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Zusammenfassung

In dieser Arbeit haben wir kosmologische Modelle analysiert, in welchen dunkle Energie mit

anderen Materieformen wechselwirkt. Wir haben den Einfluss solch einer Kopplung sowohl auf die

Expansionsgeschichte des Universums als auch auf die kosmische Strukturbildung untersucht.

Für ersteres haben wir ein kosmologisches Modell entwickelt, in welchem eine Materieform existiert, die

aus Teilchen mit stets zunehmender Masse besteht. In einem solchen Modell bremst das Auftreten einer

Growing Matter Komponente, welche im frühen Universum noch vernachlässigbar ist, die Entwicklung

des Skalarfeldes, welches die dunkle Energie beschreibt, bei einer Rotverschiebung von etwa 6 dramatisch

ab. Dadurch wird die beschleunigte Expansion des Universums eingeleitet, was eine Lösung des

Koinzidenzproblems darstellen könnte. Wir schlagen vor, eine solche Growing Matter Komponente mit

kosmischen Neutrinos zu identifizieren. In diesem Fall kann die heutige dunkle Energiedichte mit der

gemessenen durchschnittlichen Neutrinomasse in Verbindung gebracht werden.

Für letzteres haben wir die neuen physikalischen Eigenschaften von Modellen mit gekoppelter

dunkler Energie in dem kosmologischen N-body Code GADGET-2 implementiert. Wir präsentieren die

Ergebnisse einer Reihe hochaufgelöster Simulationen für eine einfache Form der Wechselwirkung von

dunkler Energie mit Materie. Als eine Folge der neuen Physik entwickeln sich die Dichteverteilungen

von kalter dunkler Materie und Baryonen sowohl im linearen als auch im nichlinearen Bereich der

Strukturbildung unterschiedlich. Schon auf gro/ssen Skalen entwickelt sich ein linearer Bias zwischen

den beiden Komponenten, welcher durch die nichtlineare Entwicklung noch weiter verstärkt wird.

Im Gegensatz zu früheren Arbeiten finden wir auch, dass die Dichteprofile von Halos aus kalter

dunkler Materie in Kosmologien mit gekoppelter dunkler Energie im Vergleich zu ΛCDM-Kosmologien

weniger stark konzentriert sind. Zudem ist der Baryonenanteil in Halos verglichen mit dem mittleren

Baryonenanteil im Universum in gekoppelten Modellen signifikant reduziert. Die obigen Eigenschaften

unserer Modelle reduzieren Unstimmigkeiten, die auf kleinen Skalen zwischen Beobachtungen und dem

ΛCDM-Modell existieren. Unsere Methodologie ist ideal dafür geeignet, die Vorhersagen von Kosmologien

mit gekoppelter dunkler Energie im vollständig nichtlinearen Bereich zu testen. Dies kann starke

Einschränkungen an den erlaubten Parameterbereich solcher Szenarien liefern.
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Abstract

We have investigated interacting dark energy cosmologies both concerning their impact

on the background evolution of the Universe and their effects on cosmological structure

growth.

For the former aspect, we have developed a cosmological model featuring a matter species

consisting of particles with a mass that increases with time. In such model the appearance

of a Growing Matter component, which is negligible in early cosmology, dramatically slows

down the evolution of the dark energy scalar field at a redshift around six, and triggers the

onset of the accelerated expansion of the Universe, therefore addressing the Coincidence

Problem. We propose to identify this Growing Matter component with cosmic neutrinos,

in which case the present dark energy density can be related to the measured average

mass of neutrinos.

For the latter aspect, we have implemented the new physical features of interacting dark

energy models into the cosmological N-body code GADGET-2, and we present the results of

a series of high-resolution simulations for a simple realization of dark energy interaction.

As a consequence of the new physics, cold dark matter and baryon distributions evolve

differently both in the linear and in the non-linear regime of structure formation. Already

on large scales, a linear bias develops between these two components, which is further

enhanced by the non-linear evolution. We also find, in contrast with previous work,

that the density profiles of cold dark matter halos are less concentrated in coupled

dark energy cosmologies compared with ΛCDM. Also, the baryon fraction in halos in

the coupled models is significantly reduced below the universal baryon fraction. These

features alleviate tensions between observations and the ΛCDM model on small scales.

Our methodology is ideally suited to explore the predictions of coupled dark energy

models in the fully non-linear regime, which can provide powerful constraints for the

viable parameter space of such scenarios.
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Introduction

The nature and the properties of dark energy and dark matter constitute one of the

most central problems in modern astrophysics, and in science in general.

While the evidence for their existence today seems incontrovertible after more than a

decade of cosmological observations, all confirming the need to introduce in our models

of the Cosmos these two mysterious components, their fundamental nature remains

unknown.

An enormous effort is being made, from several different perspectives, to unveil the

mystery and to shed some light on the “dark sector” that dominates the energy density

of our Universe.

In the present work, we contribute to this effort by investigating the possibility –

proposed by Wetterich (1995) – that these two components might directly interact with

each other by exchanging energy during their cosmic evolution. Our approach consists in a

phenomenological representation of the dark energy as a dynamical quantity replacing the

Cosmological Constant of the standard cosmological model (which we review in Chapter

1), and in a phenomenological description of the interaction between such a dynamic dark

energy component and a perfect dark matter fluid.

The investigation that we present here relies on a large literature (recalled in Chapters

2 and 3) concerning the study of the main features of such interacting dark energy models,

and aims at extending it in a twofold way: on one side, we propose an extension of the

basic model of dark energy interaction to a case where more than one dark matter family
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is present in the Universe; on the other side, we develop a new tool capable of following the

dynamics of the coupled dark energy models down to the non-linear regime of gravitational

instability, thereby opening new observational channels to constrain the whole scenario.

For the first of these tasks, described in Chapter 4, we have further developed the

multiple dark matter scenario first introduced by Huey and Wandelt (2006), identifying

the cases in which such a model can contribute to the solution of the Coincidence Problem,

and we have also proposed to identify one of the dark matter families of the model with

cosmic neutrinos. This assumption avoids the introduction of any new unknown particle

in the model, and allows to relate some cosmological properties to a directly measurable

quantity as the neutrino mass. Furthermore, we have studied the compatibility of this

model with the present cosmological observations and described possible characteristic

observational features to look for in the future in order to test, constrain, or rule out such

a “Growing Neutrino” scenario.

For the second of these tasks we have developed and tested a modification of

the cosmological N-body code GADGET-2 (Springel, 2005) suitable for integrating the

newtonian limit of gravitational dynamics in a wide variety of interacting dark energy

models. This implementation is fully described in Chapter 5, and consists in including in

the integration algorithm all the new physical effects that the interaction of dark energy

with other cosmic fluids induces. These effects consist in a modified expansion history of

the Universe, which influences the dynamics of all the particles in the simulation, and,

for the coupled particles only, in a time dependence of the mass, an enhanced effective

mutual gravitational attraction, and an additional non-conservative friction acceleration.

We have then used this modified N-body code to run some high-resolution

hydrodynamic cosmological N-body simulations for a simple realization of the dark

energy interaction and for different values of the coupling strength. The results of these

simulations are discussed in Chapter 6. In the analysis of the non-linear effects of the

dark energy interaction we focused our attention on the properties of massive collapsed

objects, identifying the main modifications with respect to the standard cosmological

ΛCDM model. In particular, we found that the density profiles of massive halos are less
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overdense in the center for increasing coupling as compared to their ΛCDM counterparts,

and that the halo concentrations therefore decrease significantly in coupled dark energy

models. Furthermore, the halo baryon fraction is reduced, which alleviates tensions with

present observations of galaxy clusters.
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Part I

General overview
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Chapter 1

The Dark Energy issue

1.1 The Standard Cosmological Model

Modern Cosmology is based on the field equations of General Relativity which can be

written as:

Gµν = κ2Tµν , (1.1)

where κ2 ≡ 8πG, G being Newton’s gravitational constant. The quantity that appears

on the left hand side of Eq. 1.1 is the Einstein Tensor:

Gµν ≡ Rµν −
1

2
Rgµν , (1.2)

and encodes information about the geometry of space-time1. The different quantities that

appear in Eq. 1.2 are the space-time metric tensor gµν , which defines the line element of

space-time2:

ds2 = gµνdx
µdxν , (1.3)

and the two contractions of the Riemann Tensor Rσ
λµν , namely the Ricci Tensor:

Rµν ≡ Rσ
µσν , (1.4)

and the Curvature Scalar:

R ≡ Rµ
µ = gµνRµν . (1.5)

The quantity that appears on the right hand side of Eq. 1.1 is the total stress-energy

tensor, which encodes information about the energy distribution in the Universe, and

1In this work we always assume greek indices to span over space-time coordinates, i.e. µ = (0, 1, 2, 3), and latin indices
to span over space dimensions only, i.e. i = (1, 2, 3). Furthermore, the Einstein convention for the contraction of repeated
indices is always used.

2We assume here the (-,+,+,+) convention for the metric signature.
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that for a perfect fluid in its own rest frame can be written as:

Tµν = (ρ+ p)uµuν + pgµν , (1.6)

where ρ and p are, respectively, the energy density and the pressure of the fluid, and uµ

is the 4-velocity of the fluid element.

The ratio between pressure and density of a fluid defines its equation of state w3:

w ≡ p

ρ
. (1.7)

In general, different types of fluids with different equations of state are present in the

Universe , and therefore the stress-energy tensor of Eq. 1.1 will be in general the sum of

different stress-energy tensors which will take, for each of the different fluids, the form 1.6

with the respective values of ρ and p.

The assumption of General Covariance for General Relativity determines a constraining

condition on the Einstein Tensor 1.2 which goes under the name of the Contracted Bianchi

Identities (Weinberg, 1972):

∇µG
µ
ν = 0 , (1.8)

and as a consequence of the tensor character of Eq. 1.1, this property needs to hold also

for the total stress-energy tensor T µ
ν :

∇µT
µ
ν = 0 . (1.9)

Besides the Einstein Field Equations 1.1, a second fundamental pillar of modern

cosmology is the assumption that space-time can be sliced in space-like hypersurfaces

which are homogeneous and isotropic on large scales. This slicing of space-time in space-

like hypersurfaces defines a global time-like parameter which is called the Cosmic Time

t and which, for all practical purposes, can be identified as a global time variable. This

assumption goes under the name of the Cosmological Principle, and has been recently

challenged by several authors (Ellis and Stoeger, 1987; Buchert, 2000; Kolb et al., 2005;

Chuang et al., 2008; Paranjape and Singh, 2006). Nevertheless, we will always assume in

this work that the Cosmological Principle holds, and that the Universe is homogeneous

and isotropic on large scales.

The importance of the Cosmological Principle in the development of the standard

cosmological model resides in the fact that it allows us to rewrite the line element of
3We always assume, unless specified otherwise, the Planck system of units in which c = ~ = 1.
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space-time in a simple form in which the time dependence of the metric tensor is confined

in a single function a(t) of the cosmic time t, called the Scale Factor. When using spherical

polar coordinates (r, θ, ϕ) for the space-like dimensions, the line element then takes the

form:

ds2 = gµνdx
µdxν = dt2 − a2(t)

[
1

1 +Kr2
dr2 + r2dΩ2

]
, (1.10)

where dΩ2 = dθ2 + sin2 θdϕ2 is the line element on a sphere, and K is a constant which

determines the curvature of the space-like hypersurfaces of constant cosmic time t:

K = −1 : negative curvature, hyperbolic geometry;

K = 0 : no curvature, Euclidean geometry;

K = +1 : positive curvature, spherical geometry.

This is known as the Friedmann-Lemâıtre-Robertson-Walker metric (hereafter, FLRW)

(Friedman, 1922; Lemâıtre, 1931; Robertson, 1935; Walker, 1937), and by substituting its

elements in the field equations 1.1 it is possible to derive two evolution equations for the

scale factor a(t), which will describe the dynamic evolution of the Universe as a whole:

ȧ2

a2
=

κ2

3

[
ρk +

∑
i

ρi

]
, (1.11)

ä

a
= −κ

2

6

∑
i

(ρi + 3pi) , (1.12)

where ρk is the curvature density:

ρk ≡ −
3

κ2

K

a2
, (1.13)

and ρi and pi are respectively the energy density and the pressure of the different cosmic

components. Eqs. 1.11,1.12 are known as the Friedmann Equations and completely

determine the background time-evolution of the Universe.

Ordinary perfect fluids, such as matter or radiation, fulfill the condition:

ρ+ 3p > 0 , (1.14)

which is called the Strong Energy Condition. It is therefore clear that for this kind of

fluids the Friedmann Equations will not have static solutions, since the second derivative

of the scale factor ä is always negative.
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1.2 The Cosmological Constant

The absence of static solutions for the Friedmann Equations led the same Einstein, in

1917, to revise the field equations of General Relativity 1.1 in order to allow a static

Universe (Einstein, 1917). Such revision amounted to introducing a repulsive Cosmological

Constant term in the field equations in order to balance the attractive pull of gravity.

The Cosmological Constant term is just a property of space-time itself, and does not

depend on the spatial distribution of the energy density of all the different components

that source the gravitational field of the Universe. Therefore, the natural place to add a

Cosmological Constant Λ is in the Einstein Tensor Gµν :

Ĝµν ≡ Rµν −
1

2
Rgµν + Λgµν = Gµν + Λgµν . (1.15)

It is important to notice that the introduction of the Cosmological Constant in the

form described by Eq. 1.15 is not a purely ad hoc artifact. Indeed, a cosmological term of

this form naturally arises in the context of General Relativity as a constant of integration

of the theory. In fact, the most general action functional that it is possible to write

in terms of the metric tensor gµν and of its first and second derivatives with respect to

space-time coordinates xµ has the form:

S =
1

2κ2

∫
d4x
√
−g(R− 2Λ + L) , (1.16)

where g is the determinant of the metric tensor gµν , L is the Lagrangian density of all

the different energy fields in the Universe, and Λ is a constant. By applying the Least

Action Principle to the general action 1.16 the field equations of General Relativity can

be derived, having the form:

Ĝµν = κ2Tµν , (1.17)

with Ĝµν defined by Eq. 1.15. The usual field equations in the form 1.1 come from the

choice to set to zero the value of Λ.

It is possible to formally move the Cosmological Constant term to the right-hand-side

of the field equations, and to treat it as an additional fluid present in the Universe besides

the components described by the Lagrangian density L. In this case, the field equations

will take the form:

Gµν = κ2T̂µν ≡ κ2

[
Tµν −

Λ

κ2
gµν

]
. (1.18)
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By applying the expression for the stress-energy tensor of a perfect fluid 1.6 to T̂µν it

is straightforward to find the formal energy density and pressure of the Cosmological

Constant:

ρΛ =
Λ

κ2
, pΛ = − Λ

κ2
, (1.19)

from which the equation of state of the Cosmological Constant turns out to be:

wΛ =
pΛ

ρΛ

= −1 . (1.20)

This is an important feature of the Cosmological Constant, and determines its impact

on the dynamics of the Universe. In fact, the condition 1.20 violates the Strong

Energy Condition 1.14, and the Cosmological Constant is therefore able to counteract

the gravitational pull of the other ordinary cosmic fluids, by changing the Friedmann

equations to the following form:

ȧ2

a2
=

κ2

3

[
ρk + ρΛ +

∑
i

ρi

]
, (1.21)

ä

a
= −κ

2

6

[
−2ρΛ +

∑
i

(ρi + 3pi)

]
. (1.22)

Now the Eqs. 1.21,1.22 have static solutions for K = +1 (geometrically spherical, closed

Universe) and for non-negative values of ρi, pi, and Λ. Such static solutions are, however,

unstable.

The discovery by E. Hubble, in 1929, of the expansion of the Universe (Hubble,

1929), removed the original motivation for the introduction of a Cosmological Constant,

which was therefore abandoned, except for a periodically renewd interest, until the recent

discovery, in 1998, of the accelerated expansion of the Universe by means of the study of

the magnitude-redshift relation for Supernovae of Type Ia (Riess et al., 1998; Perlmutter

et al., 1999).

Another important consequence of the value of the equation of state for the

Cosmological Constant 1.20 is the fact that the Cosmological Constant energy density

ρΛ does not change with the expansion of the Universe. In general, for a barotropic fluid

(i.e. a fluid with −1 6 w 6 +1), the energy density evolves with the scale factor of the

Universe a(t) following the relation:

ρi ∝ a−3(1+wi) , (1.23)
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which for a Cosmological Constant implies:

ρΛ = const. (1.24)

As a consequence of Eq. 1.24 one has that the energy density of the Cosmological

Constant has always been (and will always be) the same throughout the whole expansion

history of the Universe. Its value can therefore be considered a fundamental constant of

Nature.

1.3 Observational Evidence of Dark Energy

In the last decade a large and constantly increasing amount of cosmological data from

several independent datasets and from several different types of observations has revived

the interest in the Cosmological Constant and in its phenomenology, after the long period

of disregard that followed Hubble’s discovery of the expansion of the Universe. We are

not going to review here in detail the whole range of such observational probes, but we

will nevertheless mention some crucial evidence in favor of the existence of a dark energy

component.

The first observational evidence which started this revival process was a discrepancy

between the large-scale angular correlation function of galaxies in the APM Galaxy Survey

(Maddox et al., 1990) and the theoretical prediction based on the assumption of a flat

cosmology dominated by cold dark matter. Efstathiou et al. (1990) showed that this

discrepancy could be solved by assuming a flat low-density Universe with ΩMh ≈ 0.2,

where the missing energy for closure is given by a Cosmological Constant Λ.

In their conclusions, Efstathiou et al. (1990) invoked other independent probes,

for example geometric tests of the deceleration of the expansion of the Universe, as

possible ways to confirm or constrain the hypothesis of a positive Cosmological Constant

dominating the present cosmic density. Such an independent confirmation came a few

years later from the two independent studies made by the Supernova Cosmology Project

(Riess et al., 1998) and the High-z Supernova Search Team (Perlmutter et al., 1999) on

the relation between magnitude and redshift for the Supernovae of Type Ia (the redshift

z is defined as z ≡ a−1 − 1). The two groups independently found an evolution of the

supernovae magnitude with redshift not compatible with a decelerating Universe, and put
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observational constraints on the deceleration parameter q0, defined as:

q0 ≡
(
− äa
ȧ2

)
0

=

(
−Ḣ +H2

H2

)
0

. (1.25)

As we already stressed in the previous section, ordinary cosmic fluids that fulfill the

Strong Energy Condition cannot account for a positive value of ä, and therefore the case

of a negative value of the deceleration parameter q0 found in Riess et al. (1998) and

Perlmutter et al. (1999) requires the assumption of the existence of a cosmic component

whose equation of state does violate the Strong Energy Condition. If such component is

assumed to be a Cosmological Constant, the deceleration parameter q0 can be related to

the fractional energy density in matter and in Cosmological Constant at z = 0:

q0 =
ΩM,0

2
− ΩΛ,0 , (1.26)

and a constraint on q0 therefore determines a linear relation in the (ΩM ,ΩΛ) plane at the

present time.

