end of the state handling process, not at the beginning. Otherwise, everything can
be reused.

5.6.5. Configuration and Reconfiguration. cmc maintains a number of caches
and sets, and operates a number of algorithms like the zLIB which can be tuned
by setting a number of parameters. For a standard cmc setup, 14 parameters
are understood (plus the input file name), but a number of additional parameters
might be found if this was called for. Additionally, the number of component setups
is vast, since many components can be combined (e.g., the choice of the hash
function, whether to use the automated-atomic filter, the zLIB and hash value
caching all are independent of each other on a functional level). It hence seems
reasonable to use some automated reasoning to find good parameter settings. This
has been done with considerable success at compile time for the ATLAS linear
algebraic library [WD98] and for the Spear SAT solver [HBHH07]. Spear
is automatically tuned against a set of standard examples, but not specifically
modified afterwards; ATLAS is tuned at compile-time. In the context of this thesis,
a configuration at assembly time (strictly speaking, this is at compile-time, since
cmc is statically built for a component setup) or at runtime (by reconfiguration)
would be very interesting. It should be admitted that not much effort was spent
on this, for a number of reasons, which, along with some ideas on what might be
possible, are presented in Sect. 8.5.

5.7. Conclusions

The experience obtained from writing cmc suggests that using components (or
a similar structure) greatly facilitates the development of a complex software. For
each idea presented here, a number of ideas got dismissed because they did not
work. But for each idea tested, a component got written. If an idea was to be
rejected, it was a matter of going back to an old assembly, while the component is
retained. The following example illustrates the benefits:

We were wondering if Jenkin’s hashing [Jen97] is inferior to a cryptographic
hash function like SHA1 [EJ01]. So we wrote a component that provides SHA1,
only to find out that Jenkin’s hashing is equal in terms of collision avoidance,
but much faster. So we reverted to an assembly which uses Jenkin’s hashing, but
kept the SHA1 component. Later, when we compared zLIB compression to hash
compaction (cf. Tab. 5.1), we could take this SHA1 component again (because it
provided a 128 bit hash value), requiring only modest modification (in order to
obtain the full 128 bits instead of the usual 32 bits, as hitherto mandated by the
hash function interface).
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Playing around with components in such a manner is quite inspiring, and the
basic idea of using a double caching was indeed born from such a way of thinking
about the application. It should not be claimed, however, that a component model
like the one employed by the cmc model checker is without its caveats: Mostly
because of shared data, it still requires expert knowledge to assemble components.
Most problems emerged from the necessity to perform reference counting for the
states; it requires thorough planning on how to avoid premature freeing of a state’s
memory, as well as introducing memory leaks due to not discarding unreferenced
states.

We are confident that cmc’s component model is suitable for the task it was
designed for; but for more complex software, the framework needs to provide more
help to restrict the problems introduced by shared memory. It hence became evi-
dent that, for providing a better separation of roles, shared memory should not be
allowed.

5.7.1. Influence of the cmccmccmc Case Study on Reconfiguration Design. The
reason why we include the cmc model checker in this thesis is its influence on
the design of reconfiguration, which we will present in the next chapter. cmc has
produced a special view on components, and even while cmc itself is unsuitable for
reconfiguration (for reasons detailed in Sect. 8.5), this view led to an accentuation
of certain aspects of reconfiguration.

The biggest influence regards to statefulness and state retainment requirements
of the components. We have seen in Tab. 3.1 that relatively few reconfiguration-
enabled component frameworks support state transferal, but stemming from the
experience with cmc (where reconfiguration might be used to substitute a com-
ponent that has exceeded its memory allowance), state transferal is a mandatory
requirement for conducting meaningful reconfiguration (if the state is lost, a mere
restart would amount to the same as runtime reconfiguration). Also, the prospect
of reconfiguring a component under tight memory constraints ruled out the utiliza-
tion of a reflection-based state transfer [Van07]. In order to save the contents of a
hash table and transfer it to a new data structure, a careful treatment of the data
is required in order to operate within the memory constraints. Also, data might be
modified in very specific ways that require custom-written code (e.g., some states
need to be swapped to disk during reconfiguration). This requires the indirect state
transfer approach or a direct approach that uses reconfiguration-specific code (we
will present a similar approach in Sect. 8.2.2). On the other hand, in the context
of cmc, utilizing an indirect state transfer does not seem to be an insufferable vio-
lation of the separation of roles paradigm, since component reuse is not important
and components are written in close collaboration.

Also, under the impression of the tight collaboration of components in cmc,
the prospect of making a system adaptive by reconfiguration provisions after all
the components have been completed appeared insurmountable. Instead, just as
components helped to come up with a novel design of the model checker, we got
more interested in using reconfiguration as a means to design a system than to add
unanticipated functionality later. We will discuss the difference throughout the
remainder of this thesis, most notably in Sect. 8.4. In taking this view, we spent
less time on supporting elaborate reconfiguration planning mechanisms but chose
to investigate the execution of reconfiguration.



MemoryManager:SimpleMemoryManagement

VMSSG:VMSSG

AtomicFilter:AutomatedAtomicFilter

Search:KnownFirstSearch

Cache:DoubleCaching

HashFunction1:ReuseHashFunction BloomFilter:BloomFilter

DiskStore:DiskStateStoreLZ

Openset:TinningOpenSetStore

JenkinsHF1:JenkinsHashFunction HashFunction2:ReuseHashFunction LossyHashing:LossyHashing

HashFunction3:ReuseHashFunctionLookupIndex:HashReportingStateMap

TinWriter:ClassicTinningWriter

JenkinsHF2:JenkinsHashFunction StateDeciderTerminator:StateDeciderTerminatorReclaimingStrategy:EasyReclaimingStrategy

ReclaimReceiver:DiskReclaimedStateReceiver

JenkinsHF3:JenkinsHashFunctionHashFunction4:ReuseHashFunction

JenkinsHF4:JenkinsHashFunction

Figure 5.13: Components of the cmc model checker



CHAPTER 6

A Component Model for Reconfiguration: JCompJCompJComp

A designer knows he has achieved perfection not when there is

nothing left to add, but when there is nothing left to take away.

— Antoine de Saint-Exupery

The cmc component model and framework is lightweight, and does not restrict
the host programming language at all. Components share memory as they see fit,
and the communication is realized directly by the native method invocation means
of the host language. This helps to maximize the efficiency of the model checker,
but makes the component model quite unsuitable for reconfiguration: first, since
parts of the component’s state are shared (reflected by the σ part of the state in
the component model), removing a component would require an intricate (or user-
supplied) detection of the memory that can (and must) be freed, and second, due
to the maintenance of a stack, replacing a component might result in the necessity
to operate both the old version (for processing of pending stack elements) and the
new version for some time.

It hence became interesting to investigate a heavyweight component model that
imposes restrictions on the component’s code by disallowing shared memory and
call stacks. Components are forbidden to communicate by any other means than
those provided by the framework, making the communication completely observ-
able. Such a rigid framework is required for reconfiguration; if the framework lacks
control on its components, it can hardly prevent errors emerging from a reconfigu-
ration done in the wrong moment.

All this is paid for by a severe loss in efficiency. Enforcing the absence of shared
memory contradicts the provisions of most host languages, but it is required to
avoid “covert channels” that components might use to circumvent the framework-
provided communication means. But efficiency is of little concern here: instead,
we strive to define a component model that is as simple as possible to ease the
reasoning about reconfiguration. In this chapter we present the JComp component
model. We first investigate the requirements for a component model capable of
supporting reconfiguration, explain the design principles we applied, and introduce
a formal component model. By extending this component model, we introduce a
formally described way to conduct reconfiguration, and show some of its properties.
The implementation of the JComp component model will be described in the next
chapter.

6.1. Requirements

A component model is usually devised to support a specific class of applications.
The specific properties of the component model – how communication is to be
conducted, how components are to be represented in memory – then follow the
requirements imposed by that class of applications. For example, if multimedia is to
be supported, special media streaming connectors need to be provided [SvdZH08].
Reconfiguration is then included in a way that supports the retainment of these
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properties over the reconfiguration process: if the media connectors need to provide
some latency control, reconfiguration needs to be designed in a way such that the
latency bounds are not violated during reconfiguration [MNCK99].

Reconfiguration is, in principle, a vague term. It can be used to describe the
restarts that SAT-solvers do [BLMS01] or intricate morphing of the application
structure towards a goal. Depending on the component model and the required
properties, reconfiguration may yield different problems. For example, multimedia
reconfiguration needs to preserve real-time constraints, which is why the Djinn
framework interleaves reconfiguration as much as possible [MNCK98, MNCK99].
This requires a delicate data-flow, as the reconfiguration is entirely non-atomic
and parts of the data might be processed by the new component while data still
processed by the old component is found in the system. For providing this, Djinn
only considers the switching of component chains, i.e., the rerouting of data flow.
Quite differently, hot code update does not need strong realtime properties. Instead,
the preservation of the components’ state is much more important. For example,
Draco [Van07] puts much emphasis on how a mapping between the old and new
components’ state can be derived. But for Draco, reconfiguration is limited to
single components only, and thus does not impose much of a structural problem.

In this thesis, our interest is somewhere in between. In considering reconfigura-
tion as a valuable tool for realizing adaptivity, we try to allow as much as possible
as a reconfiguration. However, in the absence of a application scenario requiring
their consideration, real-time aspects are ignored, and performance as an abstract
idea is only considered in that the reconfiguration tries to be minimal : Instead of
blocking the entire system during reconfiguration, only the relevant part is blocked,
with the remainder being allowed to continue its operation.

In this section, we will formulate requirements we consider important for a
component model capable of realizing this concept of reconfiguration. We have
discussed situations where reconfiguration can be applied on page 21 in Sect. 2.4.5.2,
and provided a taxonomy of features in Sect. 3.2. Also, we have discussed some
aspects of reconfiguration in Sect. 2.5.1. Finally, we have discussed the influence of
the cmc case study on our reconfiguration approach in 5.7.1.

First, in order to conduct reconfiguration, the component model must yield
access to the required properties of the components. Being interested in stateful
components and component setups as described in Sect. 4.3, we formulate the
following requirements on a component model capable of reconfiguration:

R1.1 The component model must make it observable if a component can be
reconfigured at a given point in time. We do not want to impose that
reconfiguration can be conducted at any point in time, as components
might be required to finish some tasks first, but it is necessary to determine
whether reconfiguration can be conducted or whether further waiting is
necessary.

R1.2 The components’ connections must be readable and modifiable. During
reconfiguration, the connections of existing components are modified, and
the component model must guarantee that this is indeed possible.

R1.3 Components can be created and removed. Reconfiguration might intro-
duce new components, and discard old components no longer required.
The component model must support these addition and removal of com-
ponents.

R1.4 The component state must be readable and writable. Being interested in
stateful components, we demand that the component model supports ac-
cess to the relevant state data. Also, this data must be sufficiently enriched
with information such that the reconfiguration algorithm can handle it as
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required by the user. For example, if the user wants to retain some mes-
sages sent by component A to component B over role r, then messages
need to contain information about their source component and role, in
order to judge whether the user’s request applies to a given message.

These requirements need to be fulfilled by a component model that supports state-
ful reconfiguration. Most component models will either support these requirements
already, or be easily modifiable (e.g., requirement R1.4 will most likely lead to some
changes in the component’s state, if this is discussed within the component model).
However, our interest goes further, and ultimately we want to prove properties of
our reconfiguration approach that lead to guarantees given for the actual implemen-
tation. In order to transgress from the model to the implementation, we impose
two requirements on the reconfiguration algorithm:

R2.1 Reconfiguration must be conducted by a sequence of conceivably atomic
steps. Instead of just describing the overall effect of the reconfiguration
plan, the reconfiguration algorithm needs to be described in a way that
can be directly implemented in a regular programming language. As such,
we require the reconfiguration algorithm to be implemented by a sequence
of fine-grained steps.

R2.2 Reconfiguration must follow a plan with a precisely defined semantics. In
order to reason about the effects of reconfiguration, the reconfiguration
input must be constrained. We hence require that the reconfiguration
algorithm operates on a plan, which fully describes the reconfiguration
(opposed to just providing a number of primitives for reconfiguration,
and pushing the responsibility to use them in a consistent way onto the
user).

This results in a small-step semantics for the reconfiguration plan. The approach
of using term rewriting to define the semantics of the component model integrates
well with such a requirement, and we are unaware of a component model that has
a sufficiently fine-grained semantics to support requirement R2.1.

The implementability of the reconfiguration algorithm is used for obtaining
guarantees in the framework implementation that can be proven on the component
model. Based on the literature presented in Chapter 3, as well as the experience
obtained with cmc and the theoretical considerations of Chapter 2, we require the
following guarantees, which need to be ensured by the reconfiguration algorithm:

R3.1 The results of a reconfiguration must be predictable. That is, if a given re-
configuration plan is conducted at a known state of the component setup,
the outcome should be as deterministic as possible. This requirement can
be refined into two sub-requirements:

R3.1.1 The reconfiguration process should appear as atomic. Even if the
reconfiguration algorithm is conducted by a sequence of fine-grained
steps (cf. requirement R2.1), none of the components involved should
ever notice that a reconfiguration is underway. This applies to com-
munication especially: no communication must be disrupted or lost
due to an ongoing reconfiguration.

R3.1.2 The reconfiguration should interrupt components only at predictable
points. Since we are interested in state retainment, we need to have
some guarantees about the point in time where reconfiguration in-
terrupts ongoing computations of the component. If reconfiguration
might interrupt a component at any given moment, little assump-
tions could be made about the data state at the point in time where
reconfiguration commences.



6.1. REQUIREMENTS 112

Both these requirements provide a guarantee to both the component im-
plementer, who can remain mostly unaware of reconfiguration scenarios,
and the system designer, who can rely on reconfiguration not interfering
with ongoing computation.

R3.2 Reconfiguration should be minimally invasive. The reconfiguration ap-
proach offered by the component model should guarantee that only those
components that are strictly required to be modified or temporarily halted
during configuration are affected. For large-scale, distributed systems, re-
configuration cannot be allowed to block the entire system to achieve
atomicity (for satisfying requirement R3.1.1). Instead, the system should
be kept alive as much as possible, allowing components to continue their
operation, even if this entails communicating with components under re-
configuration.

R3.3 A component’s implementation must be allowed to stay ignorant of re-
configuration. As with the requirements of R3.1, we want to have the
component model ensure the component implementer that reconfigura-
tion can be conducted with components that have not been especially
prepared for being reconfigured.

We would like to require two more guarantees, but they are difficult to formulate, as
they depend, to some extent, on the component setup at hand. We hence formulate
them as “wishes”, and require that the component model does not impede them,
should the component setup itself be compatible:

R4.1 Reconfiguration should be conducted as soon as possible. Obviously, we
required that reconfiguration waits for predictable points to be reached
within a component’s execution (requirement R3.1.2), and we required
these points to be observable (R1.1). But other than that, if reconfigu-
ration is requested, the model should not delay the reconfiguration. But
components might behave in a way that inhibits reconfiguration forever.

R4.2 The reconfiguration algorithm should guarantee that a reconfiguration plan
is realized correctly. A reconfiguration is planned to affect some change
on the system, and the state of the system after the reconfiguration is en-
visioned by the reconfiguration designer. The reconfiguration algorithm
should strive to meet these assumptions about the state after the reconfig-
uration; especially the system should not experience unexpected deadlocks
during reconfiguration.

In combination with requirement R2.1, the guarantees we require from our compo-
nent model are rarely discussed. Some of the guarantees are quite commonplace in
the literature, e.g., the necessity to conduct reconfiguration in a way that makes it
appear as atomic (cf. the third column of Tab. 3.1). But these guarantees are usu-
ally not proven on a small-step granularity, which we wish to do in this thesis. For
conducting such formal proofs in the presence of requirement R2.1, the component
model has to be given a rigid semantics, even without considering reconfiguration.
Therefore, we require a model which fixes communication as much as possible. Clos-
est to realizing the requirements while discussing reconfiguration implementation
on a comparable granularity is NeCoMan [JDMV04], but it focuses on a very
distinct application area (cf. Sect. 3.2.27.5).

In this thesis, we address a general component model that is to support a
variety of applications. We do not formulate specific requirements here, but require
the component model to be suitable for implementing applications that process
data, while not requiring frequent user interaction. Contrary to the cmc model,
we do not impose efficiency requirements, however. The supported reconfiguration,
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however, should allow for arbitrary changes to the component graph, and not be
limited to specific patterns.

6.2. Design Principles

JComp is a component model that is dedicated to the research of reconfig-
uration. It strives to implement the requirements stated above as concisely as
possible, omitting many features found in other component models. This helps
to satisfy requirement R3.1, as additional features (e.g., customized communica-
tion means) have the tendency to make the result of a reconfiguration less easy to
predict. Some requirements (R1.2, R1.3, R3.2) suggest a component model where
components are inter-tangled as little as possible, both in means of shared memory
and communication. These requirements are incompatible with the cmc model
checker’s component model, which uses call stacks and shared memory (cf. the dis-
cussion in Sect. 8.5). Instead, we found these requirements similar to those for
a component model capable of arbitrary distribution (e.g., any component setup
must be distributable on a number of machines with an arbitrary assignment, with-
out changing the semantics of the system). In imposing the requirements for doing
cross-machine communication on all components, two basic design principles got
defined:

(1) JComp uses message passing as the sole means of communication between
components,

(2) applications devised with the JComp component model should be dis-
tributable without any changes to the components’ code.

Interestingly, the resulting JComp framework never really excelled in having ap-
plications distributed (mostly because we lacked a proper example scenario) and
was eventually even modified to only support distribution on the user level, as dis-
cussed in Sect. 7.3. Nevertheless, the implications of the two aforementioned design
criteria resulted in JComp becoming rather strict with respect to the design of the
components, which in turn enforced the clean separation of components required
for clean and predictable reconfiguration.

Being able to distribute a component-based application (i.e., transparently in-
stantiate components on different machines) requires the components to be inca-
pable of using the fact that they operate on the same machine (which minimizes
their entanglement). First of all, this means that no shared memory must be used.
If two components access shared memory, they cannot be put on different ma-
chines (without changing the semantics or without tedious synchronization of the
machines’ memories). Hence, the first derived design principle for JComp reads:

é Components must not share memory.

Of course, this also applies to other shared resources like the file system, but we
will only discuss memory here. If no shared memory is allowed, the only way one
component might influence another component is by explicit communication. This
is appreciable, as it enforces one of the basic properties of component-based systems,
namely observability of communication (cf. Sect. 2.1), which we will eventually use
to satisfy both requirements R2.1 and R3.1.1 as well as guarantee requirement
R3.1.2.

The first design principle – message-based communication – requires that a
caller component runs in a different thread as the receiver. Actually, it does not
technically require that (there may be a non-preemptive scheduling that runs one
component at a time), but on the conceptual level, this situation is mandatory:

é Components run concurrently.
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Concurrency has many well-known dangers, like race conditions, which pose a threat
to requirements like R3.1.1. But since all communication is done explicitly between
components, racing can only occur for message order. Usually, this can be dealt
with. This absence of shared memory greatly facilitates the concurrency of com-
ponents, because an important invariant is provided: During the execution of a
method, none of the accessible data is modified concurrently. This amounts to local
non-concurrency or mono-threaded components. The component implementer is
assured that, for the duration of a message processing, no component-local data
(which is all the data the component has access to) is modified concurrently. Re-
quirement R3.1.2 (when choosing methods as the basic unit of atomic processing)
extends this guarantee to reconfiguration: if a component was able to complete a
method’s execution in a non-concurrent setup, neither concurrent components nor
reconfiguration can interfere and keep it from terminating the method’s processing.

Message passing works by delivering messages to components, where they be-
come queued. Sometimes, we might desire a method result, or wait for some method
to complete, and thus require synchronous messages, i.e., messages that block the
calling thread until the message has been processed. Only for synchronous mes-
sages, a result value can be provided, although the concept of futures provides sort
of a compromise [BH77, CH05, CHM08]. So we decided to include synchronous
messages. There is, however, a problem involved: The problem of synchronous
callbacks. Component A sends a synchronous message to component B, and waits
for its processing to end. During the processing of this message, B decides it needs
further information from A and sends a message to A, waiting for this message to
be processed. Now, the system deadlocks, as A is currently waiting for B to finish
processing of the initial message and thus incapable of processing the message just
received.

There are two straightforward solutions to this problem: The first one is to just
accept that deadlock as an error and disallow synchronous callbacks. The second
one is to provide means to process that callback, i.e., by forking a thread. For
JComp, we decided to take the first approach, even if this seems too rigorous: The
second approach invalidates the invariant of not having the memory changed during
the course of a method, an invariant that is otherwise provided by the components
being mono-threaded. Obviously, this is not as troublesome as genuine concurrent
modification, as any such modification will happen while waiting for a synchronous
message to return, but nevertheless the design decision is:

é Every component is mono-threaded.

Hence we desire a component model that supports components that do not
share memory and run in their own thread each, while being mono-threaded inter-
nally.

The practical implementations of these design decisions vary from straightfor-
ward (e.g., the realization of asynchronous message passing) to downright impos-
sible (e.g., the prohibition of the use of shared resources, a generalization of the
requirement to forbid sharing of memory). We will discuss this in Chapter 7. It
is, however, very important that the component model presented here is almost
directly implementable, such that the properties we prove (and which support the
guarantee requirements like R3.1, R3.2 and R3.3) carry over to the resulting com-
ponent framework. Adopting such an approach is the major contribution of this
thesis, and the main purpose of the JComp component model, which makes it
stand out from comparable component models.
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cr1, γ1, call(r,m, v).P ‖ c2, π2 → cb1 , γ1, P ‖ c2, π2 :: c1.r.m(v) (CALL)
if c2 = γ1(r) and sync(m)

cr1, γ1, send(r,m, v).P ‖ c2, π2 → cr1, γ1, P ‖ c2, π2 :: c1.r.m(v) (SEND)
if c2 = γ1(r) and ¬sync(m)

cr1, 〈c2.r.m(v′)〉, return(v).P ‖ cb2 , 〈σ〉 → cr1, 〈⊥〉, P ‖ cr2, 〈ret(σ, v)〉 (RET)

cr, 〈σ〉, set(σ′).P → cr, 〈upd(σ, σ′)〉, P (SET)

cr, 〈σ〉, choose((Σj .Pj)j∈J)→ cr, 〈σ〉, Pj (CHOOSE)
if j ∈ J and σ ∈ Σj

cr, 〈σ〉, success, c′.r.m(v) :: π → cr, 〈c′.r.m(v), prm(σ,m, v)〉, µ(c)(m), π
(DEQ)

cr, µX⇒ P→ cr, P [X/µX ⇒ P ] (LOOP)

Table 6.1: Configuration transition rules

6.3. The Component Model

We will now formally describe the JComp component model, based on the
definition of Sect. 4.5. We start by defining what a component configuration should
be comprised of. Just as the cmc component configurations have to maintain a stack
for callbacks, we need to maintain a queue for incoming messages in the component
state of JComp components in order to realize communication by message passing.

Definition 6.1 (Component configuration). A component configuration c̃ of
a single component c is of the form

(id(c), f(c̃), γ(c̃), e(c̃), σ(c̃), P (c̃), π(c̃))

where f indicates whether the component is running (f = r) or blocked (f = b); γ :
R ⇀ C is a wiring for the roles of c, telling which role points to which component;
e either contains a method call of the form c′.r′.m(v) with c′ ∈ C , r′ ∈ R, m ∈M
and v ∈ V , which c currently executes, or is empty (⊥); σ ∈ S is a component
state; P ∈P is a component process term; and π ∈ (C ×R ×M ×V )∗ represents
the message queue, which is just a sequence of messages. For ease of reading, we
write cf for id(c), f , and we group e and σ to form 〈e, σ〉.

As before, a configuration is a mapping of a set of components to their states,
defined for the components instantiated in the current configuration. We denote
the set of all component configurations by C̃.

Definition 6.2 (Configuration). A configuration is a partial function C ⇀

C̃ from components to component configurations, for such a configuration {c1 7→
c̃1, . . . , cn 7→ c̃n} we write c̃1 ‖ · · · ‖ c̃n. S is the set of all such configurations.

For processing methods, we need to make the distinction of asynchronous and
synchronous methods. This is required to determine how a component should
react if its current component process term calls for a message sending to another
component. The set M is hence split into two sets Msync∪Masync = M , which are
disjoint (Msync ∩Masync = ∅). We define the predicate sync(m)⇔ m ∈Msync .

The configuration transition rules of our component framework are listed in
Tab. 6.1. CALL and SEND treat synchronous and asynchronous invocations differ-
ently by blocking respectively continuing the caller. By DEQ a component can start
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processing of a new message from its queue. Note that DEQ applies only to running
components and therefore prohibits circular synchronous calls: If processing a syn-
chronous call from component c to component c′ requires a synchronous call from
c′ to c, the two components deadlock, as discussed before.

6.3.1. Communication Traces. Often, we are interested in the communication
of components. We might thus become interested in runs that are restricted to the
communication rules. However, the rules SEND, CALL and DEQ have both the source
and the target component as parameter. This is more information than we usually
desire: For the sequence of message receptions via DEQ, we do not want to know
their origin, and for the sequence of outgoing messages, we do not want to know
the (exact) target. The separation of roles paradigm dictates that the exact source
of a message should not matter to the receiving component, and thus we should
not have to care about it. Things get worse in the context of reconfiguration, where
messages can be relocated, and role targets can change.

We hence use traces to abstract from the exact communication. We can either
investigate message sending or message dequeueing, these being the two points in
time where communication can be made visible to the outside (cf. the communica-
tion monitors for JComp, described in Sect. 7.2.5.1). For reasons explained later
(in Sect. 9.1), we will concentrate on the message dequeueing here.

We thus fix a function (with co-domain {DEQ(c,m, v) | c ∈ C,m ∈M , v ∈ V}):

αDEQ(l) =

{
DEQ(c′,m′, v′), if l ∈ DEQ(c : c′,m : m′, v : v′),
τ, otherwise.

We denote the αDEQ-trace abstraction of a run r by Tracescomm(r). We extend this
to sets in the straightforward manner: Tracescomm(R) = {Tracescomm(r) | r ∈ R},
and similarly to LTS: Tracescomm(T ) = Tracescomm(Runs(T )). We call such
traces communication traces.

If a component is deterministic (i.e., all the component process terms in the
range of this component’s method evaluator are deterministic), an initial state and a
communication trace are sufficient to calculate the component’s state at the reduced
run’s end (should it be finite); while this run cannot be uniquely calculated back
(due to interleaving between the components running in parallel), the necessary
information can be derived. Accordingly, we say that communication determines
the behavior of components; basically, this emphasizes the fact that components
are not acting spontaneously, but are merely responsive and only become active
when requested to process a message – an important distinction to the concept of
agents, as we discussed in Sect. 2.2.3.

6.4. The Approach to Reconfiguration

As we have seen in Chapter 3, there are multiple aspects of reconfiguration:
How it is triggered, how it is planned and how it is executed. The whole picture
is presented in Sect. 8.1. In this chapter, we will focus on the execution of re-
configuration. In accordance with requirement R2.2, we will assume that someone
created a plan that describes the reconfiguration. The structure of such a plan is
described in Sect. 6.5. We then discuss how such a plan can be applied in Sect. 6.7,
building on an extension of the basic JComp component model as presented in
the last section. We then investigate how this process can be relaxed (i.e., how it
may interleave with an ongoing execution of the unaffected components, satisfying
requirement R3.2) in Sect. 6.7.2. We also show how the JComp model satisfies the
other guarantees.



6.4. THE APPROACH TO RECONFIGURATION 117

We describe reconfiguration in the JComp component model by adding a num-
ber of rules [HK08]. This is, in principle, quite similar to the approach taken with
CHAM in [Wer98], but as we also implemented the approach in JComp, our rule
granularity is considerably finer, as desired by requirement R2.1.

As mentioned before, the planning is assumed to be finished at the point in
time where the considerations of this chapter take place. Nevertheless, the tasks
of planning also affect our approach towards reconfiguration: The more we as-
sume the planner to be intelligent, the less precautions we need to take when
actually conducting the reconfiguration. This especially holds true for the point
in time when the reconfiguration is started (i.e., the scheduling of the reconfig-
uration). Most of the theoretical research focusing on reconfiguration revolves
around this problem: Finding (or even actively effecting) a situation where com-
munication has reached a state in which it is not interrupted by the reconfigura-
tion [KM90, MGK96, AP05, VEBD07]. In this thesis, this problem is not
deemed too important; but we will discuss it briefly in Sect. 8.1.4.2 and Sect. 9.6.1.
Our view on components and their reconfiguration is more fine-grained: Instead of
waiting for a suitable point in time to do reconfiguration, we try to do the reconfig-
uration as soon as possible (attempting to satisfy requirement R4.1, but respecting
requirement R3.1.2) and have the substituting components take the place of the
old ones immediately, possibly picking up transactions right in the middle. Obvi-
ously, such a reconfiguration approach is demanding in its own right; and there are
situations where this cannot be achieved (e.g., synchronous calls interfering with
component removal can deadlock the system if their target is removed). Neverthe-
less, the approach of reconfiguring in the middle of a (user-defined) transaction has
yet to fail us in practice; effectively, it replaces the consideration of transactions
by a more elaborate state-transferal, which needs to account for the transaction
to become picked up by the new component (we compare the two approaches in
Sect. 9.6.2).

State transferal sparks two problems: First, only in very limited situations we
can assume that the state of an old component can be mapped directly to a new
component. In the field of migration (i.e., the relocation of a software entity to
another machine), this is possible, since an exact duplicate of the old component
is built [IKKW01, LS05]. For more general component substitutions, a mapping
needs to be provided, which can become arbitrarily complex. In Sect. 3.2.31, we
have discussed various approaches found in the literature. Here, we will not impose
a certain solution, but rather allow for both indirect and direct state transfer (as
the choice of the suitable approach heavily depends on the kind of application; we
will discuss this in Sect. 6.8).

The second problem is that of what actually constitutes the state. Obviously,
the data stored in a component is part of it. Also, pending messages need to
be included (we will later see that this can become quite problematic for arbitrary
reconfiguration plans). We then decided that this is sufficient; for satisfying require-
ment R3.1.2, we decided that reconfiguration can only commence if no method is
executed in a component that is about to become stopped. Hence, the process
term is not relevant and does not have to be retained. For components, this seems
like a sensible thing to do, and we only know of CASA [MG04] trying to do
something different by allowing reconfiguration of components in the middle of the
execution of a method. The CASA solution (requiring an explicit declaration of
“safe-points” within the method’s implementation) violates our requirement R3.3,
and even if we do not respect this requirement too much, it is still straightforward
to emulate safe-points by splitting methods, so the difference to our approach is
not that big (cf. the discussion about message postponing in Sect. 7.5.1). But our
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Figure 6.1: Steps of reconfiguration

approach is driven by the need to actually make reconfiguration invisible to an
observer “distant enough”, as mandated by requirement R3.1.1 and R4.2, so a lot
of emphasis will be placed on asserting that no message is lost or swapped with
messages received before.

6.4.1. The Abstract Idea. Fig. 6.1 depicts the basic idea of the reconfiguration
process. It is quite similar to (yet has been developed independently from) the
algorithm employed in the NeCoMan/JBoss framework [JTSJ07], but extends
it to arbitrary components and includes state transfer.

The example of Fig. 6.1 is about a producer-consumer setup, where the con-
sumer oc becomes replaced by two consumers nc1 and nc2 that are arranged in
a chain. Basically, the process ensures that producer component p can be kept
running the whole time, and that it may also issue messages to its role cons at any
time. In (1), the old component oc is stopped (indicated by the s superscript); this
ensures that its data state is no longer changed, and also that it does not send any
messages (although this property is not of importance in this example). Also, the
new components are added – in this example, a single consumer component oc is
replaced by two new consuming components nc1 and nc2. New components are
added with their wirings already provided, but in a blocked state such that they
do not yet start processing messages. In doing so, requirement R2.1 is preserved
even if we cannot assume that a component can be added in an atomic step – since
it remains inactive and unconnected, executing the rule application by a number
of statements will not interfere with concurrent execution, and thus appear as an
atomic execution.

In (2), the retained component p is rewired by reconnecting its cons role to nc1.
This step is required to be atomic, and it is conceivably easy to implement it in an
atomic fashion. Messages sent by p after this point will arrive at the message queue
of nc1, but since nc1 is blocked, they will not be processed yet. This is important
for the next step.
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In (3), the state of oc is transported to the new components. The data state is
copied to both components, depending on their use of the data. The messages are
copied to nc1 and are prepended to the message queue. In doing so, the order of
those messages that were sent by p over its role cons is preserved, and the point in
time when step (2) was conducted becomes irrelevant to the message order. This
ensures that p needs not be stopped, which guarantees the minimal invasiveness
mandated by requirement R3.2. At the same time, the copying of messages makes
sure that the reconfiguration appears as an atomic step, satisfying requirement
R3.1.1. Finally, the old component oc is removed in step (4).

6.4.2. Peculiarities. There is a “miss-by-one” problem lurking in step (3): De-
pending on the cause of reconfiguration, the last message that oc processed also
needs to be retained. For example, this message me might have been a task that
oc was asked to do; and while doing the task, oc suddenly fails by arriving at a
fail component process term. As we have seen in Sect. 6.3, no rule can process a
fail term, so reconfiguration is triggered to substitute oc. Now, any messages sent
by p are retained in step (3), but the message me that caused oc to fail never gets
processed completely. For p, being an observer “distant enough” (i.e., it is not
blocked by the reconfiguration, and since it cannot determine the actual target of
its role cons, it cannot detect the reconfiguration if everything is consistent), the
message me then appears to be lost, which makes the reconfiguration perceivable.
Thus, the culprit message me also needs to be enqueued in nc1.

Another specific feature of our approach is that we generally do not allow the
reconfiguration of connections alone. If a connection that connects the role r of
component c to component c′ needs to point to c′′, c′ has to be deleted. This is
generally perceived as very limiting. For example, the reconfiguration depicted in
Fig. 6.1 might also realize the addition of nc1 to a ring structure that consists of p
and oc, with nc2 becoming an identical copy of oc. In this interpretation and from
a technical point of view, only the creation of nc1 is required, and the rewiring of
p’s role cons to nc1 .

This problem with doing a mere rewiring is quite technical, and we will discuss
it further in Sect. 6.7.5. Informally, the problem is given by the fact that we only
block components that are about to be removed, and if we change just the rewiring,
no component is stopped at all. This leads to a problem with the messages sent
over the connection that gets rewired. If those are not yet processed, it is unclear
whether they should remain in the target component, or taken away and put to the
connection’s new target; and if so, then interleaving can produce strange results if
some messages are processed while others are copied and further more become sent
by the source component during reconfiguration. Hence, we opted for just requiring
the removal of components that are the target (or source – in the example of Fig. 6.1,
both nc1 and nc2 can be interpreted as the conceptually added component) of a
connection that needs to be rewired. Of course, it is straightforward to optimize
such a “removal/addition” such that the state does not have to be genuinely copied
in the component framework, so this solution is not as expensive as it may appear
at first.

6.5. Reconfiguration Plans

A reconfiguration of a configuration C̃ with C = dom(C̃) is described by a
reconfiguration plan as requirement R2.2 mandates:

Definition 6.3 (Reconfiguration plan). Let C̃ be a configuration with C =
dom(C̃). A reconfiguration plan for C̃ is a tuple

∆ = (A,R, α, ρ, δ, ς)
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with A ⊂ C such that A ∩ C = ∅, R ⊆ C, α : A → (R → (C \ R) ∪ A), ρ :
C \R×R ⇀ ((C \R) ∪A,δ : R× (C ×R) ⇀ A and ς : (R→ S)×A→ S.

A is a set of components that are to be added; R ⊆ C the set of components
to be removed; and α, ρ, δ and ς functions that describe how components are
connected (α for components in A, ρ for components in C \ R) and how the state
is preserved (δ handling the messages and ς the data state).

Hence, α : A → (R → (C \ R) ∪ A) describes the connections of the new
components in A, which may be connected to both other new components and
components that already exist, but do not get removed. We require, for all c ∈ A,
α(c) to be well-connected for c.

The partial function ρ : C \ R × R ⇀ ((C \ R) ∪ A describes the rewiring
of connections of components that are not removed. It needs to cover those con-
nections that point to components that are about to become removed. Thus, ρ
needs to be defined for (c, r) ∈ C \ R ×R if γ(c̃)(r) ∈ R for c̃ = C̃(c). We require
that γ(c̃)[r 7→ ρ(c, r)], i.e., the connections of c with r pointing to ρ(c, r), is well-
connected for c for all r for which ρ(c, r) is defined. Of course, if γ(c̃) is completely
connected, then so is γ(c̃)[r 7→ ρ(c, r)].

δ and ς are two functions that are used for defining how the state of an old
component should be preserved. The partial function δ : R × (C × R) ⇀ A
describes message retainment, i.e., the components that should process previously
unprocessed messages of components in R. It is required that messages are moved
to components that actually implement the required interface, that is IR(c)(r) ∈
IP (δ(c′, (c, r))) for all (c′, (c, r)) ∈ dom(δ). The function ς : (R → S ) × A → S
describes the state of the new components, which is calculated from the state of
the old components. This is a very general notion which subsumes more concrete,
technical approaches of data state retainment [Van07, RS07a, IFMW08].

Example 6.1. For giving an example of a plan, let us detail the abstract idea
presented in Fig. 6.1. There, we have four components involved:

• p, a component that is allowed to run during the reconfiguration pro-
cess, although it gets modified. We define it as a tuple (p, {P}, {cons 7→
C}, ζ(p), ι(p)) (without substantiating the interfaces P and C, as well as
ζ(p) and ι(p), as they are unimportant for this example),

• oc, the component that gets removed, defined as a tuple (oc, {C}, {prod 7→
P}, ζoc, ι(oc)),

• nc1, a component that takes the connection of p’s role cons, defined by the
tuple (nc1 , {C}, {next 7→ N}, ζ(nc1), ι(nc1)),

• and nc2, defined by the tuple (nc2, {N}, {prod 7→ P}, ζ(nc2), ι(nc2)).
The interface N may stand for P , C or a newly defined interface.

In order to effect the reconfiguration informally given in Fig. 6.1, we utilize the
plan ∆ = (A,R, α, ρ, δ, ς) with

A = {nc1,nc2}, R = {oc},
α = {nc1 7→ {next 7→ nc2},nc2 7→ {prod 7→ p}},
ρ = {(p, cons) 7→ nc1},
δ = {(oc, (p, cons)) 7→ nc1},
ς = {(f,nc1) 7→ s1(f(oc)), (f,nc2) 7→ s2(f(oc))}.

ς is defined by the means of two functions s1 : S → S and s2 : S → S which
take the current state of oc and calculate the new state of nc1 and nc2, respectively.
This ς is a very high-level abstraction, of course; we will discuss ways to actually
implement it in Sect. 6.8.
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Reconfiguration may only commence if the components of R are not executing
a method, i.e., the process term is either success or fail. This is a common approach
and guarantees that every method is executed completely 8.1.4.2), and satisfies part
of the requirements of quiescence [KM90], which we will discuss in greater detail
in Sect. 8.1.4.2.

6.5.1. Continuation of Synchronous Calls. Fig. 6.2 shows a space-time dia-
gram [Lam78, CBMT96] that illustrates how a synchronous call m ∈ C issued by
component p over its role cons is to be completed, even if the component oc it was
sent to is replaced by nc1 during a reconfiguration. Because the message m bears
a reference to the component it was sent from, this knowledge is retained when
the message is moved from oc to nc according to δ (indicated by the arrow).
Hence, having p blocked does not impose a problem for executing a reconfiguration.
Note that the opposite direction – i.e., replacing the sender of a synchronous call –
is not possible, as the component can only be stopped when it is not blocked. Such
a situation results in a deadlock, which, although being an undesirable condition,
alleviates us from updating the sender reference of messages during reconfiguration.

6.6. Rules for Reconfiguration

6.6.1. A Coarse-Grained Rule. When a plan ∆ is applied to a configuration
C̃, the component set C is partitioned in three sets: The set R of components that
get removed, a set W = dom(ρ) of components that need to have a role rewired
(by definition, W is disjoint to R), and the set C \ (R ∪ dom(ρ)) of components
that are not modified at all. After reconfiguration, the set A is added; hence we
can describe the effect of reconfiguration by the rule

R̃ ‖ W̃ → ∆(W̃ ) ‖ Ã∆ (RECONF)

with all components in R not performing a method, i.e., R̃ = cr1, P1 ‖ . . . ‖ crn, Pn
with Pi ∈ {success, fail}, ∆(W̃ ) describing the effect of the rewiring as defined by
ρ, and Ã∆ consisting of new components, which are initialized using α, δ and ς. In



6.6. RULES FOR RECONFIGURATION 122

c1 c2 c3

r11 r21 r12 r22 r3
c
1
.r

1 1
.m

1
(v

1
)

c
2
.r

1 2
.m

2
(v

2
)

c
1
.r

1 1
.m

3
(v

3
)

c
1
.r

2 1
.m

4
(v

4
)

c
1
.r

1 1
.m

5
(v

5
)

c
2
.r

2 2
.m

6
(v

6
)

c
3
.r

3
.m

7
(v

7
)

c
3
.r

3
.m

8
(v

8
)

c
2
.r

2 2
.m

9
(v

9
)

c4 c5

c
1
.r

1 1
.m

1
(v

1
)

c
1
.r

1 1
.m

3
(v

3
)

c
1
.r

1 1
.m

5
(v

5
)

c
3
.r

3
.m

7
(v

7
)

c
3
.r

3
.m

8
(v

8
)

c6

c
3
.r

3
.m

7
(v

7
)

c
3
.r

3
.m

8
(v

8
)

c
1
.r

1 1
.m

1
(v

1
)

c
1
.r

1 1
.m

3
(v

3
)

c
1
.r

1 1
.m

5
(v

5
)

︸ ︷︷ ︸︸ ︷︷ ︸
︸ ︷︷ ︸︸ ︷︷ ︸

δ(c4, (c1, r1
1)) = c6

δ(c5, (c3, r3)) = c6

π|ϕ
c1,r1

1
: π|ϕc3,r3

:

Figure 6.4: Message copying via δ – c6 is assigned the messages sent by c1 to c4
using role r1

1, and those sent by c3 to c5

particular, if W̃ = cn+1, γn+1 ‖ . . . ‖ cn+m, γn+m, then ∆(W̃ ) = cn+1, γ
′
n+1 ‖ . . . ‖

cn+m, γ
′
n+m with

γ′n+i(r) =

{
ρ(cn+i, r), if ρ(cn+i, r) is defined
γn+i(r), otherwise.

Thus, ∆(W̃ ) is the set of components W̃ with the connections that are defined in
the rewiring function ρ modified according to ρ, and otherwise unmodified.

The configuration of new components Ã∆ is

Ã∆ = {c 7→ cr, α(c), 〈⊥, ς(σR, c)〉, success, πc | c ∈ A} .

Herein, σR is the function capturing the states of components in R, i.e., for c′ ∈ R
and thus c̃′ being part of R̃, we have σR(c′) = σ(c̃′).

The message queue πc is a linearization of the parallelization (or shuffling)
of message sequences copied by δ: Let me = e(c̃t) if P (c̃t) = fail and me = ε
otherwise. If (ct, (cs, ri)) ∈ δ−1(c), then (me :: π(c̃t)) |ϕ is a subsequence of πc, for
ϕ ≡ {cs.ri.m(v) | m ∈M ∧ v ∈ V }, and πc consists exactly of these subsequences.
Note that the order of the subsequences is unspecified, which makes plan application
nondeterministic. me is the message that produced a fail, and needs to be processed
by the substituting component again.

Fig. 6.4 illustrates how messages are reassigned. The assignment is completely
arbitrary; any new component can get messages from a component that gets re-
moved, given the ability to process them. This is usually much stronger than
required; we will define a more restricted δ in Sect. 6.7.1. The only restriction here
is that those messages sent by some component over one of its roles are transferred
en bloc; in the absence of timestamps no useful ordering can be provided. This is
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problematic in situations where indeed multiple blocks are to be copied, as it might
amount to message overtaking – which makes reconfiguration observable. This is
a shortcoming that can only be mended by further complicating the component
model; for practical examples, we do not use the capability of reconfiguration plans
anyway.

The RECONF rule performs the entire task of reconfiguration at once, hence
ensuring atomicity of the reconfiguration process. The illustration of the three sets
R̃, ∆(W̃ ) and Ã∆ in Fig. 6.3 is hence never a valid configuration of the system and
depicts sort of an intermediate result merely for the illustration of the sets. We
will now refine the rules into a sequence of much finer rules (which can rightfully
be assumed to be atomic) and proceed to show that these rules can be applied in
a way that is indistinguishable from the effect of the RECONF rule.

6.6.2. Fine-Grained Rules. In order to build fine-grained rules that satisfy re-
quirement R2.1, we extend the set of component running states to {n, i, r,b, s, c}.
The intended state machine for a component can be seen in Fig. 6.5. The new
states have the following semantics:

• n: A newly initialized component that needs to be connected to other
components.

• i: Once connected, a new component is put into this state, which is used
for retrieving data and messages from old components, thus initializing
the new component.

• s: Once a component is scheduled for removal, it is put into this state; it
remains there until it has become entirely unconnected.

• c: Now that we are assured that no more messages are put into the queue
from the outside (all components still connected to this component are in
an s or c state), this state is taken, which allows the copying of parts of
the message queue and the querying of the component state.

The fine-grained reconfiguration rules are shown in Tab. 6.2. There are two
sets of rules: Rules that change the component running state of the components to
be added and to be removed, and rules that modify the components’ connections,
the message queue and the data state. The former set consists of RCADD (adding
a new component), RCINIT, RCSTART, RCSTOPS and RCSTOPF, RCCOPY, which can
be applied to a stopped component once it is safe for having its state copied to
other components, i.e., no active component’s role points to the stopped component
anymore and finally RCKILL, used to dispose of a component. (Note that RCCOPY

needs to consider the entire configuration.)
Since they are much alike, we will frequently write RCSTOP to identify the rules

RCSTOPF and RCSTOPS.
The set of rules to change the data state consists of RCWIRE to connect the

roles of a recently added component to other components; RCREWIRE to reconnect
an existing component’s roles such that they point to new instead of to stopped

new
reconf.

init
run

reconf.

stop

reconf.
copy

block

cn: ci: cr: cs: cc:

cb:

R
C

A
D

D

R
C

IN
IT

R
C

S
T
A

R
T

R
C

S
T

O
P
[F

/
S
]

R
C

C
O

P
Y

R
C

K
IL

L
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C̃ → C̃ ‖ cn, γ⊥, 〈ι(c)〉, success, ε if dom(γ⊥) = ∅ (RCADD)

cn1 , γ1 ‖ c2 → cn1 , γ1[r 7→ c2] ‖ c2 if γ1[r 7→ c2] is well-connected for c1
(RCWIRE)

cn, γ → ci, γ if γ is completely connected (RCINIT)

ci → cr (RCSTART)

cr, success→ cs, success (RCSTOPS)

cr, 〈c2.r.m(v)〉, fail, π → cs, fail, c2.r.m(v) :: π (RCSTOPF)

cs1, γ1 ‖ cf22 , γ2 ‖ . . . ‖ cfn
n , γn → cc1, γ1 ‖ cf22 , γ2 ‖ . . . ‖ cfn

n , γn (RCCOPY)
if ∀2 ≤ i ≤ n . c1 ∈ ran(γi)→ fi ∈ {s, c}

C̃ ‖ cc → C̃ (RCKILL)

c1, γ1 ‖ c2 ‖ c3 → c1, γ1[r 7→ c3] ‖ c2 ‖ c3 (RCREWIRE)
for r ∈ R with γ1(r) = c2 if γ1[r 7→ c3] is well-connected for c1

ci, 〈σ〉 ‖ cc1, 〈σ1〉 ‖ . . . ‖ ccn, 〈σn〉 (RCSTATE)
→ ci, 〈ς((c1 7→ σ1, . . . , cn 7→ σn), c)〉 ‖ cc1, 〈σ1〉 ‖ . . . ‖ ccn, 〈σn〉

ci1, π1 ‖ cc2, π2 ‖ c3 → ci1, π2|ϕ :: π1 ‖ cc2, π2|¬ϕ ‖ c3 (RCGETMSG)
for r ∈ R(c3) and ϕ ≡ {c3.r.m(v) | m ∈M , v ∈ V }

Table 6.2: Reconfiguration transition rules

components; RCSTATE to take the states of the stopped components and combine
them to a state for a new component; and RCGETMSG to transport residual messages
of stopped to new components. RCSTATE is an abstraction of a subprotocol that
is performed to have the new component query the state of the old component;
a description of this process, which requires further component states and special
restrictions on the process terms to avoid side-effects; a refined approach will be
presented in Sect. 6.8.

RCSTOPF is used to handle a component configuration with a fail process term;
only this rule can advance such a configuration. Hence, fail is used to trigger a
reconfiguration, which needs to follow a plan which disposes of the failed compo-
nent. The method that failed must not be lost; maybe some other component is
waiting for the return of the method, which would result in a deadlock. Thus, the
method that produced the failure is prepended to the message queue, so that during
reconfiguration, it can be moved to a new component which is capable of handling
it properly.

Expressing such reconfiguration rules illustrates that the JComp component
model indeed satisfies the requirements R1.1 to R1.4, since the necessary informa-
tion is stored in the state. The retainment of the source role for messages in the
queue π is done exclusively for satisfaction of requirement R1.4. Likewise, the defi-
nition of a configuration as a partial function is necessary for satisfying requirement
R1.3, as the set of existing components might be changed between configurations.
Also note that the rules RCSTOP satisfy requirement R3.1.2, as they only apply to
components that are not processing a method. Finally, R3.3 is respected, since
the method evaluator is not required to have a special form for any of these rules.
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This is attributed to a level of abstraction still present in the rule RCSTATE, we will
discuss the problems with data state retainment in Sect. 6.8.

6.7. Reconfiguration Plan Implementation

Given a plan ∆ = (A,R, α, ρ, δ, ς), we can implement ∆ using a sequence of
rule applications:

(1) For each c ∈ R, RCSTOPS(c) or RCSTOPF(c) is used to stop the compo-
nent. Note that this requires each c ∈ R to eventually stop processing
the current method. This may lead to deadlocks (if a component c ∈ R
is blocked due to waiting for the processing of a synchronous message,
but the message’s target has already been stopped, with the synchronous
method still residing unprocessed in its queue); in the spirit of Sect. 9.1
we require the person developing the reconfiguration plan to avoid such
situations.

(2) For each c ∈ A, we use RCADD(c) to instantiate the component.
(3) For each c ∈ A and each r ∈ R(c), we use RCWIRE(c, α(c)(r)), and for

each (c′, r) ∈ dom(ρ), we use RCREWIRE(c1 : c′, c3 : ρ(c′, r)). We then use,
for each c ∈ A, RCINIT(c). This step connects the new and disconnects the
old components.

(4) Then, we use RCCOPY(c) for each c ∈ R. For each (c′, (c, r)) ∈ dom(δ),
we use RCGETMSG(c1 : δ(c′, (c, r)), c2 : c′, c3 : c, r : r), thus copying all
messages sent to c′ over the role r from component c to a new component.

(5) For each c ∈ A, we use RCSTATE(c, c1, . . . , cn) for {c1, . . . , cn} = R.
(6) Now, for each c ∈ R, RCKILL(c) is used to remove the component, and, for

each c ∈ A, RCSTART(c) is used to start the components.
The order of the rule sequence is important, but rules may be exchanged for a
single list item (e.g., the order of the RCADD applications is not important, but they
need to commence before any RCWIRE rule is applied). Compared to the coarse-
grained rule RECONF, the independence of the RCSTOP rule applications lead to a
faster initiation of reconfigurations – we do not have to wait until all components
have stopped processing a method, but shut them down as soon as possible. This
satisfies requirement R4.1.