An independent and almost orthogonal constraint in the same plane derives from the

statistical analysis of the temperature anisotropies of the Cosmic Microwave Background

(hereafter, CMB) radiation that was predicted by the Big Bang theory and discovered

in 1965 by A. Penzias and R. Wilson (Penzias and Wilson, 1965). The angular power

spectrum of the CMB temperature anisotropies – first detected by the COBE satellite in

1992 (Wright et al., 1992) – is in fact sensitive to the spatial geometry of the Universe

and therefore constrains the total energy density. Such constraint derives mainly by the

location of the first acoustic peak in the CMB temperature angular power spectrum as a

function of multipole moment l.

The first acoustic peak is in fact related to the Hubble radius at the time of the last

scattering, and the angular scale at which the peak is observed depends on the total

energy density of the Universe through the relation:

lpeak ' 220 Ω
−1/2
TOT . (1.27)

If again one assumes that the total energy density after the last scattering is given by

the sum of matter and Cosmological Constant ΩM + ΩΛ, a determination of the angular

position of the first acoustic peak results in a linear relation in the (ΩM ,ΩΛ) plane. The
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most recent CMB constraints on the total energy density of the Universe are (Komatsu

et al., 2008):

ΩTOT = 1.005± 0.006 , (1.28)

and therefore imply the relation ΩM + ΩΛ ' 1.

Together with the constraint on the total energy density of the Universe by means of the

statistical properties of the CMB radiation, the independent observational determination

of the fractional energy density in matter ΩM constitutes another piece of evidence for

the existence of a cosmic component that does not cluster on astrophysical scales. In

fact, several different and independent determinations of ΩM result in a fiducial value

well below unity. All such different determinations of ΩM rely on the clustering of matter

due to its gravitational instability, and therefore a low value of ΩM indicates the existence

of an unclustered form of energy in the Universe.

For instance, the matter density can be estimated based on the analysis of the

properties of Large Scale Structure, by the relation between the observed peculiar velocity

field and the galaxy density distribution (Peacock et al., 2001), or independently from the

evolution with redshift and mass of the cluster number counts, according to the Press-

Schechter Formalism (Press and Schechter, 1974) (see e.g. Percival et al. (2001)). Other

determinations of ΩM based on gravitational lensing effects, or on the Sunyaev-Zeldovich

effect for clusters of galaxies, all result in a low-matter-density Universe.

The combination of all these different observational constraints is capable of breaking

the degeneracy between the two parameters ΩM and ΩΛ, and selects a confidence region

in the plane (ΩM ,ΩΛ) at z = 0 around the point (0.279, 0.721), as can be seen in Fig. 1.3,

thus providing strong observational evidence for a dark energy component able to drive

an accelerated expansion.

1.4 The Cosmological Constant Problems

As discussed in the previous paragraph, a huge and constantly increasing amount of data

collected in the last decade and coming from several independent datasets indicates that

roughly 75% of the total energy density in the Universe must be made of a dark energy
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Figure 1.1: Complementary fiducial constraints in the parameter plane (ΩM ,ΩΛ) at z = 0, coming from
the analysis of Supernovae Ia, CMB anisotropies, and Large Scale Structure properties. This figure is
taken from the Supernova Cosmology Project website http://supernova.lbl.gov/ (Perlmutter, 2008).

component that does not cluster on astrophysical scales. Such a cosmic component must at

the present time have an equation of state w very close to −1 (Komatsu et al., 2008; Bean

and Melchiorri, 2002; Jimenez et al., 2003; Hannestad and Mortsell, 2004). These features

immediately suggest the Cosmological Constant, which has therefore been invoked as a

natural explanation of the strong observational evidence for the existence of dark energy.

However, although the Cosmological Constant would appear as the most obvious

candidate to fit the observational data, it presents us with two deep conceptual puzzles.

As already discussed in the previous section, the study of the angular power spectrum of

the CMB anisotropies indicates that the spatial geometry of the Universe is very close

to Euclidean, and this finding constrains the total energy density to be very close to the

critical density. As already stated in 1.28, the latest constraint on Ωtot is (Komatsu et al.,
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2008):

Ωtot(0) =
κ2ρtot(0)

3H2
0

= 1.005± 0.006 . (1.29)

Therefore, from the measure of H0 it is possible to infer the present value of the dark

energy density ρΛ:

ρΛ = 0.75 ρtot(0) ∼
3H2

0

κ2
∼ 1.0 · 10−10erg cm−3 . (1.30)

The constancy of energy density for a Cosmological Constant (Eq. 1.24) implies therefore

that the value 1.30 for ρΛ remains constant at all cosmological epochs. This means that

also at the Planck time:

tp '
(

~G
c5

)1/2

' 10−43s , (1.31)

which is considered to be the earliest moment of the evolution of the Universe which is

accessible to our present theoretical understanding, ρΛ has the value 1.30. Therefore, at

the time tp, the ratio of the Cosmological Constant energy density ρΛ to the ambient

density, which is the Planck density:

ρp '
c5

G2~
' 10113erg cm−3 , (1.32)

would be of the order of:
ρΛ

ρp

∼ 10−123 (1.33)

in order to produce the observed value of ρΛ today.

This appears as an unreasonably fine tuning of the Cosmological Constant value, and

has been therefore dubbed the “Fine Tuning Problem”.

Another consequence of Eq. 1.24 is the fact that the crossover of the Cosmological

Constant energy density with respect to the matter density must have happened in the

very recent past. In fact, given that the equation of state of matter is wM = 0, from

Eq. 1.23, one has that the matter energy density scales with the scale factor a(t) as:

ρM ∝ a−3 . (1.34)

This means that the crossover must have taken place at a cosmological time corresponding

to the scale factor a∗ given by:

ρM(0) · a−3
∗ = ρΛ → a∗ =

(
ρΛ

ρM(0)

)−1/3

' 3−1/3 ' 0.7 , (1.35)
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which corresponds to a redshift of z∗ ' 0.4.

At earlier cosmological epochs the Cosmological Constant energy density was less and

less important compared to the energy density of the other cosmic fluids; for instance, for

any epoch earlier than the time at which the scale factor was a ∼ 0.14 (corresponding to

z ∼ 6), the energy density in Λ was smaller than 10−3 times the critical density of the

Universe.

This unexpected coincidence between the appearance of the Cosmological Constant

and the present cosmological epoch is a second fundamental puzzle concerning the

Cosmological Constant, and has been dubbed as the “Coincidence Problem”.

These two conceptual problems are not directly related with each other, but for the

case of a Cosmological Constant they turn out to be indeed the same issue: by fine-tuning

the value of Λ in the very early Universe to the huge degree of accuracy demanded to

reproduce its present energy density, one gets automatically that the dark energy given

by the Cosmological Constant comes to dominate the energy budget of the Universe at

the time given by Eq. 1.35.

This is not the case, in general, for other models of dark energy, which can in different

cases address either one or the other of these two issues. As will be described in the next

Chapters, a dark energy model capable of solving both of these two problems at the same

time turns out to be a very challenging task.
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Chapter 2

Dynamic models of Dark Energy

2.1 Quintessence

The need to address the Fine Tuning and the Coincidence problems introduced in the

previous Chapter is at the origin of the investigation of dynamic dark energy models. By

allowing variability in time of the dark energy component one introduces an additional

degree of freedom in the theory, which could provide a way to escape the constraints

that challenge the Cosmological Constant, and could help to reconcile the model with the

observed value of the dark energy density.

Nevertheless, it is worth remembering that dynamic models of dark energy were

introduced in 1988 by Wetterich (Wetterich, 1988) and Ratra & Peebles (Ratra and

Peebles, 1988), well before the first observational evidence in favor of a dark energy

dominated Universe.

The simplest models of dynamic dark energy are based on the concept of a Classical

Scalar Field, a physical entity that can be described, at any point of space-time, by a

single number. A Scalar Field – which we denote with φ – moving in a self-interaction

potential can be described, in its most general form, by a lagrangian density p(φ, ∂µφ),

a function of the scalar field itself and of its 4-derivative. The requirement that p be a

Lorentz-invariant implies that the dependence on the 4-derivative must be expressed in a

scalar form. The simplest scalar quantity derivable from the Lorentz vector ∂µφ is its self

contraction, which can be written as 1:

χ ≡ −1

2
gµν∂µφ∂νφ =

1

2
φ̇2 , (2.1)

and represents the kinetic energy of the scalar field. The last equality of Eq. 2.1 derives
1We always denote with an overdot a derivation with respect to the cosmic time t.
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from the assumption that the scalar field is spatially homogeneous.

The simplest possible form for the function p contains therefore a kinetic term and a

potential term, and can be written as:

p =
1

2
φ̇2 − V (φ) = χ− V (φ) , (2.2)

where V (φ) is any regular function of the scalar field. The expression 2.2 defines what is

usually called Quintessence (Wetterich, 1988), and determines, through the definition of

a specific potential function V (φ), the dynamic evolution of the scalar field. Introducing

such a scalar field component in the general action functional of the Universe 1.16 in place

of the Cosmological Constant term brings to the following expression:

S =
1

2κ2

∫
d4x
√
−g
[
R +

1

2
φ̇2 − V (φ) + L

]
. (2.3)

Applying now the Least Action Principle to the action 2.3 it is possible to derive the

form of the scalar field stress-energy tensor, which allows us to identify expressions for

the energy density and the pressure of the perfect fluid associated to the scalar field φ.

These are:

ρφ =
1

2
φ̇2 + V (φ) , pφ = p(φ, χ) =

1

2
φ̇2 − V (φ) . (2.4)

The equation of state wφ of the scalar field fluid will therefore take the form:

wφ =
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

, (2.5)

and this expression shows the dynamic nature of a dark energy component represented

by a scalar field φ with respect to the static behavior of a Cosmological Constant Λ:

the equation of state of the scalar field takes the value of −1 (which corresponds, from

Eq. 1.23, to a constant energy density) only for the limiting case of a static or quasi-static

configuration (φ̇2 � V (φ)), otherwise being always larger than −1, and so requiring

evolution of the scalar field energy density with the expansion of space.

Such a dynamic nature is the main reason why a scalar field dark energy can in principle

solve the Fine Tuning Problem: a very low dark energy density at the present time would

not necessarily imply a very low dark energy density at the Planck time, because the dark

energy density can evolve in time like the energy density of all the other cosmic fluids.
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2.2 Phase-Space analysis

In order to analyze the dynamic evolution of a cosmological model with such a scalar field

dark energy, Copeland et al. (1998) investigated the dynamics of a flat FLRW cosmological

model with a scalar field subject to an exponential self-interaction potential:

V (φ) = V0e
−µκφ (2.6)

and with a barotropic fluid with equation of state pη = ηρη. In this case, the evolution

equations for the system are given by:

Ḣ = −κ
2

2

(
ρη + pη + φ̇2

)
, (2.7)

ρ̇η = −3H (ρη + pη) , (2.8)

φ̈ = −3Hφ̇− dV

dφ
. (2.9)

The system of Eqs. 2.7-2.9 is then subject to a constraint given by the first Friedmann

equation 1.11, which in this case reads:

H2 =
κ2

3

(
ρη +

1

2
φ̇2 + V

)
. (2.10)

The method introduced by Copeland et al. (1998) consists in using dimensionless variables

in terms of which the system of Eqs. 2.7-2.9 and its Friedmann constraint 2.10 can be

rewritten as a plane autonomous system.

Such dimensionless variables are defined as:

x ≡ κφ̇√
6H

; y ≡ κ
√
V√

3H
. (2.11)

By using these two variables the dimensionless energy density of the scalar field can be

expressed in the form:

Ωφ ≡
ρφ

ρcrit

=
κ2
[

1
2
φ̇2 + V (φ)

]
3H2

= x2 + y2 , (2.12)

and it is possible to identify the contribution given to the total density by the kinetic and

potential terms of the scalar field lagrangian, as:

Ωφ,kin = x2 ; Ωφ,pot = y2 . (2.13)

Furthermore, by the assumption of flatness of the Universe given by the constraint

Eq. 2.10, the total energy density in the barotropic fluid can be written as:

Ωη = 1− x2 − y2 . (2.14)
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Also the equation of state of the scalar field can be expressed in terms of the variables x

and y as:

wφ =
x2 − y2

x2 + y2
. (2.15)

Rewriting the Eqs. 2.7-2.9 in terms of these new variables results in the autonomous

system:

x′ = −3

2
x+ µ

√
3

2
y2 +

3

2
x
[
x2 − y2 + η(1− x2 − y2)

]
, (2.16)

y′ = −µ
√

3

2
xy +

3

2
y
[
1 + x2 − y2 + η(1− x2 − y2)

]
, (2.17)

where a prime indicates a derivative with respect to the logarithm of the scale factor,

α ≡ ln a. The constraint:

0 6 x2 + y2 6 1 (2.18)

coming from the Friedmann equation 2.10 indicates that the evolution of the system is

completely described by the dynamic evolution of the variables (x, y) within the unitary

disc. Furthermore, since the system is symmetric under the reflection (x, y) → (x,−y) and

under time inversion t → −t (since the lower half-disk y < 0 corresponds to contracting

solutions), it is always sufficient to consider the upper half-disk y > 0.

For this autonomous system we can now derive the critical points in the upper half-

disk, defined as the points for which x′ = 0 and y′ = 0. Depending on the values of µ and

η we can have for the system 2.16-2.17 up to five of these critical points. Their stability

can be analyzed by means of an eigenvalue analysis (as discussed in detail in Copeland

et al. (1998)) and will also obviously depend on the values of the parameters µ and η. The

condition that defines a critical point (x′ = 0, y′ = 0) implies that on a critical point the

equation of state of the scalar field will stay constant (see Eq. 2.15), and this corresponds

to the definition of a Scaling Solution. Therefore a critical point always corresponds to a

scaling solution. The five critical points for this system are listed in Table 2.1 together

with the parameter space regions for their existence and stability and with the value of

the scalar field equation of state, where for convenience we have set Γ ≡ η + 1.
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x y Existence Stability Ωφ wφ

0 0 ∀µ , η Saddle point for −1 6 η 6 1 0 Undefined

1 0 ∀µ , η Unstable node for µ <
√

6
Saddle Point for µ >

√
6

1 1

-1 0 ∀µ , η Unstable node for µ >
√

6
Saddle Point for µ <

√
6

1 1

µ√
6

[
1− µ2

6

]1/2

µ2 < 6 Stable node for µ2 < 3Γ
Saddle Point for 3Γ < µ2 < 6

1 −1 + µ2

3

√
3
2

Γ
µ

√
3
2

[
(2−Γ)(Γ)

2µ2

]1/2

µ2 > 3Γ
Stable node for 3Γ < µ2 < 24Γ2

(9Γ−2)

Stable Spiral for µ2 > 24Γ2

(9Γ−2)

3Γ
µ2 η

Table 2.1: Table of the five critical points for the system 2.16-2.17 with the corresponding existence
conditions and stability conditions, as determined by an analysis of the eigenvalues of the system (see
Copeland et al. (1998)). The last two columns contain respectively the energy density of the scalar field
Ωφ and its equation of state wφ for each critical point.

2.3 The properties of Scaling Solutions

All the critical points listed in Table 2.1 correspond to scalar field Scaling Solutions,

according to the definition of a Scaling Solution as a solution of the dynamic equation for

the scalar field (Eq. 2.9) that keeps constant the value of the equation of state wφ. We

can analyze the properties of all these points according to their parameter-space regions

of existence and stability.

The two points for which the Universe is dominated by the scalar field kinetic energy,

which are the points (x = ±1 , y = 0), correspond to a scalar field with a stiff equation

of state wφ = 1, and are never stable. Therefore they can play a role only at early times,

but they will not be relevant for the late-time dark energy phenomenology.

The behavior of the fluid dominated critical point (x = 0 , y = 0) is more surprising.

The stability analysis shows in fact that such a point is never stable for any value of η in

the interval −1 < η 6 1, which means that, unless the barotropic fluid is a Cosmological

Constant itself (η = −1), the energy density in the scalar field can never vanish with

respect to the energy density in the other fluids present in the Universe at late times.
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The two remaining points are the only ones that have stability regions in the parameter

space (µ, η), and that can therefore represent late-time attractor solutions. One of them,

the one which has Ωφ = 1 (i.e. the fourth point of Table 2.1), represents a scalar field

dominated solution, which is stable for sufficiently flat potentials (µ2 < 6), and gives

rise to a power-law inflationary expansion for µ2 < 2, as it was found in Lucchin and

Matarrese (1985). This phase-space analysis shows that this kind of solution is also a late

time attractor in presence of a barotropic fluid for µ2 < 3(η + 1).

However, the most interesting situation for the solution of the Fine Tuning Problem

related to the observational features of the dark energy component is given by the region

of the parameter space where µ2 > 3(η + 1). In this case, the only stable critical point is

given by a completely different type of scaling solution, represented by the last point in

Table 2.1, for which none of the two components completely dominates the energy density

of the Universe. For this solution, in fact, the scalar field and the barotropic fluid evolve

keeping a constant ratio of their energy densities, with Ωφ = 3(η + 1)/µ2. The constancy

of the ratio Ωφ/Ωη is a consequence of the fact that for such a scaling solution the constant

value kept by the scalar field equation of state corresponds to the value of the equation

of state of the barotropic fluid: wφ = η. This implies that the two components will scale

in the same way with the expansion of the Universe:

ρi = a−3(1+wi) . (2.19)

This solution was first found in Wetterich (1988), and takes the name of tracking scaling

solution – or tracker – for its feature of mimicking the behavior of the dominating fluid of

the Universe by adjusting the scalar field equation of state to the value of the dominant

component.

The importance of the existence of such attractor solution for a wide region of the

parameter space (µ2 > 3 [η + 1]) in easing the fine tuning problem is clear: for a wide

range of possible parameter values of the model, and for different types of barotropic

fluids (e.g. matter or radiation), the evolution of the Universe will be attracted towards

a trajectory on which the scalar field scales like the dominant barotropic component and

tracks its evolution. This means that during radiation domination, in the early Universe,

we can have a scalar field that scales as radiation (i.e. as a−4), and afterwards, during
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matter domination, the scalar field will scale as matter (i.e. as a−3). It is therefore not

necessary anymore to fine-tune the value of the dark energy density in the early Universe

with a huge precision because the scalar field can start with a high density in the early

Universe and dilute with the expansion to have the low observed energy density today,

the only constraint being the value of Ωφ = 3(η + 1)/µ2 during radiation and matter

domination, which has to be compatible with observational constraints on the amount of

early dark energy (Xia and Viel, 2009).

A qualitative comparison of the evolution of energy densities with the expansion of the

Universe which shows the main advantage of such tracking scaling solution as compared

to the Cosmological Constant in easing the Fine Tuning Problem is given by Fig. 2.1.

2.4 Shortcomings of uncoupled dynamic Dark Energy

The most relevant feature of the tracking behavior of the last critical point of Table 2.1 for

the system 2.16-2.17 is the possibility to bring the dark energy density from high values

in the early Universe to the low value observed today, without needing to fine-tune the

parameters of the model and the initial conditions for the scalar field: the tracking scaling

solution is stable for a large region of the parameter space, and because of the barotropic

condition on the index η (−1 6 η 6 1) the stability region for such solution results in

a single condition on the slope of the exponential self-interaction potential for the scalar

field: µ2 > 6.

The stability of this solution ensures that the system will fall onto the tracker no matter

which are the initial conditions for the scalar field φ and its time derivative φ̇.

However, on the other hand, observational constraints coming from the abundance of

primoridal elements predicted by the Big Bang Nucleosynthesis model and from the

growth rate of cosmic structures during matter domination, as well as from other

independent observational probes, set an upper limit on the amount of early dark energy

during radiation and matter domination. If we indicate these values with Ωφ,r and Ωφ,m

respectively, then the relation with the potential slope implies:

Ωφ(rad) =
3Γ

µ2
=

4

µ2
< Ωφ,r → µ2 >

4

Ωφ,r

, (2.20)

Ωφ(mat) =
3Γ

µ2
=

3

µ2
< Ωφ,m → µ2 >

3

Ωφ,m

. (2.21)
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Figure 2.1: Evolution with the scale factor a of the energy densities of different types of fluid: a
Cosmological Constant (orange line) keeps a constant energy density during all the expansion history
of the Universe, while radiation (green line) and matter (black line) scale respectively as a−4 and a−3. A
scalar field on a tracking scaling solution like the one given by the last critical point of Table 2.1 follows
the behavior of the dominant barotropic fluid, and therefore scales as a−4 during radiation domination,
and automatically switches to a−3 at equivalence. This behavior can in principle overcome the Fine
Tuning problem by removing the need to set the initial dark energy density to unnaturally small values
in the early Universe; however, as a consequence of the stability of the tracking scaling solution, it does
not allow a late time dark energy domination.

In any case, it is known from observational constraints that dark energy must be

subdominant during the whole radiation dominated epoch and for a large fraction of

matter domination, without exceeding few percent of the total energy budget of the

Universe: Ωφ,r ,Ωφ,m 6 2 ∼ 3 · 10−2 (Xia and Viel, 2009).

On the other hand, we measure today an energy density for the dark energy component

which is about 75% of the total energy density of the Universe. Therefore, although the

tracking scaling solution can ease the Fine Tuning problem, it cannot explain the present

ratio of energy densities in the Universe, due to the fact that the stability of the tracker
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will forever keep the system on a solution in which the scalar field must be subdominant

in order to be compatible with high redshift observational constraints.

This can be seen as a good motivation to try to extend the model in order to account

for late time dark energy domination. The introduction of a direct interaction between

the dark energy scalar field and other cosmic fluids – that will be extensively discussed

in the next Chapters – is one possible way to perform such an extension.

Such a tentative and repeated extension of the theoretical model by introducing a

new degree of freedom each time a new conceptual puzzle shows up (as happened with

the introduction of a time variation of the dark energy to address the Fine Tuning issue

that faces the Cosmological Constant) might look as a sort of “epicycle process”, hiding

a radically different and deeper explanation of the dark energy physics. However, it is

worth remembering here that a direct interaction between the dark energy component

(whatever it might be) and the other fluids in the Universe, in particular the dark matter

fluid, is not sufficiently constrained by observations to be ruled out, as we will discuss

in the first section of Chapter 3. This therefore represents a possibility which deserves

further investigation.
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Chapter 3

Interacting Dark Energy

3.1 Motivations for interacting dark energy

As we have discussed in detail in the previous Chapter, the introduction of the new degree

of freedom consisting in the possibility of time variation of the dark energy density,

by means of the dynamic evolution of a self-interacting and minimally coupled (i.e.

interacting with the rest of the Universe only gravitationally) scalar field, offers a chance to

mitigate the serious conceptual problem associated with the extremely fine tuning which

is required to accommodate observations with a Cosmological Constant. The dynamic

solution of such problem, based on the tracking property 2.19 runs, however, into a new

fundamental problem since it cannot produce a crossover between a fluid (radiation or

matter) dominated epoch, where the dark energy scalar field tracks the evolution of the

dominant component keeping a subdominant energy density, and a dark energy dominated

epoch at late times. This is due, as we have stressed in the previous Chapter, to the

stability of the tracking scaling solution.

Therefore, unless one wants to completely abandon the dark energy hypothesis

and assume that the observed phenomena – the acceleration of the expansion of the

Universe (Riess et al., 1998; Perlmutter et al., 1999; Astier et al., 2006), the observed

flatness of the spatial geometry (Komatsu et al., 2008), the inferred low matter density

(Peacock et al., 2001; Percival et al., 2001; Grego et al., 2001), or a detection of the

Integrated-Sachs-Wolfe effect (Giannantonio et al., 2008) – that suggest the existence

of a dark energy component can in reality be explained by some completely different

mechanism (as e.g. modifications of gravity (Capozziello and Francaviglia, 2008; Rubakov

and Shaposhnikov, 1983; Bekenstein, 2004), backreaction effects (Kolb et al., 2005),

51
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inhomogeneous cosmologies (Chuang et al., 2008; Paranjape and Singh, 2006)), it is

necessary to look for possible extensions of the simple model described in the previous

Chapter, in order to solve this new fundamental problem of the theory.

One possible way to extend the basic scenario is to try to build models where the

tracking solution is not so perfectly stable, and the system is perturbed such that after an

appropriately extended tracking epoch the system is kicked out from the tracking solution

and falls into the only other attractor, given by the scalar field dominated solution (fourth

point in Table 2.1). This type of extension can be performed either by changing the form

of the self-interaction potential V (φ) (e.g with the SUGRA potential proposed in Brax and

Martin (1999)), or, more radically, by allowing for more general forms of the lagrangian

density p(φ, χ) than the simple Quintessence discussed until now (Armendariz-Picon et al.,

2000; Amendola et al., 2006).

However, as shown in Amendola et al. (2006), there is no possible choice of the

lagrangian density p(φ, χ) in the context of single-field minimally-coupled dark energy

models that could feature two subsequent tracking solutions, one having a subdominant

dark energy fraction, and the other having the observed value of Ωφ at the present epoch,

thereby solving at the same time the Fine Tuning and the Coincidence problems.

Another possible extension consists in dropping the assumption that the scalar field φ

is minimally coupled, which means assuming that φ can directly interact with other fields

in the Universe. A first motivation for considering interacting dark energy models thus

resides in the need to address the problem of the exit from a tracking cosmic evolution

with a subdominant dark energy component. A direct interaction between a scalar field

and ordinary matter (i.e. the baryons) would be subject to the constraints that affect any

scalar-tensor theory, for instance the Brans-Dicke (Brans and Dicke, 1961) extension of

General Relativity, so that the coupling strength would therefore be tightly constrained to

very small values. However, as first pointed out in Damour et al. (1990), a non-universal

coupling of the dark energy scalar field φ involving only cold dark matter would escape

such constraints and would allow for a significantly larger value of the interaction strength,

thus opening room for new interesting phenomenology.

Indeed, in absence of specific constraints capable of ruling out this type of non-universal

coupling, there is no reason to assume that the scalar field φ has to be minimally coupled,

and the possibility of investigating the scalar field phenomenology hidden beyond such
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an unnecessary assumption constitutes a further motivation for our study. As we will

mention in Chapter 6, the present bounds on the interaction between dark energy and

cold dark matter are mainly based on the effects that such interaction would have on

CMB properties (Bean et al., 2008), and leave enough room for potentially detectable

new physics.

Finally we notice that, although the standard “concordance” cosmological model based

on the ΛCDM paradigm – i.e. based on the assumption that the dark energy component

is indeed given by a cosmological constant Λ – is very successful in predicting the

observed properties of the Universe, in a few cases it nevertheless runs into conflict with

observations.

In particular, one of the longstanding problem of the ΛCDM picture is the overpredicted

abundance of substructures within cold dark matter halos with respect to the observed

number of satellites of galactic halos in the Local Group, first pointed out by Klypin et al.

(1999) and Moore et al. (1999)(see also Springel et al. (2008)).

Furthermore, the universal density profile of cold dark matter halos within the ΛCDM

scenario shows an exceedingly steep rise of the overdensity in the central region, giving

rise to the longstanding so-called “cusp-core” problem (Navarro et al., 1996, 1997).

Finally, the observed baryon fraction in large galaxy clusters (Allen et al., 2004;

Vikhlinin et al., 2006; LaRoque et al., 2006) is found to be low as compared to the

universal cosmic value that can be inferred by CMB analysis (Komatsu et al., 2008), and

this discrepancy is also not easily addressed in the context of a ΛCDM cosmology.

All these different examples of tensions between the predictions of the ΛCDM

“concordance” model and specific types of observations constitute another motivation

for an investigation of cosmological models that go beyond the standard scenario and also

beyond the simplest possible models of dynamic dark energy.

As we will discuss in Chapter 6, our investigation of coupled dark energy models shows

that a direct interaction between the dark energy scalar field and the cold dark matter

fluid, in the fashion that will be extensively described in this Chapter, produces effects

that go in the direction of alleviating several of the problems mentioned here.
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3.2 Basic equations of an interacting dark energy component

If we assume General Relativity to be the correct theory for the gravitational interaction

at any scale, then we also assume that the Einstein field equations 1.1 hold, together with

all their properties.

One of these properties, deriving as a direct consequence of the General Covariance

Principle (Weinberg, 1972), constrains the Einstein Tensor Gµν to fulfill the vector

equation:

∇µG
µ
ν = 0 , (3.1)

which constitutes a system of four differential equations going under the name of

Contracted Bianchi Identities, as already discussed in Chapter 1.

Due to the tensor character of the field equations 1.1, the same constraint needs to hold

for the total stress-energy tensor of the Universe Tµν , so:

∇µT
µ
ν = 0 . (3.2)

The vector equation 3.2 represents the total stress-energy conservation for the Universe

as a whole. However, the total stress-energy tensor Tµν is in general the sum of several

different stress-energy tensors for the different components that are present in the Universe

which, according to the present understanding of observational data, should be at least

five: radiation, neutrinos, cold dark matter, baryons, and dark energy. This means that

General Covariance will apply to the sum of all these components, but no constraint like

3.2 will apply to the stress-energy tensors of the individual components, provided the

total Tµν keeps obeying Eq. 3.2. Therefore, for each component i present in the Universe,

the covariant derivative of its own stress-energy tensor can be any 4-vector source Q
(i)
ν :

∇µT
(i)µ
ν = Q(i)

ν , (3.3)

provided that all such source vectors Q
(i)
ν sum up to zero:∑
i

Q(i)
ν = 0 . (3.4)

It is then possible to assume that the scalar field φ and the cold dark matter fluid interact

with each other through the presence of such a source term in their respective covariant
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conservation equations 1:

∇µT
(φ)µ
ν = −Qν ; ∇µT

(c)µ
ν = Qν . (3.5)

The pair of equations 3.5 is compatible with the constraint 3.2 and introduces an

interaction term between the two dark fields.

In Wetterich (1995) and later in Amendola (2000) it was proposed to assume for the

source term Qν the form:

Qν ≡ −κβ(φ)T c∇νφ , (3.6)

where T c is the trace of the cold dark matter stress-energy tensor, and β(φ) is the coupling

function that sets the strength of the interaction (for most of this work we will assume

β(φ) to be a constant and we will indicate it just as β).

By computing the time-like component of the equations 3.5 with the source term 3.6

it is now possible to derive the new coupled evolution equations for the two interacting

fluids, generalizing Eqs. 2.8-2.9:

ρ̇c + 3Hρc = −κβρcφ̇ , (3.7)

φ̈+ 3Hφ̇+
dV

dφ
= κβρc . (3.8)

The coupling terms that appear in Eqs. 3.7-3.8, or equivalently in 3.6, are not an arbitrary

assumption but can be derived by a generalized form for the action functional of the

Universe in which the mass term of the cold dark matter field (here denoted as ψ) is

assumed to be a function of the scalar field φ:

S =
1

16πG

∫
d4x
√
g

[
R− 1

2
gµν∂µφ∂µφ− V (φ)−m(φ)ψ̄ψ + Lkin [ψ]

]
, (3.9)

for the case in which the functional dependence of m(φ) is an exponential:

m(φ) = m0e
−κβ(φ)φ . (3.10)

Therefore, if we now assume a simplified model of the Universe in which we discard

the baryons and the neutrino components, and we assume that the only three fluids

contributing to the energy budget are the dark energy scalar field φ, the cold dark matter

fluid, and the radiation component (denoted as r), we can rewrite the system of equations

1From now on we will use the index c to indicate cold dark matter in all equations for quantities that refer to the cold
dark matter fluid
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2.8-2.9 for the interacting case, which will be given by Eqs. 3.7-3.8 and by the usual Euler

equation for the relativistic fluid:

ρ̇c + 3Hρc = −κβρcφ̇ , (3.11)

φ̈+ 3Hφ̇+
dV

dφ
= κβρc , (3.12)

ρ̇r + 4Hρr = 0 . (3.13)

By integrating the coupled equations 3.11 and 3.13 we can derive the scaling laws for cold

dark matter and radiation in this interacting dark energy cosmological model:

ρc ∝ a−3e−κβφ , (3.14)

ρr ∝ a−4 , (3.15)

from which we can infer that while the relativistic fluid scales in its usual way with the

scale factor, the interacting cold dark matter fluid does not simply dilute as the inverse

of the volume, but has an additional evolution term deriving from its interaction with

the scalar field φ. As will be discussed in considerable detail in the next Chapters, this

correction term is one of the most striking features of models of direct interaction between

the dark energy scalar field and other cosmic fluids.

Finally, to close the system of equations describing the simplified model of the Universe

introduced above, we can rewrite the Friedmann constraint 2.10 taking into account the

new scaling law 3.14 of the cold dark matter fluid:

H2 =
κ2

3

[
ρc(0)a−3e−κβφ + ρr(0)a

−4 +
1

2
φ̇2 + V (φ)

]
. (3.16)

3.3 Phase space analysis for coupled quintessence

In Amendola (2000) the dynamics of the system 3.11-3.13 has been analyzed by means of

a generalization of the autonomous system approach introduced by Copeland et al. (1998)

and discussed in Chapter 2.

In this case, to perform such analysis it is necessary to introduce three dimensionless

variables in order to rewrite the problem in the form of an autonomous system:

x ≡ κφ̇√
6H

; y ≡ κ
√
V√

3H
; z ≡

κ
√
ρr√

3H
, (3.17)
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where the energy densities of the kinetic and the potential part of the scalar field are still

given by x2 and y2 respectively, and where z2 represents the energy density of radiation:

Ωr ≡
κ2ρr

3H2
= z2 , (3.18)

while the cold dark matter energy density is given by the Friedmann constraint 3.16:

Ωc = 1− Ωφ − Ωr = 1− x2 − y2 − z2 . (3.19)

For the same case of an exponential potential 2.6 already discussed in the uncoupled case,

by using these variables the system can be recast in the form:

x′ =

(
z′

z
− 1

)
x+

√
3

2
µy2 +

√
3

2
β(1− x2 − y2 − z2) , (3.20)

y′ = −
√

3

2
µxy + y

(
2 +

z′

z

)
, (3.21)

z′ = −z
2
(1− 3x2 + 3y2 − z2) , (3.22)

where again a prime denotes a derivative with respect to the logarithm of the scale factor,

α ≡ ln a. Also in this case the system has some symmetries: it is invariant under a

transformation (x, y, z) → (x,−y,−z) and under inversion of time t→ −t.

Furthermore, the Friedmann constraint 3.16 allows acceptable trajectories only within

the unitary sphere x2 + y2 + z2 6 1. Therefore it will be sufficient to study the system in

the quarter of the unitary sphere with positive y and z. Following the same argument as

in Chapter 2 we can look for the critical points of the system (x′ = 0, y′ = 0, z′ = 0) in

such a region and identify the Scaling Solutions. On the scaling solutions, the Universe

will expand with a rate given by:

a ∝ tp , p ≡ 2

3(1 + weff)
, (3.23)

where the effective equation of state of the Universe weff is defined as:

weff ≡ Ωφwφ + Ωrwr = x2 − y2 +
z2

3
, (3.24)

and therefore an accelerated solution which could reproduce the observed accelerated

expansion of the Universe (Riess et al., 1998; Perlmutter et al., 1999) will require a value

weff < −1/3.

The system 3.20-3.22 has up to 15 critical points, of which only 8 are in the quarter
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Point x y z Ωφ weff wφ

I µ√
6

(
1− µ2

6

)1/2

0 1 −1 + µ2

3 −1 + µ2

3

II
√

8
3

1
µ

2√
3|µ|

(
1− 4

µ2

)1/2
4

µ2
1
3

1
3

III −
√

3√
2(β−µ)

(g−9)1/2
√

6|β−µ| 0 g
6(β−µ)2

β
µ−β

18−g
g

IV 0 0 1 0 1
3 −

V 1√
6β

0
(
1− 1

2β2

)1/2
1

6β2
1
3 1

VI
√

2
3β 0 0 2

3β2 2
3β2 1

VII −1 0 0 1 1 1

VIII +1 0 0 1 1 1

Table 3.1: List of the critical points for the autonomous system 3.20-3.22 within the quarter of unitary
sphere with positive y and z. The values of the variables x, y, and z for each critical point are listed
together with the corresponding value of the total dark energy density Ωφ, the effective equation of state
of the Universe weff introduced in Eq. 3.24, and the scalar field equation of state wφ.

of unitary sphere with positive y and z and are listed in Table 3.1, where the following

quantity has been introduced for convenience:

g(µ, β) = 6β2 − 6βµ+ 18 , (3.25)

and where for each critical point also the corresponding value of the effective equation of

state is quoted. Having a look at Table 3.1 it is immediately possible to recognize some

of the critical points already found for the uncoupled case and listed in Table 2.1.

For instance, the points VII and VIII correspond to the second and third point of

Table 2.1, and are dominated by the kinetic energy of the scalar field φ.

The point I in Table 3.1 corresponds to the fourth point in Table 2.1, and is dominated

by the scalar field with the kinetic term and the potential term sharing with a proportion

given by the value of the potential slope µ the total energy density of the Universe.