Example 6.2. The reconfiguration of Fig. 6.1 can be described by the follow-
ing actions: From the initial configuration, we reach configuration (1) by apply-
ing RSTOPS(c : oc); and RCADD(c : nc1), RCADD(c : nc2) and RCWIRE(c1 : nc1, r :
next , c2 : nc2), RCWIRE(c1 : nc2, r : next , c2 : p) (in Fig. 6.1 we have identified all
reconfiguration component flags with s). Configuration (2) is reached by applying
RCREWIRE(c1 : p, c3 : nc1, r : cons). (3) depicts the applications of RCGETMSG

and RCSTATE, and configuration (4) is reached by applying RCKILL(c : oc) and
RCSTART(c : nc1), RCSTART(c : nc2) for the new components.

6.7.1. Injective Shallow Reconfiguration Plans. The generic definition of δ
is devised to allow for arbitrary message retainment; that is, arbitrary with respect
to the choice of the target components for messages to be moved. This can lead to
some problems; a reconfiguration may require to remove a large set of components,
some of which are only connected from components that also get removed. For those
components (e.g., component O2 in Fig. 6.6), a canonical message redistribution
cannot be given; the unprocessed messages might have to be transferred to a new
component that acts as a replacement. Since we are interested in a reconfiguration
that has minimal impact, we are interested in reconfiguration plans that retain
messages in a canonical way; therefore we need to restrict the plans. Most of the
time, a single layer of components needs to retain messages, and the replacement
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can be found out from ρ – i.e., if a role r of component c is connected to component
c′ and ρ(c)(r) = c′′, then any message sent by c over r that is not yet processed
in c′ should be copied to c′′. But since the definition of ρ allows for disconnecting
a component that is not in R, we need to restrict ρ first, such that the derived
definition of δ adheres to its definition.

We thus define a shallow reconfiguration plan:

Definition 6.4 (Shallow reconfiguration plan). A shallow reconfiguration plan
∆s is a tuple (A,R, α, ρ, ς) (with the types of the tuple elements as for reconfigura-
tion plans) with ρ subjected to two restrictions:

(1) (c, r) ∈ dom(ρ)→M(c)(r) ∈ R, i.e., only those connections that point to
a component in R are rewired,

(2) (c, r) ∈ dom(ρ)→ ρ(c, r) ∈ A, i.e., rewirings always point to new compo-
nents (thus making A the range of ρ).

A shallow reconfiguration plan (A,R, α, ρ, ς) translates to a plan ∆ =
(A,R, α, ρ, δρ, ς) with

δρ(c′, (c, r)) =

{
ρ(c, r), if c ∈ C \R
undefined, if c ∈ R.

Hence, messages are moved “with the rewiring”, which, due to its well-
connectedness also ensures that the messages can indeed be processed. Since ρ
is defined to just rewire connections that point to a component to be removed to
an added component, messages are never moved from or to a live component. As
we will see in Sect. 6.7.2, this is a crucial thing to do, since it is a prerequisite for
“non-observable” reconfiguration – during reconfiguration, it does not matter if a
message is sent before or after the rewiring, as this message will end up in the same
component anyway.

However, there is another problem involved if a new component gets connected
to by more than one component; the order of the messages moved to the new
component cannot be determined deterministically. Fig. 6.6 illustrate this problem,
too (also cf. Fig. 6.4): N becomes a replacement for both O1 and O3, so it receives
the messages sent by C, but the order is arbitrary. In order to avoid this situation,
we extend shallow reconfiguration plans to injective shallow reconfiguration plans:

r1

r2 δ(O1, (C, r1))

ρ(C, r2)

− −

−

+

O1 O2

O3

N

C

R

A

Figure 6.6: A reconfiguration scenario illustrating the problems with mes-
sage retainment: Preserving message order (O1,O3) and finding a destination
(O2). Non-solid arrows represent the functions ρ and δ of a plan ∆ =
({N}, {O1, O2, O3}, {}, ρ, δ, ς).
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Definition 6.5 (Injective shallow reconfiguration plan). A shallow reconfigu-
ration plan (A,R, α, ρ, ς) is called injective if |ρ−1(c)| ≤ 1 for all c ∈ A.

A injective shallow reconfiguration plan is given if the ρ function is injective.
Due to the way δρ is derived, δρ will also be injective for an injective ρ. In terms
of connections, we require that a new component is only pointed to by one old
component at most. This avoids the nondeterminism introduced by the arbitrary
order in which RCGETMSG rules are executed.

Example 6.3. For the message retainment function δ and the rewiring function
ρ of the plan of Example 6.1 δ = δρ holds and also |ρ−1(nc1)| = |{(p, cons)}| ≤
1 and |ρ−1(nc2)| = |∅| ≤ 1. Thus the plan can be represented by an injective
shallow plan. (We will often drop the word “reconfiguration” if the plan being a
reconfiguration plan is clear from the context.)

Injectiveness is required to keep the reconfiguration outcome deterministic. Us-
ing non-injective plans we will encounter a nondeterministic reconfiguration out-
come, namely if a queue receives messages from more than one source during re-
configuration. In a surprisingly large number of cases, this is no problem, but we
will see that, without additional provisions, the central property of reconfiguration
– perceived atomicity – is not preserved. But let us first investigate how perceived
atomicity is preserved for injective shallow reconfiguration plans.

6.7.2. Interleaved Execution of Injective Shallow Reconfiguration Plans.
A plan execution for a plan ∆ is a run that is conducted following the rules of a
plan implementation of ∆. An interleaved plan execution is a run whose labels are
according to both normal and reconfiguration rules, with the steps conducted by
reconfiguration rules following the plan implementation of ∆. Such an interleaved
plan execution is a run of a component system that gets reconfigured by ∆, while
the components not in A ∪R continue their execution.

Example 6.4. During the interleaved plan execution of the plan of Example 6.1,
component p may continue to issue asynchronous messages to the component con-
nected to its cons role. While reconfiguring, not only the state of oc is copied to nc1

and nc2, but also those messages that have not yet been processed by oc are moved
to nc1 (due to using a shallow plan, they follow the rewiring), including those issued
by p in the time period between starting the reconfiguration and rewiring the cons
role. Note that if the reconfiguration was triggered by a process term fail in oc, the
message that caused it would be copied to nc1 also due to the re-enqueueing of the
message by the rule RCSTOPF and the subsequent copying by RCGETMSG.

An important property of our approach is to ensure that the reconfiguration
remains local; i.e., only a part of the component system is concerned. Thus, while
a plan execution may be mixed with arbitrary steps of other components, these
other components do not observe the reconfiguration until it is completely finished.
As mentioned in the introduction, this “hot reconfiguration” requires some careful
treatment of the components’ states. For shallow plans, messages are transported in
accordance to the rewiring of the retained components. Since this puts the messages
sent before and after the application of RCGETMSG to the same component, and since
injectivity of ρ prohibits ambiguity with respect to the order of copied messages,
we can show that reconfiguration of injective shallow plans is indeed observed as
atomic.

In more detail, we prove that an interleaved plan execution of a shallow plan
∆s can be simulated by another interleaved plan execution of ∆s in which all
reconfiguration actions are grouped together and thus could be performed in a
single atomic step (as it would be done by an application of the rule RECONF). To



6.7. RECONFIGURATION PLAN IMPLEMENTATION 128

this end, we define (Ñ , p, q) as a triple with Ñ being a configuration in which all
c ∈ dom(Ñ) either are running or blocked; p a sequence of planned reconfiguration
actions for ∆s in the order given by the execution of ∆s; and q a sequence of non-
reconfiguration actions. We say that a component configuration C̃ is simulated by
a triple (Ñ , p, q), written as C̃ 4 (Ñ , p, q), if there exist C̃(1) and C̃(0) such that

C̃ = C̃(0) q←− C̃(1) p←− Ñ ;

note that if C̃(1) and C̃(0) exist, they are uniquely determined. The regrouping
of reconfiguration actions in a simulating execution is afforded by an LTS with its
states given by the triples (Ñ , p, q) as defined above, rule instances as labels, and
transitions (Ñ , p, q) a=⇒ (Ñ ′, p′, q′) defined by

(Ñ , p, q) a=⇒ (Ñ ′, p, q) if a is a non-reconfiguration action
and p contains only RCSTOP actions
and Ñ

a−→ Ñ ′,

(Ñ , p, q) a=⇒ (Ñ , p :: a, q) if a is a reconfiguration action,

(Ñ , p, q) a=⇒ (Ñ , p, q :: a) if a is a non-reconfiguration action and
p contains an action other than RCSTOP.

Theorem 6.1. Let ∆s = (A,R, α, ρ, ς) be an injective shallow reconfiguration
plan, and let C̃0

a0−→ C̃1
a1−→ . . .

an−1−→ C̃n be an interleaved plan execution of ∆s.
Then there is a sequence (Ñ0, p0, q0) a0=⇒ . . .

an−1=⇒ (Ñn, pn, qn) such that C̃k 4
(Ñk, pk, qk) for all 0 ≤ k ≤ n with Ñ0 = C̃0, p0 = ε and q0 = ε.

Proof. First of all, C̃0 4 (C̃0, ε, ε) = (Ñ0, p0, q0). Let the claim hold up
to some 0 ≤ k < n. In order to show that there is an (Ñk+1, pk+1, qk+1) with
(Ñk, pk, qk) ak=⇒ (Ñk+1, pk+1, qk+1) and C̃k+1 4 (Ñk+1, pk+1, qk+1) we proceed by a
case distinction on the action ak:

If ak is a non-reconfiguration action and pk contains an action other than
RCSTOP, we may trivially choose (Ñk, pk, qk :: ak).

If ak is a non-reconfiguration action, but pk only contains RCSTOP actions, we
have to provide Ñk+1, C̃(1)

k+1, and C̃(0)
k+1 such that the following diagram commutes:

C̃k = C̃
(0)
k C̃

(1)
k Ñk

C̃k+1 = C̃
(0)
k+1 C̃

(1)
k+1 Ñk+1

qk pk

qk pk

ak ak ak

But as pk only contains RCSTOP actions, qk is ε; the component conducting ak is
not a parameter of an action in pk and hence remains unaffected by pk. Thus Ñk+1

and C̃(0)
k+1 = C̃

(1)
k+1 can be defined as the result of applying ak to Ñk and pk to Ñk+1.

If ak is a reconfiguration action, we have to provide C̃(1)
k+1 and C̃

(0)
k+1 such that

the following diagram commutes:

C̃k = C̃
(0)
k C̃

(1)
k Ñk

C̃k+1 = C̃
(0)
k+1 C̃

(1)
k+1

qk pk

qk

ak ak ak

All actions in qk have been invoked for a component in state r or b. Hence all
reconfiguration actions applying to a single component only (except RCSTOP) apply
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to some other state (n, i, s or c). In particular, the rules RCADD, RCINIT, RCSTART

and RCKILL are independent of qk. Rules RCWIRE and RCCOPY do not modify the
other components, and do not rely on parts of the component configuration that
can be changed by normal rules. For RCSTOP, we have that qk = ε, since a plan
is executed and we would only have actions in qk once all c ∈ R are stopped.
RCSTATE also only uses components in a reconfiguration state and only uses the
state part of their configuration that is not changed by actions in qk. This leaves
two reconfiguration actions that actually interfere with actions in qk:

• ak ≡ RCREWIRE(c1, c3, r): Any message sending from c1 over role r in qk
will be executed as a message sending to c3. Using δρ, this is where the
messages sent over this role are prepended to, and since |ρ−1(c3)| ≤ 1 the
order is kept the same. Since the range of ρ is restricted to be a subset of
A, messages are not processed until the end of the reconfiguration.

• ak ≡ RCGETMSG(c1, c2, c3, r): As the messages are prepended to the queue
of c1 and c1 is in state i and has not yet dequeued any message, the copying
does not interfere with any sending action in qk. If c2 is the target of a
sending action in qk, ρ will point c3.r to c1, which is where the message
would have been copied to according to δρ. Component c3 is not modified.

Thus we can choose C̃(1)
k+1 to be the result of applying ak to C̃(1)

k and C̃
(0)
k+1 as the

result of applying qk to C̃(0)
k+1. �

Informally, Theorem 6.1 states that if we have an interleaved execution of
an injective, shallow reconfiguration plan ∆, then we can just reorder the steps
such that we first advance till the first reconfiguration step other than RCSTOP is
observed, then we do all the reconfiguration steps all at once, and proceed to do the
remaining, non-reconfiguration steps. The crucial part is that any message sent by
a non-reconfigured component to a component that gets reconfigured will be copied
by δρ to the place it would have arrived if it had been sent after the reconfiguration.
Injectivity is required such that messages do not get mixed up. Eventually, the
execution of interleaved reconfiguration and such an atomic reconfiguration will
produce the same configuration.

However, the theorem does not say anything about the states in between. And,
indeed, they are not alike: For interleaved reconfiguration is is, for example, pos-
sible that a state has two components’ queues contain messages sent by the same
component over the same role, which is not possible with atomic reconfiguration.
But if we take a step back, and use traces to hide the details that are dependent on
the reconfiguration progression, there is no perceivable difference, which shows that
the reconfiguration of JComp, for injective shallow reconfiguration plans, satisfies
R3.1.1:

Corollary 6.1. Let Ta be the transition system of a component system that
can get reconfigured by atomic execution of an injective shallow plan ∆s, and let Ti

be the transition system of the same component system that can get reconfigured by
interleaved execution of ∆s. Then Tracescomm(Ta) = Tracescomm(Ti).

Proof. Tracescomm(Ta) ⊆ Tracescomm(Ti): Obviously, any run of Ta is also
a run of Ti; hence any communication trace of Ta is also a communication trace of
Ti.
Tracescomm(Ti) ⊆ Tracescomm(Ta): In order to show this, we consider LTS T ′a
respectively T ′i that differ from the aforementioned LTS in that the components
keep a track of their received messages in their data state σ(c). To this end,
we assume a component setup where each method evaluator ζ(c) is replaced by
an evaluator ζ ′(c) such that ζ ′(c)(m) = P.ζ(c)(m), and P is a statement that
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protocols the method invocation in the component’s data state (e.g., P ≡ comm =
comm :: (r,m, v), using the “programming language” notation of Sect. 4.6 and
an otherwise unused variable comm that is initialized with ε). Furthermore, we
extend the reconfiguration to include the addition of an unconnected component
ccomm that stores all the comm variables of component to be removed (by using
the reconfiguration plan element ς(f, ccomm) = {id(c) 7→ f(c)(comm) | c ∈ R}).

The transition systems of such a modified component setup T ′a and T ′i are
weak bisimilar with respect to communication labels DEQ() to Ta respectively Ti

by means of the relation C̃ ∼ C̃ ′ which we define as

(c̃1 ‖ . . . ‖ c̃n) ∼ (c̃′1 ‖ . . . ‖ c̃′n) iff

∀1 ≤ i ≤ n . id(ci) = id(c′i) ∧ f(c̃i) = f(c̃′i) ∧ γ(c̃i) = γ(c̃′i)∧
e(c̃i) = e(c̃′i) ∧ σ(c̃i) = σ(c̃′i) ∧ P (c̃i) = P (c̃′i) ∧ π(c̃i) = π(c̃′i)

Obviously, ∼ is a weak bisimulation relation with respect to communication (it
is almost a strong bisimulation, but the single added statement that stores the
communication, as well as changes to the reconfiguration execution due to the
modified plan with the additional component ccomm are additional steps in the
transition systems T ′a and T ′i that are not reflected in the unmodified systems
and need to be hidden; but otherwise, all rule executions are directly repeatable
in the other system, which effectuates the weak bisimilarity – assuming that the
modified state is not considered by the visible actions), and by lemma 4.1 we have
Tracescomm(T ′a ) = Tracescomm(Ta) and Tracescomm(T ′i ) = Tracescomm(Ti).

For two runs s1 = s1
1

l11−→ . . .
l1n−1−→ s1

n and s2 = s2
1

l21−→ . . .
l2m−1−→ s2

m of this LTS
Ta and Ti, we obtain s1

n = s2
m → Tracescomm(s1) = Tracescomm(s2) (since the

communication history is stored in the state). We can then combine:

t ∈ Tracescomm(Ti)

→ t ∈ Tracescomm(T ′i ) (Lemma 4.1)

→ ∃r1 = r1
1

l11−→ . . .
l1n−1−→ r1

n

l1n−→ . . . ∈ Runs(T ′i ) .Tracescomm(r1) = t

→ ∃r2 = r2
1

l21−→ . . .
l2m−1−→ r1

n

l1n−→ . . . ∈ Runs(T ′a ) .Tracescomm(r2) = t
(Theorem 6.1)

→ ∃r2 ∈ Runs(T ′a ) .Tracescomm(r2) = t

→ t ∈ Tracescomm(T ′a )

→ t ∈ Tracescomm(Ta) (Lemma 4.1)

�

Hence, for the restricted class of injective shallow reconfiguration plans, an out-
side observer (i.e., a component that monitors the communication that it receives)
cannot distinguish between atomic and non-atomic reconfiguration. This property
is important, as the programmer only needs to consider the effect of the atomic re-
configuration, and does not have to consider various interleaving possibilities which
are prone to problems. Next, we will show that, in addition to the perceived atom-
icity, reconfiguration can also be completely undetectable if it does not introduce
components with a changed behavior.

6.7.3. Transparency of Reconfiguration. Besides atomicity, reconfiguration
should also be somewhat “natural” to the system. That is, even if the system is
modified by reconfiguration, it should not exhibit behavior that can be attributed
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Figure 6.7: Example for embedding of reconfiguration as in lemma 6.2

to the reconfiguration process, which is mandated by requirement R4.2. This is
intricate to define: Obviously, reconfiguration is intended to change the behavior of
a system by substituting components with different communication. But other than
this changed communication behavior, nothing should be observable. Obviously,
no messages should be “made up” by the reconfiguration process itself, and if a
component is substituted by another component that exhibits exactly the same
communication behavior (and the state is transported in a consistent way) then no
external observer should be able to see whether a reconfiguration took place at all.

As a litmus test for requirement R4.2, we show that component update is
transparent to the system, meaning that if a component is updated such that its
communication behavior remains the same, then no other components can judge
whether a reconfiguration actually took place: Their communication traces do not
change.

Theorem 6.2. Let T = (S,L, T ) be a transition system of a component setup,
and c and c′ be components with IP (c) = IP (c′), IR(c) = IR(c′) and ζ(c) = ζ(c′).
We require c ∈ dom(C̃) and c′ 6∈ dom(C̃) for all C̃ ∈ S. For s ∈ S with s =
(c̃ ‖ c̃1 . . . ‖ c̃n) with ci 6= c′ for all 1 ≤ i ≤ n, we define ∆s = (A,R, α, ρ, ς) as the
shallow reconfiguration plan with A = {c′}, R = {c}, α = {c 7→ {r 7→ γ(c̃)(r) | r ∈
dom(IR(c))}}, ρ = {(ci, r) 7→ c′ | γ(c̃i)(r) = c}, ς = {(f, c′) 7→ f(c)}.

Let T∆s be the transition system of the component setup of T that gets recon-
figured by interleaved plan execution of ∆s in state s. Let L = {DEQ(c′′,m) | c′′ ∈
C \ {c, c′} ∧m ∈M }. Then Tracescomm(T )|L = Tracescomm(T∆s

)|L.

Proof. Due to corollary 6.1, we only need to consider atomic reconfiguration
and the corresponding LTS T a

∆s
.

Note that, actually, a much stronger property holds: Since ∆s is, in effect,
a mere renaming of c to c′, and even the runs are the same, except for the name
change. Note that the LTS T a

∆s
and T are not bisimilar, as T a

∆s
uses different labels

(rules instantiated with c′ instead of c). Further note that, even if the relevant parts
of the state are renamed, some references to c remain in the message queue.

For the term that results from substituting all occurrences of c in a term t with
c′, we write t[c 7→ c′].
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We first show that ∆s amounts to a partial renaming [c 7→ c′] by showing that
the following diagram commutes:

s s′

s s′′

RECONF

[c 7→ c′]

[c 7→ c′]

Let s = (c̃ ‖ c̃1 ‖ . . . ‖ c̃i ‖ . . . c̃n). Since the reconfiguration plan ∆s is injective, we
can deduce that there is only one component ci with c ∈ ran(γ(c̃i)).

According to rule RECONF (cf. page 121), c is not performing a method (in
particularly, not waiting for a pending synchronous call), and we have s′ = (c̃′ ‖ c̃1 ‖
. . . ‖ c̃′i ‖ . . . ‖ c̃n) with c̃′ = (c′r, α(c′), 〈⊥, σ(c̃)〉, success, π(c̃)) = c̃[c 7→ c′] (note that
our definition of α rules out self-invocation loops for c and c′). γ(c̃′i) = γ(c̃i)[r 7→ c′]
for r ∈ R with γ(c̃i)(r) = c. Hence s′[c 7→ c′] = s[c 7→ c′]. Note that s′ still contains
c as a subterm, namely in the queues and the current method state part. But since
c is not in a pending synchronous call, this is not problematic – no reference to
c is ever used again, and we can proceed to show that any further action of the
reconfigured system corresponds to an action of the renamed one:

s s′1 s′2 s′n−1 s′n

s s′′1 s′′2 s′′n−1 s′′n

RECONF

[c 7→ c′] [c 7→ c′] [c 7→ c′] [c 7→ c′]

[c 7→ c′]

l′1

l′′1

l′n−1

l′′n−1

with l′′i a label such that l′′i = l′i[c 7→ c′] if l′i ∈ DEQ() and l′′i = l′i otherwise. We
elements of the state s′i by (c̃s

′
i ‖ c̃s

′
i

1 ‖ . . . ‖ c̃
s′i
n ). By induction on the length of the

runs i:
i = 1 : We have s′1[c 7→ c′] = s′′1 , and c is only subterm of π(c̃′′s

′
1) and e(c̃′′s

′
1) for

all c′′ ∈ dom(s′1).
i→ i+ 1: Assume s′i[c 7→ c′] = s′′i and c is only subterm of π(c̃′′s

′
i) and e(c̃′′s

′
i) for

c′′ ∈ dom(s′i).

• l′i, l′′i ∈ DEQ(): Since c is only part of π(c̃′′s
′
i) and e(c̃′′s

′
i) for c′′ ∈

dom(s′i), it cannot be identified as the acting component c in the
rule instantiation, but only as c′. Hence, if we instantiate the rule
as DEQ(c : c′′, c′ : c, r : r′,m : m′, v : v′, π : π′), we obtain e(c̃′′si+1) =
c.r′.m′(v′), and π(c̃′′si+1) = π′, and since c does not become referenced in
any other part, we retain the property of c being subterm only of π(c′′s

′
i+1)

and e(c̃′′s
′
i+1) for c′′ ∈ dom(s′i+1).

Since c is renamed to c′ in s′′i , we need to consider the renamed rule
l′′i = l′i[c 7→ c′], and obtain π(c̃′′s

′′
i+1) = π(c̃′′s

′
i+1)[c 7→ c′] and e(c̃′′s

′′
i+1) =

e(c̃′′s
′
i+1)[c 7→ c′], hence s′′i+1 = s′i+1[c 7→ c′].

Note that, as c is only used for the rule element c′, c will not show up

in Tracescomm(s′1
l′1−→ . . .

l′n−1−→ s′n).
• l′i, l′′i ∈ RET(): Since c was not in a synchronous call when becoming

replaced by c′, all the occurrences of c in π(c̃′′si) and e(c̃′′si) are asyn-
chronous calls. Hence, c never is instantiated in l′i ∈ RET(). We can hence
treat this case like the next:
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• l′i, l′′i 6∈ DEQ(): Since c is not subterm of l′i, and since l′′i = l′i, we rewrite
only identical parts of s′i and s′′i and hence obtain s′i+1[c 7→ c′] = s′′i+1.
Also, as c is not used in l′i, we retain the property of c being only a subterm
of π(c̃′′s

′
i+1) and e(c̃′′s

′
i+1) for c′′ ∈ dom(s′1).

Hence, a run r that is reconfigured according to ∆s acts like a run r′ that is
modified by a renaming [c 7→ c′] at the same state s. In communication traces,
we only consider components as the dequeueing component, and hence obtain
Tracescomm(r)|L = Tracescomm(r′)|L. �

The proof illustrates a subtle problem with the storing of message sources in
within the messages, used for moving them during reconfiguration, and for returns
of synchronous calls. In our approach, they do not get updated if the component
that sends them gets removed (and keep a reference to a component no longer
present in the system). This is not problematic for normal operation, since none
of these messages is a synchronous call (the source component cannot become re-
moved while one of its synchronous call is pending). We can get into problems
if multiple reconfiguration is used; in this case, we would have to let δ define the
transferal of the old messages as well, requiring non-shallow reconfiguration plans
and running into the problems with message orderings discussed in Sect. 6.7.1. Al-
ternatively, the plans might be extended to allow for a reassignment of the source
components for messages in the queues of active components. We will later discuss
(Sect. 8.3 and Sect. 10.2) that multiple reconfiguration is tricky. This problem can
be seen as another argument for using ports (cf. Sect. 4.1.1), since maintaining
global information in component-local data is prone to this kind of problems.

6.7.4. Non-Injective Shallow Reconfiguration Plans. Sometimes (e.g., in
section 8.2.2) it is not possible to employ injective shallow reconfiguration plans.
If multiple components are to be combined into a single component, a single-stage
reconfiguration plan will not be injective. There is a workaround using (temporary
or permanent) intermediate filter components, but this workaround cannot solve
the problem of message ordering: Since |ρ−1(c)| > 1 for at least one component,
δρ is not injective, hence ambiguity with respect to the ordering of the messages
copied will arise.

Fig. 6.8 illustrates a problematic situation: Component A is connected to com-
ponent B via two roles, r1 and r2. Reconfiguration replaces component B by a
component C, rewiring both roles to this new component. If the plan is shallow, C
takes all messages sent to B by A, but as they are copied according to the incoming
role, their order might change – and exactly this happens in the plan execution
depicted in Fig. 6.8c. According to proposition 6.1, a reordering is achievable that
results in the same state. But if we just take a reordering as shown in Fig. 6.8b,
a different state is obtained – a state where C’s queue content is ab, whereas the
queue content was ba before.

If we have a non-injective ρ (and hence a non-injective δρ), another means for
ordering messages deterministically has to be given, and the most obvious solution
is to use message IDs. Any message created due to a call statement is given a
unique, monotonically increasing message number. Using these IDs, the ordering
of two messages sent by component c1 to component c2 and c3, respectively, is
determined by the order in which they got sent by component c1. However, we found
the scenarios in which the reordering of messages truly becomes a problem quite
rare; the message order is only relevant for transactions extending over multiple
components, and we will discuss in Chapter 9.4 that transactions are, in practice,
often very limited. Often, a reordering of messages, especially those received from
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different components, will not lead to problems; we have yet to find a practical
example where a non-injective reconfiguration plan leads to problems.

6.7.5. The Restrictions of ρ. The range of ρ is restricted to be a subset of A for
shallow reconfiguration plans. This might seem limiting at first, since there might
be situations where a component is removed and its incoming connections are to be
set to other, retained components. For example, a component might be removed
from a Chain of Responsibility pattern, as depicted in Fig. 6.9. This example also
illustrates the problem of message retainment with a less restricted rewiring – a
ρ with a range that intersects C \ R violates Theorem 6.1. Since we keep cA and
cC running, cC can receive (and, more importantly, process) messages from cA as
soon as the rewiring, according to ρ = {(cA, r) 7→ cC}, has been effected. Since
this happens before the message reassignment, the message a previously sent from
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cA to cB is perceived to be overtaken by b, something that is impossible to achieve
with an atomic reconfiguration step.

Obviously, this problem can be avoided by temporarily blocking cA or cC .
Instead of extending our plans, we decided to implement such a blocking by the
means that we already have: Temporarily stopping a component is produced by
removing and re-adding it. State transferal is necessary to make the re-added
component an exact duplicate of its old instance. It is straightforward to retain
the component’s representation in the component framework and avoid the tedious
state transfer in such a situation. In the filter-removal example, cC might become
removed and re-added. Note that using a shallow reconfiguration plan will result
in cC taking the messages of cB , but losing its own messages; if they need to be
retained, a reconfiguration plan with a matched ρ needs to be employed, leading to
the message ordering problems discussed before.

A similar situation is encountered when adding a filter component to a con-
nection using a shallow reconfiguration plan: Since the domain of ρ is restricted to
include only those component/role-pairs that point to a component in R, we again
need to remove the target component in order to allow a reassignment of the role.
For a filter component insertion, we would run into problems if the messages in the
queue of the target component would have to be reassigned to the filter component;
if this cannot be done in an atomic step, the target component again needs to be
locked.

Using a restricted ρ and a derived δρ within a shallow reconfiguration plans
leads to plans that have a controllable effect on the application, but require de-
tours for scenarios not supported directly. On the framework level, much can be
remedied by providing automated optimizations; but eventually, the reconfiguration
plan capabilities need to be chosen for the reconfiguration scenarios that are to be
supported. We will discuss this for some examples of Chapter 8, where we need to
add and remove filter components. We will sometimes revert to the full capabilities
of ρ, but loose the atomicity property of the reconfiguration. Incidentally, while
non-injective plans did not result in problems, we indeed experienced problems
when dealing with Chain of Responsibility pattern situations. This was observed
with the example presented in Sect. 8.3.2, where a number of chain components
got removed; communication relayed down the chain can became lost. In such sit-
uations, an extended consideration of the communication behavior is required, as
we will discuss in Sect. 8.1.4.2.

6.8. State Transferal

Now. . . where was I?

— Christopher Nolan, Memento

Following the definition of Vandewoude [Van07], data state transferal can be
done using the indirect or the direct approach. The indirect approach requires the
components to implement means for transferring the states. Usually this amounts to
an implementation of the Memento pattern: The old component builds a memento
object that encapsulates the state in a way that can be read by the new component.
The direct approach, on the other hand, does not require components to be prepared
for state transferal; instead, the reconfiguration manager handles the state copying
by other means provided by the component framework.

It should be noted that the Memento pattern, as described in [GHJV95], is
supposed to store and restore the state of a single object (e.g., for storing an “undo”
history), instead of transporting the state to another object. However, some works



6.8. STATE TRANSFERAL 136

explicitly mention the pattern [SPW03, IFMW08, EMS+08], and since the
departure from the original pattern is not too grave, we follow their naming. It
should not be forgotten, however, that the question of how to restore the contents
of a Memento object in an arbitrary component is not covered by the original
pattern definition.

In Sect. 3.2.31, we have discussed the various frameworks that support state
transferal, and seen that most of them take the indirect approach. In JComp, the
indirect approach is utilized, too. The execution of the state transferal, however,
employs the usual message passing mechanisms. There are two things required:
First, temporary reconfiguration edges need to be defined in the plan and estab-
lished during reconfiguration, and second, the new and the old components need
to enter a distinct phase where a protocol for state retainment can be executed. In
JComp, this protocol is triggered by calling a method on the new component that
can then send queries to the old components using the temporary reconfiguration
edges.

Yet, implementing such a protocol within a component is a breach of the sep-
aration of roles paradigm and requirement R3.3: The component writer has to be
aware of future reconfiguration scenarios, which severely limits the variety of re-
configuration plans for a given set of components. This is an inherent problem of
the indirect approach [Van07, pp. 44].

A pure direct approach, while offering the direct solution towards implementing
ς and remaining in accordance to the requirements of Sect. 6.1, also breaks with
important paradigms of component-based development. The problem is that the
data stored within the component needs to be accessed during reconfiguration, e.g.,
by some script that implements the ς function of a reconfiguration plan. However,
usually a component will not provide full access to its data. For example, a map
component might only provide a method to check if an element is stored, but not
an access to all its elements. Obviously such a method is insufficient for accessing
the components internal state (given that the domain of values stored is reasonably
large).

There are two solutions to this problem: Either enforce a component to pro-
vide access to all the relevant data, or access the data by other means (e.g., by
traversing the object graph found within the component [Van07, RS07a]). Both
are problematic: Providing explicit access easily becomes a breach of the separa-
tion of roles paradigm and requirement R3.3 again, as the component programmer
needs to judge which data is relevant for later reconfiguration. External access
constitutes a breach of the encapsulation paradigm of components. Furthermore, it
requires detailed knowledge about the component’s internals, and even if this is not
ruled as another violation of the separation of roles paradigm, it prohibits evolve-
ment of components and generic reconfiguration that can be applied in a variety of
situations.

It should be noted that sometimes, the direct approach is applicable; e.g., if all
the data that needs to be retained is guaranteed to be accessible. We will discuss
this in Sect. 6.8.3, and give an example in Sect. 8.4.1. The scenario presented there,
however, is too restricted for extending it to a general approach. Instead, we will
investigate an approach that limits the use of indirect state transfer protocols as
much as possible, while still not requiring explicit data accessor methods – we call
this a “hybrid” approach, and discuss it in Sect. 6.8.2.

6.8.1. Indirect State Transferal. As mentioned before, this approach requires
temporary roles. In the actual JComp implementation, these roles are just like
ordinary roles, but are annotated as “configuration edges” that are to be connected
(and used) only during reconfiguration. Obviously, this collides with our idea of
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components being completely connected during normal operation. We hence con-
sider these temporary edges in the extended reconfiguration plan only, and extend
the definition of a component being completely connected. To this end, we split
the set of role names into two sets R = Rperm ∪Rtemp with Rperm ∩Rtemp = ∅
and redefine “completely connected” (cf. definition 4.4 on page 72) to be

dom(γ(c)) = R(c) ∩Rperm .

Also, we need to restrict ρ and α to address only permanent roles:
• (c, r) ∈ dom(ρ)→ r ∈ Rperm ,
• for each a ∈ A, r ∈ dom(α(a))→ r ∈ Rperm .

Other than that, a state transferal method mcopy is required to be implemented
by each component in A that performs the state copying protocol. It is to perform a
sequence of synchronous calls over the temporary roles, but not on any other roles.
Likewise, the methods called on the old component during this state transferal
protocol are not to perform any other communication.

We define the call set of a component process term P inductively as:

calls(call(r,m, v).P ) = {r} ∪ calls(P )

calls(return(v).P ) = calls(P )

calls(set(σ).P ) = calls(P )

calls(choose((Σj .Pj)j∈J) =
⋃
j∈J calls(Pj)

calls(success) = ∅
calls(fail) = ∅
calls(X) = ∅
calls(µX ⇒ P ) = calls(P )

The call set is the set of all roles communication might be done over during a method
execution. We can then require the call set of the reconfiguration copy message to
be comprised of temporary edges only, and the call set of the old component’s getter
methods to be empty.

For the temporary edges, we extend a reconfiguration plan (A,R, α, ρ, δ, ς) (and,
at the same time, drop the ς element) with an element τ : A → (Rtemp ⇀ R). τ
needs to connect all temporary required interfaces:

∀a ∈ A .dom(τ(a)) = R(a) ∩Rtemp

or, put differently, τ(a) ∪ γ(ã) needs to be completely connected in the classical
sense for the configuration C̃ with C̃(a) = ã the reconfiguration commences from.
Of course, we require τ(a) to be well-connected for a. Such a reconfiguration plan
∆τ = (A,R, α, ρ, δ, τ) is called an extended reconfiguration plan. Shallow extended
reconfiguration plans are defined similarly.

These interfaces of the range of τ(a) are intended for reconfiguration only (al-
though it is technically not forbidden to connect to them from other components
using normal roles), hence we require that

∀a ∈ A .∀r ∈ R(a) . r ∈ Rtemp → ∀m ∈ IR(a)(r) . calls(ζ(a)(m)) = ∅.
This requirement state that all methods of reconfiguration interfaces do not do
communication on their own. Additionally, we require all these methods to be
queries.

We expect each component to provide a reconfiguration service interface IRec

which consists of the single method mcopy . We require that only temporary edges
are used for communication within this method:

∀a ∈ A . calls(ζ(a)(mcopy)) ⊆ R(a) ∩Rtemp
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Figure 6.10: Extended component state machine

cn, γ → cim, γ if γ is completely connected (RCMINIT)

cim, success→ cid, ζ(c)(mcopy) (RCDINIT)

cid, success→ cif , success (RCFINIT)

cif , γ → cr, γ if dom(γ) ⊆ Rperm (RCSTART)

cs1, γ1 ‖ cf22 , γ2 ‖ . . . ‖ cfn
n , γn → ccm

1 , γ1 ‖ cf22 , γ2 ‖ . . . ‖ cfn
n , γn (RCMCOPY)

if ∀2 ≤ i ≤ n . c1 ∈ ran(γi)→ fi ∈ {s, c}

ccm, π → ccd, 〈〉 (RCDCOPY)

ccd, 〈〉 → ccf , 〈〉 (RCFCOPY)

RCKILLC̃ ‖ ccf → C̃

cn1 , γ ‖ cs2 → cn1 , γ[r 7→ c2] (RCWIRETMP)
if r ∈ Rtemp and γ[r 7→ c2] is well-connected for c1

cim1 , π1 ‖ ccm
2 , π2 ‖ c3 → cim1 , π2|ϕ :: π1 ‖ ccm

2 , π2|¬ϕ ‖ c3 (RCGETMSG)
for r ∈ R(c3) and ϕ ≡ {c3.r.m(v) | m ∈M , v ∈ V }

cif1 , γ[r 7→ c2] ‖ ccf
2 → cif1 , γ ‖ ccf

2 (RCUNWIRE)

Figure 6.11: Rules for indirect state transferal

Finally, we disallow any calls over temporary edges by requiring that

∀c ∈ C . ∀m ∈
⋃
I∈IP (c)I .m 6= mcopy → calls(ζ(c)(m)) ⊆ Rperm .

Given an extended reconfiguration plan ∆i = (A,R, α, ρ, δ, τ), reconfiguration
commences with the same idea as described. However, four new states are added to
the component state machine, as shown in Fig. 6.10. The “copy” state of Fig. 6.5
is split into a “message copy”, a “data copy” and a “finalize copy” state – this is
required so that the message queue can be utilized for handling the reconfiguration
subprotocol, and that the temporary connections can be removed again. To reflect
this, the “init” state is also split into a “message init”, “data init” and a “finalize
init” state.
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Fig. 6.11 shows the reconfiguration rules that are required for the indirect
state transferal reconfiguration, in addition to the rules RCADD, RCWIRE, RCSTOPS,
RCSTOPF and RCREWIRE. Furthermore, the rules DEQ, RET

1 and CHOOSE need to be
copied to work for components in state cd (by requirement, the rules for sending
messages and changing the state are not required), and the rules CALL, SEND, SET

and CHOOSE need to be copied to work for components in state id.
For the reconfiguration plan implementation of an indirect state-transfer recon-

figuration plan ∆ = (A,R, α, ρ, δ, τ), we redefine step (3) and (4) such that RCMINIT

and RCMCOPY are used. We add a step (3.1) after step 3:
3.1 for each a ∈ A and each r ∈ dom(τ(a)), we use RCWIRETMP(c1 : a, c2 :

τ(a)(r), r : r), thus establishing the temporary connections.
We then replace step (5) by the following sequence:
5.1 for each a ∈ A, we use RCDINIT(a), and for each r ∈ R, we use RCDCOPY(r).

This ensures that the message queues of the old components are empty,
and that the process term for the mcopy message is loaded into the com-
ponents in A.

5.2 both the components in A and R perform a subprotocol phase that allows
regular processing of component process terms.

5.3 once all components in A and R have reached a component process term
of success, for each a ∈ A we use RCFINIT(a) and for each r ∈ R we use
RCFCOPY(r).

5.4 for each a ∈ A and each r ∈ dom(τ(a)), we use RCUNWIRE(c1 : a, c2 :
τ(c1)(r), r : r).

Obviously, this kind of state transferal protocol is quite limited, because it only
admits one single method for a new component; this method must be written in a
way that is aware of the situation it is about to be deployed in. If it is to replace
two components, it has to provide two temporary edges, and the method mcopy

has to be interpreted in a way that both edges are used for querying those two
components’ states. However, quite often, this is perfectly sufficient, especially if
a component just replaces some other component; a scenario that can be expected
to be not all too uncommon.

Especially, the Memento pattern is covered by this kind of technique: In the
execution of the mcopy method, the Memento objects are obtained over the tem-
porary edges, and then used to form the new component’s state. This corresponds
to a ς function that can written as

{(s, a) 7→ t(s(c)) | s ∈ (R→ S) ∧ a ∈ A ∧ c ∈ R ∧ t : S → S}
(i.e., each new component’s state is calculated from the state of a single component
from R by a translation function t : S → S). We can implement this ς by using
a Memento interface IMemento = {mMemento}, and extend each component c with
an rMemento ∈ R(c) ∩Rtemp such that IR(c)(rMemento) = IMemento . In the τ plan
element, each new component is then connected to the one it replaces.

For building the Memento, we assume an injective function wMemento : S → V.
We then set

ζ(r)(mMemento) ≡ choose(({σ}, return(wMemento(σ)))σ∈S .success)

ζ(a)(mcopy) ≡ call(rMemento ,mMemento , ∗).choose((Rv, Sv)v∈V)

withRv ≡ {ret(v, σ) | σ ∈ S}
andSv ≡ set(t(w−1

Memento(v))).success.

1Note that this is the sole place where we actually require synchronous methods; if they were
not allowed, bidirectional temporary edges would be required.
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Obviously, this approach cannot cover a situation where the state of a new com-
ponent is comprised of more than one old component. Furthermore, the state
translation function t is “hard-wired” into the component. This is especially trou-
blesome if reconfiguration is to be planned after the component has been written
– as the separation of roles paradigm would require. That problem is inherent to
the indirect state transferal approach, however: Since components are tasked with
building their initial state (from a Memento, or by repeated queries), their appli-
cability in reconfiguration is restricted to those scenarios that have been foreseen
at the time the component was built.

6.8.2. Hybrid State Transferal. As mentioned previously, the problem of the
indirect state transferal outlined in the previous section is the breach of the separa-
tion of roles and requirement R3.3. The component implementer needs to declare
the temporary roles that get connected during reconfiguration, and the method
mcopy needs to be implemented. While the latter might make use of an elaborated
Memento pattern implementation (maybe using a Memento object that carries the
semantics of its contents along, such that a wide range of possible source compo-
nents can be accounted for), the definition of temporary roles needs to make some
assumptions about the source of the state data. It is especially problematic to
condense the state of multiple components into a single component.

As discussed before, the direct approach requires a breach of encapsulation: In
order to populate a component’s state with data copied from another component,
it needs to perform write operations on data that should remain hidden2, unless an
exhaustive set of writing operations is provided by some interface. The existence
of such writing operations is unlikely (unless they are enforced, again leading to
problems with a separation of roles), hence the state transferal mechanism (e.g., a
plan-provided script executed by the assembly) needs to inject data directly into the
component. But this requires knowledge (even if obtained at runtime by reflection)
that should not be passed to the system designer, but remain a concern of the
component implementer only.

Since component data encapsulation is virtually an axiom in this thesis, we
opt to stick with the indirect approach and deal with the breach of separation
of roles paradigm, i.e., the problem that the reconfiguration scenarios need to be
considered at component creation time. A mitigation of this problem is to postpone
the time the new component is built as far as possible. Instead of directly adding
a component that consumes the states of the old components and then continues
to operate, we can use a two-stage reconfiguration and generate an intermediate
component for just a single reconfiguration plan.

Since the reconfiguration plan is fully known at the time the intermediate com-
ponent is added to the system, this intermediate component can be devised to
require exactly the temporary roles necessitated to implement ς, and doing so will
be in accordance with requirement R3.3. This component can then query the old
components, and assemble a Memento object that carries the combined state. Any
necessary state transformation can be done in this stage. Once this is completed, a
second reconfiguration can be conducted to copy the Memento object to the final,
new component. Hence, all regular components just need to provide facilities for
the Memento pattern (which is still a departure from the direct approach) but the
remainder is handled by the intermediate component.

2Note that requirement R1.4 calls for the ability of the component to do exactly this. For
message retainment, we fully support this requirement. For the data state, which is much less

constrained and mostly defined by the component implementer, the component model needs to
favor other concerns.
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Figure 6.12: Hybrid state transfer

Fig. 6.12 illustrates the hybrid approach. All arrows between components are
temporary edges; in the first reconfiguration, a copy (not necessarily an identical
image, hence the si functions) of the state of each component is queried by the
temporary component. Obviously, the interface of the temporary edges needs to
provide accessor methods for the relevant parts of the source components’ state,
but, as argued before, their existence can be assumed. From these state copies,
a combined state (which can be regarded as the Memento object already) is built
and stored. During the second reconfiguration, this Memento object is copied to
the target component. Some wrapping, indicated by the m function, is required.

The utilization of the Memento pattern in this way preserves the separation of
roles issue: The implementer of the target component can choose freely how this
Memento should look like; it is hence entirely dependent on the target component
and thus entirely within the concern of the component implementer. Only the fact
that a Memento object has to become consumed hints at the possibility of future
reconfiguration. The reconfiguration designer then needs to ensure that the data
of the old components is transformed in a way that can be used to populate the
Memento object.

Using the Memento pattern helps to keep the reconfiguration lean. Imple-
menting the Memento consumption is not different from implementing state setter
methods, but this would require a completely different reconfiguration algorithm
that requires the execution of the state transfer protocol (i.e., the retrieving of the
state from the source components, any necessary conversion and the depositing of
the result in the target component) within the assembly. Using the hybrid ap-
proach, all can be handled by the components using only the indirect approach as
described before. This helps in keeping things flexible – the means to describe the
generation of the Memento object can be chosen by the intermediate component
and are not fixed by the assembly’s implementation.
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Obviously, the generation of the intermediate component requires the ς func-
tion to be given in a way that enables automated code generation. This could be
provided by a domain specific language (DSL). In the JComp framework imple-
mentation, we utilize JavaScript to describe the relevant parts of the ς function.
An example is given in Sect. 8.2.2.

6.8.3. Direct State Transferal. Direct state transferal without violating impor-
tant paradigms is not entirely impossible if ς has a limited scope. In Sect. 7.2.3,
we have discussed the use of component parameters. The important property of
this parameter is that they remain constant during the lifetime of a component,
and that they can be assumed to be visible (as they are part of the component
definition rather than its internal data state). This aspect of the component’s state
can therefore be accessed by the plan creator, and directly injected into the new
component.

The parameters are not made first-class entities in our formal model, leaving
two ways to include them: Either they become a part of the component identifier,
indicating their static nature; or they are made part of the component state, to be
set by ι initially. This integrates them with choose, but, obviously, also subjects
them to change by set. For the purpose of direct state transfer, the second option
is more favorable; by using a restricted ς plan element, the parameter state part of
new components can be set directly. An example will be given in Sect. 8.3.3; there,
component parameter are used to parametrize components with responsibilities’;
during reconfiguration, direct state transferal is used to retain these information.



CHAPTER 7

Implementing the JCompJCompJComp Model in a Component
Framework

Ja, mach nur einen Plan

Sei nur ein großes Licht!

Und mach dann noch ’nen zweiten Plan

Geh’ n tun sie beide nicht.

— Bertolt Brecht

In this chapter, we describe how the JComp component model, introduced in
the previous chapter, is implemented in the JComp framework. The JComp frame-
work is written in Java, and also uses Java as the host language for the components.
Java is particularly suitable for our purpose, as it is restricted enough to be con-
trollable (e.g., no runtime changes are allowed to the component implementations),
yet quite versatile and capable of elaborate reflection. In our implementation, we
try to realize the formal JComp component model as closely as possible, in order to
retain the properties we have proven for its reconfiguration mechanism. For the ba-
sic component framework, two major issues need to be solved: the realization of the
message-based communication paradigm, and the prohibition of sharing of mem-
ory. The inclusion of reconfiguration capabilities is then rather easy to achieve,
but extended features are required for detecting the need for reconfiguration by
monitoring the communication and occurrence of errors.

7.1. The Active Object Pattern

The Active Object pattern [LS96] describes how message passing can be
achieved by common objects in a language with multi-threading support (such
as Java). Basically, the pattern calls for adding a queue to the active object, which
conducts a thread switch before the method execution; the caller enqueues a method
request instead of directly invoking the method.

Fig. 7.1 illustrates the dynamical progression of the Active Object pattern. A
client wants to execute a method that is ultimately implemented by a servant,
but only visible to the client via a proxy. This proxy builds a method request
object that gets enqueued in a queue. If a return value is required, a future is
returned to the client. All this is done by the client’s thread. The remainder of
the processing now happens in a special thread that belongs to a scheduler. This
scheduler is tasked with selecting messages to execute on the servant in such a
manner that some abstract criteria (e.g., deadlock-free executability) is met. To
this end, the scheduler calls the method request object with a method guard, which
checks the executability. Once this executability is given, the method request object
is removed from the queue and dispatched. This is done by invoking call on the
method request object, which in turn invokes the requested method on the servant
using a Double-Dispatch pattern. Finally, the return value is propagated to the
future.

143
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:Client :Proxy :Scheduler :Queue :Servant :M1

m1 ()

enq(new M1 )

enq(M1 )

future()

guard()

deq(M1 )

dispatch(M1 )

call()

m1 ()

reply to future()

Figure 7.1: Active Object pattern, as described in [LS96]

Basically, the Active Object pattern implements a producer-consumer scheme
for method processing: The proxy produces method request objects, which are con-
sumed by the scheduler. The pattern refines this idea by detailing how the method
request object is to be consumed. Like any producer-consumer example, a buffer
is required to transport jobs between the threads; here this buffer is implemented
by the queue, although the queue designation is a bit misleading since the Active
Object pattern allows for arbitrary choice of the method request to be consumed
next. This queue is the only data structure that might be accessed by both threads
simultaneously; hence its operations need to be atomic.

A different perspective on the Active Object pattern is given by the observation
that it provides message passing between two threads. This view is closer to the
intent of the pattern: It makes an object active, i.e., has it running in its own thread.
By using the queue for communicating the method request to the recipient’s own
thread, message passing supporting asynchronous calls is achieved.

7.1.1. Using the Active Object pattern for JCompJCompJComp. The Active Object pat-
tern describes the basic approach towards implementing message passing in JComp,
as it is done in the Julia reference implementation of the Fractal component
model [BCL+06]. The actual use of the pattern in the JComp framework does
not exploit all its power, however. Especially the role of the scheduler, with its
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capability to change the message processing order, is not used in JComp. Instead,
message execution order is the same as the order of message reception.

Fig. 7.2 illustrates the utilization of the Active Object pattern in the JComp
framework to support two ways of doing communication: Asynchronous calls, which
are not providing return values (we evaluated the use of futures, but have not found
a good example [KD99]), and synchronous calls, which block the caller until the
return value is obtained. The role of the scheduler and the servant is now merged
in the component implementation, which both maintains the queue and finally
executes the methods. For synchronous calls, blocking is handled by the proxy.
The actual implementation of these ingredients of the Active Object pattern will
be discussed in the next section.

7.2. Implementation

The JComp framework is a fairly slim framework (since the model focuses on
only a few features) that is written in the Java programming language, which also
serves as the component host language. In using Java, some very benign features
are obtained, like dynamic class loading and multi-threading. These are sufficient
to allow for wrapping component implementations in a lightweight layer that makes
them a component, following the Active Object design pattern as discussed above.
On the other hand, Java allows shared memory by using references for objects.
Since communication should be able to carry objects as parameters, a conflict
arises: By passing references to objects, a covert channel is built – one component
might communicate with some other component using the shared memory, and thus
bypass any observer. We have discussed in Sect. 6.2 that sharing memory between
components needs to be impeded, and subsequently only included a component-
local state in the JComp component model. If the component framework is to
represent the component model, we have to avoid memory becoming shared by
passing references between components.