The last point of Table 2.1, which is the tracking scaling solution that was thoroughly



3.3 Phase space analysis for coupled quintessence 59

discussed in Chapter 2, corresponds in our new formulation to points II and III of

Table 3.1. In the system 3.20-3.22 we have, in fact, specified the nature of the two

barotropic fluids present in the Universe as being radiation (η = 1/3) and cold dark

matter (η = 0). For the former case, it is immediately evident that point II corresponds

to the case where the scalar field tracks the behavior of radiation, given by setting η = 1/3,

and Γ = 4/3 in the last point of Table 2.1. For the latter case, we need to take into account

that we have introduced a coupling between the cold dark matter and the scalar field φ,

whose strength is given by the value of β. We can therefore recover the case where the

scalar field tracks the behavior of cold dark matter that was discussed in Chapter 2 by

setting η = 0, Γ = 1 in the last point of Table 2.1, and by considering the zero-coupling

limit for point III of Table 3.1 by setting β = 0.

Finally, the first point of Table 2.1 corresponds to the points IV and VI in Table 3.1

for the case of radiation domination (η = 1/3 ,Γ = 4/3), and for the limiting case of

uncoupled cold dark matter domination (η = 0 ,Γ = 1 , β = 0), respectively.

Besides recovering the critical points already discussed for the uncoupled case when

considering the proper limits of the system 3.20-3.22, we can identify the novel features

introduced in the scaling solutions of Table 3.1 by the presence of the coupling between

cold dark matter and the dark energy scalar field φ. The most evident of such new

features is given by point V in Table 3.1. This is the only point for which there is no

correspondence to any of the critical points of Table 2.1. In fact, this point is clearly

not defined for β = 0, and exists only in presence of relatively large coupling. This point

corresponds to a radiation dominated solution, where the radiation energy density Ωr = z2

is at least 0.875, and where the dark energy scalar field φ and the cold dark matter fluid

share the remaining energy density required for closure, having energy densities Ωφ and

Ωc not larger than 0.042 and 0.083, respectively.

However, the most important new feature introduced by the coupling is given by point

VI and by its modification with respect to the first point of Table 2.1 for the case of

a non-vanishing coupling, β 6= 0. In fact, in presence of a coupling between cold dark

matter and the dark energy scalar field φ, this point becomes a completely new type of
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tracking scaling solution.

The novelty here is given by the fact that the scalar field tracks the evolution of the

cold dark mater fluid even though the two components do not have the same equation

of state. A careful analysis of the properties of point VI, in fact, reveals that in the case

of a constant coupling β, the scalar field φ shares a constant fraction 2
3
β2 of the total

energy budget of the Universe, even if its stiff equation of state (wφ = +1) would imply a

much faster dilution of the scalar field density (ρφ ∝ a−6) as compared to the evolution of

cold dark matter (ρc ∝ a−3). This is possible due to the presence of a direct interaction

between the two fluids, that according to Eqs. 3.5,3.7,3.8 determines a net flux of energy

from one fluid to the other. In particular, according to the specific form of the coupling

considered here, the flux of energy will always go, for β > 0, from the cold dark matter

fluid to the scalar field, as is clear by looking at the coupled Euler equation 3.7 and at

the mass evolution of the cold dark matter field given by Eq. 3.10.

This implies that the cold dark matter fluid continuously feeds the scalar field energy

density during the stage when the Universe follows the scaling solution given by Point VI,

and consequently will also deviate from the usual uncoupled cold dark matter scaling law,

a−3. In particular, both fluids will scale with the same scaling law that can be written

by taking into account the energy transfer between the two fluids given by Eq. 3.10, and

which takes the form given by Eq. 3.14:

ρφ ∝ ρc ∝ a−3e−κβφ . (3.26)

As will be discussed in the next section, this modified evolution is one of the most

relevant features of interacting dark energy models of this kind, and can have important

cosmological consequences.

Now we can move to analyze the conditions of existence and stability of the critical

points listed in Table 3.1. As already done for the uncoupled case, the conditions for

stability of each critical point can be computed by means of an eigenvalue analysis of

the system, and are listed, together with the existence conditions and the conditions for

acceleration, in Table 3.2, where following Amendola (2000) the two quantities:

µ+ ≡
1

2

(
β +

√
12 + β2

)
, µ0 ≡ β +

3

2β
, (3.27)
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Point Existence Stability Accelerated for

I µ <
√

6 µ < µ+, µ < 2 µ <
√

2

II µ >
√

2 2 < µ < 4β Never

III µ < µ0, |µ− β| >
√

3/2 µ > µ+, µ > 4β µ < −2β

IV ∀µ , β unstable ∀µ , β Never

V |β| > 1/
√

2 µ > 4β, β > 1/
√

2 Never

VI |β| <
√

3/2 |β| < 1/
√

2, µ > µ0 Never

VII ∀µ , β unstable ∀µ , β Never

VIII ∀µ , β unstable ∀µ , β Never

Table 3.2: Existence, stability, and acceleration conditions in the parameter space (β, µ) for all the
critical points listed in Table 3.1. The table corresponds to the analysis done in Amendola (2000) for the
definitions and the conventions adopted in this work, and where a few misprints present in Amendola
(2000) have been corrected.

have been introduced for convenience.

It is very important to notice, from Table 3.2, that for any point in the parameter space

(β, µ) more than one critical point can exist, but only one of them is stable, therefore for

any choice of the parameters β and µ there will be only one attractor for the system.

As we already noticed, the only critical point whose existence region does not include

the uncoupled case β = 0 is the Point V. All the other critical points can be evaluated for

the case of zero coupling and can therefore be related to the critical points of the uncoupled

case listed in Table 2.1. This holds also for the existence, stability, and acceleration

conditions, which reduce for β = 0 to the ones found for the uncoupled case and listed in

Table 2.1.

However, we are interested here in the case where a coupling β 6= 0 is present. In such

case, we can see from Table 3.2 that there are only two scaling solutions which can be

accelerated, corresponding to the points I and III in Table 3.1. This is anyway one more

than in the uncoupled case, where the only accelerated solution was given by the scalar

field dominated critical point given by the fourth point listed in Table 2.1. This point

corresponds to Point I in the coupled case, and is the only late time accelerated attractor
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for sufficiently flat potentials.

The other accelerated solution is given by Point III, which corresponds, as already

discussed, to the tracking scaling solution for the uncoupled case. However, in the

uncoupled system described in Chapter 2 this solution could not be accelerated, while

we can see from Table 3.2 that in presence of a coupling, and for sufficiently negative

values of the coupling constant β, this solution is accelerated and stable.

The stability and acceleration regions in the parameter space (β, µ) as listed in Table 3.2

are shown in Fig. 3.1, which reproduces the Figure 1 presented in Amendola (2000)

replotted with the conventions and definitions adopted in this work.

In the re-elaboration of the phase space analysis done in Amendola (2000) that we

have presented in this paragraph we have also corrected a few misprints, in particular in

the Table 3.2 for the stability of the critical points and in Eq. 3.27, that were present in

the published version of Amendola (2000).

3.4 The weak coupling regime and the φMDE phase

If we start analyzing the properties of the accelerated scaling solution given by the Point

I of Table 3.1, we immediately realize that on this solution the Universe is dominated by

the energy density of the dark energy scalar field φ, and that Ωφ = 1 along the solution I.

This means that if we want to build a cosmological model which could possibly describe

the observed Universe, we need to assume that this stable attractor has not yet been

reached at the present stage of cosmic evolution, that the Universe is in a transient phase

approaching it, but that the expansion is nevertheless already accelerated. This means

that if we want to obtain the observed energy ratio between dark energy and cold dark

matter, we need to tune the initial conditions for the dynamics of the scalar field.

This sort of tuning is, however, of a different type than the fine tuning that has to

be invoked to address the Fine Tuning Problem. In this case, what has to be tuned is

not the total amount of dark energy present in the early Universe, but the time of the

transition between a decelerated matter dominated regime and an accelerated dark energy

dominated attractor. Therefore this type of tuning is more related to the Coincidence

Problem than to the Fine Tuning problem. As we have already stressed in Chapter 1,

for the case of a cosmological constant Λ the two problems coincide, and they reduce to
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Stability regions in the parameter space
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Figure 3.1: The parameter plane (β, µ) for the autonomous system of Eqs. 3.20-3.22 as presented in
Figure 1 of Amendola (2000), replotted here with the definitions and the conventions adopted in this
work. Each region is labelled with the number corresponding to the only critical point that is stable in
that region. The shaded areas correspond to the regions of the parameter space where the stable solution
is also accelerated.

the extreme fine tuning of a single number. However, for dynamic dark energy models in

general, and therefore also for the case of dynamic coupled dark energy, the additional

degree of freedom introduced by the dynamic nature of the scalar field splits the problem

into the two different issues described above.

In any case, the stable attractor solution given by Point I could not be a viable

description of our Universe without the initial conditions selection required to drive the

system to the present-day coincidence of comparable Ωc and Ωφ.

The positive feature of the solution I is that it can be accelerated also for small values

of the coupling β, and can therefore be treated in terms of deviations from the standard

ΛCDM cosmological model.

In particular, we can consider the ΛCDM limit of the model, given by the absence of
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coupling (β = 0) and by setting the equation of state of the scalar field to the cosmological

constant value of −1, which can be realized by ensuring that the kinetic energy of the

scalar field φ always vanishes: x2 = const. = 0. This can be done by setting the initial

velocity of the scalar field to zero (φ̇i = 0) and by choosing a constant self-interaction

potential (V (φ) = const. → µ ≡ 0).

Therefore, the point of parameter space (β, µ) = (0, 0) corresponds to the usual ΛCDM

cosmology, and as can be seen from Fig. 3.1, in this case the only accelerated stable

solution is the Λ-dominated stage given by Point I which drives a De Sitter exponential

expansion.

For a ΛCDM cosmological model, the Universe starts in a radiation dominated epoch

at very early times, then it moves to a matter dominated epoch, and eventually reaches

the final Λ-dominated stage. This means that a ΛCDM cosmic trajectory would start with

z ∼ 1 at early times (radiation domination), would then move to a stage where z ∼ 0 and

x , y ∼ 0 (matter domination), and would finally reach the solution I where ΩΛ = 1. The

trajectory of a ΛCDM cosmology is therefore given by the sequence IV→VI→I.

If we now move to dynamic and coupled dark energy models, we can explore the region

of parameter space close to the ΛCDM case, but with non-vanishing values of β and µ.

While in the ΛCDM case the saddle point corresponding to the matter dominated epoch

is given by the point (0, 0, 0) in the three-dimensional phase-space (x, y, z), for the coupled

dark energy case this saddle will move to (
√

2
3
β, 0, 0), with a non-vanishing dark energy

density given by Ωφ = 2
3
β2.

This is the new type of tracking scaling solution already introduced in the previous

section, which is sustained by the continuous net flux of energy flowing from the cold

dark matter fluid to the dark energy scalar field φ. This saddle point is not anymore

completely dominated by cold dark matter, but presents a non-negligible fraction of dark

energy, in a very similar fashion as what happens for the usual tracking solutions already

discussed for the uncoupled dynamic dark energy case in Chapter 2 (and corresponding

to the last point of Table 2.1 and to the limit β = 0 for the Point III of Table 3.1).

However, although giving rise to a subdominant fraction of Early Dark Energy during

matter domination in a very similar fashion, the two tracking solutions are inherently

different. In fact, while the usual tracking solution seen in Chapter 2 is driven by a

dynamic balance of the kinetic and the potential energy of the scalar field that sticks the
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equation of state to the one of the dominant fluid, therefore leading to a fraction of Early

Dark Energy also during radiation domination, this new type of tracking solution is fully

driven by the kinetic term of the scalar field, therefore leading to a stiff equation of state

(wφ = 1), and allowing the presence of Early Dark Energy only after the end of radiation

domination.

This peculiar new type of evolutionary phase of the Universe has been dubbed φMDE

– which stands for φ-Matter-Dominated-Epoch – in Amendola (2000), and represents the

main new feature of coupled dark energy models in the weak coupling regime close to the

standard ΛCDM case (β, µ) = (0, 0).

Observational bounds on the coupling (which we will not discuss here in detail) for the

case of one single dark matter family interacting with a constant coupling β with the dark

energy scalar field φ (Wetterich (1995); Bean et al. (2008)) restrict the allowed region for

β to the range |β| < 0.1. It is therefore clear from the conditions listed in Table 3.2 and

from Fig. 3.1 that the other stable accelerated solution, which we will discuss in detail in

the next section, is accelerated only for large values of the coupling (|β| > 1/
√

2), and

cannot be a viable description of the present-day Universe.

This conclusion does not hold in the context of more complex cosmological models

where more than one dark matter species is present. We will describe in detail in Chapter

4 one notable model of this kind (Amendola et al., 2008), but it is nevertheless important

to stress here that in the context of the simplest coupled dark energy scenario with a

single dark matter species, the only possible cosmological evolution is the one that ends

up in a scalar field dominated attractor after going through a long radiation dominated

epoch and a subsequent φMDE.

3.5 The strong coupling regime and the solution of the
Coincidence Problem

The only other accelerated stable critical point besides the scalar field dominated one

described in the previous section is given by point III. This is also a scaling solution on

which the dark energy scalar field φ and the dark matter fluid share with a constant

ratio the total cosmic energy, and which is accelerated for sufficiently negative values of

the coupling β. For instance, if we set β = −4.61, µ = 2.19, the existence and stability

conditions for the point III are fulfilled, as well as the acceleration condition µ < −2β,
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and for this choice of the parameters of the model we get:

Ωφ = 0.743 ,

Ωc = 0.257 ,

wφ = −0.91 ,

weff = −0.68 , (3.28)

which are cosmological parameters compatible with observational data on the present-

day Universe. When the solution given by point III is reached, these values will

remain indefinitely constant throughout the subsequent expansion history of the Universe.

This behavior therefore addresses the Coincidence Problem by removing the surprising

coincidence of the present time being the only moment in cosmic history when the

scalar field and the cold dark matter fluid have comparable energy densities, and as

a consequence of the stability of the critical point III this qualitative solution of the

Coincidence Problem is independent of the initial conditions of the system. However, in

the context of cosmological models with a single dark matter species this solution turns

out to be of very limited viability, since it runs in conflict with cosmological constraints

coming from CMB and Large Scale Structure properties. In fact, with the parameters β

and µ set as above, which ensures the stability and the acceleration of the scaling attractor

III, the system follows a trajectory which starts from a radiation dominated phase (close

to point IV), then goes through a transient given by the saddle point V, on which the cold

dark matter density cannot exceed, as already remarked above, a value of Ωc = 0.083 (and

for the parameter choice made here this value would actually be reduced to Ωc = 0.016),

and finally reaches the scaling attractor given by point III. This trajectory does not exist,

as already stressed, for the uncoupled case β = 0.

The striking features of this peculiar cosmic evolution, as found in Amendola (2000),

are a much longer duration of radiation domination, which lasts until recently (roughly

until z ' 50), and a complete lack of a matter dominated epoch. Such evolution heavily

suppresses the growth of density fluctuations, first by the long radiation dominated epoch,

and subsequently by the accelerated expansion, and so is starkly incompatible with the

present observed value of σ8 = 0.769 (Komatsu et al., 2008).

Although conceptually appealing due to its ability to provide a solution of the

Coincidence Problem, the scaling attractor described by point III is therefore not a
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viable solution for the simplest models of coupled dark energy, and we will therefore focus

our investigation of the non-linear effects of coupled dark energy scenarios, discussed in

Chapters 5 and 6, only on the parameter space region leading to the final attractor given

by point I.

However, the strong coupling regime leading to the scaling attractor III could represent

an interesting and viable possibility for the solution of the Coincidence Problem in the

context of cosmological models with multiple dark matter families, and in particular for

the Growing Neutrino Scenario (Amendola et al., 2008) that will be extensively discussed

in Chapter 4. A detailed investigation of this kind of model by means of the same

numerical apparatus described in Chapters 5 and 6 will be surely performed in the near

future.

3.6 A generalized model for interacting dark energy:
background and perturbations evolution

We can now generalize the simple case of interacting dark energy discussed in the previous

three sections to a more general situation where also other cosmic fluids – coupled or not

to the dark energy scalar field – can be present in the Universe besides radiation and cold

dark matter. In particular, this will allow us to include the baryonic component in the

analysis of cosmic evolution, and in this context we will derive the perturbation equations

for the evolution of the different fluids up to linear order that will be used in the next

Chapters for the implementation of coupled dark energy models in the algorithm of the

N-body code GADGET-2.

In general, coupled cosmologies can be described following the consideration (Kodama

and Sasaki, 1984) that in any multicomponent system, though the total stress-energy

tensor T µ
ν is conserved ∑

α

∇νT
ν
(α)µ = 0 , (3.29)

the stress-energy tensor T µ
(α)ν for each species α is, in general, not conserved and its

divergence has a source term Q(α)µ representing the possibility that species are coupled:

∇νT
ν
(α)µ = Q(α)µ , (3.30)
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with the constraint ∑
α

Q(α)µ = 0 , (3.31)

as already discussed in Section 3.2 (Eq. 3.4).

Furthermore, we will assume also in this analysis, as we already did in the previous

Chapters, a flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) cosmology, in which the

line element can be written as ds2 = a2(τ)(−dτ 2 + δijdx
idxj) where a(τ) is the scale

factor, and τ is the conformal time, related to the cosmic time t by the relation:

dτ =
dt

a
. (3.32)

The Lagrangian of the system is of the form:

L = −1

2
gµν∂µφ∂µφ− U(φ)−m(φ)ψ̄ψ + Lkin[ψ] + Lα , (3.33)

in which the mass of matter fields ψ coupled to the dark energy is a function of the

scalar field φ as already introduced in Section 3.2 (Eq. 3.9). We assume here that other

cosmic fluids not coupled to the dark energy scalar field (labelled by α) are also present in

the Universe. In the following we will consider the case in which the dark energy is only

coupled to cold dark matter. The choice m(φ) specifies the coupling and as a consequence

the source term Q(φ)µ via the expression:

Q(φ)µ =
∂ lnm(φ)

∂φ
ρc ∂µφ. (3.34)

Due to the constraint 3.31, if no other species is involved in the coupling, Q(c)µ = −Q(φ)µ.

The zero-component of Eq. 3.30 provides the conservation equations for the energy

densities of each species:

ρ′φ = −3Hρφ(1 + wφ)−Q(φ)0 , (3.35)

ρ′c = −3Hρc +Q(φ)0 ,

where H is the conformal Hubble function defined by:

H ≡ 1

a

da

dτ
. (3.36)

Here we have treated each component as a fluid with T ν
(α)µ = (ρα + pα)uµu

ν + pαδ
ν
µ, where

uµ = (−a, 0, 0, 0) is the fluid 4-velocity and wα ≡ pα/ρα is the equation of state. The

class of models considered here corresponds to the choice:

m(φ) = m0e
−β(φ) φ

M , (3.37)
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with the coupling term equal to

Q(φ)0 = −β(φ)

M
ρcφ

′ . (3.38)

This set of cosmologies has been widely investigated, for β(φ) given by a constant, both

in its background and linear perturbation features (Wetterich, 1995; Amendola, 2000) as

well as with regard to the effects on structure formation (Amendola, 2004; Pettorino and

Baccigalupi, 2008), and via a first N-body simulation (Macciò et al., 2004).