7.2.1. Suppressing Shared Memory. The JComp framework solves this prob-
lem by mandatory serialization of parameters. Technically, all parameter classes
need to implement the java.io.Serializable interface, since the Java serializa-
tion mechanism is used for obtaining deep copies (i.e., a complete copy without
shared parts).

This slows the communication down, but by using static bytecode anal-
ysis, the mandatory copying can be suspended for immutable objects (like
java.lang.String) that cannot be modified after their initialization. Fig. 7.3
shows the throughput obtained with different communication means. Two com-
ponents c1 and c2 call each other i times, using asynchronous calls (synchronous
calls would deadlock immediately). As a reference, a direct Java implementation
is given (though, for large initial i, the stack overflows). Message passing, which
requires building a message request and various calls to listeners described in the
next sections, is much slower, of course. Using a primitive Integer variable to
represent i is fastest, but using an immutable object that creates a new copy to
store the result of the operation i− 1 is comparable. Using such an object is more
than three times faster than using a generic parameter copying approach, where
the parameter is wrapped in an object and i− 1 is implemented as a modification
to that object’s state.

Still, there is ample room for improvement (we have done some experimenta-
tion with static bytecode analysis for detecting immutable objects, which do not
have to be copied), and obtaining high efficiency is not a primary concern of the
JComp model and framework, but providing a clean communication paradigm im-
plementation is; ultimately for obtaining guarantees for reconfiguration. A much
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:Client :Proxy :Component :Queue :M1

m1

enq(new M1 )

enq(M1 )

deq(M1 )

call()

m1 ()

(a) Asynchronous call

:Client :Proxy :Component :Queue :M1

m1

enq(new M1 )

enq(M1 )

deq(M1 )

call()

m1 ()

r

r

got result(r)

r

(b) Synchronous call

Figure 7.2: Active Object pattern, as realized in JComp
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c1 c2

p : {m}

p : {m}

(a) Component setup

ζ(c1)(m(i)) = if i > 0 then
call(p,m, 〈i− 1〉)

fi.success

ζ(c2)(m(i)) = call(p,m, 〈i〉).success
(b) Component method specification

Java primitive: 21,276,595 msg/sec
Primitive data type: 82,562 msg/sec
Immutable data type: 69,851 msg/sec
Mutable data type: 17,023 msg/sec

(c) Message consumption by various message passing

paradigms

Figure 7.3: Message passing cost

bigger problem is given by the fact that it is downright impossible to avoid covert
channels with Java. First of all, static variables can always be used to transport
data between components (if they are on the same virtual machine). Other than
that, shared resources like files might breach the explicit communication paradigm.

The latter can be mended by utilizing the Java security model and disallowing
access to all problematic resources. Prohibiting access to static variables, on the
other hand, would require bytecode analysis, which is prone to disallowing legiti-
mate behavior if the analysis is not exact enough – e.g., a read access of Math.PI
should not be prohibited, but a read access to Singleton.INSTANCE should be
prevented if – and, preferably, only if – the class Singleton offers mutator meth-
ods. It is quite unclear if read access to System.out can be allowed. The JComp
framework does not prohibit static variable access; instead, static variables act as
a substitute for what is known as Utility Interfaces in SOFA [BHP07]; we will
see some examples in Sect. 7.3.4 and Sect. 8.3.3. For a complete Java-based com-
ponent framework that enforces explicit communication, however, static variable
access needs to be accounted for.

7.2.2. Role and Communication Implementation. Implementing the com-
munication is greatly facilitated by the fact that Java uses interfaces in quite the
same fashion as we use them for roles: As sets of method declarations. Hence, it is
straightforward to have the Java implementation of a component be a class that
implements the provided interfaces and has attributes that represent the required
roles.

Component interfaces are implemented by their Java counterparts. All neces-
sary information is included, except the message synchronicity. We therefore pro-
vide two annotations @AsynchronousCall and @SynchronousCall that are used to
annotate a method’s call type. To allow for consistent interpretation of method
calls, some constraints need to be obeyed:

• If a method is declared to by asynchronous, the return type must be void
and no exceptions can be declared,
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• all parameter types and, for synchronous non-void methods,
the return types must either be primitive types or implement
java.io.Serializable.

A component is implemented in a Java class that extends
jcomp.core.AbstractComponent. It has to implement the interfaces it pro-
vides and implement their methods. Only two elements within such a component
class need annotation: The roles and the component parameters. Roles are declared
by adding @RequiredInterface annotations to attributes. The annotation can be
provided with a role name, but if this is omitted, the name of the Java attribute is
used. Furthermore, it is not required to provide a setter method for the attribute
or grant a visibility beyond private – the JComp framework utilizes a security
manager that allows the direct setting of the attribute. Avoiding redundant
information (e.g., maintaining a role name both in the annotation and the Java
attribute) and requiring as little as possible from the component implementation
code helps to keep the component applications slim and easy to understand.

Roles can also be given a scope, which can be either permanent or temporary,
with permanent being the default. Temporary roles are used for transferring data
during reconfiguration as described in Sect. 6.8.1. Given an annotated attribute
that is declared to be a permanent role, the JComp framework needs to provide
a link to a target component as specified by the component setup. This is done
at component instantiation time; a proxy is used to translate the Java method
invocation to the message passing as prescribed by the JComp communication
model. In JComp, this proxy is instantiated from code that is generated for the
required interface using the Velocity engine [Apa08]1.

Once invoked by having the component implementation call a method on the
role’s attribute, the proxy builds a method request object that stores the method
call name, deep copies of the parameter objects, and information required for
calculating statistics and performing reconfiguration. This method request ob-
ject is now passed to the target component by invoking a method defined in
jcomp.core.AbstractComponent which enqueues this method request in the queue
of the target component. Eventually, this method object will be dequeued and ex-
ecuted, by calling a method perform that invokes the appropriate method on the
target component in a scheme similar to double dispatch.

If the method call is synchronous, the method request waits for completion of
the method and stores the result – if any; the result might either be a value or
an exception. The proxy object, itself waiting for the target method’s completion,
maintains a Java-provided monitor (obtained by invoking Object.wait()) on the
method call object, and is notified on the return value’s setting. This communicates
the method call completion back to the caller component.

7.2.3. Defining and Launching Component Setups. Building a component
setup with the JComp framework is basically done in three steps:

(1) instantiation of a jcomp.assembly.Assembly instance,
(2) declaring the component graph by calling methods of the Assembly in-

stance,
(3) establishing the components and launching them by calling start() on

the Assembly instance.

1Note that Java 1.6 provides the java.lang.reflect.Proxy class that facilitates the same
approach with minimal overhead, but this was not known to the author, who was very influenced
by code generation done by some well-known model checking software at that time.
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getComponentForClass(String id,
Class c)

build a component descriptor for a
user-supplied class deriving
AbstractComponent and a unique,
user-supplied ID

getComponentForClass(Class c) build a component descriptor for a
user-supplied class deriving
AbstractComponent, with a generated
ID

addComponent(ComponentDescriptor
c, ComponentParameter[] p)

add a component to the network, with
user-supplied parameter settings

addComponent(ComponentDescriptor
c)

add a component described by a
component descriptor to the network,
with an empty parameters set

linkComponents(ComponentDescriptor
src, ComponentDescriptor tgt,
String role)

link the role of component src to
component tgt

Table 7.1: Component network creation commands in JComp, provided by the
class jcomp.assembly.Assembly

The Assembly instance maintains a graph representation of the compo-
nent setup. The basic methods provided for establishing a component net-
work are shown in Tab. 7.1. The reference to components is given by
ComponentDescriptor instances, and they can be obtained from the assembly by
calls to getComponentForClass. Since these descriptors will also be required for
planning reconfiguration, they need to be added to the component setup by a dis-
tinct call to addComponent. This call also takes an array of component parameter
which are essentially name-value-pairs and which are to be injected into the com-
ponent before it is launched. Parameters are useful to obtain a higher diversity of
components [OLKM00], in the JComp component model, they can be represented
by a read-only part of the data state that is set by ι. Calls to linkComponents
are used to establish the connections of roles to other components. The assembly
also provides methods for adding the various listeners described in Sect. 7.2.5, for
obtaining the component graph for inspection, and for preparing and executing
reconfigurations.

Once the setup is complete, the entire system is started by a call to
Assembly.start(). First, the assembly checks the well- and completely-
connectedness of the component setup, and checks the various implementation-
related constraints on the components and interfaces (e.g., no asynchronous method
must have a return type other than void declared). The assembly then builds the re-
quired code for the communication proxies and instantiates the actual components,
injecting the communication endpoints and finally starting each component’s own
thread. Finally, all components providing the MainInterface, which consists of a
single asynchronous method start(), get a start method object added to their
queue. Those components are called initial components; their processing of the
start method launches the component application.

7.2.4. An Example. We present a small producer-consumer example to illustrate
how a component setup is realized in the JComp framework. The component setup
is illustrated in Fig. 7.4. It consists of two components: cc and sc – a “client”
component (that produces tasks) and a “store” component (that stores data). For
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cc sc

self :MainInterface

store :StoreInterface

Figure 7.4: Component setup for the producer/consumer example

defining this example, we require two interfaces: the MainInterface which we
introduced in the last section, and an interface StoreInterface that contains a
single asynchronous method store(String s).

We can thus define the components

C = (cc, {MainInterface}, {self 7→ MainInterface,

store 7→ StoreInterface}, µ(C), {i 7→ 0}) and

S = (sc, {StoreInterface}, {}, µ(S), {entries 7→ 〈〉}).
The method evaluators are defined as

µ(C)(start) = (i← i + 1).call(store, store, 〈”i”〉).
call(self, main, 〈〉).success and

µ(S)(store(s)) = (entries← entries :: s).success

The component setup is formally defined as

({C, S}, {C 7→ {self 7→ C, store 7→ S}, S 7→ ∅}, (C, start)).

Implementing these elements in Java is straightforward. First, we implement
the StoreInterface interface, which is a regular Java interface with annotations
used to describe how communication is conducted:

1 public interface StoreInterface {

2 @AsynchronousCall

3 public void store(String s);

4 }

Writing the components is equally straightforward:
1 public class ClientComponent extends AbstractComponent

2 implements MainInterface {

3 @RequiredInterface

4 private StoreInterface store;

5 @RequiredInterface

6 private MainInterface self;

7

8 private int i;

9

10 @Override

11 public void start() {

12 i++;

13 store.store(Integer.toString(i));

14 self.start();

15 }

16 }

1 public class StoreComponent extends AbstractComponent

2 implements StoreInterface {

3 private LinkedList<String> entries = new LinkedList<String>();

4

5 public void store(String s) {
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6 entries.add(s);

7 }

8 }

Note that these two components are actually component types that need to be
instantiated; as we discussed in Sect. 2.3, a distinction is usually omitted.

For building the component setup and starting the application, a regular Java
main method is used. The component setup is built by invoking the methods
presented in Tab. 7.1 (or, rather, shortcuts that omit unnecessary parameters) as
described in Sect. 7.2.3:

1 public static void main(String[] args) {

2 a = new Assembly();

3 cc = a.addComponent(a.getComponentForClass(ClientComponent.class));

4 sc = a.addComponent(a.getComponentForClass(StoreComponent.class));

5 a.linkComponents(cc, sc, "store");

6 a.linkComponents(cc, cc, "self");

7 a.start();

8 }

cc and sc are static variables; we will later use them for building a reconfiguration
plan. The JComp framework implementation supports the loading of component
setups from graph files, but we usually build component setups just as shown, by
directly calling the appropriate methods on the assembly.

7.2.5. Monitoring Facilities. The JComp framework needs to support a vari-
ety of monitoring facilities in order to allow for the triggering of reconfiguration,
as we will discuss in Sect. 8.1.2. While monitoring can be added to most systems
externally [Sca00] or at component code level by introducing filter components
(cf. Sect. 8.1.2.1), having direct provisions in the framework facilitates the imple-
mentation of lightweight monitors and thus reduces the impact monitoring has on
the concept and the runtime load of a component application.

7.2.5.1. Communication Monitoring. The most important kind of monitoring is
about inter-component communication. An observable communication (for an out-
side observer) is one of the distinguishing properties of a component framework,
hence monitoring capabilities are an integral part.

For message monitoring, monitors can subscribe to the assembly using the Ob-
server pattern [GHJV95]. They are then informed on different stages of message
processing, listed in Tab. 7.2. Such a fine-grained distinction of points in time is
required, as reconfiguration needs to be able to preempt message processing (see
Sect. 8.1.2). It also gives rise to a number of different “combined” monitoring ap-
proaches, including non-functional evaluations like the number of messages that are
stored in the queue (the difference of stage 2 and stage 3 events) or the time of a
method execution (time elapsed between a stage 3 and the corresponding stage 4
event).

Apart from the single information that a message stage has been (or will be)
conducted, the JComp implementation supports the retrieval of further information
on the messages sent by utilizing the JVMTI interface [PRRL04]. JVMTI is a C
API for querying the Java virtual machine about various data, in this case about
the size of a message parameter. This allows for an (almost) efficient calculation
of message sizes, which consist of the message header and the sizes of the message
parameters objects. Such information is useful for determining “heavy use” con-
nections, which should not be divided during a distribution of the application, or
possible problems with a component division too fine-grained. We will utilize such
JVMTI-based measurements in Sect. 7.3.3.2.
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Stage Description Thread
1 – message send after the message was sent by

the target component. The
message object has been built,
but not yet enqueued. This
stage is a relict of times where
JComp was intended to provide
distribution on framework-level.

source component

2 – message received after enqueueing the message in
the target component’s queue.
At this point in time, it is
actively available to the target
component.

source component

3 – start processing after dequeueing the message
from the target component’s
queue. This is just prior to
invoking the message on the
target component. The time
difference to stage 2 is the
queue residence time.

target component

4 – end processing after the method execution
completed on the target
component. The time difference
to stage 3 is the actual method
execution time, the difference to
stage 2 the time the invoker of a
synchronous call had to wait.

target component

5 – message return just prior to returning to the
source component in a
synchronous call. Omitted for
asynchronous calls. This stage
should occur just after stage 4
with only negligible delay, but
the thread switch is required.

source component

6 – message postponed if the message is postponed (see
section 7.5.1), this is called prior
to reenqueueing the message.

target component

Table 7.2: Observable stages of message processing in JComp

7.2.5.2. Exception Monitoring. The JComp framework also allows for monitoring
of exceptions. This is very similar to communication monitoring, as an exception
completes the execution of a method. However, in the JComp component frame-
work, exceptions cannot be recovered from without external intervention, thus im-
plementing the fail behavior of the JComp component model. Hence, monitoring
exceptions is made distinct from monitoring communication, as the former is much
more important for an application, and it might be reasonable to assume that
every application should contain an exception monitor, whereas only very special
applications need to have their communication monitored – additionally, monitor-
ing communication is very expensive (as the five stages need to be processed for
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every method call). Also, exception monitors are required to communicate a way
to handle the exception, which decides how the application proceeds.

Technically, the component’s thread is used to notify the exception listeners
(again employing the Observer pattern). The monitors are required to return a
value indicating their proposal on how to proceed:

• DIE, indicating that this particular monitor does not know of any way to
handle this particular exception,

• RECONFIGURE AND SKIP, indicating that the monitor knows a way to han-
dle the situation by reconfiguration, but cannot handle the faulty message
(which is, actually, not covered by the rule RCSTOPF),

• RECONFIGURE AND KEEP, indicating that the monitor knows how to con-
duct a reconfiguration and that the problematic message should be
prepended to the queue prior to the reconfiguration,

• CONTINUE, indicating that the monitor can vouch for the error being no
problem at all; the system may continue unabated.

If multiple monitors are present, the most favorable suggestion is used. Depending
on the type of method and the best suggestion made, the application proceeds in
different ways which are detailed in Sect. 7.5.3. If none of the monitors suggested
a reconfiguration or continuation of the application, and if the method whose ex-
ecution caused the exception is synchronous and the exception is declared in the
method’s signature’s throws part, the exception is then thrown at the calling com-
ponent, which has to cope with the exception by means of Java’s exception handling
mechanism. If the exception has not been declared (i.e., is a RuntimeException or
an Error), and if none of the exception listeners claimed the exception, the system
is terminated, as the exception cannot be dealt with in a consistent way.

Extending the example of Sect. 7.2.4, we might add a check after line 4 of the
component StoreComponent that reads
if (entries.size() > 100) throw new RuntimeException("Capacity exceeded");

Once such a line is added, the component application will soon fail.
Adding an exception monitor is achieved by implementing the Java interface
jcomp.monitoring.ExceptionMonitor and announcing it as a listener to the com-
ponent S by adding the line
a.monitorExceptions(sc, new ExceptionMonitorImpl());

after a.start(); in the main method. We will use such a monitor to trigger a
reconfiguration to mend the “capacity problem” in Sect. 7.5.4.

7.2.5.3. Component Graph Change Monitoring. Finally, JComp supports monitor-
ing changes to the component graph, which may happen due to two event classes:
System startup and reconfiguration. This is not very prominently used, but it is
helpful for system-wide logging and observation. We will discuss the benefits of
hierarchical components in Sect. 10.1.3.2; this component graph change monitoring
provision is a first step into that direction.

7.3. Distributing JCompJCompJComp

7.3.1. Abstract Idea. The JComp model was developed with distribution in
mind, which proved to enforce exactly the level of component confinement required
for reconfiguration. It was therefore rational to investigate how components might
be distributed on a network of machines (called nodes in this thesis), which was
investigated in [RS07b]. Distributing a component framework is done in two steps:
First, a central node is asked to provide a partitioning for a given component graph,
i.e., a labeling of the graph nodes which describes on which of the available net-
work nodes they are to run. Then, these machines, with each operating a so-called
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local assembly, instantiate the components. Components that happen to be lo-
cated on the same node can be connected using the regular means, described in
Sect. 7.2. For components residing on different nodes, a more elaborate commu-
nication mechanism needs to be employed: The component sends its message to
an interface provider (just as the Active Object pattern proposes), which in turn
has a socket connection to the remote node. On the remote node, a special thread
is dispatched immediately to handle the message – as incoming synchronous calls
that need to wait for method processing completion must not block the network
interface of the node itself, as it might receive messages from multiple components.
This thread – obviously, one per incoming connection is required – then enqueues
the message in the target component’s queue. If the method call is synchronous, it
waits for method processing completion and sends a response message back to the
caller’s node.

7.3.2. A First Approach – Extending the Component Framework.
In [RS07b], the JComp framework was extended to provide distribution and re-
mote communication facilities in the framework. This resulted in two problems:
First, it made the component framework quite bulky. The assembly needs to be
split into a global and local part, and even for non-distributed applications, both
have to be instantiated and linked. Resolving a component’s reference requires a
two-step lookup: First, the component descriptor that is made known outside of
the assembly needs to be resolved to a component locator , which stores the node
the component is actually running on, and second, the actual component has to be
found on its host node.

But far more problematic is the problem of having extensibility of distribution
severely limited due to having all the functionality fixed within the framework.
Any change to the remote communication method (which is far more elaborate
than local communication) entails a change to the framework – e.g., if the messages
need to become encrypted, the framework has to be changed. And, worst of all,
fixing the communication means in the framework deprives us from one of the finest
examples for reconfiguration, which will be discussed in Sect. 8.4.

7.3.3. Another Approach – Distribution on the User-Level. There are two
ways to remedy that situation: Communication, especially remote communication,
might be modularized and hence be made subject to user-supplied changes. Such
an approach is taken by Corba [OMG06a], where multiple object request brokers
(ORB) can be provided that then can support different ways of doing communica-
tion (obviously, these communication ways have to adhere to the Corba standard
defined in the “general inter-ORB protocol” (GIOP) (cf. [KL00]), but other de-
cisions such as performance issues are left to the implementer, cf. [CB01]). We
propose a similar approach in the REFLECT middle-ware [SvdZH08], where
user-defined connectors [LEW05, BMH08] can be used to provide different ways
of doing remote communication.

In this thesis, however, we take a different approach that places distribution on
the user level. Basically, this amounts to having a number of component applica-
tions running on various nodes. Each application is self-contained; the component
framework instances on the different nodes are unaware of the fact that only a frac-
tion of the entire application is running under its supervision. Communication that
needs to be sent to a remote node is handled by proxy components (in reference to
the Proxy pattern [GHJV95]) that maintain a network connection and delegate
the message requests by means of their choice. Basically, these proxy components
are just what the framework would have provided as an interface provider, but they
are now user-supplied and thus fully changeable without touching the component
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framework itself. Obviously, the “user” is different from the user that writes the
application that gets distributed; such a hierarchy of users is often found in this
thesis and will be discussed further in Sect. 8.3.1.1.

7.3.3.1. Phase 1: Setting up the Network. For distributing an application, three
phases are required: In an initial phase, all available nodes subscribe to a server.
This could be done using some peer-to-peer software, but in the example implemen-
tation, a minimal socket-based implementation and a lookup using user-supplied IP
addresses are used. Also, this initial network configuration might already utilize the
code later used for doing inter-component communication, but such a bootstrap-
ping process seemed to provide little gain [KD99]. Instead, a proprietary protocol
is used to have some client send a component setup request to the server, which
describes the layout of the entire application to be instantiated.

7.3.3.2. Phase 2: Finding a Good Partitioning. The server now decides on how the
components should be assigned to the available nodes.

Formally, a graph n-partitioning for a graph (V,E, α, ω, λ) over Σ is a func-
tion V → {1, . . . , n}. Given such an n-partitioning function P , a partitioned
graph (V,E, α, ω, λ′) can be defined, using the extended alphabet Σ′ = Σ ∪
{(σ, n) | σ ∈ Σ ∧ n ∈ {1, . . . , n}}, by defining λ′ as

λ′(o) =

{
λ(o), if o ∈ E
(λ(o), p), if o ∈ V and P (o) = p

Given λ′(v) = (l, i), we write l(v) for l and p(v) for i .
Often, graphs are weighted, meaning that they have “costs” associated with

nodes and edges. Formally, this is a function cost : Σ → R+. The edge cost of a
partitioned graph G = (V,E, α, ω, λ′) is given by the sum of the weight of edges
crossing partitions:

coste(G) =
∑
e∈E

{
cost (λ(e)), if p(α(e)) 6= p(ω(e))
0, otherwise.

The cost of a partition i is the sum of the cost of its nodes:

costp(i) =
∑

{v∈V |p(v)=i}

cost (l(v)).

The balance of a partition is the inverse of the difference between the cheapest and
most expensive node (other means to calculate it, like the standard deviation, can
also be used). A graph partitioning should both have a high balance as well as a
low edge cost. For component applications, the edge cost is given by the amount
of communication sent over this edge, and the node cost is given by the CPU time
required for method processing by the associated component.

Finding such a good partitioning is a problem that is known as a “multi-
constraint graph partitioning problem”, and very good heuristics exist. We em-
ployed the Metis partitioning tool-set [KK98], and partitioned the component
graph, whose weights were retrieved by communication monitoring and JVMTI-
based profiling [PRRL04] as described in Sect. 7.2.5.

Fig. 7.5 illustrates such a weighted graph; edges are annotated with the
megabytes of sent and returned messages (for synchronous calls) flowing over
the edge, and their respective count. Components are annotated with the CPU
time consumed, the number of messages processed, and the memory required (in
bytes). The example is an image processing application, where two filters are
applied to an image, which is then recombined with the original source in order
to mix the filter effect. Since most of the communication is asynchronous, the
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Figure 7.5: Component graph with edge/node weights and distribution on two
CPUs

ImageJoiner0 component needs to wait for both images to arrive, find out that
they belong together (asking the NameBasedMatcher0) and join them (which is del-
egated to the AdditionJoinProcessor0 component, thus implementing a Strategy
pattern [GHJV95]). The exceptional memory requirements of ImageJoiner0 can
be explained by the fact that arriving images need to be cached by the component
until the corresponding, filter-processed image copy has arrived. This was a bench-
marking example we used for [RS07b]. Using Metis, we obtained a partitioning
that outperformed a “naive” round-robin partitioning noticeable.
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Figure 7.6: Proxy component for network connections

7.3.3.3. Phase 3: Establishing the Component Connections. Given a partitioning,
the server then informs all clients about the local component subgraph that they
have to establish, as well as the necessary inter-node connections to other compo-
nents. The clients build the required proxy components, assemble the local com-
ponent setup, and launch it.

Proxy components are initial components, and start right away to establish the
network connections that they require to do remote communication. The target
nodes’ addresses have been provided by the server during the transmission of the
local component subgraph. As soon as the communication is started, the normal
operation phase may commence.

7.3.3.4. Phase 4: Starting the Application. By starting the regular (application-
provided) initial components on the nodes they have been assigned to, the dis-
tributed application starts. There is a minor delay at the beginning until the proxy
components have succeeded in establishing their connections, but any request sent
to a remote component in the meantime by a regular component will be cached in
the proxy component’s queue.

7.3.4. The Proxy Components. Fig. 7.6 illustrates the concept of the proxy
components for a single connection. The setup resembles a single connection of
the Sender to the Receiver component. The proxy components wrap the network
access; in theory, they might be linked directly using a Java Socket instance. Due
to resource limitations, however, another indirection is added, which resides outside
the component model (it could be made a component, using multi-ports to com-
municate with the proxies attached; see Sect. 8.3.1.1 for a discussion on how this
can be achieved.) For each connection from one node to another, a Network Con-
nection Manager is built on each of the nodes; it encapsulates the actual network
communication. The proxy components then subscribe to this manager.

An Outgoing Proxy assembles a method call object similar to those used for
implementing the Active Object pattern in the JComp framework. It is then
passed to the network connection manager, which sends it over the network to
its counterpart. This recipient network connection manager maintains a list of
Incoming Proxy instances, and selects the one that is responsible for delivering the
message to the recipient component. It enqueues the message in a special queue of
this Incoming Proxy component.

The Incoming Proxy component is actively running, using a loop implemented
by self-invocation (see Sect. 7.5.1.1). Hence, a method is called over and over again.
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This method takes a look into the queue the network connection manager uses for
adding messages received from remote nodes to, and processes any pending message
by calling it on the recipient component. For synchronous methods, this call will
return a result which is communicated back to the Outgoing Proxy using similar
means.

In the actual implementation, the network connection manager is connected to
by utilizing the Singleton pattern [GHJV95], which amounts to calling a static
method for obtaining a reference to a shared instance. As discussed in Sect. 7.2.1,
this is a breach of component encapsulation. Still, we feel this is no problem
since the access to the shared object is limited to the proxy components, which
are supplied by a framework extension. But nevertheless, the need for breach-
ing encapsulation in such a way hints at the necessity of providing a framework-
endorsed extension to shared resources, similar to the Utility Interface pattern of
SOFA [BHP07].

7.3.5. Discussion. The decision to place the distribution code in the user level
has proven to be the better approach compared to adding this code to the JComp
core framework. First, the framework is kept lean, and the majority of applications
that are not distributed is not required to handle the artifacts of distribution (like
having to instantiate both a local assembly and a global server). Second, the
flexibility is retained.

This is offset by an increase in message cost: Instead of handling a message
sent to a remote component directly, it is first passed to the stub component (for
which the data is copied) and then over the network (requiring another serialization
of the data). It is quite easy to build provisions into the framework that allow for
suspending the mandatory message data copying for such stub components, but
that would violate the claim that the entire remoting framework is placed in the
user level.

Still, given the cost of network communication, this drawback does not have
a big impact. Finally, using regular stub components gives rise to an interesting
approach of reorganizing a distribution by reconfiguration, detailed in Sect. 8.4.1.

7.4. Case Studies

Here, we will briefly present two larger projects implemented with the JComp
framework. They have sparked some ideas about reconfiguration, which we will
discuss in Chapter 8. We first present a classical component that gathers data from
various sources and integrates these data. The other example uses the concur-
rency of JComp’s components to implement an efficient web crawler with minimal
overhead.

7.4.1. News Condensed. NewsCondensed is an example that was imple-
mented for two purposes: Gathering experience with component-based design,
and obtain a data base for evaluating concept drift, which is further described in
Sect. 8.1.3.2. The basic idea is to gather news from a series of RSS feeds [Boa06]
of newspaper websites, extract the words and generate a “most active words” list.
This list is then used to rank the messages obtained. The highest ranking messages,
presumably covering the most important topics of that day, are then displayed in
generated HTML code, as shown in Fig. 7.7. Additionally, a number of static web
resources (like weather charts) is downloaded for archiving purposes.

The component design, illustrated in Fig. 7.8, utilizes two chains of components,
an often utilized pattern discussed in Sect. 8.3.1. These chains are responsible for
querying the various data sources (the left chain of Fig. 7.8 retrieves messages from
RSS feeds, the right chain fetches binary data, both from RSS feeds (e.g., comic
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Donnerstag, den 28.11.2006, 20:12 Uhr

Top News

 Regierung gegen Tempolimit 120 auf deutschen Autobahnen (Newsticker - WELT.de)

 Mogadischu unter Kontrolle der Übergangsregierung (Newsticker - WELT.de)

 Keine 120 km/h für das Klima: Gabriel gegen Tempolimit (n-tv.de - Topmeldungen)

 Siemens und IBM erhalten "Herkules"-Auftrag Siemens und IBM haben den Zuschlag für die Modernisierung der IT-Systeme der

Bundeswehr erhalten. Für insgesamt 7,1 Milliarden Euro sollen die beiden Konzerne in den kommenden zehn Jahren 140.000 PC, 7000

Großrechner, 300.000 Telefone und 15.000 Handys auf den neusten technischen Stand bringen. (tagesschau.de - Die Nachrichten der ARD)

 Siemens erhält größten Auftrag aller Zeiten Siemens und der US-Konzern IBM haben einen milliardenschweren Auftrag zur 

Modernisierung der Kommunikationstechnik der Bundeswehr erhalten. Für Siemens ist es der größte Auftrag aller Zeiten. Die Nachricht ließ

auch die Anleger nicht kalt. (Financial Times Deutschland)

 Fünftägige Trauerfeierlichkeiten für früheren US-Präsidenten Ford (Newsticker - WELT.de)

 Koalition lehnt generelles Tempolimit auf Autobahnen ab Die schwarz-rote Koalition hat dem Vorschlag des Umweltbundesamtes, aus

Klimaschutzgründen ein allgemeines Tempolimit auf deutschen Autobahnen einzuführen, abgelehnt. Klimaschädliche Abgase könnten mit

Innovationen bei Kraftstoffen und Antrieben verringert werden, so Verkehrsminister Tiefensee. (tagesschau.de - Die Nachrichten der ARD)

 Weihnachtsgeschäft besser als im Vorjahr (Newsticker - WELT.de)

 Regierung übernimmt Kontrolle über Mogadischu Die somalische Übergangsregierung hat die Kontrolle über die Hauptstadt

Mogadischu übernommen, die seit Juni von den islamistischen Milizen beherrscht worden war. Unterdessen warnen Hilfsorganisationen vor

Chaos und Anarchie. (ZDFheute Nachrichten)

 "Herkules"-Auftrag für Siemens und IBM Die Verhandlungen für das größte IT-Projekt der Bundeswehr sind mit der Unterzeichnung

von milliardenschweren Verträgen beendet worden. Die Bundeswehr besiegelte mit Siemens und IBM das Vertragswerk für die Erneuerung

der Kommunikationstechnik. (ZDFheute Nachrichten)

Topwords tempolimit, autobahnen, geht, ibm, mekka, programm, hauptstadt, mogadischu, donnerstag, kandidatur

Figure 7.7: Sample output of NewsCondensed

strips) and static URL locations). These calls are synchronous; a list of results
is assembled, which encapsulates all the downloaded data. The RSSKnownHandler
instances at the beginning of both chains then prune the list of elements that have
already been processed during previous runs. The NewsOperator component –
which is the central instance and also the initial component – then uses the data
to extract the words, evaluate them, rank the news, and assemble an HTML page.

7.4.1.1. Design Decisions. Utilizing chains of components for representing tasks of
the same kind (i.e., different RSS feeds to query) is a design decision that has
its benefits and drawbacks: Obviously, such an approach is only feasible if the
number of tasks is limited (if a few thousand RSS feeds had to be polled, the
approach would soon become too resource-wasting). Also, the system designer is
put in charge of choosing which RSS feeds to download (as the configuration needs
to reflect this choice). A user-provided list needs to be processed outside of the
component framework – in the actual NewsCondensed application, this is done
by dynamically instantiating components for a list of RSS addresses during system
configuration by custom-written assembly code.

The benefits of employing chains is mostly given by the added flexibility. Each
component “cares” about one RSS feed and stores information about it, e.g., if the
RSS feed was reachable at the last attempt. This corresponds to building an object
per RSS thread. As more functionality is provided, the importance of such an
object grows – e.g., if multiple ways of fetching an RSS feed are implemented, the
object would have to store a description of the algorithm to be used, and possibly
even execute it. Hence, from a component-development point of view, representing
different tasks by components is favorable. This will become quite important in the
context of reconfiguration, as explicitly shown in Sect. 8.3.3.
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Figure 7.8: Components of NewsCondensed

7.4.2. A Web Crawler. NewsCondensed needs to judge the importance of a
message based on the frequency of the words with respect to other messages. If a
word (e.g., at the time of writing this, “Obama” would have made a good example)
is found in many messages, it is deemed to hint at these messages covering a “hot
topic”. Obviously, this needs to be offset by the overall likelihood to encounter the
word in a message. In order to build a frequency table of words of the German lan-
guage, a web crawler was devised for crawling the German version of WikiPedia.
This web crawler was to run a number of parallel threads in order to maximize the
throughput.

This example is interesting because it took very little effort to implement. Ac-
tually, it was written in a few hours, at a conference, before breakfast. Afterwards,
more work was added, but only for things like doing proper umlaut handling. This
was possible since the multi-threading is all handled by the component framework.
Fig. 7.9 shows the components involved. The LoadDistributor component is con-
nected to a number of PageLoader components which download WikiPedia pages.
They extract the links found and send them back to the LoadDistributor, who
queries a LinkFilter if these links should be pursued, and if so, issues the request
to one of the PageLoader components (based on the hash code of the URL). The
PageLoader maintains a PageSeenDatabase which prohibits revisits to pages al-
ready processed. Also, it is connected to a BracketStripper that removes markup
code. In theory, a number of such stripping components can be used to remove
unwanted chunks of the page, so the next component is a StripperTerminator
terminating the chain (cf. Sect. 8.3.1). This component then sends the data to
a WordDatabaseBuilder which extracts the words and builds a database, using a
TokenNormalizer to build normal forms (i.e., only lower-case letters and no blanks,



7.5. EXTENSIONS OF THE JComp COMPONENT MODEL 161

LoadDistributor0

LinkFilter0

linktypefilter

PageLoader0

loader

PageLoader1

loader

WordDatabaseBuilder0

TokenNormalizer0

normalizer

distributor

BracketStripper0

stripper

PageSeenDatabase0

seendb

StripperTerminator0

next

consumer

distributor

BracketStripper1

stripper

PageSeenDatabase1

seendb

StripperTerminator1

next

consumer

Figure 7.9: Components of the web crawler

as well as umlauts replaced in a way compatible with the NewsCondensed appli-
cation which eventually uses the database).

This example uses a domain decomposition (cf. Sect. 5.3.2) to achieve paral-
lelization: By using a number (two in Fig. 7.9, but we used more in the practical
runs) of identical components, with each handling a fraction of the pages to be
processed, the impact of network latency is diminished. At the same time, func-
tional decomposition is achieved by conducting the page-processing in a number
of stages. The latter form of parallelization is provided for free by the component
framework, which runs all components in their own thread. Domain decomposition
needs to be established by the assembly, but the components only need very limited
modification (i.e., the only place where domain decomposition is made known to
the components is given within the LoadDistributor component, which needs to
know the number of partitions in order to distribute the URLs to load). Hence,
providing both kinds of parallelization is made easy with the JComp model. The
de-serialization takes place in the message queues, which act as buffers between
producers and consumers. The downside to this approach is that the distribution
is hidden from the component programmer, and controllable only to some extend
by the system designer. In Sect. 8.4.2, we will discuss a problem encountered with
this approach.

7.5. Extensions of the JCompJCompJComp Component Model for Supporting
Reconfiguration

In this section, we will discuss some extensions to the JComp model (and their
implementation in the framework) that enable architectures and executions that are
otherwise difficult to obtain, or impossible at all. The JComp model is rigid in some
aspects: Concurrent method execution within the same component is impeded, even
for synchronous messages, which can pose difficult problems with reconfiguration;
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c

self : I
r : I

I ≡ {m}, ζ(c)(m) = P.call(self ,m, 〈〉).success

Figure 7.10: Component with self-invocation capability

hence we extended JComp with the ability to interrupt synchronous messages by
re-inserting them into the queue. We proceed to discuss component blocking, an
important provision for multi-stage reconfiguration, and error handling.

7.5.1. Message Postponing. Message postponing is required in some cases
where a message is recognized to be non-processable right now, or if its further
execution needs to be deferred. Basically, the requirement to not interrupt the
method processing by reconfiguration (R3.1.2) requires the component implementer
to avoid methods to be running for too long, in order to meet requirement R4.1.
One way to achieve this is to divide the method into a number of sub-methods,
with each method calling the next one, thus providing intervention points for re-
configuration. For asynchronous calls, this can be achieved solely on the user level
by utilizing the Self-Invocation pattern. For synchronous calls, message postponing
is required.

7.5.1.1. The Self-Invocation Pattern. As a result of requirement R3.1.2, reconfig-
uration can only commence if all components in R are not executing a method.
This becomes problematic if a component is forever executing a method because
this method keeps the component running in a loop. In order to provide points
in time where reconfiguration can commence, the Self-Invocation pattern can be
applied. Basically, it substitutes a loop by a single iteration of the loop’s body,
followed by an invocation to itself. Obviously, the necessity to use such a loop
substitution violates the separation of roles, but as long as no substitute by the
framework is provided (and the only framework we are aware of to interrupt on-
going message processing for reconfiguration is CASA [MG04]), this needs to be
done. Hence, part of the planning of a component application that can be modified
by reconfiguration needs to be spend on choosing components that are suitable for
reconfiguration by substituting loops by self-invocations.

Often, components need to remain active, i.e., not merely respond to future
communication, but run actively for unlimited time. Components that observe
some external resource will necessitate such a behavior. Component process terms
provide a means for (unbounded) loops by defining, for a component process term
fragment P , µX ⇒ P.X. Both cmc and JComp support this by their respective
rules LOOP. In Sect. 5.2.4.1, we have seen that cmc can emulate this rule by self-
calls. A similar approach can also be used for the JComp model, but asynchronous
calls have to be used. Since the processing of the self-invocation may be interspersed
by the execution of other messages, the behavior of both approaches are not the
same, even if an action-reduction to communication actions without self-invocations
is considered.

Fig. 7.10 shows the basic layout of a component that uses self-invocation as
a replacement for a loop. An interface I, comprised solely of a method m, is
provided; a required role r of type I is connected to the same component. Upon
being triggered by an outside component (obviously, this should happen only once),



7.5. EXTENSIONS OF THE JComp COMPONENT MODEL 163

the loop’s body P is executed once, followed by the self-invocation. Quite often,
this is also done with the start method defined in the MainInterface, which is
invoked by the framework; in this case, no other component should be connected
to the component C requiring interface I. An example for this are the Incoming
Proxy components presented in Sect. 7.3.4, as well as the example of Sect. 7.2.4.

7.5.1.2. Dividing Synchronous Calls by Message Postponing. There is a technical
problem involved if the message in question is a synchronous call. A calling client
is blocked until completion of the synchronous messages’ execution, but not any
longer. Hence, such a self-looping scheme cannot work for synchronous calls. The
solution of JComp is to introduce message postponing, which allows a message’s
handler implementer to have the current method call object reinserted at the end
of the queue. Both asynchronous and synchronous methods are allowed to be
postponed. For asynchronous methods, the postponement is equivalent to sending
the current method call to a self-loop, and immediately terminating the current
method’s execution afterwards. For synchronous methods, this feature cannot be
substituted.

Besides breaking atomicity, message postponing can be used to implement a
synchronicity-to-asynchronicity converter. This is an adapter component that pro-
vides an interface with some synchronous methods. Upon receiving such a method,
it relays the request to a role that provides a similar interface, but defines the
method as asynchronous and sends the result back by an asynchronous method call
itself. The synchronous call is then postponed, and thus eventually processed again.
It can then look in some table if the result has yet been sent by the asynchronous
result method; if so, it can return it, and otherwise continue postponing itself.

Formally, we can introduce message postponing in our component model by
adding postpone as a component process term, and use the following rule:

cr1, 〈c2.r.m(v)〉,postpone, π → cr1, 〈⊥〉, success, π :: c2.r.m(v) (POSTPONE)

postpone can be used to terminate component process terms; upon executing it, the
current message will be enqueued again. It is up to the component’s implementation
to store loop-internal data in the component’s state. Obviously, if the method is a
synchronous invocation by component c2, c2 will remain blocked until the method’s
execution is terminated by a return.

In JComp, message postponing is implemented by allowing method implemen-
tations to throw a CallPostponedException. This method is caught by the frame-
work, the communication monitors are notified (cf. Sect. 7.2.5) and the message is
re-inserted in the queue.

7.5.2. Component Blocking. Sometimes, we require a component that does
nothing at all. Of course, it needs to accept messages, but it should not process
any. For a static component system, this is pretty useless, of course. When doing
reconfiguration, however, sometimes such components are required. This is because
many reconfiguration scenarios need to be conducted by a series of reconfiguration
steps, e.g., for conducting an extended protocol between an old and a new com-
ponent between adding the new and removing the old component, as described in
Sect. 6.8.2. In such settings, proxy components are required that just cache the
communication that happens between the reconfiguration steps such that it does
not get lost, but they are not intended to actually handle the messages received.
Instead, they are to block until the final reconfiguration transports the accumulated
messages to another component that can properly handle them.

With standard means, a component can be made to block immediately after the
beginning of processing a message. It can be useful to block at a later time, e.g., if a
situation is detected where the only possible way of progressing is reconfiguration.
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Reconfiguration is the only way to resolve a blocked component, which needs to
be removed during reconfiguration. We already have a provision for that: The fail
component process term. None of the rules shown in Tab. 6.1 can consume a fail
component process term, but reconfiguration rules, shown in Tab. 6.2 in Sect. 6.6
will be able to do so.

There is a subtle point to be made: fail, by its informal meaning, indicates a
failure of the component; it is unrecoverable and the system needs to be repaired.
On the other hand, blocking is fully anticipated and often the only outcome of a
method being invoked on a placeholder component. Therefore, we would like to
use a different term, like block. In order to keep the component process terms slim,
however, we refrain from adding such a term; for the remainder of this thesis, it will
always be clear from the context whether a genuine error or a blocking is intended
by issuing fail.

Another point worth mentioning is the use of the component running flag cb.
This flag blocks the component; so it might be feasible to use this one to signal
that a component is blocked (since it has no pending synchronous calls, it will not
become unblocked unless a reconfiguration rule is applied). The problem here is
that the running flags are intended to describe communication behavior2, whereas
the issuing of fail or block is done by the user and outside the responsibilities of the
component model. We hence rely on a component process term that cannot ever
become consumed by means other than reconfiguration.

7.5.3. Error Handling. Errors inevitably occur; in the JComp model this is
reflected by reaching a state cr, fail. Since none of the rules presented so far matches
to such a component state, the component is locked forever; and, once it has become
locked like this, only reconfiguration can be used to progress it again. Having a
component in such a failed state leads to further deadlocks or a stalled system; hence
a correct response to an error might even be to shut down the entire component
application [BP07]. In any case, errors and their treatment need to be considered
by the component framework.

Aside from using errors as a trigger for reconfiguration, as we will do in
Sect. 7.5.4.2, there are other ways to cope with an error. Suitable solutions need to
take the kind of error into account: It can be a response to a changed environment
(i.e., loss of a hardware device, faulty data read from a file etc.), which can (and,
by virtue of the Java exception handling paradigm, also need to) be handled by
the component’s code. An error might also result from a malformed query of one
component to another; i.e., due to a violation of a precondition. Or an error might
come up due to an unexpected event like running out of memory (if having sufficient
memory is not in doubt at component design time).

All three types of errors might be communicated to the framework by the com-
ponent, instead of handling it internally. For a contract violation (e.g., receiving
a message that cannot be processed in the current component’s state), a system
failure should be signaled, since the component setup is malformed and needs re-
pair [BP07]. An unexpected error might not be curable by a component, and
will usually render its state corrupted and the component unusable. Whether this
warrants a shutdown depends on the capabilities of the component application: Re-
configuration can be used to reestablish a working version of the component. Even
an anticipated error might be communicated to the environment if the resolution
strategy is not clear at component design time (e.g., it is possible to anticipate
that a required file might not be found, but the treatment of such an error might

2It was once intended to allow for a more generic definition of component models, providing
arbitrary communication means; this was given up in favor of the first-class connectors now utilized

in REFLECT [SvdZH08].
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heavily depend on the actual utilization of the component, which is only known at
assembly time).

Hence, we need to provide components with provisions for signaling errors, and
support the handling of errors by the system. In Sect. 7.2.5.2, we have discussed
how exceptions can be monitored. Here, we will investigate different ways to handle
an exception.

7.5.3.1. Error Handling by System Shutdown. In the concurrent Eiffel extension
Scoop [AENV06], shutting down the system in response to an error of a single
thread is the default behavior [BP07]. This is justified by the assumption that an
error should never occur in a well-assembled system, and hence the occurrence of
an error hints at a malformed system design, which needs to be repaired. We can
express such a system-wide shutdown by removing all components:

crc , fail | cξ11 , P1 | . . . | cξn
n , Pn → (ERR)

Alternatively, we can just block all components and thus prohibit any further
progress:

crc , fail | cξ11 , P1 | . . . | cξn
n , Pn → crc , fail | cξ11 , fail | . . . cξn

n , fail (ERR’)

The benefit of the second variant is that reconfiguration might now be used to
restart the system. This is, however, far from likely, and in the JComp implemen-
tation, if all exception monitors suggest DIE (or if no monitor is given), the entire
application is just terminated with a call to java.lang.System.exit().

7.5.3.2. Error Handling by Delegation. For synchronous methods, JComp allows
the declaration of exceptions. Since the invoking component is blocked until the call
has finished execution at the target component, an exception can be transported
back and invoked in time on the target component. Thus, the Java exception
handling can be reused to enforce proper exception treatment within the calling
component’s code. As the experience with JComp broadened, however, this kind
of error treatment became used less often; and most of the programs presented
in Chapter 8 do not use synchronous calls at all, particularly not with exception
declarations. For our purpose, this kind of error handling can be considered to be a
special kind of return value of a method; but it was so seldom used in the examples
that little seems to be gained from explicitly adding provisions to the component
model, unless such provisions can be extended to work with asynchronous method
invocations also (cf. Sect. 7.5.3.5). Delegating exceptions is, however, the behavior
of JComp if an exception is encountered during the processing of a synchronous
call, with no exception monitor suggesting anything other than DIE.

7.5.3.3. Error Handling by Reconfiguration. Handling an error by reconfiguration is
a delegation of the concern of handling the error from the component designer level
to the system designer. If error handling is perceived as a concern of the component
designer, the components need to be written in a way such that they become capable
of handling the errors they may encounter. The example of a missing file required by
a component illustrates the problem: If this file is mandatory, and the component
does not know an alternative strategy to obtain its contents, it needs to delegate the
error and thus shut down the system, as discussed before. This happens regardless
of the importance of the component to the overall system. It is unknown to the
component (or, rather, beyond its implementer’s concern) whether the system can
run without it, or whether the system commands a suitable alternative. Hence, it
is more suitable to recover such an error on the system level (or decide that it is
unrecoverable) and make error handling a concern of the system designer.
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Hence, error handling is a trigger for reconfiguration. An example for such
an error-triggered reconfiguration will be given in Sect. 8.4.3. Since issuing a fail
component subterm blocks the component until it is reconfigured, no special rule is
required in the calculus. A component is placed in that fail state by the framework
if the monitors agreed on either RECONFIGURE AND SKIP or RECONFIGURE AND KEEP.
The difference between these two suggestions relates to the treatment of the mes-
sage that caused the exception: the former suggestion has this message discarded,
whereas the second suggestion prepends it to the message queue of the failed com-
ponent, properly reflecting the RCSTOPF rule. Using the δ plan element, it will
eventually be moved to a new component and become executed anew.

An example of a reconfiguration triggered by exception monitoring is given in
Sect. 7.5.4. From a technical point of view, the framework needs to be carefully
crafted to support such a reconfiguration, as it must be precisely timed: no message
must be lost, and no further messages must be consumed. This is one of the reasons
why building a dedicated framework is useful: retrofitting such provisions to an
existing framework that does not anticipate a special “failed and about to become
reconfigured” state for its components will be cumbersome and prone to colliding
with existing mechanisms.

7.5.3.4. Error Handling by Ignoring. Obviously, an error might also just be ignored.
For example, a component that reads a file and inputs the data into a test framework
might experience failure when reading some lines without compromising the entire
application’s purpose. By issuing a CONTINUE suggestion, the exception monitors
can achieve such a functionality. This might also be used for delaying a necessary
reconfiguration a little bit, if the error does not require immediate attention. In
the small-scale examples exhibited in this thesis, we have not found a necessity for
such a strategy, and it is included in the JComp framework for completeness only,
without extending the component model.

7.5.3.5. Future Work. Other interesting approaches towards handling errors exist;
most notably the approach taken by Erlang. Erlang [RA03] is a language
developed for telecommunication switches. One of the many distinct features of this
language is its unique error handling, which cascades any uncaught error through
the system, shutting down all processes that are connected to processes experiencing
an error and are unable to resolve it, until either the entire system is shut down,
or the error remains contained. Since the language is geared towards hardware-
intensive systems (where errors might be nondeterministic from the point of view
of the software), killing processes is a very convenient way to resolve errors: Any
process that fails to handle the error is considered corrupted and gets terminated.
Such an approach is a major distinction from exception handling systems found
in programming languages like Java; here, objects that throw an exception may
be left in a corrupted state. The “resolve or die” approach of Erlang prevents
processes from operating on a broken state.

In our setting, such an approach can be included like this: A component pro-
ducing an error is removed. All connected components are notified by a special
message, and they are free to take action as desired. If they do not take action,
i.e., they block the method call telling them to do so by interpreting it with fail,
they fail as well; thus the error propagates through the system until all components
either have taken appropriate action, are shut down, or are not directly connected
to a failing component. This is, however, more realistic in a hardware-oriented envi-
ronment, since the Erlang approach usually is to just restart corrupted processes,
which in a software-only environment are bound to just reproduce much of the
errors again. The approach is nevertheless very interesting, and can be considered
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ReconfigurationPlan
- a: Set<ComponentDescriptor>
- r: Set<ComponentDescriptor>
- alpha: Map<RequiredPort, ComponentDescriptor>
- rho: Map<RequiredPort, ComponentDescriptor>
- delta: Map<Pair<ComponentDescriptor, RequiredPort>, ComponentDescriptor>
- tau: Map<RequiredPort, ComponentDescriptor>
+ addNewComponent(ComponentDescriptor c)
...
+ execute(Assembly a)
~ preparePlan()
~ checkPlan()

InjectiveShallowReconfigurationPlan

~ checkPlan()

ShallowReconfigurationPlan

+ preparePlan()
~ checkPlan()

ArbitraryPlan

+ addMessageCopying(...)
~ preparePlan()
~ checkPlan()

Figure 7.11: UML class diagram for reconfiguration plan classes

as promising future work; both for its capability to add robustness to a system and
for its provision of a reconfiguration scenario.

7.5.4. Reconfiguration in the JCompJCompJComp Framework. The reconfiguration ap-
proach of the JComp model is exactly implemented by the JComp framework,
using the indirect approach for state transferal. In doing so, the theoretical results
of Chapter 6 provide the reconfiguration implementer with useful guarantees that
ease the planning of reconfiguration. At the center of the implementation are the
reconfiguration plans, which can be directly created or be generated from various
extensions (e.g., a graph transformation engine described in Sect. 8.1.4.1).

7.5.4.1. The Reconfiguration Plans. Fig. 7.11 shows a UML class diagram of
the reconfiguration plan hierarchy as implemented in the JComp framework.
Most of the functionality and all of the relevant data is located in the ab-
stract ReconfigurationPlan class. This class offers methods to populate
all plan elements except δ. The subclasses just differ in their treatment
of δ and their check for consistency: the ArbitraryReconfigurationPlan
class offers a way to directly add rewiring requests to the plan, whereas
the ShallowReconfigurationPlan class calculates δ within the preparePlan()
method. The InjectiveShallowReconfigurationPlan class just extends the
check conducted within the checkPlan() method, which needs to verify that the
plan indeed describes a shallow reconfiguration plan.

Reconfiguration is affected by the method execute(Assembly a), which con-
ducts a plan implementation as described in Sect. 6.7. These rules are executed
by calling appropriate methods on the assembly. The initial rules RCSTOPS and
RCSTOPF are implemented by prepending a special configuration message to the
target component’s queue. This way, it is ensured that the component finishes
its current method, then dequeues the reconfiguration requests and in executing it
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becomes stopped for reconfiguration. Failed components (that experienced an ex-
ception, followed by an exception monitor suggesting reconfiguration) wait exactly
for that reconfiguration message, and cease to dequeue any other message. For this
reason, and for avoiding delays of the reconfiguration, the reconfiguration request
is prepended to the queue, and not appended like regular messages are.

7.5.4.2. The Example Continued. The example of Sect. 7.2.4, extended with the
capacity check presented in Sect. 7.2.5.2, can now be mended by reconfiguration. We
assume that we have a component implementation NewStoreComponent that does
not suffer from any capacity constraint. For this example, the actual reconfiguration
planning is conducted within the exception monitor:

1 public ExceptionMonitorResult uncaughtExceptionThrown(AbstractComponent src,

2 Call call) {

3 InjectiveShallowReconfigurationPlan p =

4 new InjectiveShallowReconfigurationPlan();

5 p.addRemoveComponent(sc);

6 ComponentDescriptor nsc = a.getComponentForClass(NewStoreComponent.class);

7 p.addNewComponent(nsc);

8 p.addRewireConnection(cc, "store", nsc);

9

10 ReconfigurationTools.runReconfigurationConcurrently(a, p);

11 return ExceptionMonitorResult.RECONFIGURE_AND_KEEP;

12 }

We use an injective shallow reconfiguration plan, so we do not have to worry
about δ. Instead, we just declare which components are to be removed and to be
added, and use the method addRewireConnection to add an element to ρ. α is
not required for this example, and for now, we omit state transferal with τ . Note
that we stored the components in static variables which we can now use. For larger
reconfigurations, this is infeasible, and the component graph needs to be traversed
in order to obtain the actual reconfiguration plan; Chapter 7.3 will provide many
examples.

The reconfiguration is executed by a call to Assembly.reconfigure(Plan p),
but as we need to ensure a thread switch (the thread that called the excep-
tion monitor and subsequently built the reconfiguration plan is the failed com-
ponent’s own thread, so it cannot dequeue the reconfiguration message unless
the exception monitor terminates), a helper method is used that forks a dedi-
cated thread for the reconfiguration. By returning the exception monitor with
RECONFIGURE AND KEEP, the message that caused the exception will be re-enqueued,
and the NewStoreComponent instance will receive it as the first message after com-
pletion of the reconfiguration.

7.5.4.2.1. State Transfer. In order to add state transfer, we need to modify the
components a little:

(1) First, we have to add provisions for reading the contents of the old com-
ponent. In this example, which heavily utilizes the indirect approach to
state transfer, we introduce a new interface StoreRetrieveInterface:

1 public interface StoreRetrieveInterface {

2 @SynchronousCall

3 public LinkedList<String> getEntries();

4 }

This interface is implemented by the StoreComponent, which
just returns the entries attribute in the implementation of the
getEntries() method. Note that the interface has to use a
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java.util.LinkedList, as the java.util.List interface does not in-
herit from java.io.Serializable, as it is required for return types of
synchronous methods in the JComp framework.

(2) Next, we implement the NewStoreComponent in a way that supports the
state transfer during reconfiguration. In this example, we retrieve the
list of entries stored in the old StoreComponent, and write them to a file,
which is where the NewStoreComponent will store the data it receives after
the reconfiguration:

1 public class NewStoreComponent extends AbstractComponent

2 implements StoreInterface {

3 @RequiredInterface(binding=InterfaceBindingPolicy.RECONF)

4 private StoreRetrieveInterface oldcomp;

5

6 private PrintWriter outfile;

7

8 public NewStoreComponent() throws IOException {

9 outfile = new PrintWriter(new FileWriter("store.log"));

10 }

11

12 public void store(String s) {

13 outfile.println(s);

14 }

15

16 public void reconfigurationCopyEvent() {

17 List<String> l = oldcomp.getEntries();

18 for (String s : l) {

19 outfile.println(s);

20 }

21 }

22 }

The @RequiredInterface-annotated attribute is only bound during re-
configuration, and will not be allowed (or required) to be connected
at any other time. The actual state transfer is realized in the
reconfigurationCopyEvent() implementation, which is triggered by
adding a message to the message queue of the NewStoreComponent prior
to allowing it to process regular messages (thus implementing the cc state).

(3) Finally, the temporary connection has to be realized in the reconfiguration
plan. This is achieved by adding the line
p.addTemporaryConnection(nsc, "oldcomp", sc);

to the main method.
From the implementers point of view, the state transferal is implemented as a
sub-protocol of the component, differing only very little from regular communi-
cation. However, it becomes evident that the indirect approach requires sub-
stantial modification of the components. Still, this seems more tractable than
allowing direct access to the component’s internal attributes by the framework,
requiring the reconfiguration designer to gain detailed knowledge about the compo-
nent’s implementation. For more complicated state transfer, the hybrid approach
seems to offer a compromise that restricts the complexity of implementing the
reconfigurationCopyEvent() method to a minimum. We will see an example for
the hybrid approach in Sect. 8.2.2.



CHAPTER 8

Applications of Reconfiguration

In response to a query from the computer, each black box could

answer in turn: “I am well”, with all parameters within limits. A

particular box might answer, “I am sick”, with one or more

parameters outside the safe zone. Similarly a box might respond,

“I am about to get sick”, with a parameter drifting toward

danger. Further queries from the computer then could identify the

bad parameters and permit cures.

— T. A. Heppenheimer – The Space Shuttle Decision

This chapter used to be called “examples”, and actually, it will present some
examples on how reconfiguration as we have realized it in the JComp model and
framework can be put to use in real applications. While writing the related work
section in Chapter 3, however, a different view on the utility of reconfiguration
examples emerged. The best examples are provided by work that does not consider
generic reconfiguration, but restrains itself to just a subset of the problem domain,
e.g., by just reconfiguring network connection code as done in Cactus [CHS01] or
NeCoMan [JTSJ07]. Here, we take the opposite direction: Instead of providing
just examples, we try to investigate various scenarios where reconfiguration can
be beneficial, and exemplify them with a report on their implementation with the
JComp component framework.

Finding good examples for reconfiguration is not easy. This is due to two prob-
lems: First, reconfiguration cannot do anything that could not be done otherwise;
from the actual application execution, it is barely more than a big case distinction.
The separation of concerns (in the form of the separation of roles) is what matters:
Possible reconfiguration scenarios should not be considered when devising a com-
ponent – save for the need to provide data accessing methods for state retainment.
It is, however, not easy to find domains where such a separation of concern can be
exemplified by a small application, written by a single person.

For example, we considered developing a computer chess program. During
a match, a chess program runs through a number of distinct phases: It starts
with an opening book table, which is a pre-calculated graph annotated with move
feasibility. Once a situation is obtained that is no longer covered by this graph,
iterative deepening search with alpha-beta-pruning and lots of interesting heuristics
is employed to find good moves [Hei99]. Eventually, when only a few pieces are left
on the field, an end-game table is employed again. Recognizing these phases and
adapting the program accordingly appeared as a good example for reconfiguration.

However, most likely it is not. There is no real separation of concerns: Anyone
devising an opening table component is fully aware that it will eventually be re-
placed by the usual search. There is little to be gained if the reconfiguration from
open book play to mid-game play is planned externally; any forking component will
do. Of course, the program structure stays more tidy if the open book database is
removed once it is no longer required, but this argument is severely offset by the
added complexity introduced by the reconfiguration algorithm.

170
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Hence, one reason why reconfiguration examples are hard to come by is that
separation of concerns is difficult to find. The second reason is that reconfiguration
is often too “binary”.

Consider the chess program again. Basically, the mid-game search consists of
three components: A search component conducting the iterative deepening search
with alpha-beta-pruning; a heuristic evaluation of moves, used to rank moves to
search the better ones first, and get a narrow alpha-beta-window fast; and a sit-
uation evaluation component that ranks boards according to their “utility” for
winning the game. The latter two components obviously require tuning, heuristics
and all kinds of tricks and tweaks to make a program competitive. Of course, all
this has to be modified according to the situation (e.g., the rule-of-thumb “a Queen
is worth two Rooks” needs to be modified according to stage of the game). All
these adaptation sounds like an interesting field for reconfiguration.

Alas, however, not for the kind of reconfiguration described in this thesis. If
not for drastic developments, all the different components involved in calculating
a heuristic move evaluation are run, and their output is combined in a different
way depending on the game situation; but rarely will we be able to introduce new
components or remove old ones. While not strictly impossible, it seems questionable
if anything can be gained from introducing or removing components.

Hence, an example for reconfiguration will have to provide two things:
(1) It has to be credible with respect to doing an actual separation of concerns,

and
(2) it has to work with entire components, not their internal configuration.

Nevertheless, there are some examples where these two conditions are met.
They cannot really be claimed to be profoundly realistic, or that there is no other
way to obtain the results, but we consider them to be genuine examples of situations
where reconfiguration can be beneficial.

First, we will illustrate how reconfiguration can be used to effect hot code
updates. Besides a simple example for simple component updates, a more elaborate
example with a change of the component graph structure is presented. These
examples, however, share that they do not require monitoring and assessment by
the software; the reconfiguration is started by a user’s explicit request.

We proceed to discuss an example which provides two things: An illustration
of integration of various reconfiguration possibilities, and the illustration how re-
configuration can be used to adapt to external changes, e.g., the loss of network
connectivity. This example builds on the NewsCondensed example of Sect. 7.4.1.

We then investigate a promising area for reconfiguration: cross-cutting con-
cerns. Aside from the broad approach of Kramer and Magee [KM08a] and the
domain of hot code updates, those examples are the most convincing ones from the
literature [CHS01, JDMV04]. Cross-cutting concerns cover application distribu-
tion, logging and maintenance of non-functional properties. We also report on an
example providing fault tolerance to a system only partially prepared for this.

We finish this list of examples by discussing reconfiguration possibilities for the
cmc model checker, which proved surprisingly resistant to runtime reconfiguration.
Instead, we propose a reconfiguration at compile time, effectively building a new
version of cmc if the old version turns out to be insufficient to handle a particular
model.
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8.1. MAPE

“I’ve tried A! I’ve tried B!

I’ve tried C! I’ve tried D!

Tell me what else I can try!”

— Tom Wolfe, The Right Stuff

So far, we have only discussed the application of reconfiguration once a plan is
obtained. For providing meaningful examples, a bigger picture needs to be drawn.
In this section, we will discuss the stages preceding the reconfiguration plan exe-
cution that lead to the generation of the reconfiguration plan. There is quite an
interesting consensus in the literature that these stages need to be organized in a
closed control loop, an approach adopted from control theory [And06], and mostly,
only the shifted focus of the various works make a difference.

8.1.1. Control Loops. The control loops we investigate here have two distinctive
properties: They are staged, meaning that they consist of a repeated application
of distinct algorithms, and they are closed, meaning that they investigate the very
data they eventually modify. Such control loops are by no means an invention
of computer science. The actual four stages we consider in this thesis, namely
Monitoring, Assessing, Planning and Execution, abbreviated as MAPE within this
thesis, are introduced in a US Air Force doctrine document [USAF05]:

• “ Monitoring involves the processes of collecting, storing,
maintaining, and tracking of data.

• Assessing results in the ability to determine the nature and im-
pact of conditions and events on force capabilities and com-
mander’s intent. It involves the processes of analyzing and
evaluating along with modeling and simulation to describe sit-
uational awareness and alternative solutions.

• Planning is how we support the operational objectives; de-
velop, evaluate, and select courses of actions; generate force
lists (capabilities) and force movement requirements; and de-
tail the timing of sequential actions. Planning is essentially a
description and prioritization of how to achieve stated mission
goals.

• Execution is the overall dissemination and action of the plan
to ensure successful mission accomplishment.”

Control loops, or feedback loops, originate in control theory. In control theory,
a physical environment is affected by some actuator, in order to steer it towards
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some goal. A well-known example is a room heating system [Sch05]: The actual
temperature is measured, and depending on some rules (that describe the need for
change, which corresponds to the assessment, and the method of performing the
change, which constitutes the planning) the environment is affected by turning the
radiator up or down.

This example, shown in Fig. 8.1, is about keeping the room temperature ϑR
within as close as possible to a user-defined value w. The temperature changes over
time due to a disturbance z. Also, the radiator flow Q affects the room temperature.
This radiator flow can be affected by the means of an actuator M that operates
a valve. The controller can send a command u to the actuator. Thus, a closed
control loop is established: The room temperature is monitored, and an action u is
calculated (which might well be to retain the old flow value, if the temperature is
progressing as intended). The action is effected by the means of the valve modifying
the flow Q. The effect is then measured by a change to the room temperature ϑR;
making this setup a closed loop. In contrast, an open control loop does not measure
the effect of the actions; instead, it would measure the outside temperature z and
operate M based on rules without ever comparing the outcome ϑR to the intentions
w.

The example shows three important concepts of control theory, as described
in [And06]:

(1) Feedback : By measuring the room temperature ϑR over and over, the
effect of changes to the flow rate Q can be assessed. Generally, feedback
is given if the state of the system is used for computing control output.

(2) Fluctuations: Since a control loop is responsive and will suffer some la-
tency time, it can only be employed in a system where a certain amount
of fluctuation is admissible. In the room temperature example, a certain
range of temperature values is certainly acceptable.

(3) Optimization: Control theory is about optimizing a system, which makes
it necessary to have some measurement of quality.

When considering software, it immediately becomes obvious that these con-
cepts need to be adapted. Feedback is easy to obtain; in fact, it does not make
sense to consider a software system that is unaware of its state. Fluctuations and
optimization, however, do not carry over from physical systems to software as eas-
ily. There are certain domains, e.g., in load balancing, where the analogy works
well, but as soon as qualitative errors come into play (e.g., throwing of exceptions),
neither fluctuation nor optimization considerations are applicable.

8.1.1.1. Control Loops for Software. While this might indicate that the MAPE loop
works only for a certain domain of systems, where quantitative parameters are of
concern, its basic idea can also be employed for qualitative properties. Obviously,
all four stages need to be interpreted in a very different way.

In the literature, the difference between quantitative and qualitative properties
is usually not discussed; although there are some frameworks that employ software
control loops for ensuring quality of service, e.g., SWiFT [GSPW98], the TAPAS
middle-ware [Fer02] or ControlWare [ZLAS02]. There is a certain anticipation
that, once a sufficient level of abstraction has been reached, both will become
the same anyway. If a system is built to fail smoothly (i.e., go through a series
of degraded operation modes before stopping to work altogether), there is little
difference between an under-performing and a faulty system. In this spirit, Kephart
and Chess from IBM (who adopted the MAPE loop for software, here being an
acronym for “monitor, analyze, plan, execute”) talk about self-optimization (where
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improving the performance is considered) and self-healing (finding and removing
faulty components) in the same context [KC03].

When considering the four stages in the context of reconfiguration as described
in this thesis, we get a slightly different view on the control loop. Illustrated in
Fig. 8.2, the loop consists of these phases:

• Monitoring is concerned with obtaining data about the component ap-
plication. This part is usually the easiest one, but can be extended
to very elaborate architectures (e.g., probes and gauges [GCH+04]).
Component-based applications are especially suitable for monitoring, as
the communication is very visible. Component introspection, however, is
usually ruled out; if a component’s state needs to be monitored, the com-
ponent implementer has to provide means to externalize the relevant data
(cf. Sect. 5.5 for the description of providing monitoring of the compo-
nent’s state for cmc – while this monitoring is provided for human access,
it can as well be a source of data for an automatized control loop).

• Assessing the situation is closely tied to the subsequent step of planning
the adaptation. In the context of reconfiguration, assessment is mostly
concerned with detecting the need for reconfiguration, which consists of
two almost separate considerations: First, is the situation degraded in
a way that requires reconfiguration, or at least makes it desirable, and
second, do we have means to improve the situation?

• Planning reconfiguration has been given much research in the context of
architectural styles [GS93]. Again, two distinct considerations need to
be made: First, what is the configuration that should be achieved by re-
configuration, and second, how should the reconfiguration be conducted?
The plans introduced in Sect. 6.5 are provided as the result of this phase.

• Execution finally realizes the plan, as discussed in Sect. 6.7.2.

These stages are found in the work of Garlan and Schmerl [GS02], which
explicitly mention a closed control loop and describe the stages of monitoring, in-
terpretation, resolution and adaptation, which directly correspond to the MAPE
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stages. In the survey of Bradbury [Bra04], the first two MAPE stages are com-
bined (monitoring/analysis), followed by planning, execution and assessment, which
stresses the closedness of the control loop. Arshad and Heimbigner combine the
middle stages and describe three stages: Sense, plan and act [AH05].

“Sense-plan-act” is known as the SPA paradigm in robotics [KM07], where it
is regarded as kind of old-fashioned because of its being monolithic; it was subse-
quently replaced by decentralized architectures (nevertheless employing variants of
the MAPE loop) as early as 1985 [Bro85]; an adoption of these insights is carrying
over to software control loops only recently [KM07, SvdZH08]. A slightly var-
ied three-stage loop is found in the work of Boinot et al. [BMMC00], where the
stages are named introspection, control and installation. Jade [TBB+05] also uses
three stages, called “Detection”, “Analysis and Decision” and “Action”. In Grid-
Kit [GCB+06], such a three-stage loop is dubbed the “Event-Condition-Action
pattern” (obviously, the event needs to be generated by an external introspection).
The underlying pattern of first detecting the need for adaptation, then planning
and executing it is retained in all these works.

The MAPE loop plays a central role in the design of autonomous systems,
which are systems (often, robots) that run unsupervised for an extended period of
time and are capable of handling changing environments. Dobson et al. [DDF+06]
name the loop’s stages “collect, decide, plan, act”. In the survey of Huebscher
and McCann [HM08] the loop is described as “MAPE-K”, a loop with an “inter-
nal feedback” – knowledge “K”, the fifth element of this loop – that is used for
optimizing the loop itself. Examples for this knowledge representation are utility
considerations and reinforcement learning.

Building on the MAPE definition of a control loop, Kramer and Magee advo-
cate the use of control loops for robust software systems, and directly address the
parallels to robotics [KM07, KM08a]. They extend this approach by introducing
a layered architecture, where each layer is subjected to a MAPE loop, providing
adaptivity on various levels – and incorporating the knowledge element by the abil-
ity of higher-level loops to modify the lower-level ones. Considering their and other
projects’ efforts (e.g., [GSPW98, ZLAS02]), it might be safe to say that the uti-
lization of control loops has become a common denominator of adaptive software
research. Of course, not all systems discussed in the context of “reconfiguration”
are amenable to control loops – most notable hot code updates, where the first
three stages are entirely left to the user. (Although, if one wants to, the phases
still can be recognized: The user monitors the software while using it, assesses this
observation and eventually decides that a code update is required, has this update
planned by the system designer and finally executes the update by installing the
rewritten software – this traditional software maintenance cycle is described as a
“very first control loop” in [EMS+08]).

Anticipating the example of Sect. 8.4.3, we can illustrate the phases in the con-
text of fault tolerance: A (part of a) software system needs to work with a compo-
nent that is known to fail sometimes. First, in order to provide some fault tolerance,
the component needs to be monitored for an occurrence of such a failure. In the
JComp implementation, exception listeners can be registered for each component,
so that an exceptional end of a method processing can be detected. Alternatively, a
watchdog component might do repeated health check calls. Ultimately, monitoring
needs to gather sufficient data such that a failure can be detected.

Monitoring, however, does not actually detect an error; only the data is pro-
vided. The actual detection of an error condition is done by assessing the monitored
data in the next stage of the MAPE loop. Sometimes, as for the exception listener,
this is fairly trivial, but it can become quite difficult to judge erroneous behavior
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of a component from communication observations (cf. [Bau05], which uses a SAT
solver for a similar task). Not only the fact that an error has occurred needs to
be recognized, but also the extent of damage caused so far needs to be approxi-
mated, and provided as an input to the planning stage. This is necessary because,
depending on the nature of the error, data might have been corrupted or invalid
communication behavior might have commenced; the plan needs to contain provi-
sions that mend these problems.

In the planning stage, the recovery of the system needs to be planned. The
corrupted data needs to be taken care of, and maybe the faulty component needs
to be replaced or protected against further, similar errors. Obviously, this is pretty
difficult, however, given a careful design of the system, it is not impossible. We will
give a very restricted solution (that requires very little planning) in Sect. 8.4.3, but
more elaborate systems exist for hot code update [SRG96].

Finally, the reconfiguration plan needs to be executed. Here, a lurking threat
is the possibility of deadlocking the system or interrupting communication transac-
tions because a quiescent state has not been reached. Avoiding this problem is part
of the planning phase, but the framework usually needs a provision that allows for
sufficient control over the reconfiguration process.

The distinction of multiple stages is a separation of concerns: one concern is
to extract the relevant data from the application, another one is to come to a
reconfiguration decision based on a stream of data, and so on. Using MAPE-style
loops hence enforces a distinct consideration of each of the stages, facilitating the
detection of reuse scenarios and providing a tidy application structure.

We will now investigate the first three phases in greater detail. The fourth
phase – execution – is a straightforward implementation of the algorithm described
in Chapter 6.4.

8.1.2. Monitoring. Monitoring of software often describes the process of inter-
preting a sequence of messages and finding out whether they indicate faulty behav-
ior [BGHS04, BLS06]. In our context, this will be part of the assessment phase.
Instead, monitoring describes the process of producing said sequence of messages,
or, more broadly, data about the situation at hand. A wealth of means for do-
ing so exists on various levels of granularity, from logging frameworks to elaborate
introspection APIs like the JVMTI [PRRL04].

For monitoring, two dimensions need to be considered: The granularity and
the immediacy of information. The former may range from very coarse system
state change messages (e.g., system shutdown requested) down to bytecode-level
information (as can be obtained by stepping through the program with a debugger).
The latter can range from delayed – maybe by caching large portions of messages
before writing them out, or by only reporting every nth occurrence of an event – to
real-time synchronization, i.e., if the monitored information can be fully processed
before the system state changes again, the example again being a debugger in step
mode.

For components, the granularity should be fine-grained enough to identify the
source of problems (i.e., should be at least at component level, and better at mes-
sage level), but it should respect the component being a black box. Monitoring
the communication at message level can be achieved either on the user-level by
introducing filter components – an approach that was successfully employed in the
cmc model checker; or alternatively, monitoring can be enabled by the component
framework, an approach that we discussed in Sect. 7.2.5.1. The latter has the
benefit that the immediacy can be improved, and in the JComp framework, com-
munication observers are informed of a series of events concerning a single message,
producing a fine granularity.
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Figure 8.3: Filter component

8.1.2.1. Filter Components. Filter components enable monitoring entirely on the
user level, but the pattern itself can be used in many more situations. A filter
component is placed between two components and relays messages, possibly chang-
ing the message contents, suppressing some, or changing its own data state in the
process. Syntactically, it is a component where one role has the type that is also
provided; Fig. 8.3 illustrates this concept. It is perfectly acceptable to let filters
have additional required roles, or additional provided interfaces: A component c is
called a filter component if ∃I ∈ IP (c) .∃r ∈ R(c) . IR(c)(r) = I.

8.1.2.1.1. Cross-Cutting Concerns. Filter components are used to introduce cross-
cutting concerns into a component system, similar to the concept of a point-cut
in aspect-oriented programming [KLM+97]. A cross-cutting concern is a required
functionality of a system (part) that is independent of its core functionality. A
well-known example is logging (which, from the implementer point of view, is little
different to monitoring): An application that needs to log some events tends to
get interspersed with logging statements, regardless of the encapsulation chosen.
Any change to the logging mechanism requires a modification of virtually all com-
ponents1. Aspect-oriented programming (AOP) tries to solve those problems by
weaving aspects, each handling a different concern [KLM+97], thus satisfying the
separation of concerns paradigm. This is widely regarded as useful, though appar-
ently the concept is more appealing in technical domains (like adding functionality
for reconfiguration, as described in [MSKC04b]) than in normal programming.
We have utilized AOP for artificially slowing down parts of generic Java programs
in [HKMR08] and used filter components to do the same for the cmc model
checker, where the parts to be slowed are given by the components.

For components, a cross-cutting concern like logging can be handled by a filter
component. In Fig. 8.3, component c1 might send data to component c2, which
consumes it. The core concern of the application – operating a producer/consumer
scenario – is satisfied by the direct connection. However, if the data (or the mere
occurrence of messages, which is more likely) needs to be logged, a filter component
F can be introduced to handle this concern. Thus, a filter can be a substitute
for a monitor as described in Sect. 7.2.5, but remains a component that can be
subjected to reconfiguration. An interesting report on using filters, independently
of components, can be found in [BA01].

In applications based on the JComp component framework, filters are used for
logging (cf. Sect. 8.2.2), distribution (cf. Sect. 7.3) and user-level monitoring. We
will frequently encounter filter components in Sect. 8.4, which is about responding
to changed cross-cutting concerns by reconfiguration.

Note that the syntactical concept of a filter is not necessarily tied to a
cross-cutting concern. Often enough, the implementation of the core concern

1This is hard to overestimate. With Java, a common mistake is to conduct a logging call like

this: logger.fine("Processing entry " + e);. This results in building a new String object for
each logging entry, regardless of whether the fine level is actually used. The correct code reads
if (logger.isLoggable(Level.FINE)) logger.fine("Processing entry " + e);, and one eas-
ily gets the idea of what “cross-cutting” is all about if this has to be changed in an industrial
application made up from a few dozen packages, with a few ten-thousands lines of code each.
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Figure 8.4: Adapter component

of an application utilizes filters, e.g., for applying effects to images (cf. the
JHLabsFilterAdapter components in Fig. 7.5, which are components that wrap
an image processing filter in a component). cmc utilizes application-specific filters
frequently: The automated-atomic filter presented in Sect. 5.1.3, a hash value filter
that can be used to store the hash value in the state representation and only cal-
culate the hash value if it is not yet known, or the zLIB compression presented in
Sect. 5.1.2. However, such filters also address a concern that is slightly orthogonal
to the core concern, and usually relates to performance optimizations.

We have discussed the message monitoring arrangements provided by the
JComp framework in Sect. 7.2.5 and provided the various stages in Tab. 7.2. Hav-
ing a precise information about which thread invokes the monitoring code is crucial,
as for the duration of executing the monitor the component that yields the thread is
blocked. If the monitored event leads to a reconfiguration, the planning phase might
need precise knowledge about the state of the component that gets reconfigured.
If this planning is done by the same thread that executed the monitor’s code, the
component’s state cannot have changed in between (due to the mono-threadedness
of JComp’s components). Reconfiguration planning might now proceed to tailor a
reconfiguration to exactly the state observed, and proceed to trigger the execution
of the reconfiguration, all within the component’s own thread.

The precision of this approach is limited, however. In accordance with the
formal description, the JComp framework can only reconfigure a component that
is not currently executing a method. Hence, even while the first three stages of
the MAPE loop may run in the component’s thread, the execution needs to have
a thread of its own. This also means that the current method that, depending on
the stage the monitoring was conducted in, will invariably be executed. Only if the
check is done early enough (stage 1), reconfiguration can intervene before the mes-
sage is processed. If this is not sufficient, reconfiguration adapter components can
help – i.e., filter components that relay messages after checking their integrity, ei-
ther within the adapter component’s implementation or in the framework-provided
monitoring, providing sufficient interception points to schedule a reconfiguration.

8.1.2.2. Adapter Components. A related concept are adapter components. The
idea, illustrated in Fig. 8.4, is rather straightforward: In order to attach a com-
ponent providing an interface I2 to a component that requires a slightly different
interface I1 for one role, a component is built that provides I1 and requires I2. The
actual implementation of this adapter component depends on how I1 and I2 differ.
In easy cases, a simple renaming is sufficient. Sometimes, additional parameters
need to be supplied. More complex adapters need to change the parameter values,
or even change the communication protocol. Such complex components are some-
times referred to as proxies; they guard a component incapable of performing a
certain complex protocol. We will encounter such proxy components in Sect. 9.2,
where they will add concurrency control to a component that is ignorant of being
accessed by multiple clients.

Generating such adapters, preferably automatically, is an interesting research
topic, which is addressed by frameworks like UniFrame [CBZ+02], and plays an
important role in the context of web services [BCG+05]. Here, we can use adapter



8.1. MAPE 179

components to provide the necessary decoupling for reconfiguration. An example
of such an adapter is presented in the example in Sect. 8.4.3.

8.1.3. Assessment. From the monitoring, we expect a stream of measurements.
The assessment phase now needs to judge the necessity or utility of reconfiguration
based on that stream. In many cases, this is easy to do – e.g., in JComp, if an
exception is witnessed, reconfiguration needs to be done. Things get harder if run-
time behavior is to be optimized, as the threshold where reconfiguration should be
done is often dependent on the estimated future – usually, the question boils down
to “will reconfiguration save enough resources during the remaining computation
to warrant its expenses?”. Often, this is viewed from a different perspective by
considering “quality of service” (QoS) [VZL+98, WSG+03, DP07].

Different problems emerge for applications that try to maintain functional prop-
erties by reconfiguration. Here, the question is “did the recent behavior violate my
properties? And if so, should we reconfigure, or should we just hope that these
things will not happen again?”

Here, we will outline some means to answer these questions. These are exam-
ples for ways to handle the assessment phase, and are by no means exhaustive.
Especially, in JComp, genuine physical sensors are not considered, which often
require cleaning (e.g., smoothing or outlier removal) of the sensor readings in the
assessment phase [JAF+06].

8.1.3.1. Predicting the Runtime. A reconfiguration is feasible if the improvement
achieved outweighs the cost of the reconfiguration. But how do we calculate the
“quantity” of improvement? Given a system that runs forever, any improvement
no matter how small will save an infinite amount of time, so no matter how costly
the reconfiguration is, it will eventually pay off. This will not apply to real systems
for two reasons:

• The system will likely not run forever.
• Even if it does, it might change its characteristics and thus render the

effect of reconfiguration useless.
Hence, an estimation of the remaining time or at least of the stability of a system
is required. That this is difficult to do should be evident to everyone who ever
compared the progression of a progress bar (for a file download or installation
progress) with wall time.

The problem of estimating the remaining time of a software task is studied in
the context of the “shortest remaining processing time” job scheduling paradigm,
which suffers from the same problem (cf. [HBSBA03] for an example of a domain
where the estimation is working well). In our experiments with the cmc model
checker, we found that the size of the open set (i.e., those state that have not been
visited but need to be) provides a rough estimation for the remaining time; Fig. 8.5
shows a “normal” model and the progression of the set sizes. After approximately
25% of the total states the open set peaks, it then declines rather slowly, until the
final states are progressed rather quickly. Observing the open set peak provided
us with a very rough estimation of the problem size; if we found the open set to
be increasing for too long, we would judge the model to be infeasible. This was,
however, severely sabotaged by a seemingly simple model which involved a simple
counter that was nondeterministically reset to half its value. This resulted in a very
small search front (two states), but the state space was still vast, and proved to be
uncheckable due to the cache degradation.

8.1.3.2. Concept Drift and Software Phases. Concept drift [SG86, NFM07] is an
idea from machine learning; it describes how a system can adopt to a changing
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Figure 8.5: Progression of the cmc run of Peterson’s mutual exclusion example,
n = 5

world. If a learning system neglects the possibility of a changing world, it will
respond to a perceived change by adjusting its world representation, and thus take
very long to fully accept the changed reality. With concept drift, this lagging is
reduced as changes are anticipated and incorporated into the representation rather
quickly. Such a change in the world representation is not considered an adaptation
to a hitherto imprecise believe, but rather an integration of a change.

Consider a SPAM filter that tries to adapt to new disguises of SPAM. When
neglecting the concept drift, the filter would be required to learn that mails carrying
a single image are most likely SPAM, and would need to reclassify those mails
previously not detected to be SPAM as such, if they were subjected to another
classification run. In this sense, the decision base of the filter is extended to include
the new disguise of SPAM, and the justification for this extension would be that the
criteria learned so far are insufficient. When considering concept drift, however, it
is accepted that a formerly respectable form of email is now considered SPAM, due
to a change in the approach taken by junk mail senders. The knowledge base used
to classify mails can thus be shifted rather than extended: It may also “forget”
about former SPAM criteria which have not been used for some time.

Whether to regard unexpected inputs to a classification algorithm – like a junk
mail message disguised in a form that has hitherto been accepted as unsuspicious
of being SPAM – as an error of the previous knowledge base (which then has to be
extended) or as a hint towards a changing concept in the observed world (where the
knowledge base needs to be shifted) is an interesting question in machine learning
and believe revision (cf. [KM91]). In our context, where we want to adapt our
system to a change in the environment, concept drift is the key approach towards
describing perceived change.

We make a basic assumption here: At least for some problems, software op-
erates in phases. Phases are supposed to be distinguished by a (hopefully rapid)
change in the communication behavior of the components. Consider, for example,
a database that is used to store the products sold by a company. Most of the
time, this database will be queried. Sometimes, we can expect minor changes to a
small amount of data (e.g., changing prices, inserting a small number of products
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or product variations. . .). Every once in a while, the database will undergo a rather
severe change when the company decides to release a new product line. A bulk of
data is inserted in a rather short amount of time, during which the normal usage of
the database is neglected, if not disabled. For many large relational databases, such
a bulk insert – which we can regard as a distinct phase different from the normal
phases – will require severe modifications to the database, like disabling consis-
tency checks, indexing and trigger evaluation. This is usually done by the database
administrator, and is required for performance reasons (which, in practice, can be-
come a real problem, especially since the database cannot process regular queries
during the bulk insert phase, or at least cannot handle them efficiently).

The assumption of phases may not apply to most data-processing algorithms,
like search algorithms, with one exception: Quite often, such algorithms have dis-
tinct preparation and execution phases. During the preparation phase, data is
read and placed into in-memory data structures. Adequate lookup tables are built.
Eventually, the main algorithm is triggered, which presumably handles the data in
quite a different fashion. Usually, the programmer takes care of making both phases
efficient, but in the wake of reusable software components, this might become ne-
glected (i.e., the same data structures are used for preparation and execution, and
they are usually chosen to allow for an efficient execution). Sect. 8.4.4 describes
an approach towards improving this situation by adaptively choosing suitable data
structures for different software phases. Such an approach can utilize the theory of
concept drift to identify the beginning of a new phase.

Let us assume that we operate a component setup and observe the messages
received by the components. By aggregating them over a time window, we obtain
a distribution of message frequency. Let us further assume that we have some
estimate of the time consumed by the the processing of a message on a given
component. (We will present an example of such an estimate in Sect. 8.4.4). We are
then interested in calculating the future cost of the system if it continues to perform
as currently observed, as well as the cost of the reconfiguration alternatives we have
at our disposal. If the difference between the expected cost for the current setup is
higher than the cost of a reconfigured setup plus the expense of the reconfiguration
process itself (when considering only a limited interval of the future – otherwise,
reconfiguration benefits will always outweigh the cost of reconfiguration under said
assumptions), reconfiguration should commence.

There are two things to consider:

• The algorithm must not “jump to conclusions”, i.e., quickly initiate a re-
configuration with little gain, if the drift is not permanent (also known as
virtual drift [LVB04]). More specifically, the expected benefit of recon-
figuration should not be calculated for a constant time frame, but rather
for a period that is modified according to observations.

• On the other hand, the algorithm must not delay a reconfiguration that
is clearly useful. Some “freak message” might even require a reconfigu-
ration prior to processing the first received message of a certain type, if
that message type is too costly for its target component’s current type.
This is especially true if the benefit of executing the single message in a
reconfigured setup outweighs the cost of reconfiguration.

Thus, the choice to perform reconfiguration based on some recent observations is
affected by the following parameters:

• The window size, i.e., the history taken into consideration when predicting
the behavior of the system – it needs to be large enough to avoid being
influenced by virtual concept drift too much, but small enough not to lag
the reconfiguration decision.
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• The predicted stability, i.e., the time that we expect the system to be
within the currently observed phase – if chosen too high, even the slightest
change in message distribution will trigger a reconfiguration, if chosen too
low, no drift will ever produce a reconfiguration.

• The expected cost of reconfiguration, possibly including the impact on
other components that are blocked due to waiting for synchronous mes-
sages to be processed – in a reactive component setup that waits for input
most of the time, reconfiguration can be done in periods of less activity
without impact on the system’s performance, whereas in a heavy-duty
setup reconfiguration might stall the system for an unacceptable period
of time.

• The expected benefit of reconfiguration, which needs to consider the cur-
rent state and the expected usage for the expected phase stability.

All these parameters can be pre-calculated (or set manually), but at least
the window size and the stability should be adapted to the experienced behav-
ior. Adapting the window size is performed by learners such as Flora2 [WK92].
The basic idea here is to decrease the window size if concept drift is suspected,
while enlarging it if the data is inconclusive (and further data might be benefi-
cial to decision processes). The idea is further refined in [LVB04], where multiple
windows (actually, three) are employed to become more sensible towards different
types of concept drift.

Stability can be derived from the frequency of reconfiguration decisions. It is
usually not researched in the context of concept drift, which aims at learning facts
rather than predicting the future outcome of an action, but there are some related
concepts, like detecting a recurrent context [WK96].

Considering software phases can be used to adapt an application to a changed
setting, allowing it to use the available resources in an efficient way. The definition
of concept drift aims at situations where the behavior can be improved; in order
to remain robust against virtual drift, some latency has to be accepted. This
makes this approach less suitable for applications where some behavior needs to
be prevented – even if this behavior is described with non-functional properties.
We will now discuss a means to provide a assessment that is more direct and can
response to functional and non-functional property violations as soon as they occur.

8.1.3.3. Temporal Logic-based Assessment. In some situations, detecting commu-
nication errors can be achieved using a simple state machine. In Chapter 9.1.2,
we will discuss how formal component protocols can be established, the basic idea
being that some messages can only be processed in some state, and that processing
messages might change that state. Monitoring the communication and comparing
it with the protocol can be used to assess whether a component behaves as required
by the protocol. This amounts to monitoring a safety property; and these can be
expressed in linear temporal logic (LTL) [Pnu77, KM08b]. Thus, we might for-
mulate that receiving an init message is prohibited after we received a terminate
message:

terminate→ 2(¬init)

Such a property can be checked by storing whether terminate was received and
then throwing an error if init is received afterwards.

But LTL can do more, and we might be tempted to formulate properties like

getBalance→ (¬getBalance) until withdraw
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which is supposed to mean that every call of getBalance is followed by a withdraw
message before a second call to getBalance is admissible. This is a liveness property
that demands that the system eventually progresses in a desired way.

This leads directly to a problem with LTL: Although the formula makes per-
fectly sense for our protocol, LTL’s semantics of ϕuntilψ requires that ψ is even-
tually made true. Obviously, we can never find out whether this aspect is violated;
we can only check if ϕ holds as long as ψ does not hold. While such an examina-
tion is still useful, the formula 3ψ ≡ true untilψ ceases to make any sense in this
approach.

Still, it might be useful to specify liveness properties for use in the assessment
phase. For example, a component that requires that any getBalance is followed by
an withdraw might also like to specify that this should only take a given amount
of time. This introduces a non-functional requirement and requires real-time prop-
erties, and while we usually stay away from real-time considerations in this thesis
(especially since early experimentation clearly indicated that calamity will result
from imposing real-time requirements on components running in a framework that
is itself oblivious to real-time, while allowing for concurrency), it might be interest-
ing to specify how an assessment can be formulated in a uniform way.

In [BLS06], Leucker et al. propose a three-valued monitoring of LTL formulas,
where the formula might either be judged with true, meaning that the witnessed
communication sequence already proves the formula being true, or false, or ?, if
the formula’s holding or being false cannot be assessed from the sequence witnessed
so far. They extend this approach (which, by the way, proved to be the vital inspi-
ration to the cmc model checker’s basic caching structure) to real time properties.
In [Bui08], some effort was made to simplify the language used in order to facilitate
monitoring with real-time properties.

Temporal logic-based assessment is a useful and very generic tool, especially if
combined with real-time properties. However, in the context of this thesis, we again
suffer from examples too artificial and too much governed by the reconfiguration
execution; those that consider quantitative properties (Sect. 8.4.2 and Sect. 8.4.4)
have their assessment hard-coded. For large-scale QoS considerations, real-time
temporal logic will be an important ingredient in an attempt to further separate
the concerns; but in this thesis, they do not play an important role.

8.1.4. Planning. Following the assessment phase, where the need for reconfigura-
tion is determined, the planning phase commences. Based on information about the
kind of problem at hand, a solution needs to be found. This phase can be regarded
as the most difficult of the MAPE loop, if a generic approach is to be taken. It is
easy to construct an argument that generic planning is entirely infeasible – e.g., by
pointing out that replacing an algorithm with a suitable substitute necessitates a
decision procedure for algorithm equivalence, which is known not to exist.

Reconfiguration can be seen as configuration with further constraints – espe-
cially constraints that rule out the situation that was just assessed as problem-
atic. Planning a configuration, however, requires a precise semantical description
of the component’s communication requirements and strong reasoning capabilities.
It has been attempted, and success has been achieved (e.g., in the Amphion
project [SWL+94], cf. Sect. 2.4.1). But the effort required is vast, and most likely
only very specific domains can be addressed.

Instead, planning of configuration and reconfiguration often resorts to prede-
fined strategies that are easy to attain. For example, the fault tolerance of Erlang,
as discussed in Sect. 7.5.3.5, requires little planning, because it just entails shutting
down components, spreading the error and checking if the components can cope
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with it. Also, every example we provide in this thesis is rather simplistic with re-
spect to planning. Usually, a fixed set of “cures” is pre-calculated – even more, it
is carefully crafted with an effort often far exceeding the effort of writing the initial
application. The assessment of an error then usually determines the plan that needs
to be chosen. There is also some work that aims at generating plans from a fixed
set of component substitutions, e.g., in [PCDJ08] an approach towards generating
plans from atomic component substitutions is proposed.

At the granularity level considered in this thesis, which is considerably lower
than that of many other works, real planning seems abundantly complicated when
considering the necessity to adhere to the problems of state transferal, quiescent
states and the like. It appears that predetermining the reconfiguration possibilities
is the best we can do for now. It is, however, still a challenging task to write down
these alternatives and generalize them so that they become more like patterns, in-
stead of “single-situation only” plans. Architecture Description Languages (ADLs)
can be extended for this purpose [Med96, MBC03, MBC04], or domain specific
languages can be defined [WLF01], but we utilize the more prevalent means of
graph transformations [DD98, WF99].

Another interesting field of planning is the choice of an optimal plan among
a set of alternatives [Ars03, AHW03, CEM03, KM07, REF+08] or the se-
lection of a suitable single component substitute [DMM04]. This is sometimes
complemented with the choice of values for the component parameters, e.g., with a
setting of a “sending power” parameter that affects the dependent variable “power
consumption” for a broadcasting device [WDT+07]. Finding an optimal (or,
and often preferably, sufficiently suitable) solution can be done by using micro-
economic mechanisms like auctioning schemes [CEM03] or by soft constraint solv-
ing [WDT+07, HMW08].

The suitable planning approach needs to be chosen for the kind of problem that
needs to be solved by reconfiguration. In this thesis, planning is not given much
elaboration; instead, the examples presented in this chapter usually employ only
simple plans that are constructed explicitly. Here, we will proceed to introduce
graph transformations, which offer a means to concisely denote reconfiguration
plans.

8.1.4.1. Graph Transformation. Graph transformations [EEPT06] have two prop-
erties that make them interesting for defining reconfiguration plans: First, they use
a visual metaphor and are easy to understand. Second, they can be defined so that
they apply to more than one given situation: A graph transformation might be as
abstract as “insert a filter component between a component satisfying property ϕ
and a component with property ψ”. If the assessment looks out for situations where
a filter component needs to be added, we can use this graph transformation to plan
the reconfiguration for any scenario. Thus, plans can be devices for a variety of
situations, and might even apply to applications not yet designed (cf. [DD98]).

Using graph transformations is especially useful if cross-cutting concerns are to
be addressed: If, for example, a logging filter component is to be added between a
producer and a consumer component, we might not be particularly interested in the
remainder of the component graph, or how many such producer-consumer setups
are found in the application.

A graph transformation consists of two parts:

• A left-hand side, which defines to which part of a graph the rule matches,
and

• a right-hand side, which describes how the matched part should be altered.
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Figure 8.6: SPO graph transformation rule example

It is technically feasible to handle both the left- and right-hand side of a graph
in the same data structure. For defining graph transformations, we utilize single
push-out (SPO) rules, as utilized by the Groove tool [Ren03, Ren04]. Instead
of using two rules that describe addition and removal of nodes, a single rule is used
that attributes the graph with “keep” or “remove” annotations.

Fig. 8.6 shows an example of such a rule. The nodes are annotated with ,=
(match), ,− (remove) and ,+ (add). The rule matches a graph where the ,=- and
,− -annotated nodes are present and connected as described. It produces a graph
in which

• all the ,=- and ,+-annotated nodes are present,
• none of the ,− -annotated nodes is present,
• all connections originating or ending in a ,− -annotated node are removed,
• all other connections are present.

More formally, an SPO rule is a graph R = (V,E, α, ω, λ) over Σ = VL∪R for
VL = {(C,F ) | C ⊆ C ∧F ∈ {,+ ,,− ,,=}} with ∀v ∈ V . λ(v) ∈ VL∧∀e ∈ E . λ(e) ∈
R. For l = (C,F ) ∈ VL and c ∈ V with λ(c) = l, we write C(c) for C and F (c)
for F . The set VL of labels uses pairs of sets of component identifier and a node
annotation; the set of component identifiers is used to define the set of components
the graph rule node can be matched to.

We require that ∀e ∈ E .F (α(e)) = ,− → F (ω(e)) 6= ,+, i.e., no edge may
connect a ,− - and a ,+-labelled node – the opposite, i.e., connecting a ,+-labelled
node with a ,− -labelled node, is acceptable only if the role is a temporary role
(cf. Sect. 6.8.1). This is the only way temporary roles can be connected:

∀e ∈ E . λ(e) ∈ Rtemp → (F (α(e)) = ,+ ∧ F (ω(e)) = ,−) , (R1)

∀e ∈ E . λ(e) ∈ Rperm → (F (α(e)) 6= ,+ ∨ F (ω(e)) 6= ,−) . (R2)

Hence, a regular role may connect (,+ ,,=), (,+ ,,+), (,= ,,+), (,= ,,=), (,= ,,−),
(,− ,,=) and (,− ,,−)-labelled pairs of nodes. The first three will result in edge
addition, (,= ,,=) is just a match and will not change the graph, and the last three
will result in edge removal. (,− ,,+) is ruled out. (,+ ,,−)-labelled pairs can be
connected by temporary edges.

We also require that the plan preserves well- and completely-connectedness:

• ∀e ∈ E . λ(e) ∈ R(C(α(e))) ∧ IR(C(α(e))(λ(e)) ∈ IP (C(ω(e))), i.e., edges
connect existing roles to provided interfaces,

• ∀v ∈ V . F (v) = ,+ → ∀r ∈ R(C(v)) .∃e ∈ E .α(e) = v∧λ(e) = r, i.e., for
,+-labelled nodes, all (permanent and temporary) roles are connected,

• If an edge points to a component that is to be removed, another edge with
the same role label exists that points to a new one (it has to be a new
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Figure 8.7: Graph transformation rule for filter removal

one, due to the definition of ρ in the reconfiguration plans):

∀v ∈ V . F (v) = ,= → ∀e ∈ E . (α(e) = v ∧ F (ω(e)) = ,−
→ ∃e′ ∈ E .α(e′) = v ∧ F (ω(e)) = ,+ ∧ λ(e) = λ(e′)) (R3)

• ∀v ∈ V .∀e ∈ E .α(e) = v → ∀e′ ∈ E .α(e′) = v ∧ λ(e) = λ(e′) → (e 6=
e′ → F (ω(e)) 6= F (ω(e′))), i.e., every role is connected only once to a
target node with the same annotation.

Given a rule (V,E, α, ω, λ) and a component setup (C ′,M ′, e′), a match is a
(total) function m : V → C ′ such that

• ∀v ∈ V . F (v) ∈ {,= ,,−} → m(v) ∈ λ(v),
• ∀e ∈ E . (F (α(e)) 6= ,+ ∧F (ω(e)) 6= ,+)→M ′(m(α(e)))(λ(e)) = m(ω(e)),
• ∀v ∈ V . F (v) = ,− → ∀c′ ∈ C ′ .∀r ∈ Rperm . r ∈ R(c′) ∧M ′(c′)(r) =
m(v)→ ∃e ∈ E .ω(e) = v ∧ C(α(e)) = c′ ∧ λ(e) = r,

• ∀c ∈ C ′ .
∣∣∣⋃v∈m−1(c) F (v)

∣∣∣ = 1.

The last requirement states that if a component matches more than one rule node
(which is perfectly acceptable), the annotation has to be the same for all rule nodes
matched. Otherwise, a ,− - and a ,=-labelled rule node might become matched to
the same component. The third requirement states that if a node is to be matched
to a ,− -labelled node, then all the incoming connections need to be explicitly men-
tioned in the graph rule – in order to preserve completely-connectedness of other
components which are not mentioned in the plan. The other requirements state
that all ,=- and ,− -labelled nodes are matched, and that the edges are present as
required.

Given a rule (V,E, α, ω, λ) and a match m, we can build an extended reconfig-
uration plan ∆ = (A,R, α′, ρ, δ, ς) by setting

• A = {m(v) | F (v) = ,+},
• R = {m(v) | F (v) = ,−},
• α′ = {c 7→ {r 7→ c′ | ∃e ∈ E .m(α(e)) = c ∧m(ω(e)) = c′ ∧ λ(e) = r} | c ∈
A},

• ρ = {(c, r) 7→ c′ | ∃e ∈ E .m(α(e)) = c ∧ F (α(e)) = ,= ∧ m(ω(e)) =
c′∧F (ω(e)) = ,− ∧λ(e) = r}. Note that no edges representing temporary
roles are considered, due to the requirement R1 and that all permanent
roles are covered due to requirement R3,

• τ = {(c, r) 7→ c′ | ∃e ∈ E .m(α(e)) = c ∧ F (α(e)) = ,+ ∧ m(ω(e)) =
c′ ∧ F (ω(e)) = ,− ∧ λ(e) = r}. All edges considered represent temporary
roles due to requirement R2.

Graph transformation rules are appealing because their informal meaning is
easy to understand, and it can be used to describe reconfiguration for a variety
of situations. For example, the rule shown in Fig. 8.7 can be used to remove any
filter component from a set f ⊆ C ′ from the connection they instrument. By
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repeatedly searching for matches and applying the resulted plan, all the existing
filter components of the set f are removed. This “relaxing” of the reconfiguration
description (i.e., being able to describe a reconfiguration such that it applies to a
large number of situations, and not just a single one) is an important prerequisite
for building systems that use repeated and varied reconfiguration, as we will discuss
in Sect. 8.3.