We now perturb the quantities involved in our cosmological framework up to first

order in the perturbations (Kodama and Sasaki, 1984; Ma and Bertschinger, 1995). The

perturbed metric tensor can then be written as

g̃µν(τ,x) = gµν(τ) + δgµν(τ,x) , (3.39)

where δgµν � 1 is the linear metric perturbation, whose expression in Fourier space is

given by:

δg00 = −2a2AY ,

δg0i = −a2BYi ,

δgij = 2a2[HLY δij +HTYij] , (3.40)

where A,B,HL, HT are functions of time and of the wave vector k, and Yi, Yij are the

vector and tensor harmonic functions obtained by differentiating Y, defined as the solution

of the Laplace equation δij∇i∇jY = −|k|2Y . Analogously, the perturbed stress-energy

tensor for each fluid (α) can be written as T̃ µ
(α)ν = T µ

(α)ν + δT µ
(α)ν where the perturbations

read as:

δT 0
(α)0 = −ρ(α)δ(α)Y , (3.41)

δT 0
(α)i = h(α)(v(α) −B)Yi ,

δT i
(α)0 = −h(α)v(α)Y

i ,

δT i
(α)j = p(α)

[
πL(α)Y δ

i
j + πT (α)Y

i
j

]
.

The perturbed conservation equations then become:

(ραδα)′ + 3Hραδα + hα(kvα + 3H ′
L) + 3HpαπLα = −δQ(α)0 (3.42)

for the energy density perturbation δα = δρα/ρα, and:

[hα(vα −B)]′ + 4Hhα(vα −B)− kpαπLα − hαkA+
2

3
kpπTα = δQ(α)i (3.43)
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for the velocity perturbation vα.

The scalar field φ can also be perturbed, yielding in Fourier space

φ̃ = φ+ δφ = φ+ χ(τ)Y . (3.44)

Furthermore, we can express the perturbations of the source as:

δQ(φ)0 = −β(φ)

M
ρcδφ

′ − β(φ)

M
φ′δρc −

β,φ

M
φ′ρcδφ , (3.45)

δQ(φ)i = k
β(φ)

M
ρcδφ . (3.46)

In the Newtonian gauge (B = 0, HT = 0, HL = Φ, A = Ψ) the set of equations for the

density and velocity perturbations for dark energy and cold dark matter read:

δρ′φ + 3H(δρφ + δpφ) + khφvφ + 3hφΦ
′ =

β(φ)

M
ρcδφ

′ +
β(φ)

M
φ′δρc +

β,φ

M
φ′δφρc ,

δρ′c + 3Hδρc + kρcvc + 3ρcΦ
′ = −β(φ)

M
ρcδφ

′ − β(φ)

M
φ′δρc −

β,φ

M
φ′δφρc ,

hφv
′
φ +

(
h′φ + 4Hhφ

)
vφ − kδpφ − khφΨ = k

β(φ)

M
ρcδφ ,

v′c +

(
H− β(φ)

M
φ′
)
vc − kΨ = −kβ(φ)

M
δφ . (3.47)

The perturbed Klein Gordon equation in Newtonian gauge reads:

δφ′′ + 2Hδφ′ +
(
k2 + a2U,φφ

)
δφ− φ′ (Ψ′ − 3Φ′) + 2a2U,φΨ =

3H2Ωc [β(φ)δc + 2β(φ)Ψ + β,φ(φ)δφ] . (3.48)

For the N-body implementation we are interested in, the Newtonian limit holds, for

which λ ≡ H/k � 1. In this case we have

δφ ∼ 3λ2Ωcβ(φ)δc . (3.49)

In this limit, the gravitational potential is approximately given by

Φ ∼ 3

2

λ2

M2

∑
α 6=φ

Ωαδα . (3.50)

We can then define an effective gravitational potential

Φc ≡ Φ +
β(φ)

M
δφ, (3.51)
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which also reads, in real space and after substituting the expressions for Φ (Eq. 3.50) and

for δφ (Eq. 3.49):

∇2Φc = −a
2

2
ρcδc

(
1 + 2β2(φ)

)
− a2

2

∑
α 6=φ,c

ραδα , (3.52)

where the last term takes into account the case in which other components not coupled

to the dark energy are present in the total energy budget of the Universe. We can see

here another important feature introduced by the coupling: cold dark matter then feels

an effective enhanced gravitational constant

G̃c = GN [1 + 2β2(φ)], (3.53)

where GN is the usual Newtonian value. Therefore, the strength of the gravitational

interaction is not a constant anymore if β is a function of the scalar field φ. The last

equation in 3.47, written in real space and in terms of the effective gravitational potential,

gives a modified Euler equation of the form:

~∇~v′c +

(
H− β(φ)

M
φ′
)
~∇~vc +

3

2
H2

[
Ωcδc + 2Ωcδcβ

2(φ) +
∑

α 6=φ,c

Ωαδα

]
= 0 . (3.54)

As in Amendola (2004), if we assume that the cold dark matter is concentrated in one

particle of mass mc at a distance r from a particle of mass Mc at the origin, we can rewrite

the cold dark matter density contribution as

Ωcδc =
8πGMce

−
R

β(φ)dφδ(0)

3H2a
, (3.55)

where we have used the fact that a non-relativistic particle at position ~r has a density

given by mcnδ(~r) (where δ(~r) stands for the Dirac distribution) with mass given by

mc ∝ e−
R

β(φ)dφ, formally obtained from Eq. 3.36. We have further assumed that the

density of the Mc mass particle is much larger than ρc. The Euler equation in cosmic

time (dt = a dτ) can then be rewritten in the form of an acceleration equation for the

particle at position ~r:

~̇vc = −H̃~vc − ~∇G̃cM̃c

r
, (3.56)

where we explicitly see that the usual equation is modified in three ways.

First, the friction term now contains an additional contribution given by the second

term of the expression defining H̃:

H̃ ≡ H

(
1− β(φ)

M

φ̇

H

)
. (3.57)
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Second, the cold dark matter particles feel an effective gravitational constant G̃ given

by 3.53.

Third, the cold dark matter particles have an effective mass, varying with time, given

by:

M̃c ≡Mce
−

R
β(φ)dφ

da
da . (3.58)

In the N-body analysis carried out in the present work, we consider β to be a constant,

so that the effective mass formally reads M̃c ≡ Mce
−β(φ−φ0). We have numerically solved

the full background and linear perturbation equations with a suitably modified version of

CMBEASY (Doran, 2005), that we briefly describe here.

In collaboration with G. Robbers and V. Pettorino we have implemented the full

background and linear perturbation equations derived above in the Boltzmann code

CMBEASY (Doran, 2005) for the general case of a dark energy component coupled to

dark matter via a coupling term given by Eq. 3.30. The form of this coupling, as well

as the evolution of the dark energy (either modelled as a scalar field or purely as a dark

energy fluid), can be freely specified in our implementation.

Compared to the standard case of uncoupled dark energy, the modifications include

a modified behavior of the background evolution of cold dark matter and dark energy

given by Eqs. 3.35 and 3.36, as well as the implementation of the linear perturbations

described by Eq. 3.47, and their corresponding adiabatic initial conditions. The presence

of a coupling between cold dark matter and dark energy further complicates the choice of

suitable initial conditions even for the background quantities, since dark matter no longer

scales as a−3, and so cannot simply be rescaled from its desired value today. For each of

the models considered in the rest of this work we choose to set the initial value of the

scalar field close to its tracker value in the uncoupled case, and then adjust the value

of the potential constant Λ (see Eq. 5.1 in Chapter 5) and the initial cold dark matter

energy density such that we obtain the desired present-day values.
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Chapter 4

Quintessence models with a Growing
Matter component

4.1 Multiple dark matter families

As we have discussed in detail in the previous Chapter, the only two accelerated solutions

for the system 3.20-3.22 are given by Point I and Point III of Table 3.1. Of these two

solutions, as we have already stressed, only the scalar field dominated attractor given by

Point I can represent a viable solution for the late time cosmology in a system with one

single cold dark matter species. In fact, from Table 3.2 we can see that the solution III

is accelerated only for quite large values of the coupling (|β| > 2µ) which would be in

conflict with observational bounds on the coupling to cold dark matter derived from CMB

analysis, |β| < 0.1 (Bean et al., 2008), for most of the reasonable values of the potential

slope µ.

Moreover, we have already mentioned in Chapter 3 that from the analysis of the

dynamics of coupled dark energy models in the parameter space region that determines

the acceleration of the solution III (Amendola, 2000), the cosmic evolution that leads to

this final scaling attractor lacks a cold dark matter dominated epoch, which results in a

strong suppression of structure growth.

The appealing feature of addressing – at least qualitatively – the Coincidence Problem,

characterizing the solution III, can therefore be exploited only in presence of some other

mechanism able to drive the growth of cosmic structures up to the presently measured

value of σ8.

This mechanism could be provided by the existence of two disjoint scaling solutions,

the first one dominated by the cold dark matter fluid and the later one dominated by the
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dark energy scalar field in a similar fashion as for Point III.

However, as already anticipated, in Amendola et al. (2006) it has been shown that

even a fully generalized scalar field lagrangian density p(φ, χ) cannot produce this “double

scaling” dynamics. A way out of this problem cannot therefore reside in changing the

form of the lagrangian density of the dark energy scalar field.

On the other hand, as suggested in the first place by Huey and Wandelt (2006), one

could imagine generalizing the system 3.20-3.22 to a situation in which two different

families of dark matter are present in the Universe. In this way, one of the two dark

matter species – uncoupled or weakly coupled to the dark energy scalar field – could drive

the long matter dominated scaling solution that brings the scalar field energy density to

its present observed value, therefore addressing the Fine Tuning Problem and allowing

the growth of cosmic structures up to the observed value of σ8, while the other one – more

strongly coupled to the dark energy – could drive the system to a final scaling attractor

of the type described by Point III of Table 3.1, therefore easing the Coincidence Problem.

The development of this idea is the main subject of the present Chapter.

4.2 The Growing Matter Model

We can realize the model described in the final part of the previous section by assuming

that, besides the usual cold dark matter fluid, another species of dark matter is present

in the Universe and contributes to the total energy density. We will assume here for

simplicity that the cold dark matter fluid is not coupled to the dark energy scalar field,

which means βc = 0, although a small value of the cold dark matter coupling, compatible

with the trajectories that lead to the final attractor given by Point I of Table 3.1 and

with the present observational bounds (Bean et al., 2008), would not modify the main

conclusions of our analysis.

On the other hand, we will assume that the new additional dark matter component,

which we call “Growing Matter”, is coupled to the dark energy scalar field φ via a

constant coupling function βg compatible with the acceleration condition for the final

scaling attractor given by Point III of Table 3.1. According to such conditions, one has

that for an exponential potential as defined in Eq. 2.6 with a positive value of the potential

slope µ, the coupling βg needs to be negative and large.



4.2 The Growing Matter Model 77

As a consequence of this condition, one has from Eq. 3.10 that the mass of Growing

Matter particles will increase with time:

mg(φ) = mg(0)e
−κβgφ . (4.1)

This means that, opposite to the case for a positive coupling between dark energy and the

cold dark matter fluid, the energy density of the Growing Matter component will decrease

with the expansion of the Universe slower than a−3, due to a direct injection of energy

coming from the dark energy scalar field on top of the usual volume dilution.

The dynamic equation for the dark energy scalar field φ will then be modified by the

presence of the coupling to the Growing Matter component according to Eq. 3.35:

φ̈+ 3Hφ̇ = −∂V
∂φ

+ κβgρg . (4.2)

Evidently, Eq. 4.2 contains an additional “force” acting on the scalar field φ besides the

usual one deriving from the self-interaction potential V (φ). This “force” is proportional

to ρg and will counteract any increase of φ once βgρg has become comparable to ∂V/∂φ.

This new term in the evolution equation for the scalar field is capable, for the case of a

negative and large value of the coupling βg, to dramatically slow down the evolution of φ.

For the case of an almost static behavior of φ(t) (i.e. for x� y) the equation of state

wφ will then approach the Cosmological Constant value of wφ = −1, and the scalar field

potential V (φ) will then act similarly to a Cosmological Constant.

This phenomenology is responsible for the acceleration of the Universe on the scaling

attractor solution III, that in the present case will feature a constant ratio of the dark

energy scalar field φ and of the Growing Matter component in place of the uncoupled cold

dark matter fluid, which, on this scaling solution, will dilute away.

In this model, during the early phases of the evolution of the Universe the new

additional terms in the dynamic equations deriving from the Growing Matter component

play no role yet, since the Growing Matter energy density ρg is negligible, and therefore

the cosmological evolution follows the usual tracking solution for the uncoupled dynamic

dark energy scenario discussed in Chapter 2, i.e. the solution represented by the last point
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in Table 2.1. On this attractor one has:

φ(t) = φ0 +
2

κµ
ln(

t

t0
) , (4.3)

V (φ) ∼ φ̇2 ∼ ρc ∼ t−2 , (4.4)

mg ∼ Ωg ∼ t2γ , ρg ∼ t2(γ−1) , (4.5)

where we have defined a new important dimensionless parameter for our model:

γ ≡ −β
µ
. (4.6)

It is evident from Eq. 4.5 that for γ > 0 (or β < 0) the relative weight of Growing

Matter Ωg increases with time, and that the Growing Matter energy density ρg, as

anticipated, scales slower than a−3, or even increases:

ρg ∝ a−3(γ−1) . (4.7)

The tracking scaling regime ends once γΩg has reached a value of order one. When

this happens, in fact, the additional terms proportional to the Growing Matter energy

density in the evolution equations start to become important, and the tracking evolution

of the scalar field is stopped by the new additional “force” in the Klein Gordon equation

4.2.

After the exit from the tracking scaling regime, the Universe evolves towards the final

scaling attractor given by the solution III of Table 3.1. On this attractor, the expansion

of the Universe can be accelerated according to the conditions listed in Table 3.2 for the

point III, which means:

µ < −2β → γ >
1

2
. (4.8)

Since the stress-energy tensor for the sum of dark energy and Growing Matter is conserved,

the equation of state in the non-relativistic regime defined as:

w ≡ pφ

ρφ + ρg

(4.9)

represents the equation of state measured by e.g. Supernovae experiments given that the

two fluids behave at the background level as a single conserved component.
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In the accelerated regime, the late time scaling attractor given by Point III evolves as:

H(t) =
2(γ + 1)

3
t−1 , (4.10)

w = −1 +
1

γ + 1
, (4.11)

Ωφ = 1− Ωg = 1− 1

γ + 1
+

3

µ2(γ + 1)2
. (4.12)

For large γ, the total matter content of the Universe, given by ΩM = Ωc + Ωb + Ωg,

is given, on the late time attractor, by ΩM ≈ Ωg ≈ 1/γ, and is therefore quite small.

The presently observed value ΩM ≈ 0.25 then indicates that we are now in the middle of

the transition from matter domination – characterized by ΩM ≈ 1 − 3/µ2 – to the final

attractor dominated by the scalar field.

The limiting case γ � 1 admits a particularly simple description. In this case, in fact,

there is a sudden transition between the two scaling solutions at the time tc when the

two terms on the right-hand-side of Eq. 4.2 have equal size, which means µV = −βgρg, or

Ωg = Ωφ/γ. The dark energy scalar field φ evolves before this time following the tracking

attractor, and then it stops at a value φc ≡ φ(t) at tc. Thus, for t > tc and large γ

the cosmological evolution is almost the same as for a Cosmological Constant with value

V (φc). On the other hand, before tc, the standard cold dark matter cosmology is only

mildly modified by the presence of an early dark energy component, that for large enough

µ ensures compatibility with observations of CMB anisotropies and structure formation.

The redshift of the transition can be estimated by equating the potential V at the end

of the tracking scaling solution to its present value:

H(zc)

H2
0

=
2

3
Ωφ(0)µ

2 (4.13)

and can be approximated as:

1 + zc ≈
[

2Ωφ(0)µ
2

3− 3Ωφ(0)

]1/3

. (4.14)

Assuming µ = 10, and either γ = 5.2 or γ = 39, as we have done for the numerical

examples shown below, one obtains zc ≈ 6 or zc ≈ 5, respectively. Therefore zc is large

enough not to affect the present supernovae observations.
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4.3 The Growing Neutrino Scenario

So far we have made no assumption about the constituent of the Growing Matter

component. Here we propose to associate Growing Matter with cosmic neutrinos, which

offers the interesting perspective that no new particles – besides the dark energy scalar

field and cold dark matter – need to be introduced.

Furthermore, the present value of the Growing Matter energy density ρg can be

computed from the relic neutrino abundance and the present average neutrino massmν(t0)

through the relation (assuming h = 0.72):

Ωg(0) =
mν(t0)

16eV
. (4.15)

For large |β| the neutrino mass becomes rapidly very small in the past, such that

neutrinos cannot affect early structure formation. Therefore the standard cosmological

bounds on the neutrino mass (Komatsu et al., 2008) do not apply.

We show in Fig. 4.1 the time evolution of the different cosmic components and the

effective equation of state for the combined fluid of the dark energy scalar field φ and

Growing Matter.

For a given neutrino mass mν(t0), this model has only two parameters, µ and γ, which

will determine the present matter density ΩM(t0) as in Eq. 4.12. Replacing γ by ΩM(t0)

the model has then only one more parameter, µ, as compared to the ΛCDM model. For

an analytical estimate of the relation between ΩM(t0) = 1−Ωφ(t0) and mν(t0) we use the

observation (see Fig. 4.1) that the ratio Ωg/Ωφ (averaged) has already reached today its

asymptotic value given by Eq. 4.12, and we get:

Ωφ(t0) =

[
γ + 1

1− 3
µ2(γ+1)

− 1

]
mν(t0)

30.8h2eV
≈ γmν(t0)

16eV
. (4.16)

This relation determines the present dark energy density by the neutrino mass and γ as:

[ρφ(t0)]
1/4 = 1.27

(
γmν(t0)

eV

)1/4

10−3eV . (4.17)

Since the equation of state is today already near the asymptotic value of Eq. 4.11 (see

again Fig. 4.1), it is possible to relate it to the neutrino mass by Eqs. 4.11 and 4.17,

yielding:

w = −1 +
mν(t0)

12eV
. (4.18)
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Figure 4.1: Cosmological evolution for neutrino Growing Matter for µ = 10, γ = 5.2 and mν(t0) = 2.3 eV.
Panel a: density fractions for radiation Ωr (black, dotted line), cold dark matter Ωc (dark-green, dot-
dashed line), baryons Ωb (blue, short-dashed line), dark energy Ωφ (red, long-dashed line), and Growing
Matter (neutrinos) Ωg (light-green, solid line). Panel b: blow up of Panel a near the present time. Panel
c: total equation of state weff ≡ ptot/ρtot (red, long dashed line); combined equation of state of dark
energy and neutrinos (blue, short-dashed line); and equation of state of the dark energy alone (green,
solid line). Panel d: neutrino energy density ρg (red, long-dashed line) and neutrino mass mν (green, solid
line) normalized to unity today. The dotted curve represents the energy density of always non-relativistic
heavy Growing Matter.