Note that a design decision of the JComp model reconfiguration is reflected
by graph transformations as we defined them: The co-domain of ρ is A, and the
domain is (C \ R)×R with the requirement that each pair ρ is defined for points
to a component in R. The same requirement is made by the definition of the
graph transformation rule. If ρ was to be given an extended co-domain, we would
have to provide labels for the graph transformation edges, too: If an edge between
two ,=-labelled nodes was to be redirected (e.g., for the insertion of a filter without
removing the target node), it would have to bear a special label. Although we suffer
from the same necessity to remove and re-add more nodes than strictly necessary,
the graph transformation remains more tractable in its definition this way.

It should be noted that our examples in this chapter do not use graph transfor-
mations to define the reconfiguration plans; this should be attributed to the limited
scope of the examples. Many of the examples could benefit from graph transforma-
tion rules, if they were to be considered in a large-scale component application that
is subjected to various reconfigurations that try to maintain the different concerns.

8.1.4.2. Planning and Quiescence. Besides defining how reconfiguration should
modify the component graph, planning also needs to determine when the recon-
figuration should commence. We have seen that the characteristics of the plans we
use make reconfiguration quite robust against concurrent changes. This ceases to
hold if we do not use injective shallow reconfiguration plans (an example is given
in Sect. 8.3.2) or if the state transferal is insufficient for picking up a transaction
at precisely the point where the old component left it when becoming detached.

8.1.4.2.1. Quiescence. Transactions are the key concern of the concept of quies-
cence, the most influential theoretical consideration of reconfiguration [KM90,
MGK96]. In [KM90] Kramer and Magee, building on a general solution to multi-
way synchronization due to Chandy and Misra [CM84], formulate four conditions
that need to be given for a component to be in a quiescent state:

(1) It is not currently engaged in a transaction that it initiated,
(2) it will not initiate new transactions,
(3) it is not currently engaged in servicing a transaction, and
(4) no transactions have been or will be initiated by other nodes

which require service from this node.
Once a component (or, using Kramer’s and Magee’s notion, a node) has reached a
quiescent state, it can be reconfigured without running into problems with concur-
rent communication, since it is guaranteed that no such communication will take
place. Obviously, a component cannot guarantee being quiescent on its own, since
the “other nodes” that might initiate a transaction need to be considered also. The
solution presented in [KM90] is to calculate a lock set of components that need to
be passivated (i.e., blocked in a way that disallows the initiation of transaction, but
allows the handling of transaction requests issued by other components). Obviously,
such a lock set can be quite large, and, in extreme cases, contain all components of
the application.

8.1.4.2.2. Tranquility. Vandewoude et al. proceed to provide the weaker concept
of tranquility [VEBD07] (in the sense that quiescence implies tranquility), which
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aims at component substitution (intended to support hot code updates). The last
two requirements of quiescence are replaced as follows:

(3) it is not actively processing a request,
(4) none of its adjacent nodes are engaged in a transaction in

which this node has already participated and might still par-
ticipate in the future.

Tranquility does not require that components connected to the component under
observation do not start new transactions. These new transactions, however, cannot
be participated in, but the processing must be delayed until after the reconfiguration
– which is possible as the messages are retained in Vandewoude’s model, as it is (by
the δ plan element) in our approach. Hence, tranquility is sufficient for updatability,
as a transaction that is initiated after the reconfiguration will continue with the
updated component; only an interleaving of a transaction and a component update
is ruled out.

Our approach ensures the second and third requirement of tranquility: A new
transaction cannot be initiated, and no request is processed, since reconfiguration
can only commence if the component is not executing a method invocation. The
first and forth point are required to ensure that reconfiguration does not interfere
with an ongoing transaction, since this might lead to inconsistent behavior: If the
transaction-local data is lost, an ongoing transaction cannot be completed, or the
response might be inconsistent.

As an example, consider a component that wraps a cryptographic service. It
requires an initialization (which is used to set the keys) and then services encryp-
tion/decryption requests. A transaction hence begins with an initialization and
contains a number of cryptographic requests, after which it is concluded by a lo-
gout message. If this component becomes updated while still servicing transactions,
and the transaction-local data (i.e., the keys) is lost, subsequent cryptographic re-
quests will appear as “out-of-protocol” to the updated version, as it is unaware of
the foregoing initialization call. This problem is addressed by the forth property
of tranquility (and also covered by the forth property of quiescence, although it
is more restrictive than required here – for reaching quiescence, all clients need to
be made passive, whereas, for tranquility, only the absence of ongoing transactions
needs to be ensured). The first property of quiescence/tranquility is required to
prevent clients that are in the middle of a transaction from becoming reconfigured
and subsequently starting a new transaction without ever having sent a logout mes-
sage. Obviously, state transferal can mend both problems: If the keys of ongoing
sessions are retained during an update of the cryptographic-service component, it
can pick up the transactions transparently (cf. Theorem 6.2; we will discuss state
retainment as a replacement for tranquility in Sect. 9.6.2). Likewise, if the client
retains information about being in the middle of a transaction, it will not start a
new one. Whether such a state retainment is possible and feasible is very situation
dependent; we would like to point out that having transaction information and the
ability to wait for a tranquil point in time (or, as a fallback, to a quiescent state,
if a tranquil state cannot be attained [Van07]) is also not likely; whereas state
retainment needs to be done for transaction-independent data anyway.

If transaction-local state transferal is not desired or possible, however, the as-
sessment and planning phases need to ensure that reconfiguration happens at a
suitable point in time, which possibly needs to be procured. For doing so, the
component communication behavior needs to be made explicit, as discussed in
Chapter 9.1. We have not explicitly defined transactions so far, but they can be
included easily, either by explicit declaration (i.e., extending the method specifica-
tions by an annotation about which transactions are begun and which are ended),
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or by using implicit information, like the requirement of receiving a future message,
which we will introduce with the Eve element in Sect. 9.1.2.1.

We will further investigate this problem in Sect. 9.6.1. As far as the planning
phase of a MAPE loop is concerned, it needs to make sure that reconfiguration is
conducted in a way that preserves the communication expectations of all compo-
nents. In our framework, the means to achieve this are not fixed; the reconfiguration
might provide a sufficient state transferal, or wait for a quiescent or tranquil state.
As usual, the choice of the best approach depends on the problem at hand. It might
even be possible to ignore transactions, if they can be shown not to interfere with
reconfiguration, as the following approach suggests.

8.1.4.2.3. Protocol Analysis. In [AP05], static analysis of protocols, combined with
locking, is proposed as a way to guard reconfiguration against interfering commu-
nication: By analyzing component communication protocols, the atomicity of com-
ponent updating is ensured. This is made possible by including the component
update requests (that trigger the reconfiguration) in the communication protocol,
which can then be checked for a given setup. If the reception of a message dur-
ing processing of a reconfiguration is possible, the component update cannot be
guaranteed to be atomic, requiring additional locking.

Message reception is no issue for our approach, as it is no issue for tranquility.
The fourth property of tranquility only works if a component is impeded from
picking up the servicing of another transaction, which means that the component
issuing this transaction needs to wait. Hence, a framework supporting tranquility
needs to provide means for message retainment; quiescence is required if messages
are allowed to be lost during reconfiguration. The approach of static protocol
analysis can be extended to see whether tranquility considerations need to take place
(cf. Sect. 9.6.1). Another prospect is to relax the reconfiguration if no interfering
communication is possible: The reconfiguration framework might then do steps in
parallel or mix them up. It might become necessary to look into such possibilities
once reconfiguration needs to adhere to real-time constraints (i.e., finish within a
given latency time).

8.2. Hot Code Updates

In the remainder of this chapter, various examples for conducting reconfigura-
tion within the MAPE framework described above are presented. The first examples
are about live or hot code updates. This is a well-researched and relevant use of
reconfiguration, and usually suffices to motivate the provisions for reconfiguration
in a component framework [Hof93, Van07]. It is also an area where the neces-
sity for MAPE-style reconfiguration preparation is not required, since it is entirely
user-triggered. Hence, hot code update investigates the pure execution of recon-
figuration, making it an important benchmark example for the capabilities of a
component model capable of reconfiguration.

Hot updating of components is well understood, and often a design goal for a
programming language (e.g., Erlang [Arm07] or CLOS), but hot code update
is also researched for programming languages that do not directly support it (e.g.,
C [NHSO06] or Java [AR00]; cf. [HG98] for an overview). While results are
often encouraging, the process of hot code updating is dangerous and in the long run
infeasible without explicit language or framework support [EVDB05]. It should
be mentioned that the reconfiguration of the JComp model was first developed for
the necessities of hot code update, which explains some of the particular choices
made, especially the definition of the reconfiguration plan element ρ.

In utilizing a component framework for hot code updates, it can be hoped that
the granularity is kept at a more manageable level than when modifying source
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code directly. Furthermore, the greater independence of components is useful for
explicit state retainment and more elaborate features like fault-tolerance [SRG96].

8.2.1. Single Component Hot Code Patching. In this first example, we will
show how components can be updated by an administrator. This is rather straight-
forward, as the plan can be computed automatically, and reconfiguration can com-
mence any time.

8.2.1.1. Monitoring and Assessment. For hot code update, the assessment is com-
pletely left to the user, who has to decide whether a code update is required.
Obviously, such an assessment needs to be based on an observation of the sys-
tem, requiring monitoring facilities that are either provided by the framework as
described in Sect. 7.2.5, added at assembly time in the form of filter components
as described in Sect. 8.1.2.1 or dynamically introduced at runtime by reconfigura-
tion. Nevertheless, as far as the code update by reconfiguration is concerned, no
assessment on behalf of the system is required.

8.2.1.2. Planning. This example only requires two parameter values: The iden-
tity id of the component to be updated, and the code to update it with. Let
c = (id , IP , IR, ζ, ι) be the component to be updated, and c′ = (id ′, IP , I ′R, ζ

′, ι′)
be a new component that has the same provided interfaces, but differs in the im-
plementation ζ ′ (it may also differ in ι′, but this is not important here). The
permanently required interfaces of c′ are the same, but c′ requires an additional
temporary role rτ ∈ Rtemp , i.e., I ′R = IR∪{rτ 7→ Idata} for an interface Idata ∈ IP .
This interface is devised to obtain a copy of the state during hot reconfiguration, so
the component c needs to have been prepared with suitable state accessor methods.

Given a component setup (C,M, e) with c ∈ C and c′ 6∈ C, we can calculate an
extended shallow reconfiguration plan ∆ = (A,R, α, ρ, τ) by setting

• A = {c′},
• R = {c},
• α =

⋃
r∈R(c′){(c′, r) 7→M(c)(r)},

• ρ =
⋃
s∈C

⋃
r∈{r′∈R|M(s)(r′)=c}{(s, r) 7→ c′}, and

• τ = {c′ 7→ {rτ 7→ c}}.
This plan is straightforward: The roles of c′ are connected to those components that
were connected to by the same roles of c, and those roles pointing to c from other
components are changed to point to c′. Note that this plan ∆ is not an injective
shallow reconfiguration plan, as ρ is not injective in general. ρ obeys the shallow
plan restrictions, however.

If the state retainment saves the entire state of c, and if the communication
specification is not changed in c′, reconfiguration can be started anytime. This
is because possible the state of unfinished protocol sessions are retained, too, and
c′ can pick up the communication where c left it. If the communication protocol
changes in c′, inconsistencies cannot be ruled out, and c′ needs to be in a tranquil
state to be updated safely.

8.2.1.3. Execution. As the plan is not injective, message IDs are required to obtain
an identical ordering of the queue (actually, the ordering is not guaranteed to be
identical if assignment of a message ID and its reception from the queue is not done
in an atomic step, but no-one will be able to tell the difference). However, only
in situations we consider as artificial an actual problem will emerge from method
reordering – as the order of the message sent over the same role is not changed.
During reconfiguration, the state is retained by executing the mcopy method, which
needs to be implemented by the component author of c′. Since we may assume that
the necessity of introducing this component into the system by hot code update
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reconfiguration is known to this person, no genuine breach of separation of roles is
given.

8.2.1.4. Experience and Discussion. In JComp, hot code update is not directly
built into the framework. Instead, a small example project was designed to show
the capabilities of hot code update. Two challenges need to be solved:

(1) The administrator requires a means to trigger the reconfiguration. This
was solved by adding a small server functionality that is accessible by Tel-
net (after this proved to be a benign approach with cmc, see Sect. 5.5).
The administrator can use simple commands to query the components
present in the system and issue update commands.

(2) The bytecode of the new component version needs to be loaded. Java
allows for reloading class definitions, if a different class loader is used for
the new class. This is possible due to the loose coupling of components:
The actual class of a component is never referenced, other than within
the setup generation code (that establishes the component setup by doing
calls to the assembly). Hence, the component class can be loaded on
the fly and used to generate a new component for the reconfiguration plan:

1 Class<?> ncc = new HotCodeUpdateClassLoader().load(compclass);

2 ComponentDescriptor nc = assembly.getComponentForClass(ncc);

3 plan.addNewComponent(nc);

State transferal needs to be implemented by the programmer of the replacement
component. If the requirement to do hot code updates was known at the imple-
mentation time of the old component, it is quite easy to have this old component
store its state in a Memento object and retrieve this object in the implementation
of mcopy . If such a Memento provision is not given, the new component needs to
utilize the available getter methods. Since they might not give sufficient access to
the state (a method might change parts of the state that are not accessible by getter
methods and hence not allowed to be read during reconfiguration), it is advisable
to employ this technique only with components that are prepared for the task.
A direct state retainment as employed in [RS07a] or [Van07] is not attempted,
since it would breach the encapsulation of components and require additions to the
JComp framework that would violate its basic design principles.

It is beyond the scope of this thesis to discuss the utility of hot code updates in
component-based applications; we have no experience with applications that truly
require hot code patching. However, it is well-documented that there are appli-
cation domains like telecommunication (cf. [PS07], which provides an interesting
story on how hot code update was used to maliciously wiretap telecommunication
equipment) that require hot code update, and it is quite likely that such applica-
tions might benefit from a reconfiguration-based approach like the one presented
here.

8.2.2. Architecture Update. Sometimes, it is not only required to update the
code of a component, but also change the surrounding architecture to accommo-
date necessary changes to the required or provided interfaces. For example, the
updated code might rely on an additional role to which part of the former code’s
functionality has been exported. Such updates, however, are easily handled by our
reconfiguration mechanism.

It gets a little more tricky if a code update stretching over multiple components
mandates a consolidation of functionality. An example for such a scenario is shown
in Fig. 8.8a. The component setup depicted is a graph of components that keep
sending asynchronous messages (neither the kind of messages sent nor the fact that
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Figure 8.8: Hybrid reconfiguration – logging example

the graph is acyclic are important). The edges of the original graph have been
instrumented with logging components, which report each message to log store
components.

Now, a system update might amount to replacing all these single log store
component with a combined log store component. For example, the single log
components might all have been storing the log entries in memory, thus deplet-
ing it eventually. An improvement of this system might amount to just have one
component write to the log file, requiring that all log messages are stored in this
component. (For the sake of the example, the actual benefit of such a replacement
should be taken for granted here.)

Like for the previous example, monitoring and assessment are handled by the
user.

8.2.2.1. Planning. For this reconfiguration example, the user has to provide a shal-
low reconfiguration plan ∆ = (A,R, α, ρ, τ). Since we are going to employ hybrid
state transferal, the τ element of the plan does not have to correspond to real tem-
porary roles of the components in A – τ rather describes the roles that are to be
generated for the temporary connection (cf. Sect. 6.8.2). Since these roles are not
found in the components of A, we need a function Iτ : A×R → I that tells us for
which interfaces the temporary roles should be generated. Additionally, for each
a ∈ A, a script defining the creation of the Memento object needs to be provided.
In the actual JComp implementation, we use JavaScript as it integrates well with
recent versions of Java.

Hybrid state transfer requires two stages: In the first stage, the user-supplied
plan is executed, but instead of adding the components {a1, . . . , an} = A directly,
temporary components ta1 , . . . , tan

are generated and added in their place. It is the
purpose of a temporary component tai

to run the script that queries the old com-
ponent (as defined by τ(a)) and builds a Memento object suitable for consumption
by the actual component ai. The temporary components do not have permanent
roles, but may have a number of temporary connections that an be utilized by
the Memento builder script. Also, the temporary components need to provide the
interfaces the component they precede provides, but they interpret all methods by
fail and thus block themselves immediately as described in Sect. 7.5.2. Thus, for
the reconfiguration plan ∆ and a component a ∈ A, we can build the component
ta as the tuple

(id ta , IP (a), {r 7→ Iτ (a, r) | r ∈ dom(τ(a))}, {m 7→ fail | m ∈M }, ∗)

for an arbitrary ∗ ∈ S.
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In the second stage, each temporary component tai
is replaced by the actual

component ai, which needs to fetch the Memento object from tai
over a temporary

role rτ and consume it during the execution of its mcopy method; since the definition
of tai is known at the time the Memento building script is written, this is not very
hard to implement. Note that the first stage utilizes direct state transferal, whereas
the second stage uses the indirect approach.

The actual plans of these two stages are similar, and can be derived from the
user-supplied extended shallow reconfiguration plan ∆ = (A,R, α, ρ, τ) as ∆1 =
(A1, R1, α1, ρ1, τ1) and ∆2 = (A2, R2, α2, ρ2, τ2) by setting

• A1 = {ta | a ∈ A} and A2 = A,
• R1 = R and R2 = A1,
• α1 = {} and α2 = α,
• ρ1 = {(c, r) 7→ ta | ρ(c, r) = a} and ρ2 = ρ,
• τ1 = {ta 7→ {r 7→ c | τ(a)(r) = c} | a ∈ dom(τ)} and τ2 = {a 7→ {rτ 7→
ta} | a ∈ A}.

Both plans are identical, except that for the first plan, the components of
the set A are replaced by temporary components, and that the second plan uses
only temporary connections between the new components and their temporary
forerunners.

8.2.2.2. Execution. A two stage reconfiguration with hybrid state transfer is em-
ployed to reconfigure the system to the final configuration shown in Fig. 8.8b.
The interesting work is done in the first reconfiguration, where the execution of
the mcopy message executes the user-supplied JavaScript to build the Memento
object. This Memento is stored in the temporary components. The second recon-
figuration merely copies this Memento to its destination component, which sets its
state according to its contents.

Since the plan is not injective, message ordering needs to be done. In this
particular example, this is not really required – the order of the non-processed log
messages is not exactly important.

A problem similar to the message ordering requirement emerges during the
time-span between the first and the second reconfiguration step. During this time,
the temporary replacement components must not consume messages, since they
are mere placeholders and cannot give a meaningful semantics to the messages (in
theory, they might, but then the automated generation of these placeholders would
only be possible by adding much specification – which is irreconcilable to the sepa-
ration of concerns paradigm). In this example, we can use message postponing as
described in Sect. 7.5.1; as the order of the messages does not really matter to the
logger, they can become shuffled if need be. The requirement to restrain the com-
ponent from message processing is a typical artifact of multi-stage reconfiguration,
however, with many examples not admitting a loss of message order. This is why
component blocking, as described in Sect. 7.5.2 was introduced.

8.2.2.3. Experience and Discussion. The example, as displayed in Fig. 8.8, was im-
plemented in JComp. Technically, the challenges are not too vast. The temporary
component can be built from the plan by declaring required roles for each connec-
tion defined by τ1. In the mcopy implementation, each of the temporary connections
is made available to the JavaScript script. For the example of Fig. 8.8, the script
displayed in Fig. 8.9 was used. Here, the data objects obtained from the old com-
ponents (lists of log entries) are modified to match the requirements of the new
component (i.e., having all log entries in chronological ordering). The memento
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1 importPackage(Packages.jcompexamples.reconfiguration.hybrid.data)

2

3 m = new LogEntryMemento()

4 m.addEntries(access0.getLogMessages())

5 m.addEntries(access1.getLogMessages())

6 m.addEntries(access2.getLogMessages())

7

8 java.util.Collections.sort(m.getLogEntries(), LogEntryComp.getInstance())

9 memento.setContent(m)

Figure 8.9: Example JavaScript code for state retainment

variable points to a wrapper object, whose content can be set by the script as re-
quired. The choice of the LogEntryMemento instance as content of the Memento is
governed by knowledge about the requirements of the target component.

This example (which was made up as an example for non-injective reconfigu-
ration plans) suffers from similar problems as the previous one: While illustrating
capabilities of the component model, it cannot give a credible report on its utility.
Nevertheless, the ability to support such user-triggered system architecture updates
is a prerequisite for doing more automated adaptations.

Also, the hybrid state transferal appears like a good compromise between the
separation of concerns and the technical requirements. Separation of concerns is
largely preserved: The old component only needs to provide sufficient getter meth-
ods, and the new component needs to provide facilities to consume a Memento
instance. The content of the Memento is defined by the new component alone, and
the responsibility to create a suitable object is given to the reconfiguration designer.
This Memento requirements might even be specified in a way that allows the recon-
figuration designer to built the Memento without knowledge about the internals of
the new component. At the same time, all this is practically implementable in a
reasonable component model, without any extensions required.

Fig. 8.10 illustrates an interesting aspect of reconfiguration that is otherwise
neglected in this thesis: The runtime impact of reconfiguration execution. The plot
shows the difference between between the time of the monitoring of a message and
the time of the processing of the corresponding log entry in the log store component
on the y-axis. On the x-axis, the reception time at the log store component is shown.
At 2 seconds, reconfiguration commences; it takes roughly two seconds, in which
time no messages are received by the log store component. Afterwards, messages
transported during reconfiguration are processed; the throughput of the log store
component is quite good and pending messages get consumed at a higher rate as
new messages are received. Since no message ordering is done, the queues of the
temporary components are copied one after the other, so that messages added to
the first block just before reconfiguration have a higher latency as messages added
at the end of the reconfiguration to the last block, although they are processed
later; this explains the spikes seen from 4 to approximately 4.5 seconds. After that,
the messages that have been send to the composite log store component directly are
processed, until at 5.3 seconds, the queue is depleted and messages are consumed
with no additional latency.

Keeping a bound on this latency is discussed in works like Cinema [RBH94]
or Djinn [MNCK99], but they use different communication paradigms. In the
component applications we tried with the JComp framework, reconfiguration often
consumes a multiple of the time required for normal message passing, often because
components or framework-related classes need to be generated. In this example,
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Figure 8.10: Impact of reconfiguration on an asynchronous system’s message latency

the generation of the temporary components and the execution of the JavaScript
is far from being cheap, and we assume that the aim of keeping reconfiguration as
atomic as possible conflicts with latency reduction too much to consider both.

8.3. Handling External Changes

Responding to external events that signal a change of the application’s envi-
ronment provides an interesting application of reconfiguration and is found as an
example in many component frameworks [MDK94, Lim96, SKB98, BNS+05].
For example, a component might be used to wrap access to a physical device like
a sensor connected by USB; if the availability of this device deteriorates (because
it becomes unplugged or fails), reconfiguration is required to accommodate the re-
placement of the component with a suitable substituting configuration (e.g., if the
sensor is disconnected, the wrapping component might need to be removed from a
list of sensors).

In this section, we will enhance the NewsCondensed example first introduced
in Sect. 7.4.1. Again, we will read RSS feeds from the internet and process them.
But contrary to the original implementation, we will also provide provisions for
handling network failures and configuration changes. This would be required to
upgrade the batch-processing original application (which, when started by the cron
daemon, queries each RSS source once and processes the data, then terminates) to a
long-running server application that frequently queries the feeds and is not expected
to stop.

We will discuss two kinds of reconfiguration here: First, we will discuss a
reconfiguration of the Chain of Responsibility pattern that organizes the list of
feeds; we will do this in order to respond to on-line changes to the feed list, which
is provided by the user. While there is no genuine need for reconfiguration here
(the list will presumably not change too often), it is interesting to see how this
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Figure 8.11: Chain of Command pattern

reconfiguration interferes with the second kind of reconfiguration: the response to
network and data problems.

8.3.1. Chain of Responsibility Pattern. The “Chain of Responsibility pat-
tern” is a way to send a message to an ordered list of components without using
multi-ports. In this pattern, the target components are formed into a linked list.
A message is then sent to the first component, processed and sent to the next
component of the list. In a direct approach, this is utilized in the cache sequence
of the cmc model checker, as shown in Fig. 5.7 on page 94. There, components
are implemented as parts of a Chain of Responsibility, and contain a “next” role
pointing to the next element in the chain. Fig. 5.13 on page 108 shows the actual
components, where the StateDeciderTerminator is used to satisfy the required
role of the last cache in the chain. An example of such a Chain of Responsibility is
found in the web crawler described in Sect. 7.4.2.

In the NewsCondensed example, described in Sect. 7.4.1, a different form
of a Chain of Responsibility is used. Here, the chain is external to the target
components. As shown in Fig. 7.8 on page 160, the actual chain is formed by
NewsRetrieverChain components, which delegate the query to the actual RSS
reader. Thus, the actual RSS reader implementation does not have to be aware of
being part of a Chain of Responsibility. Instead, an off-the-shelf component can be
used, which is wired by an external chain (which is easy to implement). As before,
a terminator component is used to end the chain. Both variants are depicted in
Fig. 8.11. All the roles depicted have the same type.

The actual implementation of the chain is depending on the use of the Chain of
Responsibility. The chain might just relay an asynchronous call to the connected
components. It may also do synchronous calls and assemble the return values (this
is what is done in NewsCondensed). It may also do synchronous calls until some
return value is obtained (this is often done in event handler architectures).

8.3.1.1. Substitution of Multi-ports. The asymmetric nature of provided interfaces
and roles in JComp allows to connect an unlimited number of components to
one component, but only allows for a fixed number of components to which a
component can be connected. The Chain of Responsibility pattern is useful for
enabling 1 : n communication, with more flexibility than a framework-provided
multiport provision (where an arbitrary number of components can be connected
to one role). Here, we will only consider asynchronous communication and external
chains.

For a broadcast, a chain element sends the message to both the attached client
component as well as the next element in the chain. Thus, all clients attached to the
chain are notified. On an abstract level, this acts as a broadcast over a multiport.



8.3. HANDLING EXTERNAL CHANGES 197

s ch ce1 ce2 ce3 ct

c1 c2 c3

cl : R

p : I

n : R′

p : I′

n : R′

p : I′

n : R′

p : I′

cl : R

svr : I

cl : R

svr : I

cl : R

svr : I

n : R′

ID: 1 ID: 2 ID: 3

Figure 8.12: Substitution of a multiport by a Chain of Responsibility

Multi-ports can also be used to support a server-client-schema with a varying
number of clients. In standard JComp, a number of client components can be
attached to a server component and send requests. If the requests are handled
synchronously, a response can be sent to the client in the return value of the mes-
sage. If, however, the requests are to be answered by an asynchronous call-back
message, the recipient cannot be addressed. Obviously, it is easy to address the
proper recipient in a Chain of Responsibility if a unique ID is sent with the client’s
request. This is a little problematic, however, since the requirement to send such
an ID needs more consideration on behalf of the client component’s programmer
than is necessary (or justified by the separation of roles paradigm): The component
needs to be aware that its access to the server component will not be exclusive, but
shared with other components. This is not a real problem, but we can do better.

If the server component does not maintain sessions, it does not have to know the
identity of the client’s component for any other reason except to address a response
correctly. Multi-ports can support this by providing local component IDs (that
can be used to reference a component within a multiport instance) and by telling
the server from which component the currently processed method was received via
passing the ID along. Note that the JComp component model stores the origin of
a message during its execution in the state of a component: e(c̃) does exactly that.
We do not want to provide direct access to that information, however; components
should not know their environment in order to facilitate transparent reconfiguration.
Instead, we can use local IDs that can be retained during component replacement
(cf. Fig. 8.12). This can also be used by the Chain of Responsibility pattern: The
chain elements can provide an interface I containing a method req(p1, . . . , pn) to
the client components, and require an interface I ′ with a method req ′(p1, . . . , pn, id)
which is connected to the server for the head of the chain, and to the previous chain
element for the other chain elements (hence, the chain elements also need to provide
I ′). The chain element can now be given an ID as a component parameter (this
ID is chosen at assembly time, and can be kept consistent during reconfiguration
by the reconfiguration designer). Upon reception of a req method, it relays this
method up the chain using the method req ′ with the last parameter set to its ID.
This way, the interface provided to the client does not impose the treatment of a
(unique) ID, but the server can address its message.

We can even relax the server from having to treat IDs if we assume a well-
defined behavior: Each request is immediately answered by a response. Then, we
can build the chain just as above, but strip the ID from the request to the server. An
additional “chain head” component needs to be used, which translates the method
req ′ back to a method req for the server. This chain head component also maintains
a queue of IDs and can hence assign the proper addressee to a response from the
server.
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What is actually done here is the implementation of a connector with com-
ponents and their native communication means. Using the Chain of Responsi-
bility pattern allows for creation of an 1 : n connector capable of broadcast and
server-client communication. Other techniques can also be provided, e.g., gather-
cast [NS00] or broadcast of synchronous messages with user-defined processing of
the result values. For example, in Fig. 8.12, the chain element components cei
might each query their client with a synchronous call, putting the result in a list
which is eventually processed by ch to a form that can be consumed by the server
component s.

JComp does have multi-ports implemented in the framework; and the
LoadDistributor component of the web crawler example in Sect. 7.4.2 utilizes
it to address the PageLoader components. As with parallelization discussed in
Sect. 7.3, this adds additional bulk to the framework as well as to the theoretical
background (which needs to cope with 1 : n connections instead of just 1 : 1 con-
nections). We hence prefer to avoid discussing multi-ports as a first-class concept
of the component framework, and rather rely on the fact that multi-ports are not
genuinely necessary.

8.3.2. Adapting a Chain of Responsibility. The Chain of Responsibility pat-
tern, as described in Sect. 8.3.1, realizes 1 : n connections of components. Such
a connection, with the exact number of connected components being defined at
assembly time, is more likely to be subject to change than a 1 : 1 connection is. For
example, a web server might use components to represent each of the connected
clients, requiring frequent reconfiguration to handle connection and disconnection
of clients. Representing each client by a component on its own might seem wasteful,
but it offers an interesting prospect: Changes to the connection to the component
(e.g., mode of encryption or check-sum checking) can again be attained by recon-
figuration (a dedicated example is given in Sect. 8.4.1).

Here, we will use this kind of reconfiguration to respond to user-triggered, on-
line changes to the RSS feed list.

8.3.2.1. Monitoring and Assessment. The list of RSS feeds is an actual file within
the local file system, and this file can be monitored for changes. Again, we have to
be precise about who does this monitoring; in this case, we opted to have a genuine
component monitor the file and notify a Utility Interface to do the reconfiguration,
if need be. As detailed in Sect. 7.2.1, we use static access to transgress the
boundary of component and assembly code.

The monitoring component itself operates in a self-invocation loop
(cf. Sect. 7.5.1.1). Every second, it checks for changes to the RSS list file; if a change
is detected, the entire file is parsed and the resulting list given to the reconfigura-
tion manager, whose instance is obtained by a Singleton pattern implementation
(which is a practical implementation of the Utility Interface pattern).

We also use this approach to establish the initial configuration of RSS readers.
Contrary to the classic NewsCondensed application, no RSS reader components
are added initially, but they are reconfigured in right after application startup; this
helps to avoid redundant code.

8.3.2.2. Planning. The reconfiguration manager needs to be pretty flexible, as vari-
ous kinds of reconfiguration can be requested. This can be achieved by assuming as
little as possible about the component graph. In this example, we need to compare
the existing RSS readers to those just found in the configuration file, adding them
to and removing them from their chain. Since this reconfiguration is to be conjoined
with other reconfigurations, we will just fix an abstract, general architecture of the
component setup as depicted in Fig. 8.13. The cloud-shaped sub-setups marked
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Figure 8.13: Organization of RSS reader chain

with rssi stand for an arbitrary sub-configuration handling the RSS retrieval. Their
internals are not of our concern, but we need to identify the components contained
in order to remove them during reconfiguration. The sub-setups hence appear as
hierarchical components, and we require that other reconfigurations preserve this
structure of the application (this is similar to architectural styles [CGS+02], but
on a more concrete level).

In building the plan, we need to cope with the problem of the co-domain of
ρ, as discussed in Sect. 6.7.5. Since we use an external chain (i.e., dedicated chain
components that link to the actual RSS readers, cf. Sect. 8.3.1), we can just reor-
ganize the chain by building new chain components. This is not very expensive, as
the chain components do not maintain data. Message retainment is unimportant,
also; the chain is queried frequently, and if reconfiguration happens to interfere with
spreading the query along the chain, not much will be lost. On the other hand, if
we consider the chain as an abstract 1 : n connector, reconfiguration should not
interfere with a sending operation generally (the request to retrieve RSS news is a
broadcast send to all the RSS loader components), and we should never reconfigure
in a situation where there are messages on the queue. We can thus use a communi-
cation monitor that counts the messages sent to the chain head and those arriving
at the chain terminator, and allow reconfiguration only if those two numbers are the
same; in which case the chain is in a “quiet2” state where reconfiguration will not
loose or dislocate messages. At the same time, the monitor can delay any message
sending to the queue for the duration of reconfiguration in order to avoid sending a
message between the check of quietness and the detaching of the components to be
removed. As stated before, this is not genuinely required for this particular appli-
cation, but we have found that messages do become lost in such a reconfiguration
approach in practice, and wanted to provide a generic approach to avoid this.

Let us assume that we have a set {rss1, . . . , rssn} taken from a set RSS of
RSS feed names, and a component setup (C,M, e). Since an RSS feed may be
handled by multiple components, we need two functions TC : RSS → ℘(C) and
TM : RSS → (C → (R → C))). These functions calculate, for a given RSS
feed name, a set of components and their connections. We require that these
connections are well-connected and that only components of TC(R) are used in
TM (R) for R ∈ RSS . We do not require TM (R)(c) to be completely connected;
but we require that only a single role is not connected, and that this role is typed

2This is not to be confused with quiescence, which considers transactions – here, we need the
stronger property of not conducting any communication until reconfiguration finishes.
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with the interface provided by the Consumer component of Fig. 8.13. For accessing
this role, we require a further function T r : RSS → (C ×R). Likewise, we require a
function T i : RSS → C that denotes the entry point for an RSS handling sub-setup.
This component needs to provide the interface that the Chain of Responsibility
implementation expects.

For T r(R) = (c, r), we require c ∈ TC(R) and IR(c)(r) ∈ IP (Consumer).
Note that the functions TC and TM provide something reminiscent of a composite
component assembler.

We further assume a partial, not necessarily injective function CRSS : C ⇀ RSS
that can be used to identify the set of components used for loading an RSS feed.
We need to use such a function since we do not want to fix the structure of the
components connected by the chain, but at the same time we want to remove
those concerned with an RSS feed no longer requested. Obviously, we require that
CRSS (c) = R iff c ∈ TC(R).

Furthermore, we expect components ch, ce1, . . . , cem, ct that form the Chain
of Responsibility.

To accommodate the changes of the RSS feed list, we form a plan that removes
those components no longer concerned with an RSS feed, adds those for a new
RSS feed, and rebuilds the Chain of Responsibility. To this end, we define the set
RSS+ = {rss+

1 , . . . , rss+
n′} = {R ∈ {rss1, . . . , rssn} | ∀c ∈ C .CRSS (c) 6= R} of

RSS feeds that need to added, the set RSS− = {r ∈ RSS | ∃c ∈ C .CRSS (c) =
r}\{rss1, . . . , rssn}} of RSS feeds that are no longer required, and the set RSS= =
{rss1, . . . , rssn}\RSS− of RSS feeds that are already present and are retained. We
then build a set

RSSC = {rss ′1, . . . , rss ′m} = RSS= ∪ RSS+.

We can then proceed (assuming that RSSC 6= ∅) to build a shallow reconfigu-
ration plan (A,R, α, ρ, ς) for a component setup (C,M, e) by setting

• A =
(⋃

R∈RSS+TC(R)
)
∪ {cerssi

| rssi ∈ RSSC} ∪ {ct},
• R = {c ∈ C | CRSS (c) ∈ RSS−} ∪ {ce1, . . . , cem, ct},
• α =

(⋃
R∈RSS+TM (R) ∪ {c 7→ {r 7→ Consumer} | (c, r) = T r(R)}

)
∪

{
cei 7→

{
next 7→

{
cei+1, if i < m,

ct , if i = m

} 1 ≤ i ≤ m

}
∪{cei 7→ {client 7→ T i(rssi)} | 1 ≤ i ≤ m}

• ρ = {(ch,next) 7→ cerss1},
• ς = {}.

The plan hence removes the chain and rebuilds it again. Since we want to reach a
quiet state anyway with no message in the chain prior to reconfiguration, we could
also use a non-shallow plan that retains those chain elements whose RSS feed is not
removed; message retainment is not required.

8.3.2.3. Execution. Reconfiguration may only commence if the communication
monitor reports the queue being in a quiet state: No message is currently stored
in the in-queue of a chain element. If we regard the Chain of Command as a real-
ization of an abstract 1 : n connection, this requirement describes the necessity of
not interrupting ongoing communication of a component (in this case, the abstract
1 : n connector) by reconfiguration. Before starting the reconfiguration, the com-
munication monitor is also told to delay any message being sent to the chain until
reconfiguration is finished. Again, this can be considered as a realization of the re-
quirement that a component must not process a message during a reconfiguration
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in which it participates. In doing so, atomicity is preserved despite a departure
from the usual message retainment approaches.

8.3.2.4. Experience and Discussion. As can be seen from the reconfiguration plan
definition, planning reconfiguration for a component setup only partially known
can become quite tedious; yet, it is not difficult to do. Obviously, some manage-
ment of reconfigurations is required to prevent them from overlapping – but this is
easily established by maintaining a dedicated reconfiguration thread that actually
implements the Active Object pattern itself (cf. Sect. 7.1).

We experienced some problems with lost communication due to the altered co-
domain of the ρ plan element, when we used the chain in a “big self-invocation”
style; once the chain was traversed, the main component was invoked again to
trigger the next round. Although there was ample delay added to the system (i.e.,
some time elapsed before another traversal was started), reconfiguration managed to
disrupt the chain nevertheless, leading to a global deadlock. Adding communication
monitors as described solved the problem; but even so we switched to the more
robust design described above.

8.3.3. The Strategy Pattern. Fig. 2.3 on page 21 shows the class diagram of
the Strategy pattern [GHJV95]. We have already argued that a reconfiguration
touching the core concern of an application is closely related to the Strategy pattern;
in this section, we will give an example.

Note that the Strategy pattern is closely related to the State pattern. The
difference is subtle: The Strategy pattern externalizes part of the functionality of
an object to the Strategy implementation, which can be chosen from the outside.
The State pattern externalizes state-dependent functionality, but takes care of state
transitions itself. This means that States implementations are aware of other State
implementations, and can initiate a state transferal. In the context of reconfigu-
ration, this is reflected nicely in the choice of the initiator of the reconfiguration:
For the Strategy pattern, reconfiguration is triggered by an external observer, while
the State pattern calls for a triggering of the reconfiguration by the components
themselves.

For example, a component might wrap access to a physical device that produces
data. If the device becomes unavailable, reconfiguration can be used to substitute
the component by a temporary replacement that takes care of consistent production
of temporary data. If this process is controlled from the outside, e.g., by an excep-
tion listener that reacts to I/O errors, then this amounts to a Strategy pattern. If
the components themselves take care about the possible gain or loss of availability,
then this results in a State pattern.

Obviously, the separation of concerns dictates that components should not
plan and execute reconfiguration on their own, so the State pattern is not very
suitable for reconfiguration. However, a hybrid approach can be beneficial: A
component will usually be capable of recognizing if it is no longer suitable, and
notify supervising code of that fact, e.g., by throwing an exception (cf. the discussion
of error handling in Sect. 7.5.3). Thereby it can signal a request for reconfiguration,
without detailing how that reconfiguration should look like. The reconfiguration
plan can then be built by the supervising code. Technically, this is neither the State
pattern (as components remain unaware of alternatives) nor the Strategy pattern
(as components are aware of being capable of being reconfigured, and trigger the
process).

In this example (illustrated in Fig. 8.14), we utilize such a hybrid approach
to handle problems when fetching the RSS feeds. These problems might result
from loss of network connection, or from malformed responses supplied by the RSS
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Figure 8.14: Reconfiguration of an RSS reader

provider. We assume that such problems are not permanent; instead of removing
the RSS feed from the list, we add a monitoring component that frequently fetches
the RSS feed and checks if the problem persists. Once normal operation resumes,
the original configuration is reconstructed. The monitoring components serve two
purposes: First, they interpret errors as expected, and avoid the remainder of the
application to be impeded, and second, a further check is made to see if all RSS
components are experiencing problems, which hints at a general network failure
(on the retriever’s side, opposed to a network problem of the RSS server). In this
case, a global watchdog component is added that avoids frequent checks by the
individual monitoring components.

8.3.3.1. Monitoring and Assessment. This kind of reconfiguration is triggered by
the RSS reader components when they encounter an error. We distinguish two
kinds of errors: Server errors, where the request for an RSS feed is answered, but
with a malformed or error message, and network errors, where the request fails due
to network problems. The former needs to be recognized by the component, which
performs a successful request and receives a invalid response, e.g., a 404 HTTP
return code. It then needs to raise an error in order to notify the listeners about
this error. Also, it can encounter problems while parsing the response (which,
according to the RSS standard [Boa06], is an XML document); again, an error has
to be raised.

Any such error warrants immediate reconfiguration; for network errors, the
connection is broken and needs to be reestablished (which we wish to do by re-
configuration and not by component-internal code). Server errors do not require
immediate attention, but subsequent calls will most likely result in similar problems.

Since the errors are triggered by external entities (network or remote server),
we cannot fix them by reconfiguration (although it might be possible to use an alter-
native RSS feed server). Instead, we reconfigure the system to cope with the error
until it disappears. Technically, we replace the RSS reader by a placeholder that
maintains a consistent treatment of the RSS feed request (i.e., it notifies the con-
sumer that this RSS feed is not available at the moment). Also, we add a watchdog
component that tries to reestablish the connection or get a correct server response
(using a higher frequency than the original RSS polling). Once the recovery of
correct operation has been detected by the watchdog component, it notifies the
supervising code and another reconfiguration is used to switch back to the original
RSS reading component.

8.3.3.2. Planning. Planning again needs to cope with a component setup only par-
tially known in advance. The plan calls for the insertion of a watchdog component
whose sole purpose is to trigger another reconfiguration once the error cause has
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Figure 8.15: Adding a placeholder for handling network failure

disappeared. In order to keep the content generation running, a placeholder com-
ponent is added to the chain that can output a short error notice if RSS content is
requested for.

The removal of a placeholder and watchdog component is straightforward as
well, as they are removed and replaced by a RSS reading component. These two
reconfigurations are depicted in Fig. 8.14. For defining the plan for an RSS feed
R within a component setup (C,M, e), we need to pick out the chain element cei

with CRSS (M(cei)(client)) = R. We also need to find the consumer component
Consumer . We then update the RSS handler by complete replacement, obtaining
a shallow plan (A,R, α, ρ, ς) with

• A and α according to the reconfiguration, i.e., for switching to a
placeholder, we have A = {Placeholderr,Watchdogr} and
α = {Placeholderr 7→ {cons 7→ Consumer},
Watchdogr 7→ {self 7→Watchdogr}}, and for switching back to RSS
handling, we use A = TC(R) and
α = TM (R) ∪ {c 7→ {r 7→ Consumer} | (c, r) = T r(R)}.

• R = {c ∈ C | CRSS (c) = R} (we need to make sure that this function
produces correct results also for newly added components, which is done
by annotating all components of A with R such that
∀a ∈ A .CRSS (a) = R),

• ρ is also defined by the reconfiguration at hand:

ρ(cei), client) =

{
Placeholderr, if switching to a placeholder
T i(R), if switching back to normal operations,

• ς = {}.
Note that, in order for ρ to preserve the complete connectedness of components,

the only components that are allowed to actually have a connection to a component
c with c ∈ ran(T i) are the chain element components. This is an example for an
architectural constraint that all reconfigurations need to obey. If this constraint
was to be lifted (e.g., for utilizing a second chain that connects the watchdogs to
give them a globally synchronized “heartbeat”), the generation of all plans would
have to be adapted.

We also take a look at a special case: If all the RSS reader become replaced by
placeholder components, it is very much likely that not all servers have crashed, but
that our own connection has. In this case, it is more sensible to no longer query a
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chain of placeholder components, each reporting about an unreachable server, but
have a single component state that the network seems to be down currently. We
utilize a filter component plugged in before the chain (cf. Fig. 8.15) that handles
requests to the chain; it just outputs a concise error message and does not relay
queries to the chain. Once a watchdog reports reachability of a server again, this
component is removed and normal chain operation is about to start again. The
reconfiguration is a straightforward filter insertion, where we use the removal and
re-insertion of the CH component to obtain an injective shallow reconfiguration
plan. For a component setup (C,M, e), this plan is defined as follows:

• A = {CH ′,NetworkDownPlaceholder},
• R = {CH },
• α = {CH ′ 7→ {next 7→ NetworkDownPlaceholder},

NetworkDownPlaceholder 7→ {next 7→ ce1, cons 7→ Consumer}},
• ρ = {(c, r) 7→ CH ′ |M(c)(r) = CH },
• ς = {}.

Similar, for the removal of the placeholder component, if network connectivity is
regained:

• A = {CH },
• R = {CH ′,NetworkDownPlaceholder},
• α = {CH 7→ {next 7→ ce1}},
• ρ = {(c, r) 7→ CH |M(c)(r) = CH ′},
• ς = {}.

8.3.3.3. Execution. Again, all state transferal is restricted to the URL the RSS han-
dler is instantiated for, which is copied by the direct approach – i.e., by the setting
of component parameters during component creation. All the plans are injective
shallow reconfiguration plan, hence no further locking is required. As shown in
Fig. 8.14, the watchdog components implement the self-invocation communication
pattern in order to use an increased frequency of checking their target server, while
remaining reconfigurable at the same time. Upon detecting a connection recovery,
they will issue a “correct server response regained” message to the reconfiguration
controller, which triggers their removal.

8.3.3.4. Experience and Discussion. Integrating with the example discussed be-
fore (Sect. 8.3.2), we integrated two reconfiguration domains in this example: The
modification of the chain of RSS readers, and the modification of the RSS readers
themselves. This can be perceived as a reconfiguration of hierarchical components
– with the slight twist of the “network connectivity down” component placed at
the head of the RSS reader chain, as shown in Fig. 8.15. We found it quite dif-
ficult to judge whether such cross-cutting reconfiguration concerns can always be
understood as concerning different levels in a tree of hierarchical components; such
a consideration is beyond the scope of this thesis. We found it, however, pretty
straightforward to “relax” the planning a little and build the reconfiguration plan
for a given component setup, picking out the appropriate components at runtime.
In the actual implementation, this amounts to a number of applications of the Vis-
itor pattern to the component graph. For this example, this is not difficult, even if
it becomes a little bulky. When devising a reconfiguration, however, the planning
of one reconfiguration has to consider explicitly which architectural constraints the
other reconfigurations will exploit to define their plans; reconfiguration must not
violate these in order to keep the other reconfigurations from coming up with mal-
formed plans. This resembles architectural styles [GS93] very much, though more
constraints are most likely required (e.g., the annotation of components with the
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RSS URL they are working on, which is required to identify those that need to be
discarded).

Building the plans requires a lot of input, however. The tuple notation applied
in this example stresses the limits of what is still understandable, and the actual
implementation is just about as complex. In this example, the two reconfigurations
are actually independent in one important regard: Both do not change the layout
of the RSS reader sub-setup. It is, however, easy to conceive that there might be
examples where this does not hold: A reconfiguration that reestablishes the RSS
reader needs to build it in a way that was formulated at runtime, rather than at
design time, as it is now reflected in functions like TC and CRSS . There is ample
opportunity to provide help for these situations, e.g., by domain-specific languages.
This is a challenging field of research, and will undoubtedly be an important factor
for the success of reconfiguration as an implementation of adaptivity.

8.3.3.4.1. Multi-Layered Architectures. Most of the research-oriented component
frameworks provide hierarchical components [Hac04, BHP06, BCL+06]. The
idea is to group components together, and wrap them with some membrane that
gives the aggregation of components a consistent external appearance, i.e., it defines
the communication endpoints and how they are connected to the internal compo-
nents. Usually, the membrane also contains control components that can manage
the execution of the wrapped components, e.g., conduct their reconfiguration. This
is appealing as it clearly defines where the code conducting the reconfiguration is lo-
cated, and which parts of the component setup the reconfiguration can modify. Just
as the concept of components itself, the idea of hierarchical software components
stems from a well-established idea in the hardware industry. (Consider Fig. 2.1,
which illustrates the components of the Space Shuttle stack (comprised of the tank,
two booster rockets, and the orbiter), with the orbiter component refined into its
sub-components below.) In the RSS reader example, hierarchical components define
the scope of reconfiguration.

Neither cmc nor JComp provide a hierarchical approach as a part of their
component model. Even worse, in JComp we lack an explicit consideration of as-
sembly code that controls instantiation and modification of the component setup.
In practice, the main thread of the application often takes this role, but this is
not enforced, and often problems with reconfiguration can be traced back to paral-
lelization issues with the control code (i.e., the monitoring capabilities described in
Sect. 7.2.5) clearly state which thread will invoke the monitor, but no further sup-
port for conducting a subsequent reconfiguration in a proper own thread is given).
This problem is outside the scope of this thesis, but it is a high-priority item on
the future work list.

Hierarchical structures, however, are found frequently in JComp. There is no
syntactic support provided, but on an abstract level, they can be clearly identified.
Most notably, the patterns described in the previous sections are ways to implement
abstract, atomic concepts with a series of components. We have briefly discussed
this topic for the Chain of Responsibility pattern, which can be understood as a
generic provision for the abstract idea of multi-ports. Multi-ports, again, can be
understood as an implementation of the abstract idea of a client-server architecture.
Fig. 8.16 illustrates this idea of abstraction levels. Note that there is a subtle
difference to hierarchical components here, as the Chain of Responsibility is not a
hierarchical component of fixed structure, but rather a way to construct a multiport
connector by means of a component sub-setup. As such, the multiport connector
again becomes a way to construct a client-server architecture.

Such component sub-setup construction approaches are prevalent in this thesis.
For example, the way to distribute component applications by providing special
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Figure 8.16: Hierarchical component abstractions

stub-components, described in Sect. 7.3, is actually a way to construct a (local
part of a) distributed component setup. If JComp was to be used to develop dis-
tributed applications, a wrapper for the assembly would be provided: The user
would still only use a small number of primitives as those described in Tab. 7.1 on
page 149, which would be translated into a series of commands to instantiate the
complete, distributed application, thus hiding the actual assembly design includ-
ing the stub components and network managers from the user. Other examples
are given by general-purpose filters employed in cmc (cf. Sect. 5.2.2) or by the
RSS reader components in NewsCondensed. A further example will be given
in Sect. 8.4.2, where filters are added to connections to monitor the communica-
tion behavior in order to take action (by starting a reconfiguration) if the queues
are overflowing. For this example, the assembly generation code was wrapped
in a class that provides an instrumentAndConnect(ComponentDescriptor src,
ComponentDescriptor tgt, String role) method, which builds a filter and con-
nects the components with the filter inserted. Again, the implementation details of
the filter (and further monitoring components) are hidden from the user.

8.4. Dynamic Cross-Cutting Concerns

We discussed cross-cutting concerns in Sect. 8.1.2.1, and described the filter
pattern as a way to handle such concerns that are orthogonal to the core concern
of an application.

In this section, we will describe situations where cross-cutting concerns change
during runtime. This is inspired by Cactus [CHS01] and NeCoMan [JTSJ07].
The latter circumscribes its purpose to be the provision of “distributed AOP”,
where dynamic cross-cutting concerns of the network connections of distributed
applications are discussed (cf. [JDMV04, SBG06]). Distribution is a cross-cutting
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concern, and we have discussed in Sect. 7.3 that it is favorable to handle it on the
user-level, i.e., by providing appropriate filters.

NeCoMan discusses how various filters can be added to (and removed from)
the network connections. Such filters might provide encryption, fault-tolerance or
compression. These are examples of cross-cutting concerns in a distributed sys-
tem (i.e., the system designer does not have to care about how the inter-machine
connections are realized). We have argued that component-based software engi-
neering facilitates the detection and treatment of cross-cutting concerns. Other
cross-cutting concerns we have found are logging, performance optimizations, and
also the fact that the system is distributed at all.

Dynamic aspect-orientation [NA05, TT06, TJSJ08] addresses the situation
where such cross-cutting concerns change. For example, the requirement to do
logging might not always be given, or the required granularity might change: If a
system exhibits exceptional or problematic behavior, a finer granularity is required
than during normal operation. Responding to such changed cross-cutting concerns
can be handled by reconfiguration of filter components, either adding or removing
them, or changing their settings (which, formally, can be described by a filter
substitution).

Changing cross-cutting concerns provide good examples for reconfiguration.
This is because it is more likely to see a cross-cutting concern change during the
execution of a component application than a change of the core concern. This,
again, is due to the problem of anticipating changes to all concerns of an applica-
tion – the core concern can (and will) be taken care of, but concerns less obvious
during design time can easily be forgotten, or not deemed worth the trouble to make
them adaptive. As an example, it might be quite likely that an RSS reading compo-
nent has provisions for handling a malformed server reply, or for handling network
problems. While it might not be desirable to have adaptivity on that level since
it restricts the system designer in the choice of how to recover from errors, having
some fault-tolerance built into the components is not unlikely (after all, exception
handling provisions of languages like Java are built to enforce an error handling
as local to the source of problems as possible). It is, however, quite improbable to
have adaptivity provisions for logging built into a component. Because logging is
not the core concern of the component, the component implementer will not spend
much effort on this concern. Actually, implementing an adaptive logging behavior
into a component would violate the separation of concerns paradigm, since it fixes
the method of adaptivity too early in the application development process.

In this section, we will provide examples for handling dynamic cross-cutting
concerns by reconfiguration. First, we will discuss how reconfiguration can be
used to dynamically modify the distribution of component-based applications. In
Sect. 8.4.2, we will dynamically add filter components that take the sting from one
of the lurking problems of asynchronous systems, i.e., overflowing message queues.
In Sect. 8.4.3, we will attempt to generalize such an approach to generic fault-
tolerance.

8.4.1. Reconfiguring the Distribution Communication. This example is in-
spired by the NeCoMan framework [JDMV04]; and it is concerned with replacing
the proxy components that establish a connection over the network, as described in
Sect. 7.3.4. For example, we might opt to compress or encrypt the data passed over
the network (other examples, like the one provided by Cactus [CHS01], are too
low-level for implementation in JComp, which only utilizes Java streams but does
not look at any level of the TCP/IP stack beyond the application layer). Here, we
will not discuss the first three stages of the MAPE loop, but consider the adaptation
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request to be given by the user (or be produced by other means that are beyond
this example).

8.4.1.1. Execution. The execution phase of this example, however, is quite inter-
esting. Obviously, a simple replacement of the stub components on both sides will
not suffice to guarantee correctness (in terms of an uninterrupted execution of the
overall, abstract application). Instead, a coordinated sequence of reconfigurations
is required to ensure that the first message sent by the new outgoing stub is already
received by an incoming stub capable of processing it. This is similar to the ap-
proach exhibited by Djinn [MNCK99] and RDF [ZL07] (cf. Sect. 3.4.1), but does
not require an extension of the framework that annotates messages with the con-
figuration (in order to detect the first message that requires the new configuration
of the receiver to become processed).

This can be achieved by a three-stage reconfiguration, which, in its abstract
idea, is quite similar to the approach we utilize for achieving perceived atomicity.
The overall reconfiguration, shown in Fig. 8.17 (see Fig. 7.6 on page 157 for a
description of the components involved), requires three parameters: A component
c and one of its roles r, and a description of how the new stub components should
be built (used to build NO and NI in the figure). The connection of the given
component and role will then be reconfigured to work with the new proxies.

In the first stage, the sending of messages over the network needs to be stopped.
This is achieved by introducing a buffer component that just stores any incoming
request for the duration of the replacement. This buffer component also receives
any pending message of the previous outgoing stub component (using a shallow
reconfiguration plan, this happens automatically due to δρ). Also, necessary con-
nection information data is retained during this reconfiguration. Let us assume
that the local component setup of the node where component c is located is given
by a component setup (C1,M1, e1) with c ∈ C1. We then obtain a shallow re-
configuration plan (A1, R1, α1, ρ1, ς1) with A1 = {T}, R1 = {M(c)(r)}, α1 = {},
ρ1 = {(c, r) 7→ T}. The buffer component T cannot give any meaningful interpre-
tation to the messages it has received. It is therefore built to just block on them,
as described in Sect. 7.5.2. ς1 needs to copy connection-relevant data, which needs
to be stored for re-utilization of the final Outgoing Proxy NO. In the actual imple-
mentation, all these data (like an ID used to identify the Incoming Proxy on the
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other node) are kept in component parameters, and are thus directly inserted into
T at its creation time. Effectively, this presents itself as the direct state retainment
approach again.

The second stage now replaces the incoming stub component with the new ver-
sion supporting the desired reception capabilities. Since the incoming connection
is used in a 1:1 fashion (i.e., if multiple components connect to a component over
the network, each connection is realized by its own incoming stub component),
the sole sending component is stopped and no messages will be received from the
network in the meantime. The Incoming Proxy thus has reached a genuine quies-
cent state. However, there might be unprocessed messages pending in the internal
queue from the Network Connection Manager. As described in Sect. 7.3.4, these
queues are part of the data space of the components and not maintained by the
framework. Hence, a state transferal should be done. Interestingly, for this stage, a
shallow reconfiguration plan will not do: The self-invocation of the Incoming Proxy
(cf. Fig. 7.6 on page 157) will be broken unless the corresponding self-invocation
message is retained by δ. Assuming the local component setup (C2,M2, e2), we use
a reconfiguration plan (A2, R2, α2, ρ2, δ2, ς2) with A2 = {NI },R2 = {OI } (in prac-
tice this component is looked up from the local assembly by a component parameter
that describes this proxy component to be part of the connection implementation
of component c and role r), α2 = {NI 7→ {target 7→M2(OI )(target), loop 7→ NI }},
ρ2 = {}, δ2 = {(OI , (OI , loop)) 7→ NI }, and ς2 implementing the retainment of the
network message queue as detailed above. Additionally, the Network Connection
Manager needs to be notified on the replacement of the stub component.

The third stage now reconfigures the sending stub component by a compo-
nent supporting the new sending paradigm. Here, a shallow reconfiguration plan
is sufficient; during the reconfiguration the messages pending in the queue of the
temporary component T will be transported to the new proxy NO and subse-
quently be delivered with the new communication method. The reconfiguration
plan (A3, R3, α3, ρ3, ς3) is now easy to build: A3 = {NO}, R3 = {T}, α3 = {},
ρ3 = {(c, r) 7→ NO}, and ς3 again copying the communication parameters by direct
state transferal as it was done in the first reconfiguration.

8.4.1.2. Experience and Discussion. The implementation effort of this example is
divided into three parts: The implementation of the server protocol that controls
the three-stage reconfiguration progression, the generation of the new proxy com-
ponents and the generation of the reconfiguration plans. The protocol is just a
straightforward extension of the protocol already used for establishing the local
component setups. Generating the new proxy components is done by using a dif-
ferent template for the Velocity engine that generates the code for the proxies.
Surprisingly, the hardest part is to build the reconfiguration plans. This is because
no local information about the proxies is stored anywhere else than within the com-
ponent graph maintained by the local assembly. This helps to avoid problems with
redundant data, but requires a search for the correct proxy components in the com-
ponent graph; in JComp, this is realized with a Visitor pattern implementation,
which we found to be harder to write than originally anticipated (also cf. Sect. 8.3.2
and the necessity of the CRSS function) – better support for finding components is
definitively required.

Overall, the implementation effort is not too big, requiring approximately 200
lines of Java plus the protocol message classes; as the local reconfiguration pro-
vision take care about local quiescence, no waiting for a suitable point in time is
required, nor is there any risk of deadlocks with pending synchronous calls – since
reconfiguration will only commence if OO is not blocked, reconfiguration cannot
interfere with a pending synchronous request of any of the components involved.
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Figure 8.18: Architectural reconfiguration scenarios

Admittedly, the one problematic point is the Outgoing Proxy, which only receives
messages from a single component, so even without the provisions for reconfigu-
ration, a safe substitution can be implemented easily. Still, the tidiness of the
components facilitates such an implementation a lot; most bugs experienced when
implementing this example emerged in the assembly code that resides outside the
component framework.

There is another scenario of using reconfiguration to modify the distribution
of a component setup: Migrating a component from one machine to another. The
abstract approach is very much alike: Placeholder components are generated and
reconfigured in to cut the migration target off from the component graph. Depend-
ing on the necessity of state retainment, a temporary connection is established to
the target machine, which uses a Memento component to query the target compo-
nent’s state (much alike to the example in Sect. 8.2.2). Then, the component is
removed from its original machine, and it is instantiated anew on the target ma-
chine, possibly drawing the retained state from the Memento component. In order
to preserve messages, a placeholder is reconfigured in at the source machine that
takes the messages from the old component and relays them to the new compo-
nent on the target machine. Finally, connections are reestablished. This procedure
amounts to a lengthy sequence of reconfiguration steps, but every step relies on the
existing capabilities of the component framework and the distribution framework
built on top of it.

8.4.2. Reconfiguration for Resource Preservation. In this section, we dis-
cuss how reconfiguration can be used to deal with a problem that is encountered
in producer-consumer examples where the producer is faster than the consumer.
Observation of a running system is used to detect suboptimal behavior and mend
it. Contrary to other examples, the suboptimal behavior is not the result of a badly
written component, but arises from an unsuitable combination of components, made
by an unwary system designer. Reconfiguration thus becomes an actual fix for a
malformed architecture.

We assume that all communication is done asynchronously in this example.
Synchronous calls can be incorporated as well, but they obfuscate the purpose of
these reconfiguration scenario: Automatically handling problems introduced by the
decoupling of components achieved by the Active Object pattern. Such problems
are not altogether uncommon; actually, this reconfiguration application was in-
spired by problems with the web crawler example discussed in Sect. 7.4.2. Since a
web page usually contains more than one outgoing links, the search front initially
increases, since only few pages are revisited. Since the web crawler uses the message
queues for storing pending URLs, these queues consume all the memory eventually.
Here, we will consider an abstraction of this situation.
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Consider the component setup depicted in Fig. 8.18a. We assume that the roles
other are typed with an interface I = {msg}, and that the method evaluators of
the components c1 and c2 are given as

ζ(c1)(msg) = call(other ,msg , 〈〉).call(other ,msg , 〈〉).success,
ζ(c2)(msg) = call(other ,msg , 〈〉).success.

The component setup is given by the tuple

({c1, c2}, {c1 7→ {other 7→ c2}, c2 7→ {other 7→ c1}}, (c1,msg)).

Basically, the components c1 (the producing component) and c2 (the consuming
component) call each other with asynchronous messages. However, for every mes-
sage msg consumed by c1, two messages are sent to c2. Theoretically, this is no
problem, as every message sent to c2 will eventually be consumed. In practice,
however, the queue of c2 will eventually consume all memory. As mentioned be-
fore, such situations can be encountered in practice if a the processing of a message
initiates more than one additional task to be handled.

There is a slight variant of the problem, given by the component setup depicted
in Fig. 8.18b, using the role interface and the method evaluators

ζ(c′1)(init) = µX ⇒ call(other ,msg , 〈〉).X,
ζ(c′2)(msg) = P ′.success.

Here, we specify the component setup to be

({c′1, c′2}, {c′1 7→ {other 7→ c′2}, c′2 7→ ∅}, (c′1, init)).

P ′ stands for a time consuming task. Since c′1 does nothing besides sending c′2
messages over and over, and since we may assume that P ′ is costly enough to
prohibit c′2 from processing them at the same rate as they arrive, eventually the
message queue of c′2 will be overflowing.

The difference between those two setups is easy to see: S has a cyclic component
graph, whereas S ′ has not. Given the fact that all messages are sent asynchronously,
S ′ would not exhibit a problem if it were not for the costly task P ′ (and the much
faster processing of c′1).

The problem of S ′ can be mended by an extension to the framework that allows
us to impose a delay on the calling component when it sends an asynchronous
message. The penalty would be chosen such that the queue does not exceed a given
size. Since such a penalty – at least in a single-machine setting – corresponds to
giving more processing time to c′2, we actually raise the priority of c′2’s thread. If
the loop is substituted by a self-invocation, this can even be done on component
level by a filter that slows the self-invocation, or by a communication monitor that
stalls message delivery for some time.

Another solution is given by component layout reconfiguration, which may
replace c′2 by some component where P ′ is solved more efficiently, or replace c′1 by
a slower version. It is, however, pretty difficult to judge whether there is a scenario
where such components actually exist.

Tuning the efficiency, however, will not work for S, since no matter how the
priorities are distributed, every message sent by c2 to c1 will trigger the sending
of two messages from c1 to c2. The number of messages in the system is therefore
monotonically increasing (actually, it can drop by one for the time during a message
being read and no new message being sent, but never more than this). In our web
crawler example, if there are more than one previously unvisited links on each
web-page on average, the number of messages will grow.

There are basically two ways of mending this: Domain-specific solutions, and
an independent solution. The former one consists of reconfiguration plans that are
specific to the problem at hand, while the latter works for every component model.
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For the web-crawler, a domain-specific solution could be given by a heuristic that
tries to guess how many links are to be found on a given web-page, and prefer
those that have few links. We may assume that a web crawler usually encounters
many dead ends, while there are relatively few “hub pages” which contain many
links [BMPW98]; by processing the dead end pages right away the number of
known URLs that need to be processed can be decreased, and the problem of
overflowing queues is, at least, postponed.

A generic solution is to use a filter component that is buffering the flow of
messages and dumps them to disk if the buffer runs too full (motivated by the
cmc’s treatment of the open set, discussed in Sect. 5.3). The problem here is to
recognize at what rate the messages should be sent to the consuming component by
the buffer (we call this the replay rate). If we read messages from the disk too fast,
we will run into problems with the memory consumed by the queues again; but if
we read messages too slowly, the target component c2 will eventually run out of
messages to process. Thus, not only a reconfiguration step is required to introduce
the filter component into a problematic connection, but also further refining steps
to calibrate the flow of messages such that some bound on the number of messages
stored is met while at the same time ensuring that the queue of the consuming
component does not become depleted due to a sending too few messages.

8.4.2.1. Monitoring. We basically only need to monitor the size of the incoming
message queue of each component, which corresponds to the difference in received
and processed messages. The communication monitor framework of JComp, as
described in Sect. 7.2.5.1, is sufficient here: We can calculate the length of the
message queue by taking the difference between the received and the processed
messages.

8.4.2.2. Assessment. Given the current queue sizes of the monitored components,
a decision about the necessity of reconfiguration needs to be made. The ultimate
goal of the assessment is to intervene with the system should it detect a growing of
message queues beyond allowable dimensions. There are two cases to be considered:
Either no reconfiguration has been made so far, or a filter is already present but
not configured well. In the latter case, reconfiguration does not have to change the
architecture itself, but cope with a filter that has its replay rate set to a value that
results in either a complete draining or still too much growth of the message queue
of the target component; either the initial setting’s choice was not good enough, or
the value has deteriorated due to a changed communication or processing behavior.
In both cases, assessment needs to compare the monitored queue sizes to a threshold
value and trigger the reconfiguration if the queue size exceeds acceptable limits.

For connections that have not yet been instrumented with the buffering filter
component, a simple threshold for an allowable queue size can be used. Should the
number of unprocessed messages grow beyond that value, the initial reconfiguration
that inserts the buffering filter is triggered.

If the buffer is already installed, a “high-/low-water-mark pair” can be used
to detect derivation from the planned behavior due to a deteriorated replay rate.
Fig. 8.19 shows a high-water-mark of 500 messages; if the queue grows beyond
that size, further reconfiguration is required to tune the replay rate to a lower
setting. Fig. 8.21 shows a low-water-mark of 0 that is eventually reached – the
queue is drained, and new messages are inserted at a replay rate too low. Another
reconfiguration (conducted after approximately 55 seconds) is used to re-tune the
replay rate.

For the buffer already installed, planning needs to calculate a new rate of mes-
sage sending depending on the results of the analysis. Alternatively (and especially
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Figure 8.19: The “unbalanced producer/consumer” example

if calculating rates leads to oscillating behavior) the sending of messages can be
stopped at reaching the high-water-mark and started at reaching the low-water-
mark, calculating a rate that is conservatively too high, thus eventually reaching the
high-water-mark again. This requires frequent reconfiguration, but this reconfigu-
ration is relatively cheap to do, as no components are added; only the parameters
of the buffer components are changed.

For calculating a replay rate, we need to approximate the message consumption
rate of the target component. Fig. 8.20 shows a hybrid automaton (with the nota-
tion ṫ = 1 meaning that the first derivation of t over the time is 1, cf. [Hen96] for
a definition of hybrid automata) that illustrates the different states of the analyzer
for the unbalanced producer/consumer example. The variables have the following
meaning: l is the message queue level of component B, r is the replay rate, i.e., the
number of messages to be played to the consumer in each time step, t is a timer
variable, and low , med and high are fixed values with med = high−low

2 + low . In
the normal state, no reconfiguration has been made, and r would have no influ-
ence. In the reconf state, the reconfiguration is executed by substituting the edge
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NORMAL RECONF

GO DOWN

REPLAYGO UP

ṫ = 1

l > high

l ≤ high

[incomplete]

[complete],
r = 0
lm = l
t = 0

l ≥ med

l < med

r = lm−med
t

l ≤ high ∧ l ≥ lowl ≤ high

l < low
r =∞

l > high
lm = l
t = 0
r = 0

l > high
lm = l
t = 0
r = 0

Figure 8.20: Hybrid automaton for the analyzer of the unbalanced pro-
ducer/consumer example

from A to B with a filter component F and edges from A to F and from F to
B. The go down state, which invariably has r = 0, is used to deplete the overly
filled message queue of B by not adding any new messages. In the replay state,
a well-behaving level is maintained by using a replay rate that has been calculated
to match the message consumption rate of B, as it was witnessed while in the go
down state. Should the message queue level of B run out of hand, either go up
or go down is used to bring the level to a consistent value again. go up will go
beyond the high level, and then use go down to deplete the queue again while
measuring the consumption rate of B anew. Thus, each time replay is initially
entered, a fresh consumption rate has been calculated, which helps to adapt to
changing environments.

In Fig. 8.19a, the development of the size of the message queue of component
B is shown. We can distinguish four stages:

(1) Stage a (state normal in Fig. 8.20) is the interval where the message
queue has not yet grown beyond the threshold we have set (at 500 mes-
sages, which is an arbitrary value and a notably small one). The number
of messages can be seen to increase in a monotonic fashion.

(2) Stage b (state reconf) is the interval where the threshold has been
passed, but the reconfiguration – which also involves the generation and
compilation of the filter component, as it is built dynamically to match
the given interface – has not yet been completed.

(3) Stage c (state go down) is the interval where the buffer takes all the
messages sent from component A to component B. B now consumes the
messages in its message queue, and eventually reaches some fill rate we
regard as sufficiently low. We measure the time that is required to reach
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Figure 8.21: Degrading replay accuracy

that level (variable t in Fig. 8.20), and thus gain a good approximation of
the message consumption rate of component B.

(4) In stage d (state replay), we replay the messages stored in the buffer to
component B at the rate we measured in phase c. Thus, a nearly constant
message queue fill level is obtained.

In this stage, the message queue level is still monitored, since it is
possible that the message consumption rate of B is changing. Fig. 8.21
shows such a system: Due to a change in the message consumption at
approximately 35sec, the message queue level drops until all messages are
consumed: The message queue of B is then filled with enough messages
to continue with stage c again. Note that this also happens frequently
due to the inaccuracy of system clocks.

Fig 8.19b shows a different approach: Instead of calculating some replay rate,
the buffer fills the message queue of B each time it runs empty. While this requires
far more reconfiguration executions (wherein the behavior of the buffer is modified
to either start or stop sending messages), it requires much less overhead and is
also independent of clock accuracy (which tends to be problematic with Java and
Linux).

8.4.2.3. Planning and Execution. While the assessment needs more consideration,
the actual planning is fairly straightforward. It amounts to an insertion of a filter
component. Since we do not want to move messages – in fact, the replay rate
calculation described in the last section requires that the messages accumulated in
the queue of the target component are left in place – a non-shallow reconfiguration
plan is sufficient. We assume that we want to instrument the connection of c1’s
role r to c2:

• A = {cf} for a filter component cf for the interface IR(c1)(r) of the
connection to be instrumented,

• R = {},
• α = {cf 7→ {next 7→ c2}},
• ρ = {(c1, r) 7→ cf},
• δ = {}, ς = {}.
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There is no risk of message overtaking, and messages do not get lost; any message
sent to the filter will arrive at the target component c2 at a later point in time that
those messages send directly over role r.

If the filter is already present, only the replay rate needs to be reset. This rate
is a component parameter; changing it actually does not require reconfiguration
(thought a clean way to change it without interfering with ongoing method call
processing can be achieved by reconfiguration that removes and re-adds the same
component).

8.4.2.4. Experience and Discussion. We implemented such an “unbalanced” pro-
ducer/consumer example in JComp, after the problem with overflowing queues
surfaced for the web crawler. Two components communicate asynchronously in a
cyclic connection. For each message component A receives, it sends two messages
to B, which in turn will just send a message to A. Thus, given an even message
processing rate in A and B, the message queue of B is growing, eventually exceeding
available memory. This is prevented by timely reconfiguration as described.

The hardest part of this example is to come up with a good way to determine
the replay rate, as the accuracy of the timers available on the Linux system used is
quite limited. If the delay between message sending (i.e., the inverse of the replay
rate) was determined to be 6ms, the message queue kept overflowing, and if it was
determined to be 7ms, a behavior as shown in Fig. 8.21 usually emerged after a
short while. However, this only increases the overhead a little, as new replay rate
calculations are done; the basic functionality is not impeded.

Like most examples in this chapter, this example is quite artificial. It might also
be argued (in a similar way as done in Chapter 9) that having overflowing message
queues is due to a malformed system design that should have been considering the
unbalanced production and consumption of jobs in the first place. On the other
hand, the example outlines the applicability of reconfiguration to address cross-
cutting concerns. If we consider large-scale applications, similar situations might
arise; and by considering the concern independently of the application, lots of efforts
might be saved.

8.4.3. Fault Tolerance. Fault tolerance, and the related problem of self-healing,
is a hard problem for software that has been approached from various direc-
tions [GSRU07]. When NASA started using software as an indispensable com-
ponent of aircraft – an endeavor risked only after computers proved reliable when
landing the Lunar Excursion Module during the Apollo missions) – they imme-
diately transferred the proven approach of using redundant hardware to comput-
ers [Tom00]. For the fly-by-wire project, three computers calculated the required
control surface deflections, and the result was just added up; so even if one com-
puter provided arbitrarily wrong results, the plane was still flyable. Later, this
“voting” scheme was extended to majority voting, where the result produced by
most machines was preferred.

Using a redundant hardware approach was a natural thing to do, since the
computer hardware technology was prone to random errors. Interestingly, space
flight has stayed the prime user of this approach, as random errors are still a problem
for deep space probes like Voyager due to cosmic rays that can produce spontaneous
memory cell flips [Tom94]. However, given a reasonably deterministic, earth-bound
hardware, the voting technology devised for such applications can hardly be used.
As a matter of fact, a common design principle used in decentralized computing
(e.g., peer-to-peer-systems) is to have multiple participants calculate some result,
for example who is to become the leader. The participants then use this result
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without communicating it to the other participants, as, given the same input, it
can be trusted that they reached the same conclusion.

In taking the idea of n-participant voting to software engineering, the approach
of “n-version programming” [Avi85] was devised. Here, multiple programmer
teams were expected to work on the same problem, producing hopefully indepen-
dent results that could be run in parallel, providing redundancy should one of the
implementations fail. For example, the Space Shuttle has a backup flight computer
with a minimalistic software that is supposed to take over if the primary comput-
ers (a redundant array of four computers, running the same software) encounter
the same software bug [HP83]. This idea of n-version programming has been sub-
jected to much criticism [KL86]. Nevertheless, it is still believed that fault tolerant
software is necessary in high-risk environments, and cannot be replaced [Wil00].

In the following example, we will utilize a moderate assumption of n-version
programming, assuming the existence of a non-functionally well-performing, but
functionally untrustworthy component as well as a functionally reliable, but non-
functionally inferior replacement. Efficiency concerns stipulate the use of the former
component, with the latter one as a backup implementation. In the case of a
functional failure, which we expect to be recognized immediately, a switchover by
reconfiguration is to take place, including a state transferal. The problem here
is that the state of the old component might have become corrupted due to the
failure; either due to an incomplete processing of a method or due to a bug that
mangled the data. Here, we propose an architecture that can help to cope with
such a situation.

8.4.3.1. Maintaining a Sane State. Consider the untrustworthy component to be
one that stores data, maybe an accounting system. We know that this component
fails sometimes, and if it does, we need to assume that its state is corrupted (i.e.,
we cannot make any safe assumption about it). We assume, however, that the
component is deterministic (i.e., the failure is determined only by the communica-
tion sequence, not by some nondeterministic internal choice), and that an error is
communicated back to the callee immediately (e.g., in an actual implementation,
by throwing an exception).

The basic idea (see Fig. 8.22a) is to maintain two copies of the unreliable com-
ponent (Target1 and Target2), and to issue calls (from Client) to both of them (by
Distributor); the second copy only receives the call after the call to the first copy
has been completed successfully. Hence, any call issued to the second copy will suc-
cessfully complete, so the state remains intact. Upon detecting a failure of the first
copy, reconfiguration is employed to substitute the storage subsystem by another
component (NewTarget, see Fig. 8.22b), which might be a different, maybe less

Client
Distri-
butor

Target1

Target2

first

second

store

(a) The original system

Client
Distri-
butor

Target1

Target2

New
Target

= −

−

−

+

(b) Graph rewriting rule

Figure 8.22: Fault tolerance components
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method Distributor ::sync(prm):
ret ← call(first , sync, prm).
if (ret = err) then fail
else call(second , sync, prm).

return(ret).success fi

method Unsafe::sync(prm):
if (prm ∈ Esync)
then state ← err .return(err)
else state ← susync(state, prm).

return(sr(state, prm)) fi.
success

method Safe::sync(prm):
state ← susync(state, prm).
return(sr(state, prm)).success

method Distributor ::async(prm):
ret ← call(first , async, prm).
if (ret = err) then fail
else call(second , async, prm).

success fi

method Unsafe::async(prm):
if (prm ∈ Easync)
then state ← err .return(err)
else state ← suasync(state, prm).

return(∗) fi.
success

method Safe::async(prm):
state ← suasync(state, prm).
success

where, for m ∈ {sync, async}, Em ⊆ V are sets of error-inducing parameter values and
sum : S × V → S are functions that produce the updated state of a component as the
effect of method m, and sr : S × V → V is a function yielding the result of sync.

Figure 8.23: Specification of the fault tolerance example

efficient implementation, or some stub that takes care of a graceful and recoverable
system shutdown. This is similar to check-pointing, where the state is exported
frequently in order to be able to recover a computation; a technique well estab-
lished for providing fault tolerance to systems with mobility, e.g., agents [PY04]
or peer-to-peer systems [Spr06].

Let the interface I provided by the unreliable component consist of the methods
sync for synchronous and async for asynchronous invocations; and let the four
components involved in the initial component graph (see Fig. 8.22a) be given by

• (Client, {}, {store 7→ I}, ζClient, ιClient),
• (Distributor, {I}, {first 7→ I, second 7→ I}, ζDistributor, ιDistributor),
• (Target1, {I}, {}, ζUnsafe, ιTarget) and (Target2, {I}, {}, ζUnsafe, ιTarget).

with arbitrary initial states ιClient, ιDistributor, and ιTarget. For the method environ-
ment µClient we only assume that it keeps sending an arbitrary stream of sync and
async messages to Distributor. The method environments ζDistributor and ζUnsafe

are specified in the upper part of Fig. 8.23, in a pseudo-code notation: Distributor
relays synchronous and asynchronous messages from Client to the store components
Target1 and Target2 via the roles first and second, but always uses synchronous
calls such that the end of message processing becomes known. Target1 and Target2
are modeled as “unsafe”: A method m ∈ I called with a parameter value from a
fixed set Em will result in an error, which is communicated back by returning err ,
after destroying the state by setting it to err . Fixing Em makes failure determin-
istic, such that Target2 cannot fail if Target1 just succeeded. When err is handed
back to Distributor, the component issues fail, which triggers the reconfiguration.

8.4.3.2. Monitoring and Assessment. When the component Distributor has moved
to fail, a reconfiguration has to be launched. This is an example of error-triggered
reconfiguration (cf. Sect. 7.5.3), and we utilize an exception monitor to have the
assembly code informed of the error’s occurrence. Since we already operate a com-
ponent setup with special provisions for fault tolerance, it is sensible to assume
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that we also have a plan prepared that can be instantiated as soon as the error is
detected.

8.4.3.3. Planning. The plan to be employed is illustrated in Fig. 8.22b using a single
push-out graph transformation rule as described in Sect. 8.1.4.1; the dashed line
is an “update edge” indicating state retrieval. In our usual notation, this shallow
plan (A,R, α, ρ, ς) is represented by

A = {(NewTarget, {I}, {}, ζSafe, ιTarget)} ,
R = {Distributor,Target1,Target2} , α = {} ,
ρ = {Client, store 7→ NewTarget} ,
ς = {(r,NewTarget) 7→ r(Target2)} .

where the method environment ζSafe is specified in pseudo-code in the lower part of
Fig. 8.23. During the possibly interleaved plan execution according to Sect. 6.7.2,
not only the untainted state of Target2 is copied to NewTarget, but also those mes-
sages that have not yet been processed by Distributor are moved to NewTarget (due
to using a shallow plan, they follow the rewiring). This also contains the problematic
message that triggered the error in Target1; the application of RCSTOPF re-enqueues
this message such that it is not lost. Due to Prop. 6.1 reconfiguration is thus en-
tirely transparent to Client; if the new component behaves like Target1, the client
component cannot directly observe whether the reconfiguration was conducted.

8.4.3.4. Execution. In this example, execution needs closer inspection: In order
not to corrupt the state of Target2, it has to be triggered exactly after Distributor
learned about the failure of Target1. In this situation, Target1 and Distributor have
moved to fail and are hence blocked until they get removed by the reconfiguration.
Both components still keep a reference about the method that caused all the trouble,
which is important, as it must not get lost, but has not yet been applied to the state
that is about to be copied from Target2 to NewTarget. Using the rule RCSTOPF,
the message is re-enqueued prior to shutting down the component, and hence δ will
move the method m that was executed by Distributor when the error was detected
to NewTarget, taking the first place in the new component’s queue. By copying
the state from Target2, exactly the state effected by the messages sent before m is
retained. Hence, no gap in message processing is observed.

8.4.3.5. Experience and Discussion. Like many examples in this chapter, this exam-
ple needs to make a lot of assumptions: Determinism (which is quite credible) and
the existence of a suitable, non-failing substitute (which is maybe not so credible,
although component-based software engineering encourages keeping early, unopti-
mized versions of components for comparison and fallback strategies; cf. Sect. 5.5
for a related experience with cmc. Also, the backup flight computer on the Space
Shuttle is actually just such a component with severely degraded, but sufficient ca-
pabilities.). Further, we require state accessor methods for the Target2 component
(depending on the source of the components, not too likely) and the immediacy of
error detection (quite unlikely). Also, maintaining an exact duplicate of a data-
intensive component for fault tolerance might not be allowable.

Depending on the system at hand, however, such schemes might be employable.
Instead of using an exact duplicate, a check-pointing component might be used
that dumps the contents of the target component at frequent intervals and keeps
a record of messages sent after the last checkpoint was stored, thus making the
system capable of tedious, yet effective reproduction of the state the failed Target1
component had. The replacing component NewTarget might be an old version that
was replaced in a hot code update before, as the Simplex framework [SRG96]
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proposes. Or it might be a component that just dumps the state and signals the
error in a way that allows for debugging.

Obviously, there are too many restrictions and special cases involved to de-
clare this example as generic; yet it might have shown a situation where available
components – even legacy components – can be assembled in a fault-tolerant setup
without needing too much glue code or component modification.

8.4.4. Software Phases – Cross-cutting Performance Tuning. The over-
flowing message queue example of Sect. 8.4.2 requires reconfiguration to mend a
problem of the system that will lead to erroneous behavior (i.e., an out-of-memory
error). Now, we will look at a different class of reconfiguration scenarios, where
the systems behavior is to be improved rather than fixed. The difference between
these two scenarios is not well defined, as, for example, using a memory-preserving
component might become both beneficial in one situation and crucial in another,
depending on the memory available.

In this example, we will consider an application that will run unperturbed
without any reconfiguration, but that will benefit performance-wise from replacing
certain components by reconfiguration. We assume that multiple interchangeable
implementations of a common interface exist, and use reconfiguration to employ the
implementation most suitable for the current usage scenario, similar to the example
reported in [Yel03]. As a concrete example, we will use various implementations of
java.util.Collection, wrap them in components, and choose the most suitable
implementation for a certain usage profile.

Let R be a finite (and usually quite small) set of resources. A component method
resource cost function is a function cost : C ×M ⇀ (R → (S → R≥0)), which is
defined for all elements {(c,m) ∈ C ×M | m ∈

⋃
i∈IP (c) i}. Such a cost function

assigns to each method implemented in a component a measurement for a resource
and a component state.

For example, the set R might consist of the sole value time, and a cost func-
tion assigns to each method provided by each component the time that is required
to execute it, depending on the component’s state. Fig. 8.24 shows the measure-
ments of the number of virtual machine steps required by two different kinds of
search operations conducted by a java.util.TreeMap instance: The first graphic
depicts the lookup of a randomly chosen element, while the second graphic depicts
the lookup of the smallest element. The first graphic shows a lot of scattering,
while the second graphic shows deterministic behavior. Both exhibit a logarithmic
progression, as depicted by the dotted line, which is a logarithmic curve fitted by
the Ehrenberg-Marquette algorithm [Lev44, Mar63]. This is of course not co-
incidental, as the TreeMap employs an algorithm that exhibits a (worst-case and
average) runtime complexity of O(log(n)). The exact measurements of VM steps
taken yields the cost function f which is partially defined as

f(java.lang.TreeSet, contains) =
time 7→ (48.9862 · ln(0.91984 · size) + 0.615969).

This gives an average-case cost function based on the observations made. We
utilize VM steps here, because it is very difficult to do measurements at
the granularity involved in this example. Available timers have a granularity
more coarse than a single operation on an efficient data structure (e.g., Java’s
System.currentTimeMillis() only provides a granularity of 1 millisecond on
Linux, and other methods are subjectible to large amplitudes due to process switch-
ing, e.g., when counting the CPU cycles. We hence implemented our own virtual
machine (in Java, using the existing memory management3) which is then capable

3The implementation can be found at http://www.pst.ifi.lmu.de/~hammer/jvvm/.

http://www.pst.ifi.lmu.de/~hammer/jvvm/
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Figure 8.24: Time measurements of java.util.TreeSet

of doing exact counting of bytecode instructions executed. There are a number
of peculiarities, like native calls (most notably, System.arrayCopy()), but since
wall-clock-time measurements are infeasible, this seems to be the best approach.
Obviously, it is not possible to just add an element a million times and measure
the mean time required, as the data structure’s size changes due to the insertion.
This is why the cost function includes the component’s state as a parameter.

8.4.4.1. Monitoring and Assessment. Following the idea of concept drift described
in Sect. 8.1.3.2, we can evaluate if the component is a good choice for its recent
usage by using a limited history monitor. By evaluating the different costs for
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Figure 8.25: Cost of reconfiguring java.util.TreeSet

the algorithms provided by various possible substitutes for the component under
observation, we can maybe find a component that will perform better.

Of course, it is imperative that such a reconfiguration retains the data stored
in the collection in order to be entirely opaque to an external observer. Fig. 8.25
shows the price that has to be paid in order to reconfigure a java.util.TreeSet
(that is, a component encapsulating such a data structure) into other subclasses
of java.util.Collection. This price does not yet include the overhead of re-
configuring the components, but this can be regarded to be constant. If it can be
assessed that the recent use warrants the cost of reconfiguration to a component
that is more suitable, we can do reconfiguration.

8.4.4.2. Planning and Execution. The situation we are looking at is given by a
component that wraps a data structure like a java.util.Collection implementa-
tion. It is used by other components, but does not require connections on its own.
Defining a shallow reconfiguration plan for substituting a component c by c′ in a
component setup (C,M, e) is therefore straightforward:

• R = {c}, A = {c′},
• ρ = {(c′′, r) 7→ c′ | c′′ ∈ C ∧ r ∈ R ∧M(c′′)(r) = c}, α = {},
• ς = {(f, c′) 7→ f(c)}.

Obviously, implementing ς can be a little troublesome, but, for this example, this
is easily managed by using the toArray method of java.util.Collection.

If there is a sole user of the Collection-wrapping component, the reconfigura-
tion plan is injective as well, providing a clean reconfiguration that can be triggered
anytime. Otherwise, message order needs to be established by timestamps, as de-
scribed in Sect. 6.7.4.

8.4.4.3. Experience. Fig. 8.27 shows a very artificial example: A collection repre-
sentation (initially, a java.util.LinkedList) is supplied with a number of ele-
ments. Afterwards, the list elements are iterated a few times. Using a linked list
is a good choice for inserting elements, since it requires constant time only. The
bulk of maintaining the list structure does not make it ideal for iteration; here,
a java.util.CopyOnWriteArrayList excels. This collection implementation just
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wraps an array; each element insertion results in a complete copying of the data
structure. Hence, an iterator can be made very fast, since it can omit many checks.
On the other hand, using such a CopyOnWriteArrayList is prohibitively slow for
adding elements. The performances for adding and iterating elements is compared
in Fig. 8.26.

The best strategy, given these two data structures and the application behavior
detailed above, is to use a LinkedList for element insertion, and reconfigure it to
become a CopyOnWriteArrayList once the iterations start. Fig. 8.27 illustrates
that doing so outperforms the sole use of a LinkedList, although monitoring and
reconfiguration overhead is required. Obviously, such an example is very much
unlikely to be ever found in practice. There are, however, examples where different
uses of data structures require their (usually, manual) reconfiguration: For example,
if large bulk inserts are to be made to a data base, it is advisable to turn off indexing
and other provisions for providing fast read access before, as they interfere with the
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bulk writing (cf. the discussion in Sect. 8.1.3.2). Reconfiguration can be employed
to automatically choose a data structure that exhibits best runtime behavior for
the current situation.

8.5. Reconfiguration for cmccmccmc

In this section, we will discuss the applicability of reconfiguration to the cmc
model checker. Ever since the first version of cmc was finished, we have pondered
on ways to utilize reconfiguration for cmc. However, this never came to pass; and
this section will describe why.

The cmc model checker, as described in Chapter 5, seems to provide ample
opportunity to do reconfiguration. After all, a lot of configuration is done at startup
time, which includes choosing the size of the caches and buffers, the state removal
strategy (i.e., the actual algorithm that decides which state should be moved from
the lossy hash table to the disk), and, most importantly, the overall architecture,
i.e., if the disk should be used, if states should be compressed after creation4, if
the single-successor-strategy should be employed, and much more. Most of these
choices are dependent on the characteristics (most notably, the size) of the model at
hand, and since most of these characteristics only become known during the model
checking run, an adaptation to the newly learned facts might pay off handsomely.

The choice of a good configuration can greatly improve the “throughput” of
the model checker, which is ultimately measured in the time to finish the search;
or, more discriminating, in the ability to exhaustively search a model’s state space
without running out of memory. It is not uncommon to halve the required runtime
just by adjusting the sizes of the different buffers and caches – and this relates to
a situation where experience was used to start with already well-chosen parameter
values.

Despite this necessity to consider the configuration of cmc, there is no genuine
need for runtime reconfiguration in order to increase the throughput:

• Many of the relevant parameters of the model – e.g., state size, state
connectivity, compressibility of states – can be found out in just a few
seconds or minutes of running the model checker. In preparing a run that
will take days to complete, this price can be paid easily.

• Large model runs spend most of their time in what would be the final
configuration: A diminished portion of states residing in the lossy hash
table, with much time spent on the disk look-ups. Switching to disk-based
model checking after depleting the memory, reorganizing it to make room
for the Bloom filter and the disk buffers just postpones the start of this
lengthy final phase, and the overall speedup is very little, even if we neglect
the price of the reconfiguration itself. For example, the Lunar example 5,
for which the exhaustive state space exploration took about 1.5 days to
complete, started swapping states to disk after 3:45 minutes. Approx.
4GB of the 16GB available were allocated to the lossy hashing, so even
if we neglect reconfiguration cost and the size of other indispensable data
structures (e.g., the open set), a dynamic approach could only postpone
the use of the disk by 11 minutes.

4This is usually a bad choice – it consumes computational resources, and it usually just

postpones the write-out to disk, where the states are compressed anyway; and since they are
compressed in blocks, a better compression can be achieved. State compression might pay off
if it can compress the states sufficiently to avoid using the disk at all. This is one example for
a dedicated architecture that works well for a class of models, but just slows down the model
checking process for others.
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At the same time, the cmc component model is not very suitable for recon-
figuration – due to possible recursive calls, replacing a component might lead to
having code executed in the old component after code has been executed in the
new, leading to an awkward situation. Hence, reconfiguration needs to wait until
the stack of the old component is empty; and this might require the component
implementer to implement the component in an altogether different way. Hence,
runtime reconfiguration for cmc is not very feasible.

But reconfiguration does not necessarily have to be done at runtime. The com-
ponent setup can also be rearranged between two distinct runs; the progress made
in exploring the state space is lost, but this does not derogate much, as argued
above. In areas not concerned with software components, like programmable chip
configuration, reconfiguration is divided into runtime reconfiguration and compile-
time reconfiguration [ALF00]. For cmc, we can use compile-time reconfiguration
to build a model checker that is suitable for the task at hand. This involves three
steps: Finding out the characteristics of the model that is to be checked, choosing
an appropriate architecture, and running it with the model. Actually, this amounts
to an open control loop, as the effect of the architecture choice will not be inves-
tigated (and hence will not lead to further reconfiguration)5. Such a tailoring of
a system’s configuration to a special machine or problem has seen some success
with highly optimized algorithms like SAT solvers [HBHH07] or linear algebra
software [WD98]; yet these approaches do not consider the data at hand, but are
tuned to representative problems [HBHH07] or the computer hardware the soft-
ware is compiled on [WD98]. For cmc, we tried to come up with an algorithm
producing an architecture suitable for one single model.

For cmc, the most important property is the size of the state space of the
model. Of course, this property is also one of the hardest to obtain – its exact
value can only be found out by doing an exhaustive search in the first place. While
this voids the benefit of a reconfiguration in most cases, there are a number of ways
how this number can be obtained, without doing a dedicated, exhaustive search:

(1) Maybe the size of the state space is known already from previous runs.
Often, the model is only slightly tuned to handle a single message in a
different way, or to use an atomic block (a sequence of steps that is not
interleaved with other processes’ steps); in both cases, the number of states
might stay roughly the same. However, it requires expert knowledge to
judge this, as even small changes can blow up (or cut down) the state
space by orders of magnitude.

(2) The state space might be approximated by estimating the number of com-
bined states. If there are two processes, each with 10 states, and full
interleaving is possible, we can estimate the state space to contain 100
states. We have tried this approach in the context of [Now07], but the
estimates usually over-approximate the actual size (as they tend to ignore
restrictions of the state space due to inter-process dependencies), again
by orders of magnitude. Also, this requires expert knowledge.

For parameterized models (which instantiate a process a selectable
number of times, e.g., the dining philosophers protocol, where the number
of philosophers can be chosen freely), the state space can be approximated
by extrapolating a parameterized model (e.g., if the state space grows by a
factor m for each addition of a further process instance, we can extrapolate
how big a model for a given number of process instances will be).

5This is but a preliminary design. Adding monitoring and assessment to cmc is not hard,
and the performance of the application can be compared to expected values, possibly triggering
another restart of the run if the architecture proves to be insufficient.
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(3) The state space might be obtainable by heuristic search, e.g., by uti-
lization of a Bloom filter (as the sole means of checking state revisits).
Bloom filters, being a set over-approximation, cut off too many branches,
and hence provide a state space under-approximation. Their good perfor-
mance, however, will most likely produce a good state space size approx-
imation. Of course, almost the entire state space needs to be explicitly
generated, which can also take a good measure of time.

(4) We have discussed an approach at guessing the state space size based on
the characteristical shape of the open-set size development in Sect. 8.1.3.1.
This seems promising, although costly, and the general applicability re-
mains questionable.

(5) There are approaches for estimating the size of a graph based on random
samples. For cmc, we used random walks to come up with some sta-
tistics on the model. Following the idea of “Monte-Carlo Model Check-
ing” [GS05] and utilizing components that have been developed for cmc
(most importantly, the state generator, the hash functions and a closed
hash table), we built a small random walking tool that walks the graph,
choosing random successor nodes, until a loop is found. Due to the
reusability of components, this was done in a few hours and approximately
100 additional lines of code. Since, even for vast models, a random walk
usually does not require more than a few hundred steps until a loop is
encountered (i.e., a state is visited that is part of the walk path already),
only very moderate memory requirements are given. Theoretically, it
should be possible to derive the graph’s size from the out-degree of nodes
encountered, though, for unbiased estimation, the in-degree is required
also [MS89].

Using a biased evaluator considering the outgoing edges only, we ob-
tained values too high by orders of magnitude. Obviously, this is due to
the neglect of merging graphs (the biased estimation calculates the size
of a tree, whereas unbiased estimation would need to consider the search
graph as a DAG). We hence used small breadth-first searches to judge
the rate of merging paths, and found that the growth of the breadth-
first-search front is between 1.05 and 1.5 for various models, whereas the
average outgoing degree is between 1.5 and 5. The resulting graph size
estimations are better, but still they are very volatile due to the fact that
we calculate the size as

size(G) = avg(BFSgrowth(G))avg(RandomWalkLength(G)),

and even very modest modifications to the BFSgrowth function result
in large changes to the estimated size size(G).

If the state space size is not known in advance, it is difficult to come up with a
good initial configuration; and restarts with a changed configuration become more
interesting. One way to do this would be the following:

(1) First, a model checker is started that attempts an exhaustive search with
the available main memory. This model checker might solve the model
within relatively short time, or run out of memory.

(2) If the memory is depleted, we need to start another run with a changed
configuration that utilizes the disk. We have learned some important
features of the model at hand: The state vector size (or its distribution),
the utility of the auto-atomic filter. Also, a rough estimate on the final
model size can be done using the peaking of the open set; if it has peaked
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already, we can estimate that we have seen 10% to 50% of the state space
so far, otherwise, we might encounter a state space much larger.

(3) Based on these information and guesses, we can start another, tuned run.
We can also monitor if our guesses appear to be good; otherwise, another
restart might be expedient.

While this seems straightforward, one should not underestimate the difficulties
at producing a configuration automatically. The available memory needs to be split
on at least four components (open set, lossy hash table, Bloom filter, candidate
set); and how this should be done again depends on the model at hand (cf. the
difference between the two graphs in Fig. 5.10 on page 100) and the state space
size. Ultimately, more experience needs to be gained with cmc to provide rules
for calculating optimal memory distribution. In this light, automated restarts with
reconfiguration might prove vastly helpful for cmc (if only to lessen the need for
user-supplied configuration), but they require more research.

8.6. Discussion

Coming up with the examples of this chapter has been quite a challenge. As
we have seen in Chapter 3, few reconfiguration frameworks provide any examples
at all. This is most likely not because no examples exist – but because it is hard to
find concise, yet meaningful and credible examples. Small examples often appear
artificial or too cumbersome; we have discussed some reasons in the context of the
cmc model checker in the last section. The examples in this chapter are chosen
to be representative for specific areas of reconfiguration use. Approaching the
problem of defining examples from this direction proved helpful, and we hope that
the examples can illustrate the general utility of reconfiguration.

Reconfiguration can only be motivated by the separation of roles, and neither
of these examples does have a credible separation of persons associated – they are
all devised, written and assembled by the same person. If we go one step further
and claim that reconfiguration excels at handling changes of cross-cutting concerns,
this is even more problematic: The examples are geared at showing the reconfigu-
ration, so their true core concern is that of illustrating reconfiguration. Obviously,
a solution would have been to implement a large-scale example using JComp, as
cmc was implemented for its associated component framework; but given the expe-
rience with cmc which does not accommodate reconfiguration well planning such
a large-scale example is difficult. We hence cannot give an example where a true
cross-cutting concern is involved, but only provide small-scale scenarios which illus-
trate a situation that can be expected to be found in large-scale applications and
requires reconfiguration.

The example closest to being a real example is that of resource preservation,
described in Sect. 8.4.2, as it was motivated by an unforeseen problem with the web
crawler of Sect. 7.4.2. But this example also shows the problem with reconfigura-
tion: It is hard to implement a working mechanism to cache the queues, and the
solution is not very elegant, as the disk is limited as well. Utilizing external storage
capacities for swapping parts of the in-queue will only postpone the point of failure.
Also, first-class connectors might offer a swapping capability without reconfigura-
tion; for JComp, we might substitute this by instrumenting each connection with
an appropriate filter component at configuration time. Such considerations always
need to be made when judging the benefits of reconfiguration, and they need to
consider the application domain. The web crawler might not be a suitable scenario,
since the problem of overflowing queues is not truly a cross-cutting concern, but re-
lates to the core algorithm directly. For an application that is subjected to phases
as discussed in Sect. 8.4.4, adding a temporary remedy for overflowing message
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queues by reconfiguration might pay off due to the decrease in complexity for the
initial configuration and the improved performance.



CHAPTER 9

Component Correctness and Correct
Reconfiguration

With this division of responsibility established,

matters went downhill quickly.

— T. A. Heppenheimer, Development of the Space Shuttle

Specification of components, their communication and their assembly is an area
that has seen much research (e.g., [HTC98, PV02, HJK08]). The explicitness
of communication is attractive, since it defines the set of different events that need
to be considered. At the same time, even very basic asynchronously communi-
cating systems are Turing complete [Rus08], making even the most fundamental
specification language impossible to be verified for vital properties.

It is well beyond the scope of this thesis to provide satisfying (in theory and
practice) means of component specification. We will, however, discuss how compo-
nents can be specified for the JComp component model; which, being asynchronous,
requires a consideration slightly different from many prevalent ones (e.g., [dAH01]).

This is useful for two things: First, it sheds a different light on the separation
of roles. Especially, the difficult question of concurrent pre-/post-condition can be
answered in the context of component-based software engineering in an elegant way
that underlines the benefits obtained from splitting the responsibilities between
different roles. Second, we can use this kind of specification to probe into the
problems of reconfiguration, as we will do in the second part of this chapter, starting
with Sect. 9.4.