This expression is a very remarkable result of the model, since it directly relates the

present dark energy equation of state to the present value of the neutrino mass, yielding

mν(t0) < 2.4 eV for w < −0.8.

4.4 Enhanced growth of neutrino density fluctuations

As we have shown in section 3.6, a dark matter species coupled to the dark energy scalar

field through an interaction term of the form considered here, is subject to an extra

attractive force that would result in an effectively enhanced strength of the gravitational

attraction. We have also shown in Eq. 3.53, that the enhancement does not depend on

the sign of the coupling, since the enhancement factor is given by (1 + 2β2).
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Therefore, in the case of Growing Matter, the dark energy scalar field will mediate, for

scales smaller than the scalar range lφ:

lφ =
1

κµ
√
V
, (4.19)

a new scalar interaction that will enhance the gravitational attraction by a factor (1+2β2
g).

The condition for the onset of an enhanced growth of density fluctuations in the

Growing Matter component, i.e. for the growth of δρg, requires that the average scalar

force ∼ 2β2
gΩg is comparable to the average gravitational force ∼ ΩM . This happens at

a redshift zeg, somewhat larger than the crossover redshift zc defined above. Therefore,

at the time of the start of the enhanced growth, the tracking scaling solution is still valid

with ΩM ≈ 1− 3/µ2 and:

Ωg(z) = [(1 + zc)/(1 + z)]3γ Ωg(zc) , (4.20)

Ωg(zc) ≈ γy2(zc) ≈ 3γ/(2µ2) , (4.21)

which results in an expression for zeg:

1 + zeg

1 + zc

=
[
3γ2(γ + 1)

]1/3γ
. (4.22)

As we said, the enhanced growth of Growing Matter density fluctuations concerns only

structures with size smaller than the range lφ of the scalar force mediated by the dark

energy scalar field φ. For the tracking scaling solution, one has (Wetterich, 1995):

lφ(t) =

√
2

3H(t)
, (4.23)

while lφ remains essentially constant in the late time cosmology, i.e. for t > tc. For scales

larger than lφ the enhanced growth is suppressed, and therefore a “window of adiabatic

fluctuations” opens up in the range lφ < l < H−1.

It is also important to stress another aspect concerning the growth of Growing Matter

density fluctuations in the case where the Growing Matter component is associated with

neutrinos. Neutrino Growing Matter was relativistic at early times, so that free streaming

prevents clustering. For the case of βg < 0 that we are discussing here, neutrinos have

actually remained relativistic much longer than neutrinos with constant mass.

In the limit of large γ one can estimate that the neutrinos are relativistic at a < aR,

where aR is given by:

aR ≈ [mν(t0)/Tν,0]
−1/4 = 0.11

(
mν(t0)

1eV

)−1/4

, (4.24)
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which corresponds to zR ∈ (2 − 10) for mν(t0) ∈ (0.015 − 2.3). The growth of neutrino

structures starts only for z < zR, and even then, neutrinos cannot cluster on scales smaller

than their “free streaming length” lfs, which is given by the horizon scale at the time 4.24

when neutrinos become non-relativistic, close to:

H−1(aR) ≈ 200 (mν(t0)/1eV)−3/8 h−1Mpc ≈ (150− 1500)Mpc . (4.25)

For scales within the window lfs < l < lφ the neutrino clustering is strongly enhanced

(for z < zeg) due to the additional attractive force mediated by the dark energy scalar

field. This enhanced clustering starts first for scales close to lfs.

One may thus investigate the possible formation of lumps with a characteristic scale

around lfs. This has been done recently by Mota et al. (2008) and Pettorino et al. (2009)

finding evidence, from a numerical computation of the linear density evolution, of the

appearance of structures with scales compatible with 4.25.

4.5 Observational features

As we have stressed above, for the large γ limit the cosmological evolution for t > tc

is almost the same as for a Cosmological Constant with value V (φc). However, for not

too large values of µ and γ the model differs from ΛCDM, and we will discuss here the

different deviations that could possibly be directly observable.

First of all, the presence of an early dark energy component, as a consequence of the

tracking scaling regime driven by uncoupled cold dark matter, will manifest itself by the

detailed peak location of the CMB anisotropies (Doran et al., 2001a), by the change in

the linear growth of cosmic structures (Ferreira and Joyce, 1997; Doran et al., 2001b),

and by the abundance and properties of non-linear structures (Bartelmann et al., 2005;

Grossi and Springel, 2008; Francis et al., 2008).

Second, for not too large γ there would be a sizeable fraction of Growing Matter today,

namely Ωg ≈ Ωφ/γ. For the case of neutrino Growing Matter this would require rather

large neutrino masses. As a consequence of this non-negligible Growing Matter fraction,

the present matter density ρM = ρc + ρb + ρg differs from the rescaled matter density in

the early Universe ρc +ρb. This difference may affect the matching of the present values of
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ΩM and Ωb/ΩM obtained from supernovae, baryon acoustic oscillations and clusters, with

determinations from the CMB at high redshift through the value of teq and the baryon

content of the Universe at last scattering. This effect is anyway small for large values of

γ (i.e. for low neutrino masses).

Third, as we already discussed in the previous section, Growing Matter can affect the

formation of structures in the late stages through the onset of the enhanced growth of

Growing Matter density fluctuations. For very massive particles, Growing Matter would

consist of relatively few particles which have presumably fallen into the cold dark matter

structures formed in early cosmology. For scales smaller than the range lφ of the scalar

interaction these particles feel a mutual attraction enhanced by a factor (1 + 2β2
g) as

compared to gravity. Thus, once a sufficient Ωg is reached, the Growing Matter structures

δρg will grow rapidly. They will then influence, in turn, the structures in baryons and cold

dark matter once the gravitational potential of the Growing Matter structures becomes

comparable to the one of the cold dark matter structures. This, however, happens rather

late, especially for large γ, since Growing Matter constitutes only a small fraction of the

present matter density in this case.

Finally, it is interesting to realize that the dark energy relative density Ωφ during the

tracking matter dominated scaling solution depends only on µ (see Table 2.1), while during

the final accelerated phase it depends on µ and γ (see Eq. 4.12). The linear fluctuation

growth during the two phases will also depend on the two parameters in a different way.

Then, an estimation of the growth rate during the two epochs will constrain separately

the two parameters of the model. Along with the comparison between the neutrino mass

and the dark energy equation of state given by Eq. 4.18, this offers a direct way to test

the Growing Neutrino Scenario.
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Chapter 5

Numerical implementation of
coupled dark energy models

The main aim of this work is to investigate the effects that a coupling between dark energy

and other cosmological components, as introduced in the last paragraph of Chapter 3,

can have on cosmic structure formation, with a particular focus on the non-linear regime

which is not readily accessible by the linear analytic approach described above. To this

end we study a set of cosmological N-body simulations performed with the code GADGET-2

(Springel, 2005), which we suitably modified for this purpose.

The required modifications of the standard algorithms of an N-body code for simulating

coupled dark energy cosmologies are extensively described in this Chapter. Interestingly,

they require us to reconsider and in part drop several assumptions and approximations

that are usually adopted in N-body simulations. We note that previous attempts to

use cosmological N-body simulations for different flavors of modified Newtonian gravity

have been discussed, for example, in Macciò et al. (2004); Nusser et al. (2005); Stabenau

and Jain (2006); Springel and Farrar (2007); Laszlo and Bean (2008); Sutter and Ricker

(2008); Oyaizu (2008); Kesden and Kamionkowski (2006), but to our knowledge Macciò

et al. (2004) is the only previous work focusing on the properties of non-linear structures

in models of coupled quintessence.

We will therefore frequently refer to the analysis pursued by Macciò et al. (2004).

With our modified version of GADGET-2 we first ran a set of low-resolution cosmological

simulations (Lbox = 320h−1Mpc, Npart = 2 × 1283) for the same coupled dark energy

models investigated in Macciò et al. (2004), but with cosmological parameters updated to

the latest results from WMAP (Komatsu et al., 2008) for a ΛCDM cosmological model.

87



88 Numerical implementation of coupled dark energy models

Parameter Value
ΩCDM 0.213

H0 71.9 km s−1 Mpc−1

ΩDE 0.743
σ8 0.769
Ωb 0.044
n 0.963

Table 5.1: Cosmological parameters for our set of N-body simulations, consistent with the WMAP 5 year
results for a ΛCDM cosmology (Komatsu et al., 2008).

In the coupled models we consider, the role of dark energy is played by a quintessence

scalar field with a Ratra-Peebles (Ratra and Peebles, 1988) self-interaction potential of

the form:

U(φ) =
Λ4+α

φα
, (5.1)

where Λ and α fix the dark energy scale in agreement with observations, and with a

constant coupling to cold dark matter particles only, as described in Chapter 3; we label

them as RP1-RP6 in analogy with Macciò et al. (2004). It is important to notice here

that we adopt with Eq. 3.38 a different definition of the coupling β than the one adopted

in Macciò et al. (2004). This is the reason why the values of β for our RP1-RP6 models

listed in Table 5.2 are different from the ones listed in Macciò et al. (2004), although the

models are identical.

For four of these models (ΛCDM, RP1, RP2, RP5) we then ran high-resolution

simulations in a smaller cosmological box (Lbox = 80h−1 Mpc, Npart = 2 × 5123),

and we investigated the properties of collapsed objects for this set of simulations. In

addition to these four high-resolution simulations we ran another three simulations with

the same resolution (ΛCDM-NO-SPH, RP5-NO-SPH, RP5-NO-GF), whose features will

be described below. The cosmological parameters for our models are listed in Table 5.1,

and the physical parameters of each model together with the details of the corresponding

N-body simulations are listed in Table 5.2.

The presence of a direct coupling between the dark energy scalar field φ and other

cosmic fluids – in the fashion described by Eqs. 3.30,3.35, 3.36 – introduces new features

in the cosmic background evolution as well as additional physical processes that must

be taken into account in N-body models. In the following, we describe these features

and their implementation in GADGET-2 one by one, recalling and further emphasizing the
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Function Meaning
H(a) Hubble function

∆G(a) Possible global variation of the gravitational constant
βb(φ) Coupling function for the baryons
βc(φ) Coupling function for cold dark matter
∆mb Correction term for baryon particle masses
∆mc Correction term for cold dark matter particle masses

Ωkin(φ) Dimensionless kinetic energy density of the scalar field

Table 5.3: List of input functions for the coupled dark energy implementation in GADGET-2.

results described in Macciò et al. (2004) and in Pettorino and Baccigalupi (2008).

5.1 Modified expansion rate

As pointed out in Chapter 3, the coupling modifies the background evolution through the

existence of a phase – corresponding to the so called φMDE era in Amendola (2000) – in

which the coupled matter fluid (cold dark matter in our case) and the dark energy scalar

field evolve with a constant energy density ratio (here we always assume the Universe

to be flat such that Ωtot = 1). This leads to the presence of a non-negligible early dark

energy component (Doran et al., 2001c; Doran and Robbers, 2006) during the entire epoch

of structure formation. The effect of such an early dark energy is to change the expansion

history of the Universe, which has to be properly taken into account for the N-body time

integration. In order to do so, we replaced the computation of the Hubble function H(a)

in GADGET-2 by a linear interpolation from a table of values of H(a) precomputed for each

model under investigation with the modified version of CMBEASY described in Chapter 3.

The effect of the coupling on the expansion is shown in Fig. 5.1. We note that the same

approach has also been adopted for the other relevant quantities described in Table 5.3,

which were first computed numerically using CMBEASY, and then used as an input for our

modified version of GADGET-2.

5.2 Mass variation

As described in Sec. 3.6, the coupled species feature an effective particle mass that changes

in time. Consequently, the corresponding cosmological densities ρc or ρb no longer scale

as a−3, but will have a correction term arising from the variation of particle masses on

top of the pure volume dilution. This correction depends on the scalar field dynamics,
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Hubble functions for different coupled dark energy models
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Figure 5.1: Top panel: Hubble functions as a function of redshift for the different coupled dark energy
models with constant coupling investigated in this work and listed in Table 5.2 as compared to ΛCDM
(black curve). Bottom panel: Ratio of the Hubble functions of each coupled dark energy model to the
Hubble function for the reference ΛCDM cosmology as a function of redshift.
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Mass correction for different coupled dark energy models
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Figure 5.2: Mass correction as a function of redshift for the coupled dark energy models with constant
coupling investigated in this work and listed in Table 5.2 as compared to ΛCDM (black curve).

and takes the form of Eq. 3.58. Then, if the particle masses in the simulation box are

computed according to the cosmic densities Ωc,0 and Ωb,0 at the present time, they will

need to be corrected at each timestep by a factor

∆mc(a) = e−
R 1

a βc(φ)dφ
da

da , (5.2)

∆mb(a) = e−
R 1

a βb(φ)dφ
da

da . (5.3)

In Fig. 5.2, we show the evolution with redshift of the correction term 5.2 for our set of

models.

Although the coupled dark energy implementation for GADGET-2 that we present here

allows in principle for a coupling also to baryons, such a coupling is tightly constrained

by experimental tests of gravity on solar system scales (Damour et al., 1990). Therefore,

in the coupled dark energy models we consider in this work, no coupling to baryons is

considered, and baryon masses are always constant. However, even a very tiny coupling
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to baryons, in the range allowed by present bounds, could possibly play a significant role

in cosmological models with multiple dark matter families (Huey and Wandelt, 2006),

like for example the Growing Neutrino scenario introduced by Amendola et al. (2008) and

extensively described in Chapter 4.

5.3 Cosmological extra friction

A further modification to the GADGET-2 code concerns the extra cosmological friction term

induced by the coupling in the Euler equation, as shown in Eqs. 3.56,3.57. In standard

cosmological simulations with GADGET-2 the usual cosmological friction term (first term

of Eq. 3.57) is not directly computed because the choice of variables removes it from the

acceleration equation. If we denote with ~x comoving coordinates and with ~r = a(t)~x

physical coordinates, we have that:

~̇r = H~r + ~vp , ~vp ≡ a(t)~̇x . (5.4)

Instead of using the peculiar velocity ~vp, GADGET-2 makes use of the variable ~p ≡ a2(t)~̇x

(see Springel (2005) for more details), for which the following relation holds:

~̇vp =
1

a
~̇p− H

a
~p . (5.5)

It is then straightforward, by using Eq. 5.5, to find a generalization of Eq. 3.56 to a system

of N particles, in terms of the new velocity variable ~p:

~̇pi =
1

a

[
βγ(φ)

φ̇

M
a~pi +

∑
j 6=i

G̃ijmj~xij

|~xij|3

]
, (5.6)

where i and j are indices that span over all the particles of the simulation, γ = c, b for cold

dark matter or baryons respectively, and G̃ij is the effective gravitational constant between

the i-th and the j-th particles, as determined in Eq. 3.53 and whose implementation will

be discussed below.

It is evident from Eq. 5.6 that for zero coupling no cosmological friction term is present

in the acceleration equation, which is then just Newton’s law in comoving coordinates.

In general, however, whenever a coupling is present, the additional term given by the

expression:

a(~̇p+ ∆~̇p) ≡ a~̇p+ βγ(φ)
φ̇

M
a~pi (5.7)
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has to be explicitly added to the Newtonian acceleration of every particle. This term

does not depend on the matter distribution in the rest of the Universe. It is therefore a

purely cosmological drag that would be present also in the absence of any gravitational

attraction. It is interesting to notice that in the case of constant positive coupling and a

monotonic scalar field potential, as investigated here, the extra cosmological friction term

induces an acceleration in the same direction as the velocity of the particle. It therefore

is effectively an “anti-friction” term, speeding up the motion of the particles.

Scalar field models where the dynamics of the field or the evolution of the coupling

induce a change in the sign of βi(φ)φ̇, thereby changing the direction of this extra friction

force, could present particular features different from the ones identified and described in

the rest of this work. Such models will be studied in the near future (Baldi and Macciò,

prep) with the numerical implementation that we discuss here.

5.4 Fifth force implementation

One of the most important modifications introduced by the coupling between dark energy

and cold dark matter is the presence of a modified gravitational constant, formally written

as in Eq. 3.53, for the gravitational interaction of cold dark matter particles. In fact, if

in general the substitution (Amendola, 2004)

GN → G̃lm = GN · (1 + 2βlβm) , (5.8)

holds for each pair (l,m) of particles, with l and m denoting the species of the particle,

in our case only the (l,m) = (c, c) interaction is affected, while (b, c) or (b, b) interactions

remain unchanged since βb = 0. The dependence of this modified gravitational interaction

on the particle type requires an N-body code to distinguish among different particle

types in the gravitational force calculation. In GADGET-2, the gravitational interaction is

computed by means of a TreePM hybrid method (see Springel, 2005, for details about

the TreePM algorithm), so that both the tree and the particle-mesh algorithms have to

be modified in order to account for this new phenomenology.

Tree algorithm modifications – In a standard tree algorithm, each node of the

tree carries information about the position of its centre of mass, its velocity, and its total

mass. The decision whether to compute the force exerted on a target particle by the whole
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node or to further divide it into eight smaller nodes is made based on a specific opening

criterion, which sets the accuracy threshold for approximating the gravitational potential

of a distribution of particles with its low-order multipole expansion. Since in uncoupled

cosmological models all particles interact with the same gravitational strength, as soon

as the opening criterion is fulfilled the force is computed assigning all the mass contained

in the node to its centre of mass. For coupled quintessence cosmologies, this is no longer

accurate enough given that the different particle species will contribute differently to the

gravitational force acting on a target particle. This means that besides the total mass and

the total centre of mass position and velocity, each node has to carry information about

the mass and centre-of-mass position and velocity of each particle species with different

coupling.

Particle-Mesh algorithm modifications – In the Tree-PM algorithm, the long-

range part of the gravitational force is computed by means of Fourier techniques. For

coupled dark energy models, where different particle species interact with an effectively

different gravitational force, the PM procedure has to be repeated as many times as there

are differently interacting particle types, each time assigning to the cartesian grid only the

mass in particles of a single type, and then computing the gravitational potential and the

acceleration deriving from the spatial distribution of that particle species alone. In this

way, the total force is built up as a sum of several partial force fields from each particle

type.