9.1. Concurrent Contracts

There is some debate on when to evaluate a method’s precondition in a system
that supports message queues, and whether contracts are beneficial for such systems
at all. This discussion stems from the fact that, in general, a precondition can only
be met if the caller gathers some information about the target component’s state
before. Here, we will use the example of a bank component that offers a balance
and a debit method, with the following specification:
Bank ::balance() : Bank ::debit(amount) :

pre: true pre: amount > 0 ∧ amount ≤ balance
post: result = balance post: balance = balance@pre − amount

First, observe that the precondition consists of two clauses: The independent
clause (or correctness condition [AENV06]) amount > 0 that places a constraint
on the account parameter and is independent of the target component or any other
data structure that is changed over time. Obviously, such a constraint can be
verified at any point in time between issuing and processing the method call, and
no difference to a non-concurrent environment are to be considered. The dependent
clause amount ≤ balance, however, restricts the set of states in which the method
may be invoked to the set of all states that have a sufficiently large balance.

229
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︸ ︷︷ ︸
Gathering state information

︸ ︷︷ ︸
Message in target queue︸ ︷︷ ︸

Concurrent execution of other methods (on target component)

︸ ︷︷ ︸
Message execution

Message sending/enqueueing Message dequeueing

Figure 9.1: Phases of message execution

The problem with the dependent precondition clause is that any client that
calls debit needs to obtain the current balance value first by calling balance. In
the time between the return of this query and the execution of debit, other clients
might have also had debit messages processed, which lower the balance so that the
precondition of debit is no longer met. Fig. 9.1 illustrates the abstract problem.

Of course, this problem is well-known. Betrand Meyer, the advocate of
contract-based development, names it as the reason why contracts are “inappli-
cable” for concurrent environments [NAM03]. His remedy is to redefine the se-
mantics of the precondition to be no longer just a check, but a wait statement
instead; the message execution is postponed until the precondition is satisfied
again [Mey97, NAM03].

We refrain from such a solution, because such an interpretation of preconditions
vastly interferes with the established communication paradigm, like non-overtaking
of messages. Scoop [AENV06], a framework for concurrent programs that sup-
ports contracts, first introduced the requirement for eventual precondition satis-
faction for the client [NM06] (i.e., the client is responsible for ensuring that the
precondition eventually holds), and later departed from a strict waiting solution by
allowing for user-level exception handling [BP07], thus allowing the user to provide
an own interpretation of how to handle violated preconditions. We assume that this
departure from a predefined strategy for handling violations reflects the experience
that waiting is not always applicable.

Depending on the implementation, either problems with deadlocks will emerge
(if the caller is blocked) or message ordering is greatly complicated (if the call
is postponed). After all, the component developer makes assumptions about the
effect sent messages have on their target component, and if their execution order is
modified by the framework, only very defensive assumptions can be made. Also, the
solution is very technical, and does not really cope with the underlying problem: If
some money is withdrawn from a bank, this is done for using the money elsewhere,
and if the withdrawal is postponed, so is its use. In a practical example, if we
withdraw money to pay for a bill, and the call is postponed until enough money
is available (which might take a complete month), we get into legal problems. Of
course, the situation is difficult anyway, with there not being enough money to pay
for said bill, but this has to be made known to the user, and not just be postponed
until better days.

9.1.1. Interpreting Contracts in Concurrent Environments. Let us assume
that no remedy is enforced, and that the bank indeed allows concurrent debits
while disallowing overcharging. Let us consider the canonical problem scenario:
Customer C1 retrieves the balance b, customer C2 retrieves the same balance b,
customer C1 issues a debit of 0 < m1 ≤ b money, then customer C2 issues a debit
of b − m1 < m2 ≤ b money. After the debit of the m1 amount is executed, the
precondition for the debit of the m2 amount no longer holds. When should this be
declared an error?
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Let us recall that the responsibility of satisfying the precondition is placed on
the caller. This makes it appear reasonable to have the precondition checked at
the time of issuing the call, as this is the last point in time where the caller has
any control of the method call. Of course, this raises the immediate question on
what to do if the precondition is violated at the time of method execution begin.
Also, preconditions can be violated because of outdated information (in the example
above, if the debiting of m1 money is executed after C2 retrieved the balance b, but
before the debiting of m2 gets issued).

Our approach to this problem is to assume a third responsibility: The system
designer . We understand component-based systems as composed from different
components, each with a limited local view, but being assembled by a single person
(or a closely collaborating team), which is well-aware of the way the components
interact (we stressed this point as the major difference to services in Sect. 2.2.2).
A single component cannot guarantee that it respects the preconditions of the
methods it calls on other components without some inter-component protocol. The
localized view of a component, i.e., the inability to see anything but the provided
interfaces of the components it is connected to, put it beyond the capability of a
single component (or, more practically, the implementer concerned with a single
component only) to follow such a protocol. It is the task of the system designer to
choose appropriate components such that the global protocol is followed.

By assuming such a role, we can determine the time of precondition checking
where it makes most sense: At dequeueing the message. While the caller usually
does not have the means to ensure that the precondition is met at message execu-
tion, a system designer has. The time of dequeueing is also the most important one
for message execution; here the state in which the message execution is begun has
been reached (and will not become modified by a method other than the dequeued
one until method execution is finished, as guaranteed by the mono-threadedness of
the components). Hence, validating the precondition at message enqueueing is not
sufficient to ensure proper execution.

Another possible interpretation of contracts might be the requirement to have
a valid precondition at both message enqueueing and dequeueing. This can even
be extended to the requirement of having a valid precondition at any point in time
between (and including) those two events. We do not use this approach here; it
rules out perfectly legal sequences of messages, e.g., for two asynchronous messages
A and B of a component C with the contracts

spec C::A() :
pre: state=1
post: state=2

and spec C::B() :
pre: state=2
post: state=3

the sequence A, B may lead to precondition violations (if A is not executed fast
enough and before B arrives); but if A and B are interpreted as, say, initialization
methods, there is nothing wrong with invoking them in this fashion.

So, we decide to verify a message’s precondition at the point where the mes-
sage’s processing begins. It is then placed on the system designer to make sure
that no violations occur. This approach is motivated by the separation of roles
paradigm and the specific roles involved in writing a component system – and their
knowledge and assumptions.

9.1.2. Assumptions and Guarantees. In an ideal world (at least, ideal in the
sense as envisioned by McIlroy), the component implementer is unaware about
how the component that gets written is to be used. Being not his concern, he is
not obliged to anticipate the exact communication pattern the component will be
subjected to. Obviously, such a deployment of a component in a totally unspecified
environment is only possible for very simplistic components (although, in practice,
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most components tend to be very simplistic in this regard, e.g., a hash table or a
RSS feed loader). For components conducting a more elaborate communication, the
environments they can be utilized in are more restricted, as they need to provide
this communication behavior. Here, we will call such a communication restriction
an “assumption”, being made by a component about its environment.

Assumptions can take different forms: In its easiest form, an assumption is
a static restriction of the method parameters. For example, a component might
provide a method sqrt(int n) that implements the function

√
n : N → N. With

the parameter being an integer, it has to be stated explicitly that negative values
for n are not allowed. Another example is the requirement amount > 0 in the
specification BI .debit at the beginning of this chapter.

The restriction of method parameters may also depend on the component’s
state. An example is given by the requirement amount ≤ balance in the bank
example given above; here, it is required that the parameter amount does not
exceed the state variable balance.

A further restriction might be given on the state in which a message can be
accepted at all. For example, many components require an explicit call to a method
initialize before they can process other requests. This can be reflected in the
state by maintaining a flag isInitialized, which is set by the initialize method
and required to be set by any other method. Such state restrictions can also be
short-termed, e.g., a component requires its client to send a login message before
any request, and requires a logout message before allowing the client to sign in
again. If such a message sequence has a defined start and end point, we speak
about a transaction.

In making these assumptions about the environment explicit, the component
implementer restricts the component setups the component can be utilized in to
those that provide suitable communication. It then becomes the responsibility of
the system designer to assemble compatible components. In order to do so, however,
some knowledge about the component’s own communication behavior needs to be
made explicit; as we do not want to burden the system designer with reading the
components implementation, we can make the communication behavior explicit as
a guaranteed behavior, just as we do with the assumptions about the environment.

9.1.2.1. Formal Definition. For specifying assumptions and guarantees, we
use a “pre-post-comm-eve”-specification following the OCL specification
style [OMG06b, HBKW01]. It is comprised of four elements:
spec C::M :

pre: Pre
post: Post
comm: Comm
eve: Eve

We define these four elements as predicates:
• the precondition Pre ⊆ S × V,
• the postcondition Post ⊆ (S × V)× (S × V),
• the (outgoing) communication specification Comm ⊆ S × (R×M ×V)∗,
• and the future method requirement Eve ⊆ S × (M × V) ∪ {τ}.

Informally, Pre relates the called component’s state and the method parameter.
As observed in [AENV06], this can be split into two concerns: Restricting the
method parameters and defining admissible component states. Post relates the
state at method dequeueing, the state at method processing termination and the
parameters. For synchronous calls, we need to relate the return value also. Comm
relates the state at method dequeueing and sequences of method calls conducted
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s0 s1 s2 s3 s4 s5 s6 s7 s8

DEQ(c : C,m : M)

SEND(c1 : C)

CALL(c1 : C)

τ

RET(c1 : C)

DEQ(c : C,m : M′)

τ
DEQ(c : C,m : M′′)

Pre Post EveComm

Figure 9.2: Evaluation of a method specification C:M

during the processing of the method. For including method return values, we can
extend the sequence of method calls to S × (R ×M × V × V)∗; but we do not
do this here in order to restrict the complexity of the approach. Eve relates the
state at method dequeueing and a method that needs to be received in the future.
We will usually write the sets in a symbolic way, i.e., write u ∈ users for the set
{(s, v) ∈ S × V | v(u) ∈ s(users)} using the “programming language” notation
introduced in Sect. 4.6.

Formally, we define that the conditions of a specification C::M hold as follows:

• The precondition Pre is evaluated against a pair (l, s) with l being a rule
instantiation of the form l ∈ DEQ(c : C,m : M,v : V ) and s a component
configuration with cr, 〈σ〉. Pre holds in (l, s) if (σ, V ) ∈ Pre.

• The postcondition Post is evaluated against a tuple (l, s, l′, s′) with l being
a rule instantiation of the form l ∈ DEQ(c : C,m : M,v : V ) and l′ being
a rule instantiation of the form l′ ∈ RET(c1 : C, v : V ′) ∪ DEQ(c : C) and s
a component configuration with cr, 〈σ〉 and s′ a component configuration
with cr, 〈σ′〉. Post holds in (l, s, l′, s′) if ((σ, V ), (σ′, res)) ∈ Post , with
res = V ′ if l′ ∈ RET() and res = ⊥ otherwise.

• The communication Comm is evaluated against a run of the form s0
l0−→

s1
l1−→ . . .

ln−→ sn with li ∈ SEND(c : C, r : Ri,m : Mi, v : Vi) ∪ CALL(c :
C, r : Ri,m : Mi, v : Vi) and states si = cr, 〈σi〉. Comm holds in this run
if (σ0, ((R0,M0, V0), . . . , (Rn,Mn, Vn))) ∈ Comm.

• The eventuality requirement Eve is evaluated against a pair (s, l) with l
being a rule instantiation of the form l ∈ DEQ(c : C,m : M ′, v : V ′) and s
a component configuration with cr, 〈σ〉. Eve holds in (s, l) if Eve = τ or
(σ,M ′, V ′) ∈ Eve.

A specification C:M holds for a run s0
l0−→ s1

l1−→ . . .
ln−1−→ sn if for every i with

li ∈ DEQ(c : C,m : M)

• Pre holds in (li, si+1),
• Post holds in (li, si+1, lj , sj) for the smallest j > i with lj ∈ DEQ(c :
C)∪RET(c1 : C) (we assume that such a j exists, otherwise, i.e., if the run
ends in the mid of an execution of M , we only consider the precondition
Pre),

• Comm holds in
(
si

li−→ . . .
lj−1−→ sj

)
p

for p ≡ SEND(c : C) ∪ CALL(c : C)

for the smallest j > i with lj ∈ DEQ(c : C) ∪ RET(c1 : C),
• Eve holds in (si+1, lj) for some j > i with lj ∈ DEQ(c : C).

Fig. 9.2 shows the investigation of a run for its conformance to a specification.
A component setup conforms to a set of specifications if all specifications hold for
each run r ∈ Runs(L) for its LTSi L.
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For the (important) class of deterministic component systems (where all method
evaluations of all components are deterministic component process terms) we can
relate the satisfaction of a specification to the received communication, expressed
in the communication traces.

Lemma 9.1. Let T = (S,L, T, i) be the LTSi of a deterministic component
system, and let r1, r2 be initial runs with Tracescomm(r1) = Tracescomm(r2). Then
a specification of a component c ∈ dom(s) for s ∈ S holds for r1 iff it holds for r2.

Proof. The specification of a component c only investigates the state elements
of c. Hence, it suffices to show that r1|Lc

= r2|Lc
with Lc = CALL(c1 : c) ∪ . . . ∪

LOOP(c : c). Let r1|Lc = r1
1

l11−→ r2
1

l21−→ . . . and r2|Lc = r1
2

l12−→ r2
2

l22−→ . . .. By
induction on the length i of the run:

• r1
1 = r1

2 since the runs r1 and r2 are initial.
• ri1 = ri2 → li1 = li2: If li1 ∈ DEQ(), then li1 = li2 since the commu-

nication traces of r1 and r2 are the same. Otherwise, since ri1 = ri2,
P r

i
1(c) = P r

i
2(c), and as the component system is deterministic, li1 is

uniquely determined, as is li2. Hence, we have ri+1
1 = ri+1

2 . �

9.1.2.2. The Separation of Roles. The four elements of this specification illustrate
the separation of roles quite well: it is the responsibility of the component imple-
menter to ensure that the postcondition Post holds at method processing termi-
nation, and that the communication specification Comm is respected by the calls
the component makes. As the component designer is also the author of the speci-
fication (at least in the “highly separated” scenario of McIlroy), the postcondition
and communication specification are what is guaranteed by the component imple-
menter. The precondition Pre and the future method requirement Eve apply to
states that are not within the control of the component, hence they are assumed
by the component (this also applies to possible return values of synchronous calls
in Comm, which we neglect here). It is hence required from the system designer
to assemble a system that guarantees that Pre and Eve will hold at the required
points in time. The system designers task is facilitated by the postcondition and
communication specification, which declare how the method will be executed, and
what connected components can expect.

This can be illustrated with the self-invocation pattern, as described in
Fig. 7.10. The specification of a method that performs self-invocation reads (with
a relaxed notation which translates in a straightforward manner to the set-oriented
representation of the definition):
spec C:m() :

pre: ϕ
post: ψ
comm: {(true, self .m())}
eve: {(true,m())}

Without considering the pre- and postcondition ϕ respectively ψ, we can see
that C guarantees that, once m is processed, it will invoke m on its role self once
(and then remain silent until the method processing terminates). It also requires
the future reception of method m. It is then straightforward for the system designer
to use the guaranteed behavior to satisfy the assumptions the component makes
about the environment, and connect the role self to C itself. By no means, however,
is there any obligation to do it exactly like this; any source of messages m, sent
repeatedly, will suffice to satisfy C’s assumptions. This freedom is given to the
system designer as it is beyond the concern of the component where it receives the
message m from.
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9.2. Patterns for Precondition-Preserving Concurrency

You can’t handle the truth!

— Aaron Sorkin, A Few Good Men

The problem of concurrent precondition violation can be phrased as the problem
of making assumptions about that target component’s state that become obsolete
by concurrent access. The prevention of such a situation is comparable to the search
for serializability [Pap79] in the context of databases. Serializability states that
the effect of concurrent database reads and writes must not be distinguishable from
non-parallelized, i.e., serial, execution of these operations.

The following patterns establish the preservation of an assumption about an-
other component’s state under concurrent modification by various approaches. We
will refer to the assumption as a predicate, because it actually describes a subset
of the component’s state that we assume the component to be in. We will use the
bank example of Sect. 9.1 to illustrate the different approaches.

9.2.1. Architecture. Of course, the easiest way to avoid concurrent falsification
of assumptions is to inhibit concurrency. If there is no other client attached to the
bank, there will be no problem with concurrent debits.

Such a pattern is not suitable to fix a problematic situation, of course. We
mention it here because most of the time, there will be no problem with concurrent
preconditions due to an architecture that avoids problematic concurrent access.

9.2.2. Quotas. If concurrency is desired, we can try to inhibit that the assumption
can be violated concurrently. One way to do this is to make sure that the various
clients only know about, and only modify, a distinct section of the state space. In
the problematic example, the assumption predicate formed about the state space
of the target component reflects the total balance of the account. By having the
predicate be about an allocated amount, i.e., a quota, we can avoid interfering
debits to invalidate the assumption.

In the “real world”, quotas and sub-accounts may serve many purposes, but
they also provide a means to avoid concurrency problems. The idea is to split
the commonly requested quantity (here, the account’s balance) and allocate an
amount to each user. Thus, the concurrency problem is mitigated, at the risk that
misallocation might keep users from debiting money that exceeds their slot, while
a sufficient amount is still given in the other slots. This then makes complicated
(and, again, problematic with respect to concurrent access) re-booking necessary.

The benefit of quotas, in our setting, is their complete transparency. They can
be retrofitted to an existing system, possibly even by reconfiguration, as neither
the client nor the bank need to be adapted. A proxy component serves as a quota
manager by keeping a balance of its own. This balance needs to be assigned initially
by a quota manager, which can later also take care of reassigning quotas for new
incomes, or handle the re-booking, should it become necessary. To obtain the initial
balance, the manager itself needs to be connected to the bank. Fig. 9.3 illustrates
this setup.

9.2.3. Protocols. Another problem of the debiting example is that the specifica-
tion of the bank’s provided interface is oblivious to the fact that there might be
concurrent access. The problem is that the bank does not relate the result of the
balance method to subsequent effects of debit. If the bank was designed with
concurrency in mind, a protocol might have been employed to avoid the problem of
“concurrent invalidation of assumptions” – e.g., that a client gets an answer that
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Figure 9.3: Bank example with quotas

she uses to calculate a seemingly valid request, only to find that concurrent access
has made that answer obsolete. For example, instead of querying the balance, the
client might issue its intent to debit a certain amount of money. The bank then
allocates that amount for subsequent debits, or neglects the request if the balance
is too low. A debit following a successful allocation will then always succeed. Of
course, if the client decides to abort the debit, the amount might be locked forever,
unless quantitative measures are used (e.g., the amount stays assigned for a limited
time period. This is also prone to concurrency problems, if the deadline is tight
and concurrent requests delay the processing of the debit message – so if such
an approach is attempted, quality of service parameters need to be provided also.
This is well beyond the scope of this thesis.) The assumption predicate, however,
will again be concerned only with a per-client portion of the state space, and, like
previously achieved with quotas, be uninfluenced by the operations of other clients.

We can even retrofit this approach to an existing legacy system, by adding a
proxy to the existing bank that provides such a protocol, as shown in Fig. 9.4. The
client, however, needs to follow the protocol and declare her intent of debiting a
certain amount before issuing the actual request. But even if the client just uses
the debit message, proxies can establish the aforementioned protocol between the
two legacy components to allow for a better recoverability in the case of an error,
which we will discuss in Sect. 9.2.6.

9.2.4. Transactions. Transactions are well-researched concepts for database sys-
tems. From the ACID principle, we primarily use the isolation aspect which asserts
that a client sees a “logical one-user system”, i.e., she cannot find out if another user
is concurrently using the system. Considering the assumption predicate again, this
isolation guarantees that the part of the state space that the predicate is about is
not concurrently modified. In a sense, protocols as discussed above already provide
a transaction, but here we will use the more technical approach of transactions.

Transactions can be enforced by either pessimistic or optimistic approaches,
which both have advantages and problems [SLS92]. The pessimistic approach,
which avoids any error before it can come to pass, is done by locking (usually em-
ploying a two-phase-locking (2PL) protocol [EGLT76]), whereas optimistic syn-
chronization is just watching for problems and mending them, should they occur.
For database systems, this is usually done by a rollback, which requires the ability
to undo changes made to the database in the course of an uncompleted trans-
action. As we have no provisions to do a rollback in our component model, we
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Figure 9.4: Bank example with a proxy

will just consider locking here (and consider variants of the optimistic approach in
Sect. 9.2.6).

For ensuring transaction isolation, it has to be known when a transaction starts
and when it ends. This can either be made explicit by the client (cf. Sect. 9.6.1 for
a way to derive transactions from communication specifications), or by knowledge
about the clients behavior, i.e., that any balance request is followed by a debit
message. Since the balance message is a synchronous call, it is easy to delay
answers to further clients until the current transaction is finished using postponing
(see Sect. 7.5.1). Of course, such a blocking is very prone to deadlock errors, and
needs extra caution.

Given knowledge about the client’s behavior, this approach can be retrofitted
onto legacy systems by installing a transaction manager proxy, as illustrated in
Fig. 9.4. Postponing is required, since synchronous requests need to be delayed.
It is also useful to have information about the calling component to further check
consistency (i.e., if a debit is received it has been sent by the client for whom the
current transaction was begun).

9.2.5. Postponing. Meyer’s approach of reinterpreting the precondition as a
wait-for statement [Mey97] can also be used to deal with the problem of con-
current precondition access. The idea here is to avoid problems with concurrent
modification of the assumption predicate by waiting until the predicate is valid
again. Like for transactions, the basic approach is to postpone debit messages
until the precondition holds again, which can also be handled by a proxy and hence
be retrofitted to any existing system.

9.2.6. Fault Tolerance. So far, all approaches aimed at avoiding any falsification
of the assumption predicate. Any such approach restricts the system in a way
and introduces other problems, like the problem of a complicated communication
extension for postponing or protocols, or the problem of misallocation for quotas.
Fault tolerance, however, tries a more optimistic approach by letting the system
run unchanged, and coping with errors if they occur [Her90]. Depending on the
system at hand, errors might be extremely unlikely (e.g., if the client in the example
only withdraws minor amounts, and always leaves a certain margin to the balance
reported). As put in [Her90], it might then be “easier to apologize than to ask
permission”.
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Again, we can distinguish two kinds of approaches here: The components can
be made fault-tolerant, or, if that is not possible or feasible, the system can be
made fault-tolerant by reconfiguration.

For making components fault-tolerant, there are two ways in the bank example:
Either we relax the precondition of the debit method, so that overcharging is al-
lowed; after all, there can be no problem with preconditions if they read true. This
is, however, not a solution we are interested in here, as we are trying to find ways
to avoid concurrent reconfiguration problems, and certainly not every precondition
can be made true. Or, we can make the client component aware of the chance that
the precondition fails and make it cope with the error. Again, the worthiness of
such an approach is questionable, as it imposes a meaning on preconditions that
considers failing as “not too problematic”. Instead, we want preconditions to hold
for every method call, and if an error is acceptable and should be mediated between
components, this should be done in the user space – which amounts to relaxing the
precondition of the debit method again, and adding an error processing to its post-
condition. But here we do not look for application-specific solutions, but for more
general approaches that are enabled by the component framework.

9.2.6.1. Fault Tolerance by Reconfiguration with Other Strategies. Instead, we try
to make the system fault-tolerant by a dedicated architecture. By monitoring the
communication between the bank and its clients, we can detect problematic with-
drawals, even if they do not exceed the balance yet (i.e., the communication pattern
can be detected). Anyway, if we detect that a precondition is about to fail – or, de-
pending on the error model, that it has just failed – reconfiguration can be employed
to redesign the system with one of the aforementioned alternatives.

This is, of course, not always easy or even possible. Great care has to be
taken that the state is preserved; especially the validity of the assumption pred-
icate the clients have. The main problem is that the balance has just been
exceeded, and the last call (as well as subsequent debiting requests) can only
be successful if some credit is obtained. Let us assume that we can briefly
obtain such a credit to serve problematic requests. Another problem emerges
from the set of clients that issued a balance request, but have not yet issued
a debit message. We call this set the in-transaction set, and it has the form
{(c, n) ∈ C × N | last response to balance called by c was n}.

We briefly review the various methods and discuss the feasibility of reconfigur-
ing the system such that they become effective in order to cope with the error and
prevent further errors:

• Quotas – The in-transaction set needs to be known. Then, a temporary
credit can be used to fill the quotas to sufficient levels.

• Protocols – not possible if the clients must not be changed. If it is feasible
to reconfigure the clients also, this approach is still hard as the clients
of the in-transaction set need to pick up the protocol in its middle; this
makes their initial configuration as well as the configuration of the bank’s
proxy difficult, yet not impossible: A large-enough temporary credit can
be used to assign over-approximated allocations to the clients.

• Transactions – transactions can only be introduced over time, as the
clients of the in-transaction set need to finish their “unguarded” trans-
action first, which will most likely lead to new precondition violations
unless a credit large enough is provided, which again can be calculated
from the in-transaction set.

• Postponing – this is the only approach that can be used without consid-
ering the in-transaction set, and without a temporary credit. A proxy is
introduced that delays debit messages until the balance suffices, including
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the first problematic message. Of course, this introduces all the problems
already discussed for this approach. It might, however, be combined with
transactions or quotas to subsequently introduce this technique, while
waiting for sufficient money to arrive.

9.2.6.2. Fault Tolerance Preserving Optimism. The aforementioned reconfiguration
approaches switch from an optimistic to a pessimistic approach. Such an approach,
which is similar to the example provided in Sect. 8.4.2, is useful to instrument
parts of a complex system with necessary precautions. This is useful if the error is
generally unlikely to occur (and thus not justifying initial configuration with, say,
transactions), but can be expected to happen again if encountered once. If, on the
other hand, the single occurrence of an error does not warrant the assumption that
further errors will emerge, the fallback to pessimism is not justified. For example,
the clients might be well aware of the problem of concurrent access, and leave ample
margin to the balance reported, such that only rarely encountered big debits can
really cause problems. For such situations, and these might be expected to be the
more common ones, an intermediate reconfiguration will be better: Like the fallback
strategies, a pessimistic solution is introduced that sees to it that the precondition
is not violated. But as soon as possible, this solution is removed again, in order to
continue as before.

Since we do not want to wait for the precondition to become true, and since
an error is imminent, we need to take a very problem-specific action; in this case
get a credit. This sort of breaks the idea of a providing a pattern, but generally
speaking, the external fixing of a precondition that is already violated – as opposed
to protecting it from becoming falsified by concurrent access – requires semantic
insight into the precondition’s purpose.

For the bank example, we introduce a component that grants a loan to the
problematic client1. Technically, it acts as a proxy for the bank. It serves the
problematic request by issuing the money, and then proceeds to debit the bank for
the granted amount.

9.3. Verification of Specifications

In this section we will briefly outline the way how specifications can be checked.
We introduce a number of automata that can be used to capture the specification
as well as the behavior of a component system. We then discuss how the various
infinite sets can be made finite by abstraction, in order to allow for model check-
ing. Regarding the separation of roles as discussed in Sect. 9.1.2.2, this aims at
assisting the system designer in assembling components in a way such that their
communication expectations are satisfied.

9.3.1. State Automata. The precondition restricts the set of messages a com-
ponent can process in a given state, and the postcondition advances this state.
Consider the following specification of a component C:
spec C:login(u) : spec C:secret(u) :

pre: u 6∈ users pre: u ∈ users
post: users = users@pre ∪ {u} post:users = users@pre
eve: {(true, logout(u))} eve: τ

spec C:logout(u) :
pre: u ∈ users
post: users = users@pre \ {u}
eve: τ

1This example was conceived in spring 2008, when this was still a pretty normal thing to do.
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Figure 9.5: State automaton example

A login(u) message can only be accepted if its parameter u (to be interpreted as
a user’s ID) has not been parameter to a preceding call, or if a logout(u) message was
received after the most recent login(u) method reception. Invocation of secret(u)
can only be accepted if a preceding call of login(u) was received that has not been
succeeded by a logout(u) call yet. This behavior can be expressed in an automaton,
as shown in Fig. 9.5 (note that the automaton is about a fixed user u only; the
automaton for all users would yield 2|U | states for a finite set U of users).

This automaton describes a protocol that constrains the order in which meth-
ods can be invoked. If we add the outgoing communication as specified by Comm
to this automaton, we obtain an automaton that is quite similar to the interface
automata [dAH01] or component-interaction automata [BvVZ05]. The differ-
ence, which also applies to calculi like the π-calculus [Mil93, Mil99] and protocol
specifications like [AP03], is the asynchronous nature of calls in our component
model, which requires a more elaborate automaton to allow for composition of
specifications. It is always possible to express asynchronous communication with
synchronous means by implementing a queue in the data space, but it voids the
finiteness of the automaton in general, and adds a complexity that should remain
hidden. The most notable difference is due to the fact that components can never
reject a message in the JComp component model; they are input-enabled and thus
quite similar to I/O-automata [LT89]. An even more exact characterization that
makes the message queues part of the automata is given by queue automata [BZ83],
which we will later use to capture the behavior of a component setup in Sect. 9.3.2.

9.3.1.1. Büchi Automata for Protocol Violations. We now build an automaton that
represents the assumptions a component makes. A Büchi automaton is a nonde-
terministic automaton that accepts infinite words by requiring that its acceptance
states are visited infinitely often. Here, we will give the construction of a Büchi
automaton for the negated specification – i.e., an automaton that accepts precisely
the runs that violate the communication specification. We will later use this to find
out whether a given component setup violates the specification of one of its compo-
nents by producing a run that is accepted by the negated specification automaton
– and thus a counter-example to the claim that no such run exists. Since comple-
menting Büchi automata, while possible, produces an exponential blowup [Var05],
producing a negated automaton directly is more feasible.

Definition 9.1 (Büchi automaton). A Büchi automaton is a tuple A =
(Σ, P, p0, δ, F ) with Σ a (finite) alphabet, P a (finite) set of locations, p0 ∈ P
an initial location, F ⊆ P a set of acceptance locations, and δ ⊆ P × Σ × P a
transition relation. We write p l−→ p′ ∈ δ for (p, l, p′) ∈ δ.

An infinite word w0w1 . . . ∈ Σω is accepted by A if there is a sequence p0p1 . . . ∈
Pω such that
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Figure 9.6: Specification Büchi automaton example

• (pi
wi−→ pi+1) ∈ δ for all i ∈ N,

• for every i ∈ N there is a j ≥ i such that pj ∈ F .

The traditional definition of Büchi automata requires finite alphabets and finite
states, but here we will allow infinite sets also, and later revert to finite sets again.

The basic idea of the translation is to consider how a specification can be
violated, and two causes can be distinguished:

(1) A message is received in a state that violates the method specification’s
precondition, or

(2) a message that is required by the Eve-part of a specification is never
received.

If the former condition is ever satisfied, we can immediately deduce that the run we
are currently investigating does not satisfy the specification; whereas for the second
condition, we need to ensure that the run will never contain a message reception
that would satisfy the specification; this is why we require a Büchi acceptance
condition. The idea here is to nondeterministically go to a state that claims that
the required message will indeed never be received – in Fig. 9.6 (note that this
automaton is a simplified version, lacking many states and transitions), the left
trap state is entered in an attempt to prove that logout is never received. The
right trap state is reached upon a precondition violation, e.g., an attempt to send
secret before login has completed successfully. Note that for checking such Büchi
automata against a system, a fairness constraint [KPRS06] needs to be imposed:
If two components keep sending each other a message over and over again, a third
component might never advance to sending a desired message that would satisfy
an Eve condition. Since a component that can dequeue a message (which is what
we are interested in) can not be deprived of the chance to do so, weak fairness is
sufficient to verify Eve specifications. Otherwise, the specification automaton is
similar to the state automaton described informally above.

We hence build, for a component c out of a set of components C, a Büchi
automaton (Σ, P, p0, δ, F ) with Σ = C×M×V, P = P s∪P t with P s = {pσ | σ ∈ S}
and P t = {ptm(v) | m ∈M , v ∈ V} ∪ {pt}, p0 = ι(c) and F = P t.

As for δ, let us assume that we have a specification
spec c : m() :

pre: prem
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post: postm
comm: commm

eve: evem
for each m ∈

⋃
I∈IP (c) I. Then δ is the smallest set such that the following condi-

tions hold:

• (p
(c,m,v)−→ p′) ∈ δ for p, p′ ∈ P s if the method m(v) is receivable in state

p, i.e., (p, v) ∈ prem, and p′ is an effect due to the postcondition, i.e.,
((p, v), (p′, v′)) ∈ postm for at least one v′ ∈ V,

• (p
(c,m,v)−→ pt) ∈ δ for p ∈ P s, if m(v) is not receivable in state p, i.e.,

(p, v) 6∈ prem,

• (p
(c,m,v)−→ ptm′(v′)) ∈ δ for p ∈ P s, if m′(v) is required by evem, i.e.,

(p, (m, v′)) ∈ evem,
• (pt M−→ pt) ∈ δ for all M ∈ Σ,

• (ptm
(c,m′,v)−→ ptm) ∈ δ for all c ∈ C,m′ ∈M \ {m}, v ∈ V,

• (p
(c′,m,v)−→ p) ∈ δ for all p ∈ P and c′ ∈ C \ {c}.

By taking the union of such Büchi automata, a specification automaton for an entire
component (and, subsequently, for an entire component setup) can be built:

Definition 9.2 (Union of Büchi automata). The union of two Büchi
automata (Σ, P 1, p1

0, δ
1, F 1) and (Σ, P 2, p2

0, δ
2, F 2) is the automaton (Σ, P 1 ×

P 2, (p1
0, p

2
0), δ, F 1 × P 2 ∪ P 1 × F 2) with δ such that ((p1, p2), s, (p′1.p′2)) ∈ δ if

(p1, s, p′
1) ∈ δ1 and (p2, s, p′

2) ∈ δ2.

The last statement about δ (i.e., informally p
c′.m(v)−→ p for any c′ not identical

to the c under consideration) guarantees that any union of Büchi automata built
for the specification of a set of components will change only one of the elements
of the tuples that form the state space P . This is also why the acting component
(i.e., the receiving component) is made part of the alphabet Σ.

9.3.2. Queue Automata. Queue automata [BZ83, Rus08] are similar to nonde-
terministic finite automata, but also provide a number of queues. Each transaction
either receives from or sends to a queue.

Definition 9.3 (Queue automaton). A (finite) queue automaton is a tuple
A = (Q,Σ, P, l0, δ, F ) where

• Q is a finite set of queues,
• Σ is a finite set of messages,
• P is a finite set of locations (also called control states),
• p0 ∈ P is the initial location,
• δ ⊆ P ×Q× Σ× {?, !} × P is the transition relation,
• and F ⊆ P is the set of final locations.

A state of A is given by a pair s = (p, q) with p ∈ P and q : Q → Σ∗. Let SA
denote the set of all states of A. A state (p, q) ∈ SA is called initial if p = p0 and

q(qi) = ε for every qi ∈ Q. A state is called accepting, if p ∈ F . We write p
q?s−→ p′

for (p, q, s, ?, p′) ∈ δ and p
q!s−→ p′ for (p, q, s, !, p′) ∈ δ.

An infinite sequence (p0, q0)(p1, q1) . . . ∈ SωA is accepted by A if
• for all i ∈ N there exists q ∈ Q,m ∈ Σ, f ∈ {?, !} such that

– (pi, q,m, f, pi+1) ∈ δ,
– f =?→ qi(q) = m :: qi+1(q),
– f =!→ qi+1(q) = qi(q) :: m,
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– ∀q′ ∈ Q . q′ 6= q → qi+1(q) = qi(q).
• (p0, q0) is initial.
• For all i ∈ N there exists a j > i such that (pj , qj) is accepting.

The language L(A) is the set of all accepted sequences of SωA.

Queue automata hence do not accept words, but runs that represent the pro-
gression of states and queues of a system. It is usually not important how such a
run can be assembled; we are only interested in whether any accepting run exists.

Queue automata are Turing-complete, as the queue can be used to simulate a
tape. The basic proof idea is that both a left shift and a right shift can be simulated
on the queue: One direction via reading and re-enqueueing an element, the other
direction via adding a special element to the queue, then polling and re-enqueueing
elements until the special element is read again; the last element read can be stored
in the control state [Rus08]. Hence, the class of queue automata with as little as
one queue and a three-letter Σ is already Turing-complete.

There are two differences between queue automata and our approach towards
specifying systems: For the specification as given above, no finiteness of states
is required, and communication is not directed to queues, but roles. But if we
ignore the infiniteness of S for now, and redirect the communication to the target
components, a direct translation is possible. We first build a queue automaton for
a single component c. It is convenient to extend δ to be a subset of P × ((Q ×
Σ×{?, !})∪ {τ})×P and thus allow the automaton to do silent moves that reflect
advancement of components without communication. The τ -labelled transitions
can later be removed again.

The set P of control states is given by the set S ×P × (C ∪ {⊥})× {r, b}, the
alphabet Σ by C ×M × V and the queues Q by {qrc′ | c′ ∈ C} ∪ {qsc′ | c′ ∈ C}.
For the initial state, we have p0 = (ι(c), success,⊥, r). δ can be defined by the runs
restricted to the actions performed by c, so let Lc = CALL(c1 : c)∪ . . .∪ LOOP(c : c).

Let T be the LTS of the component setup containing c. δ is defined as the
smallest set such that, for each run r ∈ Runs(T ) and all i ∈ N, we have, if
s0

l0−→ . . . = r|Lc
:

• (σ, P, c′, r)
qs

c?(c′′,m,v)−→ (σ′, P ′, c′′, r) if li ∈ DEQ(c : c, c′ : c′′,m : m, v : v)
and σ(si(c)) = σ and σ(si+1(c)) = σ′ and P (si(c)) = P and P (si+1(c)) =
P ′,

• (σ, P, c′, r)
qs

c′′ !(c,m,v)
−→ (σ′, P ′, c′, b) if li ∈ CALL(c1 : c, c2 : c′′,m : m, v : v)

and σ(si(c)) = σ and σ(si+1(c)) = σ′ and P (si(c)) = P and P (si+1(c)) =
P ′,

• (σ, P, c′, r)
qs

c′′ !(c,m,v)
−→ (σ′, P ′, c′, r) if li ∈ SEND(c1 : c, c2 : c′′,m : m, v : v)

and σ(si(c)) = σ and σ(si+1(c)) = σ′ and P (si(c)) = P and P (si+1(c)) =
P ′,

• (σ, P, c′, r)
qr

c′ !(c,m,v)
−→ (σ′, P ′, c′, r) if li ∈ RET(c1 : c, c2 : c′,m : m, v : v) and

σ(si(c)) = σ and σ(si+1(c)) = σ′ and P (si(c)) = P and P (si+1(c)) = P ′,
• (σ, P, c′, r) τ−→ (σ′, P ′, c′, r) if li 6∈ DEQ(c : c) ∪ CALL(c : c) ∪ SEND(c :
c)RET(c : c) and σ(si(c)) = σ and σ(si+1(c)) = σ′ and P (si(c)) = P and
P (si+1(c)) = P ′.

Additionally, we have (σ, P, c′, b)
qr

c ?(c′′,m,v)−→ (σ, P, c′, r) for all P ∈ P, c′ ∈
C \ {c}, σ ∈ Σ. We then set F = P , since any execution that goes on forever
is acceptable for us here. Note that such an automaton will most likely not ac-
cept anything, as most of the queues are not used elsewhere, and, especially, no
communication is transmitted.
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For assembling systems of multiple components, queue automata can be par-
allelized; they do not synchronize, but identify the name-identical queues. So, we
can define the union of two queue automata as

Definition 9.4. Let (Q,Σ, P 1, p1
0, δ

1, F 1) and (Q,Σ, P 2, p2
0, δ

2, F 2) be queue
automata. Their union is defined as the queue automaton (Q,Σ, P 1 ×
P 2, (p1

0, p
2
0), δ, (F 1×P 2)∪ (P 1×F 2)) with ((p1, p2), q,m, f, (p′1, p′2)) ∈ δ if p2 = p′2

and (p1, q,m, f, p′1) ∈ δ1, or p1 = p′1 and (p2, q,m, f, p′2) ∈ δ2.

In this way, a queue automaton can be built for a component setup.
Note that even as we define the queue automata by means of runs, which in

turn require a ready-made LTS, it is straightforward to define them on basis of
the method evaluators; it is merely for the additional technical complexity that we
prefer the run-derived approach.

9.3.3. Abstracting the State. The original definition of queue automata only
had a finite set of control states, and a finite set of messages. Since S and V are
infinite, we get into a problem here, which can be solved by abstraction. Technically,
an abstraction is a function, in this case S → S and V → V , and, in this context,
we require S and V to be finite. For example, we might try and use a set S =
{empty ,nonempty} and V = {user} in the login example given above in Sect. 9.3.1,
with functions

as(s) =

{
empty , if C.users = ∅
nonempty , otherwise

and av(v) = user . Such an abstraction is mostly worthless, however: When evalu-
ating the specification, we need to be conservative, meaning that even if the states
of C is nonempty , we always have to assume that u 6∈ users at the precondition of
C.secret(u).

An abstraction more suitable is what we call a “one singled out”-abstraction
where we abstract the parameter values by V = {theuser , otheruser} meaning that
either the one user we care about is mentioned, or another user we do not further
consider. The states are abstracted by S = {theoneLoggedIn, theoneNotLoggedIn},
with the obvious abstraction functions. This abstraction is sufficient to exclude a
protocol failure: If theoneLoggedIn is the state of the component C upon dequeue-
ing of method secret , we can rule out that an illegal access is made. A similar
abstraction can be given for hash tables, where a single element can be explic-
itly investigated, and the others can be identified. Of course, such an abstraction
might still be insufficient if elements are to be compared according to some means,
but in our experience, the most prevalent utilization of specification is sufficiently
abstracted by this approach.

9.3.4. Model Checking Component Setups. If the state is abstracted such
that the domains of the component state abstractions and method parameter ab-
stractions are finite, model checking can be used to check the conformance of com-
ponent specifications within a component setup, but for one problem: The queues,
which are unbounded (and hence make the LTS of a component setup infinite, even
if the queue automata states are finite). In essence, we wish to show that any run
of the component setup is admissible by the specification.

Let Tc be the LTS of the component setup, and Ts be the LTS of the speci-
fication; we then wish to show Runs(Tc) ⊆ Runs(Ts). Constraining ourselves to
asynchronous messages for brevity, we can show this by the usual automata-based
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model checking approach:
Runs(Tc) ⊆ Runs(Ts)

iff L(Ac) ⊆ L(As)

iff L(Ac) ∩ L(As) = ∅
iff L(Ac) ∩ L(A¬s) = ∅
iff L(Ac ×A¬s) = ∅.

Solving the question of the last line is known as the emptiness problem, and it is
well known how to do this for Büchi automata [CGP00]. Given an interpretation
for the conjunction × of a queue automaton Ac and a Büchi automaton A¬s as
defined in Sect. 9.3.1.1, we can use this approach to model check a system for
conformance to a specification. This definition is fairly straightforward:

Definition 9.5 (Conjunction of a queue and a Büchi automaton). Let Ac =
(Q,Σ, L, l0, δ, F ) be a queue automaton and As = (Σ, P ′, p′0, δ

′, F ′) be a Büchi au-
tomaton. The conjunction Ac × As for a mapping msg : Q × Σ → Σ′ is a queue
automaton (Q,Σ, L′′, l′′0 , δ

′′, F ′′) with
• L′′ = L× P ′,
• l′′0 = (l0, p′0),
• δ′′ defined as the smallest set such that

– if l τ−→ l′ ∈ δ then (l, p) τ−→ (l′, p) ∈ δ′′ for all p ∈ P ′,
– if l

q!m−→ l′ ∈ δ then (l, p) τ−→ (l′, p) ∈ δ′′ for all p ∈ P ′,
– if l

q?m−→, l′ ∈ δ and p
s−→ p′ ∈ δ′ and msg(q,m) = s, then (l, p)

q?m−→
(l′, p′) ∈ δ′′.

• F ′′ = F × F ′.

For component specification, we define the mapping msg as
msg(qsc′ , (c

′′,m, v)) = (c′,m, v) (i.e., we map the message reception event of
message m(v) on queue qsc′ to the Büchi automaton label (c′,m, v)).

The queues are the sole difference between Büchi automata and queue au-
tomata, but as queue automata are Turing-complete, most properties about them
are undecidable, including their emptiness. Luckily, components will usually not
try to simulate a Turing machine tape with their communication, and resort to
rather limited patterns of communication. If these patterns can be described by
regular languages, a technique called regular model checking [BG99, BJNT00] can
be employed. As mentioned in Chapter 5, model checkers require a finite graph to
operate on, and regular model checking makes queue automata finite by describing
an infinite set of queue contents by a regular expression, hoping that only a finite
number of different regular expressions are required to do so. For example, if a
component c can send an unlimited number of messages m to another component
c′ (and there are no other connections to c′), we can abstract the queue of c′ as
m∗, meaning that it can contain any number of m messages, including none at all.
These scenarios are not too unlikely, with an example given in Sect. 8.4.2.

Fig. 9.7 shows how a queue automaton can be abstracted. For the actual tech-
niques to obtain such an abstraction, the reader is referred to [BG99, BJNT00,
Nil05]. Obviously, not every queue automaton can be abstracted like this, with a
counter-example given in Fig. 9.8.

While techniques exist to approach such more complicated automata [FP01,
BH99], we can expect components to be more benign. Either the components
are involved in tightly-knit transactions, or they send an unbounded number of
messages without waiting for response, which is perfect for regular model checking.
The author has the hunch, however, that these cases can be proven to be checkable
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Figure 9.7: A queue automaton and its abstraction
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Figure 9.8: A queue automaton that cannot be finitely abstracted by regular model
checking

by normal model checking with bounded queues all the same, though a proof cannot
yet be given2.

2The basic idea is similar to the Myhill-Nerode theorem for regular languages: As only a finite
number of control states are available for a queue automaton, only finitely many queue content
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Note that it is, in general, insufficient to check just directly connected com-
ponents, as their communication behavior can depend on other components. For
example, the semantical behavior of a filter F for the interface I is specified as
follows: For each (asynchronous) method m ∈ I, we use a specification
spec F ::m() :

pre: true
post: true
comm: {next .M()}
eve: τ

which guarantees that the reception of method M results in a sending of M over
the role next , but does not constrain the reception of messages in any way. If the
component that is targeted by role next uses a more restricted protocol, a mere
consideration of the filter and its target component will appear as an inconsistent
system, neglecting that the component that sends messages to the filter might re-
spect the protocol of the filter’s target. We believe that a subsequent addition of
further components to rule out errors originating from considering too few compo-
nents (in a style similar to CEGAR model checking [CCG+03, HJMS03]) could
offer modular model checking in such a situation, but this exceeds the scope of this
thesis.

Supporting model checking of component setups provides a tool to the sys-
tem designer that can be used for detecting inconsistencies in the communication
behavior and the expectations of the individual components. We do not provide
a similar approach for the component designer: Such a tool would be useful for
comparing the component specification to the actual component implementation,
guaranteeing that the specified communication behavior is refined by the actual
component implementation. Doing such checks might utilize well-developed tools
like Java PathFinder [VHB+03] as demonstrated in [PPK06]. The necessity
to provide a finite-state abstraction of a component’s states, however, requires a
mapping of actual component data states to the abstraction. This is an interesting
topic, not only because of model checking techniques, but also for automated test
generation.

9.4. Evaluating Correctness of Reconfiguration

The failed transmitter has a backup aboard, but settings on five

other instruments in the telescope must be changed to use the

device. The instruments have not been activated in their backup mode

since the early 1990s or late 1980s, the space agency said Monday.

— Houston Chronicle, “NASA pushes Hubble’s makeover back to February”,
Sept. 29, 2008

When describing the basic idea of reconfiguration in Chapter 2.4.5, we stressed
the importance of the separation of roles. The author of a component should not
be required to take every possible reconfiguration scenario into account, and ideally
not be concerned with reconfiguration at all: If the component is to be employed in
a scenario with reconfiguration, its regular interfaces should be sufficient to allow
for complete reconfiguration.

equivalence classes can be distinguished. As an example, if the queue content is abstracted by m∗

and we read m two times, it would be sufficient to bound the queue with a length of 2 to assert
that this reading is possible. The true problem is how to find out the bound, without doing the
regular model checking process before, and then analyzing the read operations of the state space
obtained.
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The downside to such a separation is the loss of information. Implementa-
tion details are hidden behind the interfaces; and of these interfaces we usually
just know the syntactical structure. If the internal behavior of components is not
known, a reconfiguration designer will have a hard time to figure out whether a
reconfiguration plan will work as intended. Component specifications provide rem-
edy to this problem. The system designer again takes the responsibility to build
the reconfiguration in such a way as to preserve the system’s function. But the
challenge is a little more subtle in the context of reconfiguration: not only does the
final configuration have to satisfy the assumptions of the individual components,
but the reconfiguration also needs to be conducted in a way such that, at no point
in time, components experience a failure.

Both aspects are discussed in the literature. The aspect of reconfiguring the
setup in a way such that the assumptions of components are preserved is known
as the concept of “mutual consistent states”3. The consideration of maintaining
consistency in the presence of the reconfiguration process has seen much research,
although often only some aspect is covered, e.g., the absence of concurrent commu-
nication with the reconfiguration process in [AP05], or the often-cited criteria of
quiescence [KM90] and tranquility [VEBD07] which avoid the disruption of on-
going transactions by reconfiguration. In this chapter, we will relate our approach
of defining components and conducting reconfiguration with this research.

9.4.1. How Can a Reconfiguration Fail? Basically, reconfiguration fails if the
new system violates the assumptions of one of its components, thus violating the
mutual consistent state requirement. In this section, we will use the example of a
component cr that expects to receive the messages a, b and c, over and over again,
in exactly this order. Let us assume that the sender cs of those messages is replaced
by c′s. Now, the assumptions of cr can be violated in three ways:

• First, c′s might be a badly chosen component. It might send cba and thus
violate the assumptions of cr. Obviously, the reconfiguration designer
failed to adhere to cr’s requirements and devised an invalid reconfigura-
tion plan. In this case, it would be nice to detect this problem before
reconfiguration and prevent the problematic replacement from ever hap-
pening.

• Second, c′s might be a component that just keeps sending abc as desired,
but cs might have just sent ab when the reconfiguration happens. Af-
ter reconfiguration, c′s starts to send abc, thus producing a sequence not
expected by cr. Here, the reconfiguration plan itself would allow for a
consistent reconfiguration, but the point in time is chosen badly.

• Third, c′s might send abc as required and pick up the message sequence
right where cs stopped it. Still, the reconfiguration process itself might
mix up the messages and thus produce an invalid sequence. We have seen
two examples of such problems in Sect. 6.7.4 and Sect. 6.7.5. If those
problems are known, it is easy to use message sequence IDs or extended
component locking to avoid the resulting assumption violation (as it is, in
a slightly different context, suggested in [AP05]).

We can consider the latter problem accounted for, and focus on the two former
problems.

3As mentioned before, this term was introduced by Kaveh Moazami-Goudarzi, but as this
work is not available, we omit the reference here. The term is also mentioned in [Weg03].
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9.5. Mutual Consistent States

When a component A is connected to a component B via a role r, then A needs
to make some assumptions about B, as we have discussed in Chapter 9.1. If B is a
hash table, the assumption might be that adding an object x by calling r.add(x)
will put B into a state that stores the fact that x is stored. But actually, A will
not reason about the actual component B, since that would violate the separation
of roles: How B is chosen is not the concern of A. Instead, it will reason about the
assumptions it makes to the component that is linked to its role r.

This is actually the major benefit of using a component-based architecture as
a basis for reconfiguration: If we substitute B by C and take the necessary precau-
tions, A will not be aware of the reconfiguration. It will continue communicating
over r; and it will continue to make its assumptions about r. Reconfiguration is
consistent if these assumptions are met before and after the reconfiguration (and,
of course, at any time during the reconfiguration, an issue addressed in Sect. 6.4).
This is the concept of mutually consistent states: Reconfiguration is consistent if
the communication assumptions of those components not directly involved in the
reconfiguration (i.e., those in the R element of the plan that get removed) are not
violated during or after the reconfiguration.

9.5.1. Choosing a Suitable Component. Theorem 6.2 covers an artificial case
of component replacement by substituting a component with an identical version.
The communication traces of a system configured this way remain the same as
for the unreconfigured system; and since the assumptions of components are only
about received communication, as illustrated by Lemma 9.1, all components have
their assumptions met.

Such an “invisible” replacement is obviously entirely useless, and the example
was provided as a mere indicator for the ability of reconfiguration to remain in-
visible. There are domains, like hot code update or nonfunctional replacements as
discussed in Sect. 8.4.4, where it might be feasible to replace a component with a
functionally equivalent component that satisfies the same specification. In other
domains, the modification of communication is a vital property of the reconfig-
uration. However, taking a closer look at the examples of Chapter 8, only few
examples actually change the communication conducted with components which
are truly “outside” of the extent of the reconfiguration plan; the example that
comes closest is that of adapting to external change in Sect. 8.3. Here, substituting
an RSS reader with a placeholder component during network problems does change
the messages received by the consuming component, but neither changes the fact
that they are sent (this is what is actually established by reconfiguration) nor their
conformance to a relaxed specification.

This “conformance to a relaxed specification” is the basic idea of reconfigura-
tion: By allowing a broad range of communication (e.g., for the RSS example, any
meaningful report on the outcome of a RSS fetch attempt by the consumer com-
ponent) reconfigured components can alter the communication without violating
assumptions.

9.5.2. Refinement. Let us investigate the case where a component is replaced by
another component that has the same communication expectations and behavior.
Obviously, if the former system was correct with respect to these assumptions,
then so is the reconfigured one. Note that, however, a system that does not fully
respect the specifications might have been working well before the reconfiguration,
and produce errors afterwards, as the implementation of the components might
produce behavior that now illustrates the missing adherence to the specification.
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Refinement is a generalization of the concept of replacing compo-
nents with an identical specification. A component method specification
S′ ≡ (Pre ′,Post ′,Comm ′,Eve ′) refines another component specification S ≡
(Pre,Post ,Comm,Eve) if it works in the same setups as S did, and possibly more
(obviously, this holds if S′ = S). The idea is to have S′ be defined in a way such
that it accepts each run S accepts (possibly more) and produces only the runs that
S produces (possibly less). For the four specification elements, this means:

• Pre ′ ⊇ Pre (i.e., the admissible set of state and value combinations at the
time of method dequeueing has grown, now accepting more situations),

• Post ′ ⊆ Post (i.e., the admissible states at method execution have been
reduced, allowing less nondeterminism during method execution),

• Comm ′ ⊆ Comm (i.e., as for Post ′, less communication sequences are now
allowed, making the method’s behavior less nondeterministic),

• Eve ′ ⊇ Eve (i.e., more variants of satisfying future method invocation are
given).

These relations reflect an advancement in the design of the component, which con-
sists of more dedicated choices (i.e., a more dedicated communication sequence and
postcondition, obtained by further investigating implementation possibilities of the
component) and more flexibility (i.e., a weakened precondition and less incoming
communication expectations, obtained by an improved handling of previously in-
compatible environment behavior).

A component whose method specifications all are refinements of the method
specifications of a second component can be used as a substitute: With the en-
vironment staying the same, all runs experienced are already compatible to the
preconditions and communication expectations, and since those got less strict, they
remain compatible. At the same time, since the component behaves in a way that
was already admissible for the previous version, the environment’s assumptions are
satisfied.

For the substitution of multiple components, they often can be considered as a
combined, hierarchical component, with a behavior derived from their open ports.

But sometimes, a component will have to be replaced by a component that
exhibits an altogether different communication behavior, especially with respect to
the Comm element – e.g., the placeholder component of the example in Sect. 8.3.3,
which does not relay the communication to the chain of readers, but directly to
the target, something that is most likely not covered by the original specification
of the chain head. Likewise, if a component is genuinely added, a substitutability
criterion will not do. There might be further investigations of port protocols, but
here, we suggest the direct checking of the new configuration.

9.5.3. Checking Generic Reconfiguration. Since Theorem 6.1 asserts us that
reconfiguration using injective shallow reconfiguration plans is perceived to be
atomic, we do not need to consider intermediate states between the two config-
urations. If we attempt model checking for the system by making its state finite,
we can model the reconfiguration as an atomic step, which dramatically cuts down
the state space – as shown in Fig. 9.9. For this example, we implemented the
component model in the Maude programming language [CDE+07]. We then im-
plemented the fault tolerance example described in Sect. 8.4.3. Building on Corol-
lary 6.1 we introduced a global blocking flag that prohibits advancement of any
component during the execution of the reconfiguration, thus obtaining atomicity.
We then added a variable number of processes that do nothing besides doing some
action that interleaves with the reconfiguration if the global blocking flag is not set.
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Figure 9.9: Atomic and interleaved reconfiguration checking with Maude

Prohibiting interleaving cuts down the state space, and, in our experience even
more drastically, the time required. Ironically, our interest here is exactly oppo-
site to the original interest in perceived atomicity: While we do not want to block
components in the component model in order to minimize the impact of recon-
figuration, for model checking we want to spend as little steps as possible on the
reconfiguration, again to minimize the impact; but this time, on the extent of the
state space.

We can also use this for verifying properties of the component state. Let ϕ =
(c,Σ) ∈ C × ℘(S) be a pair consisting of a component and a set of data states.
For an LTS T = (S,L, T ), we write T |= ϕ if, in each reachable state s ∈ S with
c ∈ dom(s), σ(s(c)) ∈ Σ.

Corollary 9.1. Let Ta be the LTS of a component system that can get re-
configured by atomic execution of an injective shallow plan ∆s, and let Ti be the
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transition system of the same component system that can get reconfigured by inter-
leaved execution of ∆s. Then Ta |= ϕ for a state property ϕ = (c,Σ) iff Ti |= ϕ.

Proof. This follows almost directly from Corollary 6.1. We know that
Tracescomm(Ta) = Tracescomm(Ti). Assume Ta 6|= ϕ. Then there is a run r =

s0
l0−→ . . .

ln−1−→ sn ∈ Runs(Ta) with sn 6∈ Σ and Tracescomm(r) ∈ Tracescomm(Ta).

Assume Ti |= ϕ, hence there is no run r′ = . . .
l′n−1−→ sn ∈ Runs(Ti). But

since Tracescomm(Ta) = Tracescomm(Ti), there is a run r′ with Tracescomm(r′) =
Tracescomm(r); hence the last message received in r and r′ by component c is the
same. Since the method evaluator would allow reaching sn in Ti, the state of c at
this message reception needs to differ. By repeating this argument inductively, we
finally conclude that there need to be different initial states, which is a contradic-
tion to the assumption that both LTS are about the same component system. The
other direction (Ti 6|= ϕ→ Ta 6|= ϕ) is shown in the same way. �

Besides the improved performance of model checking with atomic instead of in-
terleaved reconfiguration, Fig. 9.9 also illustrates the basic problem of model check-
ing asynchronous systems: Even if we neglect the problem of unbounded queues
(in our example, we took care of not allowing repeated asynchronous sending of
messages, so that the queues never hold more than one message), every additional
component multiplies the state space, leading to exponential growth. In the Maude
implementation, we also ruled out another source of exponential growth: A non-
deterministically chosen point in time where the reconfiguration is started. These
three elements – unbounded queues, concurrent processes, and nondeterministic
reconfiguration – each are a threat to the feasibility of model checking, and to-
gether are beyond tractability for anything exceeding very high-level abstractions
in special environments [GH06]. Thus, a deduction-based approach seems more
promising [BBGH08].

9.6. Transaction-Preserving State Transferal

The second problem discussed in Sect. 9.4.1 is the problem of a badly chosen
point in time to do the reconfiguration, as it interferes with an ongoing transaction.
In Sect. 8.1.4.2 we have introduced the notions of quiescence and tranquility.
We have seen that tranquility is a concept that can be used to refrain from state
transferal, or, at least, from a state transferal of transaction-local data. Hence,
the problem of interrupting partially finished transactions may be considered to
be an otherwise sound reconfiguration that is executed at an unsuitable point in
time, or as a reconfiguration that omits the transferal of important “transaction
progression” data that keeps track on how far transactions have progressed. After
all, if cs can become replaced after having sent ab only, then cs maintains internal
information that tells it that it has to send c next – as reconfiguration cannot
interrupt a method execution in our model. This information needs to be carried
to c′s. A failure to do so again amounts to a malformed reconfiguration plan; and
since quiescence and tranquility are well-researched, we might find it fashionable to
take that position.

There are two different aspects to state transferal with respect to reconfigu-
ration correctness: First, transaction-local data needs to be retained, in the given
example the information that ab got sent and c is to be sent next, and second, global
data that is independent of ongoing transactions, but influences further communi-
cation nevertheless. The distinction, however, is vague: a global data state might
be considered to be the transaction-local state of an everlasting transaction in which
all communication partners participate.
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Figure 9.10: Client/Hash table example

For example, a hash table might require a transaction protocol that mandates
that an element is searched before it is inserted (a requirement that might origi-
nate from the component using the query to cache the insertion point; while this
rationale is unknown to the component user, the protocol can be enforced by the
communication specification), and at the same time guarantees that any further
query for an element is answered correctly, here by an asynchronous callback4:
spec HT ::query(e) :

pre: true
post: setelement = e ∧ elements = elements@pre
comm: (e ∈ elements, cb.elementFound()) ∪

(e 6∈ elements, cb.elementNotFound())
eve: τ

spec HT ::add(e) :
pre: setelement = e
post: elements = elements@pre ∪ {e}
comm: (true, ε)
eve: τ

While common sense tells us that the setelement state variable is transaction-
local, while the elements state variable is global state, this cannot be deduced from
the specification, nor is the fact that a transaction is required visible.

Let us consider the following specification of a client component as illustrated
in Fig. 9.10:
spec Cl ::handle(e) :

pre: element = ⊥
post: stored = stored@pre ∧ element = e
comm: (true, ht .query(e))
eve: (e ∈ stored , elementFound()) ∪ (e 6∈ stored , elementNotFound())

spec Cl ::elementFound() :
pre: element 6= ⊥
post: stored = stored@pre ∧ element = ⊥
comm: (true, ε)
eve: τ

spec Cl ::elementNotFound() :
pre: element 6= ⊥
post: stored = stored@pre ∪ {element} ∧ element = ⊥
comm: (true, ht .add(element))
eve: τ

Transactions become visible in the Eve-clause of the client; and generally, Eve-
clauses hint at pending transactions. Still, the transaction-local data is not visible

4This example is actually used in the cmc model checker in a closed hash table implementation
that uses rehashing to find a free element position. Obviously, it is easy to relax the example such

that a setelement 6= e leads to a recalculation of the insertion position, but for the sake of the
example we leave it like this.
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(or, at least, not without a careful analysis of the use of the variables). In many pro-
gramming languages, the programmer is required to explicitly distinguish between
transaction-local and global data (e.g., in Java with the seldom used transient
keyword [OK99]), thus explicitly declaring data to be transaction-local.

9.6.1. Formalizing Tranquility. Let us assume a set T of transaction identi-
fiers. Components can initiate transactions, they can terminate transactions they
have begun (meaning that the protocol that is encapsulated within a transaction
has finished), and they can participate in other components’ transactions. In the
above example, the client component Cl initiates a transaction in its handle method
and terminates it in either elementFound or elementNotFound ; while the hash table
component HT participates in the transaction without starting its own.

We hence define methods tcs, tct, tcr : C ×M × V × S → ℘(T ), that, given
a component, a method that is executed by this component, the values of the
parameters for the method invocation and the component’s state tell us which
transactions are begun (tcs), terminated (tct) or required to be active (tcr). For

a finite run r = s0
l0−→ . . .

ln−1−→ sn, we can calculate the set of active transactions
transa(c, r) ⊆ T of a component c by defining inductively:

• transa(c, s0) = ∅,

• transa(c, s0
l0−→ . . .

li−1−→ si
li−→ si+1) = transa(c, s0

l0−→ . . .
li−1−→ si)∪A \R

with A = R = ∅ if li 6∈ DEQ(c : c) and, if li ∈ DEQ(c : c,m : m, v : v),
A = tcs(c,m, v, σ(si+1(c))) and R = tct(c,m, v, σ(si+1(c))).

The set transp(c, r) of participated transactions is calculated in a similar fashion:

• transp(c, s0) = ∅,

• transp(c, s0
l0−→ . . .

li−1−→ si
li−→ si+1) = transp(c, s0

l0−→ . . .
li−1−→ si)∪A \R

with
– A = tcs(c′,m, v, σ(si+1(c′))) ∪ tcr(c′,m, v, σ(si+1(c′))) if li ∈

CALL(c1 : c, c2 : c′,m : m, v : v) ∪ SEND(c1 : c, c2 : c′,m : m, v : v), and
R = ∅,

– A = ∅ and R = tct(c′,m, v, σ(si+1(c′))), if li ∈ DEQ(c :
c′, c,m : m, v : v), and

– A = R = ∅, otherwise.

transa(c, r) tells us which transactions a component is involved in; these trans-
actions are started and ended by dequeueing an appropriate message. transp(c, r)
tells us which transactions a component participates in, which are those that are
active (or about to become active) in some component, and to which a message has
participated (possibly starting the transaction).

We have discussed in Sect. 8.1.4.2.2 that two of the conditions of tranquility of
a component c in a state s are already ensured by our approach towards reconfig-
uration:

(2) It [component c] will not initiate new transactions, and
(3) it is not actively processing a request.

Both are guaranteed due to reconfiguration only being possible in states where
a component is not actively executing a method, i.e., P (c̃) ∈ {success, fail}, and
reconfiguration will take care of no further message processing on behalf of c. Hence,
tranquility needs to be checked for the remaining two properties:

(1) It is not currently engaged in a transaction that it initiated, and
(4) none of its adjacent nodes are engaged in a transaction in which this node

has already participated and might still participate in the future.
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We can now formalize the tranquility requirements: A component c is in a tranquil

state, if for the current run r = s0
l0−→ . . .

ln−1−→ sn of the system holds:

(1) transa(c, r) = ∅,
(2,3) RECONF is applicable,

(4) transp(c, r) = ∅.

Note that the property (4) is not an exact translation: We omit the possibility of
removing those transactions that are active and have been contributed to, but will
not be contributed to any further; our framework does not provide a means to find
out if a method will no longer be called in general (though static analysis might be
used to obtain an under-approximation).

In the hash table example, query(e) starts a transaction te for the element e
and also ends all transactions te′ for elements e′ 6= e. add(e) merely requires the
transaction te to be active. Consequently (and in the absence of other methods not
specified here), the set transa(HT , r) contains at most one element. The component
Cl participates in this transaction by the method handle(e); note that while it is
not active in this transaction, it maintains a transaction-local state in the element
variable.

Another example is given in Sect. 9.3.1 on page 239; here a transaction tu is
begun by a call to login(u), required to be active by secret(u) and terminated by
logout(u). Again, any client that participates in this transaction will either produce
all these calls in the course of a single method’s evaluation, or maintain an internal,
transaction-local state that tells it that it is currently logged in.

9.6.2. Tranquility and ς. As mentioned before, tranquility and state transferal
are related: If a component is in a state that is not tranquil with respect to a
transaction, an update preserving other components’ assumptions is still possi-
ble if the transaction-local state is retained. Put the other way round, retaining
transaction-local state during reconfiguration frees us from considering tranquility
for that transaction.

We have spoken of transaction-global and transaction-local state; but this is
an unnecessary differentiation: The persistent, global state can also be considered
as part of a large transaction that never terminates. Let us assume that we are
somehow (e.g., by annotations) supplied with a function ts : C × T × S → ℘(S);
this function tells us, for a component, a transaction and the component’s state
which part of the state is relevant to it (by giving the set of all states that share
this relevant state part). In the example above, we have two transactions: A global
transaction tg that is initiated by HT at the first method reception and never termi-
nates, and the insertion transaction ta that is begun by Cl :handle and terminated
by either elementFound or elementNotFound ; in this transaction HT :query and
HT :add both participate.

For the former transaction, the part of the state space stored in variable
elements of HT is relevant, thus

ts(HT , tg, σ) = {σ′ | σ′(elements) = σ(elements))}.

Cl .stored is not relevant, as it is only a “virtual” variable used to specify the
expected communication, but is not made part of the actual state of Cl . For the
latter transaction, Cl .element and HT .setelement are relevant.

During a component update (happening at the end of a finite run r), i.e.,
when replacing a component c by a structurally identical component c′, possibly
with changed method evaluators, but with the same specification, the ς-element of
a plan needs to transport the part of the state space that is relevant to ongoing
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transactions, i.e., if the component c has a state c̃, reconfiguration needs to provide:

∀t ∈ transa(c, r) ∪ transp(c, r) . ts(c′, t, ς({c 7→ σ(c̃), c′)) = ts(c, t, σ(c̃)).

We thus require that the transaction-local state is retained by ς. Considering
the state automata presented in Sect. 9.3.1, this is the requirement that the automa-
ton state is preserved: If ς omitted the transaction-local state, the state automaton
would be reset to its initial location, and subsequent communication might violate
the protocol. By retaining the transaction-local state, this is avoided. Tranquility is
just another way of avoiding such problems by enforcing that the state automaton
has moved back to its initial state before reconfiguration commences. In this sense,
state transferal is the more versatile approach, and can be used to handle long or
even forever-running transactions. Tranquility, on the other hand, only requires
read access to the transaction-local data (or, from an abstract perspective, to the
current state of the state automaton).



CHAPTER 10

Conclusion

The largest of these will be the range of our projectiles – and even

here we need consider only the artillery – which, however great, will

never exceed four of those miles of which as many thousand separate us

from the center of the earth.

— Galileo Galilei, Dialogues Concerning Two New Sciences

In this thesis, we have discussed runtime reconfiguration of component sys-
tems, and viewed the problem from two directions: by defining an algorithm with
a formal backing, and by investigating application domains where reconfiguration
can be utilized. These views are complementary: the formally defined algorithm
resulted in a framework that allows for reconfiguration in a controlled setting, and
the examples helped to understand the important aspects of reconfiguration. One
of these examples is the cmc model checker, which, although not being reconfig-
urable, helped to understand the necessities for a reconfigurable system, and led
to the definition of the JComp component model, which became the test-bed for
reconfiguration.

JComp has a unique property among the reconfiguration frameworks: The
provability of perceived atomicity in the context of reconfiguration, while being
directly implementable in a regular programming language. We used JComp to
investigate a number of examples, which we tried to categorize in order to work
out areas where reconfiguration can be beneficial. This helped to develop a distinct
view on reconfiguration that is different from many views expressed in the litera-
ture. We presented the examples in the context of a four-stage control loop, called
the MAPE loop, which we used to accommodate the steps that precede a recon-
figuration execution: the detecting of the need to conduct reconfiguration, and the
planning of how to do it. The experience of this thesis suggests that reconfiguration
is not a well-suited means for providing general adaptivity (as adaptivity is easier
to obtain with case distinction), but rather for obtaining adaptivity in the context
of differing (cross-cutting or separated) concerns and roles. We finally discussed the
verification of component systems, relating a novel view on contract-based specifi-
cation for static component setups with correctness requirements in the context of
reconfiguration; this enables us to relate our approach to other approaches that do
have a formal backing by considering quiescence and tranquility.

10.1. Discussion

We have investigated reconfiguration of component systems, exemplified with
a component framework that implements a particular component model and places
emphasis on certain aspects, while neglecting others. This influenced the view
we took on reconfiguration, accentuating the need for continuous communication,
while ignoring real-time properties. Also, the primary interest of this thesis is the
software engineering aspect, both of writing a framework capable of reconfiguration,
and performing reconfiguration in the context of software applications. This results

257
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in a concentration on the last stage of the MAPE loop, as well as a strong interest
in meaningful application areas for reconfiguration.

In this section, we will discuss the various design decisions we have made,
comparing them to related work and pointing out strengths and weaknesses.

10.1.1. Using Reconfiguration for Adaptivity. Many of the work surveyed
in Chapter 3 stress the importance of reconfiguration for modern software systems,
e.g.

The ability to dynamically reconfigure the applications enhances the
flexibility and adaptability of distributed systems. [CS02]

Usually, this is taken for granted; and a distributed system surely needs to be
adaptive and flexible. However, we feel that an important point is missing in this
kind of reasoning: Reconfiguration is just one technique for providing flexibility,
with certain strengths and weaknesses. The separation of roles actually represents
both: It is the strength of reconfiguration to operate on a coarse level where en-
tire components are replaced; this coarseness alleviates the problem of retaining
the correctness of the complete system during a series of adaptations. On the
other hand, a pure application of the separation of roles paradigm requires that
adaptation is not made a concern of the individual components – which is often
impossible. For example, an algorithm for scientific computing (e.g., a distributed
model checker) has to be devised explicitly to be distributed. If the distribution
architecture changes due to some external event (like the imminent departure of
a participating computer), the algorithm itself has to be adapted – which is too
fine-grained for reconfiguration, or at least requires that the algorithm is divided
into components which already consider the reconfiguration.

Actually, reconfiguration of components is an attractive realization of adap-
tivity because it is less capable than customized approaches. By lifting the level
of consideration to the scope of whole components, it can be hoped that devising
reconfiguration on such a coarse level is easier and more tractable than operating
on a finer level (e.g., self-modifying code). Much potential is sacrificed, however;
using reconfiguration for adaptivity restricts the ways adaptivity can be obtained.
Reconfiguration hence offers a compromise between capability and tractability.

It is most likely no coincidence that the applications of reconfiguration we
found to be most convincing cover runtime modification of aspects [JDMV04,
CHS01, GBS03]. Here, the cross-cutting concerns are integrated at a high level of
coarseness, making full use of the capabilities of component-based reconfiguration.
At the same time, having a cross-cutting concern change is more likely as having an
unanticipated necessity for a change to the core concern of an application. We have
addressed dynamic cross-cutting concerns by enabling filter component generation
in JComp.

We may conclude that the use of reconfiguration of component systems is given
by its ability to combine concerns of different collaborators. Whether they are
cross-cutting or separated by granularity, reconfiguration provides means to handle
changes of these concerns. Reconfiguration is a software engineering approach: It
provides a means to devise adaptive systems in a well-described manner, offering
assistance in an area that is inherently complex.

It is important to remember that most of the word reconfiguration reads con-
figuration – if we cannot find a configuration for a system in a flexible manner,
we will have a hard time to change this system by (generic) reconfiguration. This
again indicates the success of dynamic cross-cutting concerns as a provider of ex-
amples for reconfiguration: It is as easy to provide provisions for adding an aspect
during configuration as it is to reconfigure such an aspect at runtime, should the



10.1. DISCUSSION 259

cross-cutting concern change. It also indicates why providing reconfiguration pro-
visions alone is not sufficient for self-? properties: If we cannot plan how a system
providing some functionality can be configured, we will also not be able to provide
a plan for realizing self-healing or self-optimization by reconfiguration.

Providing means to execute plans for self-healing often ignores that those plans
are hard to come by (and hence, credible examples are missing). The MAPE loop
discussed in Chapter 8.1 remains to be necessary for reconfiguration – and deferring
some of its stages to the future neglects that there are ample situations where it
can already be fully established. This situation is similar to what is described
in [BD06] – we can employ reconfiguration, although the application domains are
different from those originally anticipated. We hope that this thesis provides some
indications in this regard, but we are well aware of the fact that many of the topics
required for successful application of reconfiguration in our sense are still missing.

10.1.2. The Formal Approach. One of the goals of this thesis is to provide a
formal component model and implement it as precisely as possible. We take pride
in the fact that this succeeded to an extent that allows for a precise description
of ways to circumvent the restrictions (e.g., use of static variables in JComp).
Compared to other works, this property is unique; while the established component
frameworks like SOFA and Fractal/ProActive do have formal frameworks, the
abstraction level is usually higher. For our component models, we can claim that
the component process terms are low-level enough to offer a direct connection to
actual code. Also, we are not aware of a reconfiguration implementation that is
formally described on a level as fine as we provide it.

We have shown some interesting and important results, albeit only for a severely
restricted class of plans. This restriction is quite limiting, especially since we see
the addition and removal of filter components as a primary application of reconfig-
uration (since changes to cross-cutting concerns are responded to like this). While
theoretically not difficult to circumvent, in practice we often use the full recon-
figuration plans and revert to problem-specific reasoning for providing correctness
arguments. Usually, this is not very hard, since the interruption of communication
by removal or addition of a filter is quite controllable. Our experience indicates,
however, that these correctness considerations are indispensable, since concurrent
reconfiguration is prone to getting stuck because of lost messages. We would like
to provide further assistance within the component model for such situations. For
example, when investigating non-injective shallow reconfiguration plans, we had to
craft an example that violates communication expectations carefully. For most ex-
amples, the nondeterminism introduced by regrouping messages is no problem, since
the messages might have just arrived in that order anyway. We feel that further
research might be beneficial in this area, maybe offering a hierarchy of properties
that can be guaranteed for various plans. Possibly, communication protocols need
to be considered as well; while we formulate such protocols in Chapter 9 we have
not linked them to correctness properties of reconfiguration.

Providing a formal description of reconfiguration plans and their execution is
quite beneficial. Early versions of JComp used different reconfiguration plans which
were more general (e.g., allowing for explicit removal and addition of edges). It was
easy to build plans that would not work at all, or disrupt the communication of
components in an unexpected way. After switching over to plans as described in this
thesis, the effort required to come up with consistent plans was greatly decreased –
and the framework got considerably less complicated at the same time. Likewise,
the use of δρ made writing plans easier as well: For the situations where message
retainment is useful, the messages usually follow the rewiring. Admittedly, often
message retainment is not required at all.
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When developing a first idea about the features reconfiguration should possess,
cmc was very influential. Originally, we wanted to substitute a genuine hash table
by the caching/disk structure, retaining the state space explored so far. While this
never came to pass for reasons explained in Sect. 8.5, it sparked great interest in
state transfer. We then realized that in applying these ideas to the asynchronous
model of JComp, messages are as important. Even more, for proving properties
like perceived atomicity, message retainment is much more crucial than data state
retainment. This is reflected in the difference of abstraction between the δ recon-
figuration plan element, which is not very general, and the abstract definition of
the ς element. Only at a later point in time we realized that in going a step fur-
ther and considering a transaction-preserving reconfiguration (as an alternative to
tranquility considerations) ς becomes as important as δ. Again, we lack sufficiently
complicated examples – transaction retainment is now done on the user level and
has not posed any problem yet. At the same time, we have not come across ex-
amples where δ was insufficient because it lacks provisions for transforming the
messages that are retained (e.g., discarding messages meeting some semantical cri-
teria, or modifying their parameters). Still, we are fully aware of the fact that our
choice of features offers a certain view on reconfiguration that does not make com-
munication protocols a concern of the reconfiguration algorithm. In different and
more complicated settings, this might become indispensable to retain the property
we value most about our reconfiguration approach: For a class of reconfiguration
plans, some properties are guaranteed by design.

As for state transferal, we have struggled much with the choice of using the
direct or indirect approach, which either violate the encapsulation of components
or the separation of roles paradigm. We have not found an answer that is satis-
fying, but feel that the hybrid state transferal described in Sect. 6.8.2 is a good
compromise. State transferal is a difficult problem, and a general solution is un-
likely to exist (cf. the honest statement in [Van07, pp. 173]). We feel that we have
introduced a good inclusion of the problem of state transfer to the general software
engineering approach of reconfiguration, but also consider this to be a problem that
needs to be addressed for particular problem domains.

10.1.3. The JCompJCompJComp Framework. JComp was devised to be a minimal frame-
work that offers just the features really required, and put as much responsibility as
possible – like distribution or tranquility – on the user. This helps to keep things
understandable, and the framework remains lean. On the other hand, the support
for reconfiguration is deliberately limited to some aspects. Actually, the JComp
framework implementation closely follows the formal description: It provides provi-
sions for building component setups and reconfiguration plans and a way to execute
the plan. It does not provide a dedicated thread for reconfiguration execution, leav-
ing the choice to the user (subsequently allowing for deadlocks if reconfiguration is
started from the thread of a component that is contained in the R plan element).

The most important thing about an actual implementation of reconfiguration
is to be meticulously aware of who does what. If an exception is to be dealt
with by reconfiguration, a great deal of caution needs to be exercised to delegate
the execution of the reconfiguration to a worker thread (as the thread that actu-
ally reports the reconfiguration to the monitor is that of the component that just
failed, and hence the thread that is required for the subsequent state transferal).
Clearly, JComp lacks support here. This is because reconfiguration resides on the
assembly code level, which is not supported explicitly by JComp. For supporting
reconfiguration as an “every day concept”, a more elaborate steering mechanism is
required (although the literature suggests that few frameworks genuinely support
this, cf. Chapter 3).
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The JComp model fixes the communication means to message passing. It
supports asynchronous calls, and – as an exception to the claim of minimalism –
synchronous calls as well. We included the latter because they add an interesting
dimension to the problem of reconfiguration, as well as the possibility for deadlocks
that needs to be addressed. Also, we considered synchronous calls as necessary when
devising the JComp model, a view that has changed ever since. Ultimately, the use
of indirect state transfer protocols required the retainment of synchronous calls, as
we did not want to allow a component stopped for reconfiguration to issue calls;
this would have been required for conducting state transfer with a subprotocol and
asynchronous calls only. For proving properties, the restriction of communication is
desirable, since we require a precise semantics of component process terms. On the
other hand, many interesting communication means (e.g., multimedia data streams)
are not accessible in JComp, and it is possible that our search for examples was
limited by this design decision.

This sparked interest in introducing a new layer into the system and in placing
more emphasis on connectors, i.e., objects that handle the communication between
components. Connectors are first-class entities in SOFA 2.0 [BHP06] and recom-
mended by various researchers [LEW05, BMH08]. By utilizing different types of
connectors, reconfiguration can be handled by the connector [BHP07], which can
be aware of how pending communication needs to be retained. We have proposed
this as the reconfiguration means for the REFLECT project [SvdZH08], where
both control messages and multimedia data need to be communicated between
components, and where a genuine need for reconfiguration is given.

Overall, JComp should not be mistaken for a production-grade component
framework in the league of Fractal/ProActive or Corba. Instead, it is a
framework dedicated for supporting our particular view on reconfiguration, useful
for investigating various application domains of reconfiguration and learning about
their particular problems and requirements. In the experience obtained with this
thesis, formulating reconfiguration in the form of plans and relying on their atomic
execution eases the development of reconfiguration examples considerably, espe-
cially since much of the risk of running into deadlocks is diverted to the framework.

10.1.3.1. Flexibility and Clarity. Having first-class connectors provides much flexi-
bility, and allows for a wider range of reconfiguration – maybe also reconfiguration
that is less complicated than the approach presented in this thesis (because it might
decide to not consider message retainment, or state transfer). At the same time,
having such flexibility voids any chance to get any guarantees about the recon-
figuration from the framework: Since reconfiguration is actually implemented on
the user level, the framework can offer less provisions for handling the pending
problems.

As mentioned before, the difference between the concreteness of the δ and ς
reconfiguration plan elements is motivated by the necessity to have a close control on
the message retainment in order to guarantee a minimal impact of reconfiguration.
On the other hand, the experience obtained when distributing JComp (cf. Sect. 7.3)
indicates that supporting too much within the framework can lead to inflexible
designs while bloating the framework. We can phrase this as the choice between
clarity and flexibility. Obviously, the results obtained for the JComp model carry
over to a connector that supports the same communication paradigms, but then
the guarantees need to be checked for each situation.

Any reconfiguration-enabling framework needs to provide a mixture of flexibil-
ity and restriction in order to provide clarity. The literature reviewed in Chapter 3
suggests that usually (sometimes with the exception of quiescence and tranquility,
cf. Tab. 3.1) not much restriction is imposed, if it is not already imposed by the
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framework, or mandated by the problem domain (e.g., the necessity to retain the
component’s signature during hot code updates). This thesis aims to be more on
the restrictive side.

In the experience obtained during writing this thesis, reconfiguration proved to
be extraordinary hard to debug. It needs to cope with so many problems that often
(e.g., with the cmc model checker, cf. Sect. 8.5) its gain is outweighed by the effort
required. Hence, any provision taken to reduce the effort seems to be a step in
the right direction, unless (and this happens with examples like the one presented
in Sect. 8.3.2) the restrictions need copious workarounds for problems that are not
natively supported. The calculation of δρ for shallow reconfiguration plans is one
attempt at reducing the effort required for devising and debugging reconfiguration,
by making it more robust against interleaving with other components’ communi-
cation. For practical use of reconfiguration, more effort is required to avoid the
resulting workarounds; we now feel that the focus should migrate more to flexibil-
ity considerations, and we regard first-class connectors as a promising step towards
this direction.

10.1.3.2. Benefits of a Hierarchical Component Model. We have mentioned it a few
times in the examples, but let us point out this once more: Hierarchical compo-
nents are necessary for a reconfiguration-enabled framework. JComp does not have
provisions for hierarchical components, which was motivated by the Erlang ap-
proach, which allows its processes to be connected in an arbitrary graph structure,
but suggests that a hierarchical, tree-like structure is used [AVWW96, pp. 67].
In a similar fashion, for JComp we wanted to desist from making a component
hierarchy first class, and rather encourage understanding components as grouped
on a conceptual level that is reflected only by a naming convention or component
annotation (cf. the example in Sect. 8.3, which maintains user-defined groups of
components responsible for loading an RSS thread). It may be discussed whether
keeping the component model simplistic is not offset by the complications of defin-
ing reconfiguration plans in such a setting. The support of JComp for generating
plans, however, is not very sophisticated, and needs further research.

What is missing is a well-defined provision for controlling reconfiguration. The
code that implements the MAPE loop is not part of a component implementation; it
is commonly referred to as “assembly code”. Likewise, the thread that performs the
stages of the MAPE loop is not clearly defined – it might be a component’s thread,
obtained by the monitoring provisions, or a special, user-handled thread that is
started alongside the assembly. The component models of Fractal [BCL+06] and
SOFA [BHP06] provide provisions here by means of membranes and controllers
respectively. A corresponding entity is required for JComp in order to avoid ad-hoc
solutions for every reconfiguration scenario.

10.1.4. On MAPE Loops. Like most other component frameworks supporting
reconfiguration (a notable exception being [KM07]), JComp focuses on the exe-
cution stage of the MAPE loop. From a software engineering perspective, this is
the stage most interesting when building a framework capable of reconfiguration.
We support the monitoring phase by provisions for communication and exception
monitors. The support is limited, however; as we have discussed above JComp
only provides hooks for attaching listeners, but does not directly support a recon-
figuration thread. Using hierarchical components with a dedicated controller would
provide such a thread automatically; right now, we require the user to maintain a
dedicated switch and data structures for passing information.



10.1. DISCUSSION 263

The assessment and planning phase are currently not directly supported by
JComp, although we provide some tools that might be useful. We have imple-
mented the graph transformation algorithm described in Sect. 8.1.4.1 to integrate
with the Groove graph transformation rule editor [Ren03]. This offers a conve-
nient tool, but we have never used the full power of graph transformations – we
have not come across an example where the set R was not uniquely defined. Graph
transformation would offer just that: Matching to different locations in the compo-
nent graph, thus yielding different reconfiguration plans. For filter insertion, this
might be useful, but filter insertion can also be planned by a single traversal of the
component graph.

For the assessment phase, we support the decision-making by providing access
to the JVMTI API to obtain memory and time consumption of components. This
helps to detect resource-intensive components. We also implemented provisions for
real-time temporal logic monitoring, but then found this to be an approach that
does not integrate well with the JComp framework, which is largely ignorant of
real-time requirements. For example, when imposing a tight allowable delay on
message execution times, eventually an adverse interleaving (possibly combined
with garbage collection) will violate such a constraint.

For our examples, the planning phase is not very prominent. We have pointed
out some related work in Sect. 8.1.4, and feel that this is a challenging area of
research. We believe that planning reconfiguration should be done in the context
of an application area – for example, the planning of the example in Sect. 8.4.4,
where we chose a suitable implementation of a set representation, can be completely
automated; but the communication constraints imposed by this particular setup are
modest. We do not believe that generic planning is possible with the technology
available today, but that there are interesting fields where planning can be employed
successfully.

10.1.5. Applicability of Reconfiguration. Based on the software engineering
background of this thesis, we tried to evaluate the capabilities of JComp against
small-scale, yet real-world examples. As discussed in Sect. 3.5, good examples
are scarce for general-purpose frameworks with reconfiguration support. Often,
an “inverted invest-gain-schema” is the problem: While a lot of problems can be
addressed by reconfiguration, the effort to maintain a dedicated component frame-
work and handle all the related issues do not seem worth the effort. For example, a
component that reads the contents of a file might be reconfigured if the user selects
a different source file – but such a setup can most likely be solved easier by just
providing an interface for switching to a new file name.

Still, there are application domains where reconfiguration can be put to good
use. Good examples are found in work that addresses less generic application do-
mains. This is obvious for hot code updates and frameworks like Simplex [SRG96],
Hercules [CD99] and Draco/Fresco [VB05]. In Sect. 8.4, we have argued that
the dynamic response to changing cross-cutting concerns is more likely to provide
truly useful applications for reconfiguration, as cross-cutting concerns are more
likely to change than the core concern is.

Also, the consideration of the separation of roles paradigm leads to good ex-
amples. The problem here is that obtaining a true separation of roles is often not
possible in research projects, unless they have a certain size (e.g., [KM07]). We will
try to explicitly use this in the REFLECT project [SvdZH08], where, ultimately,
the reconfiguration plans are to be written by human-computer-interaction experts,
who are not necessarily computer scientists (but psychologists). At projects of this
size and structure (i.e., collaborations of different disciplines to build adaptive soft-
ware), reconfiguration might prove to be just the granularity required.



10.1. DISCUSSION 264

Applicability of reconfiguration is closely tied to the separation of roles. We
have become convinced that only if such a separation is given, reconfiguration can
be truly gainful. Otherwise, a case distinction within the components involved will
usually be much less troublesome to implement. But if such a case distinction is
not feasible, because the components are not available in source code or because the
application developer does not want to be concerned with modifying components,
reconfiguration is required to obtain adaptivity. It is our hope that the larger the
applications become, the more importance is placed on the clean separation between
the concern of the component developer and the application designer.

10.1.6. Formal Methods and Reconfiguration. Reconfiguration is difficult
because of multiple sources of nondeterminism: The interleaving with the system
not stopped during reconfiguration, the point in time when reconfiguration com-
mences, but also the exact shape of the component setup when reconfiguration is
triggered, if multiple reconfigurations are to be combined. Obviously, nondetermin-
ism is a source of errors, since it is so easy to miss a problematic sequence of events.
In fact, the association of reconfiguration to components is most likely due to the
fact that components provide some control over nondeterminism (by decoupling the
concurrent components by explicit communication). There are few attempts to use
self-modifying code for adaptation (although this is a topic of research, cf. [TY05]);
the “live” introduction of code changes in an otherwise unknown system is way too
dangerous, and hot code update is usually done relying on a coarse modularization
of the software, e.g., in processes (as in Erlang [Arm07]) or components [VB02].

Considering a coarse-level reconfiguration aims at reducing the (relevant) non-
determinism such that reconfiguration remains tractable. Still, not all nondeter-
minism can be accounted for this way, most notable the point in time when recon-
figuration starts. Quiescence and tranquility considerations try to reduce the risk
imposed by this kind of nondeterminism, but this may not always be feasible to do.
Formal methods can then be used to handle the remaining uncertainty and provide
formal proof that all possible traces of the system are indeed admissible.

Formal methods do not come for free. They require careful annotation of the
components, or the use of a restricted programming language. Usually, only a
single problem is addressed, e.g., communication protocols [PV02, Kof07]. The
guarantees offered are then limited to this problem; in this light formal methods
are useful as a developing support and for clarifying certain aspects of the compo-
nent application. Communication protocols are interesting for building component
applications with stateful components – we did not consider them for cmc, but
actually most of the troublesome memory leaks originate in faulty assumptions on
the communication behavior. For example, if we freed a state and subsequently ran
into a segmentation fault, we falsely believed that recent communication suggested
that the state was no longer in use elsewhere. We did not check communication
protocols for cmc, but attaining this view might have been beneficial.

The separation of roles is again the key to profitable use of formal methods,
and, as stated before, during this thesis there was no practical chance to work at
large-scale projects with a true separation of roles. It is pretty much conceivable
that, if components need to be combined that have been developed independently,
contracts become more important. This directly carries over to reconfiguration:
Specification could support some means of defining substitutability, allowing for an
automated plan generation. We are not sure if this is a feasible way to go. Detecting
suitable replacements for a malfunctioning component is hard, and we are unsure
if the assumption that a component repository can become large enough such that
replacability can no longer be explicitly defined using much less effort is justified.
For some time we considered this to be the weakest aspect of the MAPE loop, and
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subsequently searched for examples where planning was expressible by a simple
algorithm. The work done on automated planning is encouraging, though. At
least for special application domains (similar to the set representation replacement
example of Sect. 8.4.4) planning might be able to do more than a mere instantiation
of a predefined plan.

We still consider the most prevalent benefit of formal methods the ability to
judge the correctness of a component setup against the expectations of the indi-
vidual components. This is also quite useful when building reconfiguration plans,
since the resulting configurations might be checked for communication consistency.
For large-scale applications, such an approach might prove indispensable in order
to avoid non-reproducible errors after repeated reconfiguration.

10.2. Future Work

Lots of aspects of reconfiguration are not yet fully understood. Maybe the most
difficult problem is the need of semantical information about the components. The
more generic the assessment and planning phases of the MAPE loop are required to
be, the more semantic information is required. Semantic web services illustrate how
difficult finding a component with a required functionality can be, and services can
be expected to be much less demanding than components which not only provide,
but also require functionality.

10.2.1. The JCompJCompJComp Framework. We have discussed the most pressing exten-
sion to the JComp framework a number of times: The provision of hierarchical
components. Hierarchical components are not really required, but they offer a way
to specify exactly where the assembly code that realizes the initial configuration
as well as subsequent reconfiguration should be placed. This is indispensable for
realizing complex reconfiguration scenarios.

However, we feel that simply organizing components in a hierarchical manner
might be insufficient for realizing architectures like a Chain of Responsibility pat-
tern. We have argued in Sect. 8.3.1 that such a chain substitutes a multi-port. As
such, it can be considered to be a hierarchical component – but the number of roles
visible from the outside depends on its internal architecture. Even more, if the car-
dinality of the multi-port changes, its internal structure needs to be reconfigured as
described in Sect. 8.3.2. Such a change will be the result of a reconfiguration of the
application, in which the chain is a single component. Hence, the reconfiguration
of the application also triggers a reconfiguration in one of its (composite) compo-
nents. Addressing such scenarios requires careful planning and poses an interesting
challenge, both for describing and executing the reconfiguration process.

JComp, however, is way too limited for practical use. Most notably, the fixing
of the message passing, no-shared-memory communication paradigm is too limiting
for practical use. We feel that JComp should be integrated into a more capable
component model which supports more communication paradigms and component
concepts, and preferably offers generic connectors [LEW05, BMH08] and custom
controllers [BHP07]. The algorithm for reconfiguration might then be included by
a dedicated connector and controller, allowing the user to leverage the guarantees
provided if this is desired, without giving up the flexibility of the component model,
which is required for addressing a range of application scenarios. We plan to do
this in the context of the Reflect project, as discussed in Sect. 10.2.4.

10.2.2. MAPE Loops. Triggering and planning the reconfiguration is as impor-
tant as its execution. Using closed-control loops is the most prevalent means in
the literature to link the preparation and the execution of reconfiguration. Of the
four stages of the MAPE loop presented in this thesis, the planning stage demands
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most improvement. We have argued that this needs to be done in a domain-specific
way, but there are also ample opportunities to provide generic support for planning,
without offering concrete solutions.

For example, we found it quite tedious to come up with plans in concrete
implementations, because they require multiple traversals of the component graph
while picking out the actual components to be reconfigured and their connections
to components that need to be retained. In JComp, this is done by implementing
the Visitor pattern in Java. Offering a domain specific language for these traversals
might ease the task of generating plans. Also, the various means of matching and
modifying graphs might be adapted, although we are sure that the matching criteria
are usually more complex with regard to the actual components to be matched than
they are with respect to the layout of the component subgraph (e.g., we might want
to identify all components that declare themselves responsible for handling a given
RSS feed, remove them, and redirect all incoming connections to a placeholder
component).

Another issue that needs to be considered is the necessity to change the plan-
ning over time. We have not provided an example in this thesis, but there might be
situations where two different MAPE loops address the same sub-setup of a compo-
nent application. For example, we might combine the aforementioned substitution
of RSS processing components with a reconfiguration that alters the layout of the
sub-setup (or hierarchical component) used for reading an RSS feed. If the for-
mer reconfiguration switches from a placeholder component to an RSS processing
sub-setup, it needs to plan this sub-setup to take the form mandated by the latter
reconfiguration. We think that hierarchical MAPE loops might be useful for such
an operation. Here, a higher-level MAPE loop not only reconfigures parts of the
component setup, but also other, lower-level MAPE loops. This integrates well with
hierarchical components, but we are currently not sure if a strict hierarchy can be
applied in all situations – reconfigurations might even be mutually interacting.

Another interesting aspect of planning a reconfiguration is the description
of the state transfer. Again, promising approaches are provided for special
domains [VB05], whereas a general solution usually conflicts with traditional
component-based software development techniques. However, state transferal might
be improved by having components describe parts of their internal state (as well
as the methods used for accessing it). Also, given that the separation of roles can-
not be completely maintained if state transferal is desired, an investigation of the
changed software engineering process would be interesting – if components are to be
written with reconfiguration scenarios in mind, then some techniques and patterns
might emerge that allow for flexibility while retaining a clean component structure.

Finally, we would like to stress the importance of planning entire configurations
(as opposed to planning the change of a given architecture, to be conducted by
reconfiguration). The cmc example suggests that there is much to be gained from
automated, problem-specific reasoning. There is some research being conducted,
e.g., for automated performance tuning [WD98, HBHH07] or in the context of
“software product lines” [PBL05]. The Amphion project even configures entire
applications from atomic code pieces [LPPU94, PL96]. We have, however, not yet
seen an approach that configures an application for a special task that it needs to
handle. We feel that not only applications like cmc might benefit from automated
configuration, but that the insights obtained also carry over to reconfiguration
planning.

10.2.3. Reconfiguration for Large-Scale Systems. A related problem is given
by the necessity of multiple reconfigurations conducted sequentially. If a system
is to be truly adaptive, it has to support repeated reconfiguration, possibly going
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back to configurations previously encountered, possibly iterating the effects of mul-
tiple reconfigurations addressing various cross-cutting concerns over time. We have
investigated such a problem in Sect. 8.3, but have to admit that this is actually just
a hierarchical component setup with reconfiguration operating on different levels of
granularity.

The reconfiguration examples presented in this thesis assume complete know-
ledge about the situation for which a reconfiguration plan gets formulated. For
a truly adaptive system with a sufficiently strong planning approach, such an as-
sumption can hardly be maintained. Instead, a loosely evolving system needs to
be handled, with plan generation operating on an abstracted design of the system.
There is some research that might support such a direction, e.g., the research on
architectural styles [BLM08], but we feel that the purpose that is most evident in
the research presented in this thesis is not emphasized much.

10.2.4. Special-Purpose Reconfiguration: REFLECT. We believe that the
basic approaches towards reconfiguration are understood well enough to utilize
reconfiguration for special domains in practice. An improvement of the software
engineering process can be expected, if reconfiguration is to replace component-
internal adaptivity solutions.

In the REFLECT project, we try to use reconfiguration of multimedia systems
(comprised of components and connectors that transport messages as well as data
streams) in order to allow HCI experts to design adaptive software [SvdZH08].
In such a setting, some problems emerge that are usually not considered: The re-
quirement for defining control loops in a domain-specific language, and the ability
to remain metaphorical – the “plug-ability” of components is required to under-
stand how the system works, and how it can be reconfigured. We believe that the
medium-term success of reconfiguration as a tool of software engineering will be
dependent on finding such problem domains which are succinctly describable and
give rise to special assessment and planning algorithms. In such settings, recon-
figuration planning can be formulated by a domain expert, requiring only modest
amounts of automated reasoning. In such situations, where a genuine separation of
roles is provided by the application domain, reconfiguration might prove a valuable
tool for attaining flexibility while retaining an overall clarity and tractability of
the application. Although REFLECT will use first-class connectors, this thesis
provides the formal basis for the approach to reconfiguration, and many results can
be used directly for message-oriented connectors.
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[HP06] Petr Hnětynka and Frantǐsek Plášil. Dynamic reconfiguration and access to ser-

vices in hierarchical component models. In Ian Gorton, George T. Heineman, Ivica
Crnkovic, Heinz W. Schmidt, Judith A. Stafford, Clemens A. Szyperski, and Kurt C.

Wallnau, editors, Component-Based Software Engineering, 9th International Sym-
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J. Pfalz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations
with Industrial Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer

Science, pages 479–485. Springer, 2004.
[RLS01] Paul Robertson, Robert Laddaga, and Howie Shrobe. Introduction: The first inter-

national workshop on self-adaptive software. In Self-Adaptive Software, volume 1936

of Lecture Notes in Computer Science, pages 1–10. Springer, 2001.

[Röl02] Harald Rölle. A hot-failover state machine for gateway services and its application
to a Linux firewall. In 13th IFIP/IEEE International Workshop on Distributed Sys-

tems: Operations and Management (DSOM ’02), volume 2506 of Lecture Notes in
Computer Science, pages 181–194. Springer, 2002.

[RP08] Andreas Rasche and Andreas Polze. ReDAC dynamic reconfiguration of distributed

component-based applications with cyclic dependencies. In 11th IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2008)Lim, pages 322–330. IEEE Computer Society Press, 2008.

http://java.sun.com/developer/technicalArticles/Programming/jvmti/
http://java.sun.com/developer/technicalArticles/Programming/jvmti/
http://www.puder.org/corba/matrix/


BIBLIOGRAPHY 286

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and Frantǐsek Plášil, editors.
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[WF99] Michel Wermelinger and José Luiz Fiadeiro. Algebraic software architecture recon-

figuration. ACM SIGSOFT Software Engineering Notes, 24(6):393–409, 1999.
[WH04] Ian Warren and Jamie Hillman. Quantitative analysis of dynamic reconfiguration

algorithms. In International Conference on Design, Analysis and Simulation of Dis-

tributed Systems (DASD ’04), pages 18–22. The Society for Modeling and Simulation

International, 2004.
[Wil00] Torres Wilfredo. Software fault tolerance: A tutorial. Technical Report TM-2000-

210616, NASA Langley Technical Report Server, 2000.
[WK92] Gerhard Widmer and Miroslav Kubat. Learning flexible concepts from streams of

examples: FLORA 2. In 10th European Conference on Artificial Intelligence (ECAI

’92), pages 463–467. John Wiley & Sons, 1992.
[WK96] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and

hidden contexts. Machine Learning, 23(1):69–101, 1996.



BIBLIOGRAPHY 289

[WL93] Pierre Wolper and Denis Leroy. Reliable hashing without collosion detection. In 5th

International Conference on Computer Aided Verification (CAV ’93), pages 59–70.

Springer, 1993.
[WL98] Yi-Min Wang and Woei-Jyh Lee. COMERA: COM extensible remoting architecture.

In 4th USENIX Conference on Object-Oriented Technologies and Systems (COOTS
’98), pages 6–17. USENIX Association, 1998.

[WLF01] Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph based archi-
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