5.5 Initial conditions

The initial conditions of a cosmological N-body simulation need to specify the positions

and velocities of all the particles in the cosmological box at the starting redshift zi of

the simulation. These quantities are usually computed by setting up a random-phase

realization of the power spectrum of the studied cosmological model according to the

Zel’dovich approximation (Zel’dovich, 1970). The normalization amplitude of the power

spectrum is adjusted such that the linearly evolved rms-fluctuation σ8 on a top-hat scale

of 8h−1Mpc at a given redshift znorm (usually chosen to be znorm = 0) has a prescribed

amplitude.
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Input Power Spectra for the N-body simulations
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Figure 5.3: Gauge-invariant matter power spectra at z = 60 for the interacting dark energy models with
constant coupling investigated in the present work as computed with the modified version of CMBEASY

described in Chapter 3. The increase of power for k 6 0.004h Mpc−1 is due to the choice of the gauge-
invariant variables for computing the evolution of perturbations implemented in CMBEASY.

The coupling between dark energy and cold dark matter can have a strong impact

on the transfer function of matter density fluctuations, as first pointed out by Mainini

and Bonometto (2007). For this reason we compute the required initial power spectrum

directly with the modified Boltzmann code CMBEASY, because the phenomenological

parameterizations of the matter power spectrum available for the ΛCDM cosmology (e.g.

Bardeen et al., 1986; Eisenstein and Hu, 1998) would not be accurate enough. The

resulting effect on the power spectrum is shown in Fig. 5.3 for the different models

considered in our set of simulations.

Once the desired density field has been realized with this procedure, the displacements

of the particles from the grid points need to be rescaled with the linear growth factor

D+ for the cosmological model under investigation between the redshifts znorm and zi
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in order to set the correct amplitude of the power spectrum at the starting redshift of

the simulation. Also, the velocities of the particles are related to the local overdensities

according to linear perturbation theory, via the following relation, here written in Fourier

space:

~v(~k, a) = if(a)aHδ(~k, a)
~k

k2
, (5.9)

where the growth rate f(a) is defined as

f(a) ≡ d lnD+

d ln a
. (5.10)

This requires an accurate calculation of the linear growth function D+(z) for the coupled

model, which we again compute numerically with CMBEASY.

We note that a phenomenological parameterization of the growth function for coupled

dark energy models with constant coupling to cold dark matter has recently been made

available by Di Porto and Amendola (2008). However, it is only valid for models with no

admixture of uncoupled matter, whereas in our case we also have a baryonic component.

Also, in the ΛCDM cosmology, the total growth rate is well approximated by a power of

the total matter density Ωγ
M , with γ = 0.55, roughly independently of the cosmological

constant density (Peebles, 1980). This, however, is no longer true in coupled cosmologies,

as we show in Figs. 5.4,5.5,5.6. We find that, for our set of coupled dark energy models,

a different phenomenological fit given by

f(a) ∼ Ωγ
M(1 + γ

ΩCDM

ΩM

εcβ
2
c ) , (5.11)

with γ = 0.56 (as previously found in Amendola and Quercellini, 2004) and εc = 2.4

works well. The fit 5.11 reproduces the growth rate with a maximum error of ∼ 2% over

a range of coupling values between 0 and 0.2 and for a cosmic baryon fraction Ωb/Ωm at

z = 0 in the interval 0.0−0.1 for the case of the potential slope α = 0.143 (corresponding

to the slope of the RP1-RP5 models). For a value of α = 2.0 (corresponding to the slope

assumed for RP6) the maximum error increases to ∼ 4% in the same range of coupling and

baryon fraction. In Figs. 5.4,5.5,5.6, we plot the fitting formulae together with the exact

f(a). For our initial conditions setup we in any case prefer to use the exact function f(a)

directly computed for each model with CMBEASY, rather than any of the phenomenological

approximations.
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Figure 5.4: Comparison of the function f(a) with its usual approximation f = Ω0.55
M and with the new

fit of Eq. 5.11 for the models ΛCDM, RP1, RP2.
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Figure 5.5: Comparison of the function f(a) with its usual approximation f = Ω0.55
M and with the new

fit of Eq. 5.11 for the models RP3, RP4, RP5.
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Figure 5.6: Comparison of the function f(a) with its usual approximation f = Ω0.55
M and with the new

fit of Eq. 5.11 for the model RP6.

5.6 Summary of the coupled dark energy interaction scheme

The whole implementation of coupled dark energy models in the N-body code GADGET-2

that we developed and that has been discussed extensively in the present Chapter can be

represented and summarized by the scheme shown in Fig. 5.7. In our simulation box we

will have two different kinds of matter particles: baryons (represented in Fig. 5.7 by the

light blue circles), and cold dark matter (represented by the black circles).

The simulation box, i.e. the space in which the particles are located, will expand with a

rate given by the specific Hubble function of each cosmological model, which will depend,

besides the usual cosmological parameters, on the strength of the coupling constant β.

The mass of the baryon particles will keep the constant value computed according to

the cosmological baryon density at z = 0, which means:

mb =
Ωb(0)3H

2
0L

3
box

8πGNNpart

. (5.12)

The mass of cold dark matter particles, instead, will be corrected at each timestep with

the correction factor ∆mc given by Eq. 5.2, which means that cold dark matter particles

will have a mass:

mc(a) =
Ωc(0)3H

2
0L

3
box

8πGNNpart

×∆mc(a) . (5.13)

The gravitational interaction between two baryon particles will be the usual newtonian

interaction, i.e. the strength of the gravitational force will be given by GN , as well as for
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the case of an interaction between a baryonic particle and a cold dark matter particle.

On the other hand, the gravitational interaction between two dark matter particles will

be ruled by the effective gravitational constant G̃cc = GN(1 + 2β2
c ), according to Eq. 5.8.

Finally, the cold dark matter particles will receive an additional acceleration in

the direction of their velocity at each timestep, where this additional acceleration is

proportional to the particle velocity ~v and to the factor f defined as:

f ≡ β
φ̇

M
(5.14)

as derived in Eq. 5.7.

Figure 5.7: Schematic representation of the possible particle-particle interactions in our N-body
simulations and of all the implemented modifications of the code GADGET-2 extensively discussed in
this Chapter.

5.7 Tests of the numerical implementation: the linear growth
factor

As a first test of our implementation we check whether the linear growth of density

fluctuations in the simulations is in agreement with the linear theory prediction for each

coupled dark energy model under investigation. To do so, we compute the growth factor

from the simulation outputs of the low-resolution simulations described in Table 5.2 by

evaluating the change in the amplitude of the matter power spectrum on very large

scales, and we compare it with the solution of the system of coupled equations for linear

perturbations 3.47, numerically integrated with CMBEASY. The comparison is shown in

Fig. 5.8 for all the constant coupling models. The accuracy of the linear growth computed



102 Numerical implementation of coupled dark energy models

Growth function for different interacting dark energy models

0 5 10 15 20
z

0.7

0.8

0.9

1.0

1.1

D +
/a

RP6
RP5
RP4
RP3
RP2
RP1

!CDM

Figure 5.8: Evolution of the growth function with redshift for the seven models of coupled dark energy
investigated with the low-resolution simulations ran with our modified version of GADGET-2. The solid
lines are the total growth functions as evaluated numerically with CMBEASY, while the triangles are the
growth functions evaluated from the simulations. The relative accuracy in reproducing the theoretical
prediction is of the order of a few percent, irrespective of the coupling value βc.

from the simulations in fitting the theoretical prediction is of the same order for all the

values of the coupling, and the discrepancy with respect to the numerical solution obtained

with our modified version of GADGET-2 never exceeds a few percent.



Chapter 6

The N-body simulations

6.1 Our set of N-body simulations

In our simulations, we are especially interested in the effects that the presence of a

coupling between dark energy and cold dark matter induces in the properties of collapsed

structures, and we would like to understand which of these effects are due to linear features

of the coupled theory, and which are due to the modified gravitational interaction in the

dark sector. This goal turns out to be challenging due to the presence of several different

sources of changes in the simulation outcomes within our set of runs. To summarize this,

let us briefly discuss in which respect, besides the different gravitational interactions, the

high-resolution simulations listed in Table 5.2 are different from each other:

• the initial conditions of the simulations are generated using a different matter power

spectrum for each model, i.e. the influence of the coupled dark energy on the initial

power spectrum is taken into account and this means that every simulation will have

a slightly different initial power spectrum shape;

• the amplitude of density fluctuations is normalized at z = 0 for all the simulations

to σ8 = 0.796, but due to the different shapes of the individual power spectra the

amplitude of density fluctuations at the present time will not be the same in all

simulations at all scales;

• the initial displacement of particles is computed for each simulation by scaling down

the individual power spectrum amplitudes as normalized at z = 0 to the initial

redshift of the simulations (zi = 60) by using for each simulation the appropriate

growth function. This results in a lower initial amplitude for more strongly coupled

103



104 The N-body simulations

models;

• hydrodynamical forces are acting on baryon particles in all the four fully self-

consistent simulations (ΛCDM, RP1, RP2, RP5), and therefore differences in the

evolution of the dark matter and baryon distributions might be due to a superposition

of hydrodynamics and modified gravitational interaction.

In order to try to disentangle which of these differences cause significant changes in

our results, we decided to run three further test simulations in which, in turn, some of

the new physics has been disabled.

• In the two simulations labelled as “NO-SPH” (ΛCDM-NO-SPH, RP5-NO-SPH), we

disabled hydrodynamical SPH (Smoothed Particle Hydrodynamics) forces in the

code integration. We can then compare a ΛCDM model with a strongly coupled

model treating both baryons and cold dark matter particles as collisionless particles.

The differences in the dynamics will then be due only to the different gravitational

interaction implemented in the RP5 model. However, the shape and amplitude of

the initial power spectrum for the two simulations are still different;

• In the simulation labelled RP5-NO-GF, we ran a RP5 cosmological model using as

initial conditions the same file we used for the ΛCDM run. This means that no

effect arising in this simulation compared to ΛCDM can be due to different initial

conditions, i.e. due to the differences in the shape and amplitude of the initial power

spectra that are present in the other simulations.

6.2 The results

We now describe our results for the effect of the coupling between dark energy and cold

dark matter on non-linear structures. As first basic analysis steps we apply the Friends-

of-Friends (FoF) and SUBFIND algorithms (Springel et al., 2001) to identify groups and

gravitationally bound subgroups in each of our simulations. Given that the seed used

for the random realization of the power spectrum in the initial conditions is the same

for all the seven simulations, structures will form roughly at the same positions in all

simulations, as can be seen from Figs. 6.1,6.2 and it is hence possible to identify the same

objects in all the simulations and to compare their properties. Nevertheless, due to the
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different timestepping induced by the different physics implemented in each run, and the

slightly different transfer functions, objects in the different simulations can be slightly

offset from each other. We therefore apply a selection criterion and identify objects found

in the different simulations as the same structure only if the most bound particle of each of

them lies within the virial radius of the corresponding structure in the ΛCDM simulation.

If this criterion is not fulfilled for all the different simulations we want to compare, we do

not consider the corresponding halo in any of the comparison analysis described below.

We restrict this matching procedure to the 200 most massive halos identified by the FoF

algorithm, which have virial masses ranging from 4.64×1012h−1M� to 2.83×1014h−1M�.

Note that depending on the specific set of simulations we consider in our comparative

analysis, this can result in small differences in the number of halos included in each of the

comparison samples.

6.3 Halo mass function

For the four fully self-consistent high-resolution simulations listed in Table 5.2 (ΛCDM,

RP1, RP2, RP5), we have computed the halo mass function based on the groups identified

with the Friends-of-Friends (FoF) algorithm with a linking length of λ = 0.2× d̄, where d̄

is the mean particle spacing. It is important to recall that our simulations have the same

initial random phases and are normalized to the same σ8 today, but the shapes of the

input power spectra are slightly different for each simulation. In Figs. 6.3,6.4 we plot the

cumulative mass functions for the four simulations at different redshifts. Remarkably, the

mass functions of all the cosmological models and at all the different redshifts considered

are well fit by the formula given in Jenkins et al. (2001), provided it is evaluated with

the actual power spectrum and the correct linear growth factor for the corresponding

cosmological model. The usual mass function formalism hence continues to work even

for coupled dark energy cosmologies, a result in line with recent findings for early dark

energy cosmologies (Grossi and Springel, 2008).

We also plot in Figs. 6.5,6.6 the multiplicity function, defined as the derivative of

the mass function with respect to the mass (M2/ρ · dn(< M)/dM), for each simulation

at different redshifts. This more sensitive representation of the mass function reveals a

slightly better agreement with the formula by Sheth and Tormen (1999) compared with
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Figure 6.1: Projection on the x-y plane of the cold dark matter particles in the simulation box which lie
within a slice of thickness 300h−1kpc perpendicular to the z axis, for the simulations ΛCDM and RP1.
As a consequence of the choice of the same random phases for the initial conditions in the different runs
the large scale structure looks the same for the two plots, and also in comparison with the plots of Fig. 6.2
in the next page.
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Figure 6.2: Projection on the x-y plane of the cold dark matter particles in the simulation box which lie
within a slice of thickness 300h−1kpc perpendicular to the z axis, for the simulations RP2 and RP5. As
a consequence of the choice of the same random phases for the initial conditions in the different runs the
large scale structure looks the same for the two plots, and also in comparison with the plots of Fig. 6.1
in the previous page.
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Figure 6.3: Cumulative mass functions for the fully self-consistent high-resolution simulations of the
models ΛCDM and RP1. The four differently-colored solid lines in each figure represent the cumulative
mass function at four different redshifts in each of the investigated models. The dot-dashed lines are the
corresponding predictions according to the Jenkins et al. (2001) formula, computed for each simulation
with the appropriate growth function and power spectrum.
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Cumulative mass function for RP2
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Cumulative mass function for RP5
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Figure 6.4: Cumulative mass functions for the fully self-consistent high-resolution simulations of the
models RP2 and RP5. The four differently-colored solid lines in each figure represent the cumulative
mass function at four different redshifts in each of the investigated models. The dot-dashed lines are the
corresponding predictions according to the Jenkins et al. (2001) formula, computed for each simulation
with the appropriate growth function and power spectrum.
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that of Jenkins et al. (2001), which are both overplotted for a direct comparison.

6.4 Matter power spectrum

The presence of a long-range fifth-force acting only between cold dark matter particles

induces a linear bias on all scales between the amplitude of density fluctuations in baryons

and cold dark matter. These density fluctuations, in fact, start with the same relative

amplitude in the initial conditions of all the simulations, and then grow at a different rate

due to the presence of the extra force. Such a bias is then easily distinguishable from the

hydrodynamical bias that develops only at small scales as structure evolves. This effect

is clearly visible in our simulations, as can be seen from the baryon and cold dark matter

power spectra at z = 0 in the four different cosmologies we analyze (Fig. 6.7): the density

power spectra of baryons and cold dark matter end up with a different amplitude on all

scales at z = 0 in the coupled dark energy models. Cold dark matter always has a larger

amplitude, and the difference grows with increasing coupling βc.

In order to disentangle this effect from the small scale bias due to pressure forces acting

on baryons, we can make use of our “NO-SPH” simulations to show the result if only the

fifth-force effect is included. This is shown in the last two panels of Fig. 6.7.

In order to make the effect described above even more visible, and to better show

the difference of the hydrodynamical bias from the gravitational one induced by the

coupled dark energy component, we also plot in Figs. 6.8,6.9 the ratio of the power

∆2(k) = P (k)k3/2π in baryons to that in cold dark matter at different redshifts. In these

plots, we have corrected all the curves for a spurious effect on small scales due to the mass

difference between baryon and cold dark matter particles in the simulations that induces

a small drop in the baryon power. This effect is of purely numerical origin and could be

easily removed by using particles of equal mass for the two cosmological matter species

in the N-body runs.

Let us now briefly comment on the plots of Figs. 6.8,6.9. The curves represent the

bias between the baryon and the cold dark matter density fluctuation amplitudes as a

function of the wave number. A constant bias of 1.0 at all redshifts is the expected

result for two collisionless matter species interacting with the same gravitational strength,

and this is what we find for our ΛCDM-NO-SPH simulation (dark blue curve). In the
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Figure 6.5: Multiplicity functions for the high-resolution simulations of the models ΛCDM and RP1.
The four differently-colored sets of data points are the multiplicity functions evaluated in equally
spaced logarithmic mass bins at four different redshifts. The dot-dashed and dashed lines represent
the predictions for the multiplicity function from Jenkins et al. (2001) and Sheth and Tormen (1999),
respectively, computed for each simulation with the appropriate growth function and power spectrum.
The comparison clearly shows a slightly better agreement with the fitting function by Sheth and Tormen
(1999), in particular at high redshift.
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Multiplicity functions at different z for RP2
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Multiplicity functions at different z for RP5
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Figure 6.6: Multiplicity functions for the high-resolution simulations of the models RP2 and RP5.
The four differently-colored sets of data points are the multiplicity functions evaluated in equally
spaced logarithmic mass bins at four different redshifts. The dot-dashed and dashed lines represent
the predictions for the multiplicity function from Jenkins et al. (2001) and Sheth and Tormen (1999),
respectively, computed for each simulation with the appropriate growth function and power spectrum.
The comparison clearly shows a slightly better agreement with the fitting function by Sheth and Tormen
(1999), in particular at high redshift.
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Figure 6.7: Power spectra of cold dark matter (black line) and baryons (blue line) at z = 0 for the set of
coupled dark energy models under investigation. The appearance of a bias between the two distributions,
which grows with increasing coupling βc, is clearly visible at the large scale end of the plots. The last two
panels show the comparison of a ΛCDM and a coupled dark energy cosmology with βc = 0.2 in absence
of hydrodynamic forces acting on baryons. In these two panels, the bias on all scales is purely due to the
interaction of cold dark matter with the dark energy scalar field φ.
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ΛCDM simulation, we notice that this value of 1.0 is maintained at all redshifts only for

large scales, while on smaller scales, as structures evolve, the collisional nature of baryon

particles progressively induces a drop of this ratio (black curve). The same behavior is

seen for all the other hydrodynamic simulations (RP1, RP2, RP5). However, in the latter

cases, the large-scale bias is always smaller than 1.0, already at high redshifts, and it

decreases with increasing values of the cold dark matter coupling βc, as expected. This is

the gravitational bias that appears also at large scales in Fig. 6.7.

Particularly interesting is then again the case of the RP5-NO-SPH simulation (dark-

green curve), as compared to the ΛCDM-NO-SPH one, because it allows us to disentangle

the hydrodynamic effects from the effects due to the coupled dark energy extra physics.

In this case we find that the bias of RP5-NO-SPH perfectly overlaps with the one of

the other two RP5 simulations at high redshifts, while at lower and lower redshifts, the

small scale behavior is progressively more and more different: as expected, the absence of

hydrodynamic forces acting on baryon particles induces a larger value of the bias, which

is now solely due to the different gravitational strength felt by the two particle species.

It is however very interesting to notice that the bias does not keep the large-scale linear

value at all scales, as it is the case for the ΛCDM-NO-SPH run, but evolves towards lower

and lower values for smaller and smaller scales.

This clearly shows that non-linearities enhance the effect of the coupling on the growth

of overdensities in the two differently interacting matter species.

6.5 Halo density profiles

Applying the selection criterion described above to our four fully self-consistent

simulations (ΛCDM, RP1, RP2, RP5) we select among the 200 most massive groups

identified at z = 0 for each run 74 objects that can be considered with certainty to be the

same structure in the different simulations. For these 74 halos we compute the spherically

averaged density profiles of cold dark matter and baryons as a function of radius around

the position of the particle with the minimum gravitational potential.

Interestingly, the halos formed in the coupled dark energy cosmologies show

systematically a lower inner overdensity with respect to ΛCDM, and this effect grows

with increasing coupling. This is clearly visible in Figs. 6.10,6.11 where we show the
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Figure 6.8: Ratio of the power spectra of baryons and cold dark matter as a function of wavenumber
for the set of high-resolution simulations ran with our modified version of GADGET-2, for the redshifts
z = 10.06 and z = 5.35. The linear large-scale bias appears already at high redshifts, while at lower
redshifts the hydrodynamic forces start to suppress power in the baryon component at small scales. In
absence of such hydrodynamic forces the progressive enhancement of the large scale bias at small scales
for the RP5-NO-SPH run (light green curve) as compared to the completely flat behavior of the ΛCDM-
NO-SPH simulation (blue curve) – where no bias is expected – shows clearly that non-linearities must
increase the effect of the coupling on the different clustering rates of the two species. All the curves have
been corrected for a spurious numerical drop of the baryonic power at small scales as described in the
text.
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Figure 6.9: Ratio of the power spectra of baryons and cold dark matter as a function of wavenumber
for the set of high-resolution simulations ran with our modified version of GADGET-2, for the redshifts
z = 1.52, and z = 0.0. The linear large-scale bias appears already at high redshifts, while at lower
redshifts the hydrodynamic forces start to suppress power in the baryon component at small scales. In
absence of such hydrodynamic forces the progressive enhancement of the large scale bias at small scales
for the RP5-NO-SPH run (light green curve) as compared to the completely flat behavior of the ΛCDM-
NO-SPH simulation (blue curve) – where no bias is expected – shows clearly that non-linearities must
increase the effect of the coupling on the different clustering rates of the two species. All the curves have
been corrected for a spurious numerical drop of the baryonic power at small scales as described in the
text.
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density profiles of cold dark matter and baryons in the four different cosmologies for a few

selected halos of different virial mass in our sample. We remark that this result is clearly

incompatible with the essentially opposite behavior previously reported by Macciò et al.

(2004). This deserves a more detailed discussion.

Unlike in Macciò et al. (2004), all the 74 halos in our comparison sample have density

profiles that are well fitted by the NFW fitting function (Navarro et al., 1997)

ρ(r)

ρcrit

=
δ∗

(r/rs)(1 + r/rs)2
, (6.1)

independent of the value of the coupling. Here δ∗ is a parameter that sets the characteristic

halo density contrast relative to the critical density ρcrit. The scale radius rs increases for

each halo with increasing coupling βc, and becomes larger than that found in ΛCDM. In

other words, the halos become less concentrated with increasing coupling.

For example, for the four halos shown in Figs. 6.10,6.11, the scale radius grows with

increasing coupling by roughly 10% to 35% going from ΛCDM to RP5, as listed in

Table 6.1, and shown in Fig. 6.12.

6.6 Halo concentrations

For all the 200 most massive halos found in each of our four fully self-consistent simulations

we compute halo concentrations as

c =
r200

rs

, (6.2)

based on our NFW fits to the halo density profiles. Here r200 is the radius enclosing

a mean overdensity 200 times the critical density. Note that here no further selection

criterion is applied, and the concentration is computed for all the 200 most massive halos

in each simulation.

Consistently with the trend found for the inner overdensity in the halo density profiles

and for the evolution of the scale radius with coupling, we find that halo concentrations are

on average significantly lower for coupled dark energy models with respect to ΛCDM, and

the effect again increases with increasing coupling βc. This behavior is shown explicitly

in the top panel of Fig. 6.13, where we plot halo concentrations as a function of the

halo virial mass M200 for a series of our high-resolution simulations. In the standard
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Figure 6.10: Density profiles of cold dark matter (solid lines) and baryons (dot-dashed lines) for two
halos of virial masses M200 = 2.83× 1014h−1M� and M200 = 2.78× 1013h−1M� in the simulation box at
z = 0. The vertical dot-dashed line indicates the location of the virial radius for the ΛCDM halo. The
decrease of the inner overdensity of the profiles with increasing coupling is clearly visible in both plots.
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Halo Density profiles for CDM and baryons for Group nr. 60
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Figure 6.11: Density profiles of cold dark matter (solid lines) and baryons (dot-dashed lines) for two halos
of virial masses M200 = 1.7× 1013h−1M� and M200 = 6.51× 1012h−1M� in the simulation box at z = 0.
The vertical dot-dashed line indicates the location of the virial radius for the ΛCDM halo. The decrease
of the inner overdensity of the profiles with increasing coupling is clearly visible in both plots.
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Evolution of halo scale radius with coupling
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Figure 6.12: Relative variation with respect to ΛCDM of the scale radius rs for the four halos plotted in
Figs. 6.10,6.11 as a function of coupling βc.

interpretation, the halo concentrations are thought to reflect the cosmic matter density

at the time of formation of the halo, leading to the association of a larger value of the

concentration with an earlier formation epoch, and vice versa. In the context of this

standard picture, the effect we found for the concentrations could be interpreted as a sign

of a later formation time of massive halos in the coupled dark energy models as compared

to the ΛCDM model. Such a later formation time could possibly be due to the fact that

matter density fluctuations start with a lower amplitude in the initial conditions of the

coupled cosmologies with respect to ΛCDM, and this would make them form massive

structures later, despite their faster linear growth (as shown in Fig. 5.8).

However, we can demonstrate that this is not the case, just making use of our RP5-

NO-GF simulation, in which the Universe evolves according to the same physics as RP5,

but starting with the identical initial conditions as used for the ΛCDM run. Therefore,

any difference between these two simulations cannot be due to the initial amplitude of

fluctuations. The evolution of halo concentrations with mass for this run is also plotted

in the top panel of Fig. 6.13 (dark blue curve), and shows a very similar behavior to the

RP5 curve.
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As a cross check of this result, we have repeated the same analysis by computing halo

concentrations with an independent method that circumvents the profile fitting. The

concentration can be related to two other basic structural properties of a halo, namely

its maximum circular velocity Vmax, and the radius at which this velocity peak is located,

rmax. According to Springel et al. (2008), the concentration can then be related to these

two quantities by the relation:

200

3

c3

ln(1 + c)− c/(1 + c)
= 7.213 δV , (6.3)

where δV is a simple function of Vmax and rmax:

δV = 2

(
Vmax

H0rmax

)2

. (6.4)

We denote the concentrations evaluated in this way as c∗, and include our results as a

function of halo mass in the bottom panel of Fig. 6.13. Although not identical in detail,

due to the different methods used to measure concentrations, the two plots of Fig. 6.13

show the same trend for the evolution of halo concentrations with coupling, and the same

independence of this effect from the initial conditions of the simulations.

In order to directly verify that the lower concentrations cannot be a consequence of a

later formation time, we have also computed the average formation redshift of the halos

in our sample for all the four self-consistent simulations by building merger trees for all

the halos in our sample, and by following backwards in time the main progenitor of each

halo until the redshift at which its virial mass is only half of the final virial mass of the

halo at z = 0. We define the corresponding time as the formation redshift zf of the halo.

In Figure 6.14, we show zf as a function of halo mass for all our cosmological models.

It is evident that massive halos in the different cosmologies form approximately at the

same time, with a slightly earlier formation for the RP5 cosmology, which one might

have expected to translate into slightly larger values of the concentrations. Therefore

we conclude that the unambiguous trend of lower halo concentrations for larger coupling

values must be a peculiar feature that arises from the extra physics that characterizes the

coupled dark energy cosmologies. A more detailed investigation of how this peculiar

behavior arises is hence required in order to understand this phenomenology of the

dynamics in coupled dark energy cosmologies.
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Figure 6.13: Variation of the mean halo concentration as a function of mass for the 200 most massive
halos in our simulations and for the different cosmological models under investigation. The concentrations
have been computed by directly fitting the halo density profile of each halo with an NFW model (top
panel) or by using the method introduced by Springel et al. (2008) and described in Eqs. 6.3,6.4 (bottom
panel). The halos have been binned by mass, and the mean concentration in each bin is plotted as a filled
circle. The colored dashed lines indicate for each simulation the spread of 68% of the halos in each mass
bin. The highest mass bin is not plotted because of its very low number of halos. The decrease of the
mean concentration with increasing coupling appears in the same way in both plots.
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Figure 6.14: Mean halo formation redshift zf as a function of halo mass for the 200 most massive halos
in our simulations and for the different cosmological models under investigation. The formation redshift
zf is defined as the redshift at which the main progenitor of the halo has a virial mass equal to half the
virial mass of the halo at z = 0. The halos have been binned by mass, and the mean formation redshift
in each bin is plotted as a filled circle. The colored dashed lines indicate for each simulation the spread
of 68% of the halos in each mass bin. The highest mass bin is not plotted because of its too low number
of halos.
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We perform such an investigation by switching off individually the two main effects

which could be responsible of the concentration drop. These are the variation of particle

mass and the extra friction term. To save computational time, we do this only for the

most strongly coupled model RP5 and only for the late stages of cosmic evolution. More

specifically, we take one of our RP5 simulation snapshots at a given redshift z∗, and use

it as initial conditions file for a new run starting at z = z∗ down to z = 0 in which one

of these two effects is switched off. We label these simulations as “RP5-NO-MASS” and

“RP5-NO-FRIC” for the cases where the mass decrease or the friction term are dropped,

respectively. We set z∗ = 1.5 as a conservative choice based on the consideration that,

according to our definition of formation redshift of a halo, all the halos in our sample have

a formation redshift z < z∗, as shown in Fig. 6.14.

By switching off the mass variation for z < z∗, we find that the halo concentrations

at z = 0 show a slight increase over the whole mass range of the sample with respect

to the fully self-consistent RP5 simulation. This effect is shown in the top panel of

Fig. 6.15. We interpret this as a sign of the fact that the mass decrease reduces the

total gravitational potential energy of halos, resulting in a modification of their virial

equilibrium configuration.

In fact, if the potential well of a halo gets shallower as time goes by as a consequence of

the decrease of the mass of its cold dark matter content, the system will find itself with an

excess of kinetic energy, and will therefore expand in order to restore virial equilibrium.

Such an expansion is expected to cause a drop of the halo concentrations, which we confirm

here because switching off this mechanisms yields consistently higher concentrations at

z = 0. However, it is clear from Fig. 6.15 that this mechanism cannot account for the

total effect of concentration decrease, but only for a small fraction of it.

We therefore now investigate the other possible origin of this effect, i.e. the impact

of the friction term (3.57) on the dynamics of cold dark matter particles. To this end

we switch off for z < z∗ the additional acceleration arising from the friction term for

coupled particles described by Eq. 5.3. The outcome of this test simulation is shown

in the bottom panel of Fig. 6.15: the increase of the concentrations with respect to the

fully self-consistent RP5 simulation is now much more substantial than in the case of

RP5-NO-MASS, and shows that the friction term is actually the dominant mechanism in

determining the decrease of halo concentrations and the decrease of the inner overdensity
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Figure 6.15: Variation of halo concentrations for the same models and the same halo sample as in
Fig. 6.13, and for an additional test simulation in each of the two panels. In the top panel, the simulation
RP5-NO-MASS shows the effect of switching off the mass correction for z < z∗ ∼ 1.5: there is a small but
systematic increase of average halo concentrations over the whole mass range. In the bottom panel, the
simulation RP5-NO-FRIC shows the effect of switching off in the same redshift interval the friction term.
The increase of concentrations in this case is much more consistent and accounts for a large fraction of
the total concentration reduction of RP5.
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of cold dark matter halos discussed above. The interpretation of this effect seems quite

unambiguous: the friction term induces an extra acceleration on coupled particles in the

direction of their velocity, and this produces an increase of the total energy of the particles,

moving the system out of its virial equilibrium configuration. The system responds by a

small expansion and a lowering of the concentration.

As a further check of this interpretation of our results, we also test directly the dynamic

evolution of halos to check whether they really slightly expand in the presence of coupling

between dark energy and cold dark matter. To this end, we compute for all the halos

in our sample the time evolution of the mass and the number of particles contained in

a sphere of physical radius r = 20h−1kpc centered on the potential minimum of each

halo. This sphere represents the very innermost part of all the halos in our sample at

any redshift between z∗ and 0, and we refer to it as the halo “core”; its mass content

is expected to be roughly constant for ΛCDM cosmologies at low redshifts. Indeed, we

can recover this behavior for our ΛCDM simulation by averaging the evolution of core

masses and particle numbers over the whole halo sample. On the other hand, for RP5,

as expected according to our interpretation, both the mass and the number of particles

in the halo cores strongly decrease with time. This is shown in Fig. 6.16, where the solid

lines represent the average evolution of mass, and the dashed lines represent the average

evolution of the particle number. Evidently, for ΛCDM the two curves coincide because

the mass of the particles is constant and any change of the enclosed mass in the core must

be due to a change of the number of enclosed particles. On the other hand, for RP5, the

mass and the particle number behave differently due to the mass variation of cold dark

matter particles. The decrease of the number of particles contained in the core can be

interpreted as a manifestation of an expansion of the halos. Moreover, if we compute the

same evolution for our RP5-NO-FRIC simulation, we find an almost constant evolution of

the core particle number and a very weak decrease of the core mass due to the variation of

cold dark matter particle mass. This result also confirms our interpretation concerning the

origin of the decrease of concentrations: the friction term is the most relevant mechanism

for inducing halo expansion at low redshifts, and as a consequence the decrease of the

inner overdensity of cold dark matter halos and of their concentration.

While further investigation of these effects is certainly required in order to understand

all the potential phenomenological features of interacting dark energy models, our
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Figure 6.16: Evolution with respect to the scale factor a of the average mass (solid) and of the average
number of particles (dashed) enclosed in a sphere of physical radius r = 20h−1kpc centered on the
potential minimum of each halo in our sample. The curves are normalized at a = 0.48 (z ∼ 1) and show
the expected flat behavior for the ΛCDM case (black line) for which the solid and the dashed curves
coincide due to the constancy of the mass of particles. For the RP5 case (light blue curves), there is a
strong decrease in time of both mass and particle number, which clearly illustrates the expansion of RP5
halos with respect to the ΛCDM case. By switching off the extra friction acting on cold dark matter
particles (RP5-NO-FRIC, light green curves), an almost flat behavior is recovered again for the particle
number, while the decrease of mass is now due to the particle mass variation – which is still in place for
this simulation – on top of the particle number evolution. This plot therefore clearly shows that the extra
physics of coupled dark energy cosmologies induces an overall expansion of cold dark matter halos at low
redshifts, and clearly identifies the friction term as the leading mechanism that produces this expansion.
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conclusion that a coupling between dark energy and cold dark matter produces less peaked

halo density profiles and lower halo concentrations seems to be quite robust based on the

analysis of the simulations that we have discussed here. We note again that our findings

are in stark contrast with the results of previous work by Macciò et al. (2004) who found

for coupled dark energy models a strong increase in concentration and density profiles in

the centre that more steeply rise than in the ΛCDM cosmology.

The effects we find go in the direction of less “cuspyness” of halo density profiles, which

is preferred by observations of low-mass halos and thus in fact opens up new room for the

phenomenology of interacting dark energy models.

6.7 Integrated bias and halo baryon fraction

The extra force felt by cold dark matter particles induces, as we have already seen for the

evolution of the matter power spectrum, a bias in the evolution of density fluctuations

of baryons and cold dark matter (Mainini, 2005; Mainini and Bonometto, 2006). We can

then use our selected halo sample to test the evolution of this bias from the linear regime

already probed by the power spectrum on large scales to the highly non-linear regime in

the centre of massive collapsed structures. We then test the evolution of the integrated

bias

B(< r) ≡ ρb(< r)− ρ̄b

ρ̄b

· ρ̄c

ρc(< r)− ρ̄c

, (6.5)

as defined in Macciò et al. (2004), where ρb(< r) and ρc(< r) are the densities within

a sphere of radius r around the potential minimum of a halo, for baryons and cold

dark matter, respectively, and ρ̄b and ρ̄c are the cosmic mean densities in the two

components. Following Macciò et al. (2004), we have not used the innermost part of

the halos (r < 10h−1kpc ∼ 3× εs) in order to avoid potential resolution problems.

In Figs. 6.17,6.18, we show the evolution of the bias for four selected halos of our sample

with similar masses to the ones shown in Figs. 6.10,6.11. It clearly appears that the bias

is considerably enhanced in the non-linear regime, while at large scales it converges to the

linear value evaluated from the power spectrum amplitude on large scales, represented in

Figs. 6.17,6.18 by the horizontal dashed lines.

However, also in this case this effect could be due only to the presence of

hydrodynamical forces acting on the baryons, and may not really be caused by the fifth-
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Figure 6.17: Variation of the integrated bias B(< r) for the four fully self-consistent high-resolution
simulations and for two selected halos of mass M200 = 1.58× 1014h−1M� and M200 = 2.76× 1013h−1M�
in our sample. The horizontal dashed lines indicate the value of the large scale linear bias as evaluated
from the power spectrum amplitudes of baryons and cold dark matter. The vertical black dot-dashed
line shows the position of the virial radius for the ΛCDM halo in the sample. The drop of the value of
B(< r) in the innermost regions of the halos is evident but in these runs is given by a superposition of
effects due to hydrodynamical forces and to the modified gravitational interaction. On large scales, the
bias tends to converge to the linear value, as expected.
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Figure 6.18: Variation of the integrated bias B(< r) for the four fully self-consistent high-resolution
simulations and for two selected halos of mass M200 = 1.10× 1013h−1M� and M200 = 7.79× 1012h−1M�
in our sample. The horizontal dashed lines indicate the value of the large scale linear bias as evaluated
from the power spectrum amplitudes of baryons and cold dark matter. The vertical black dot-dashed
line shows the position of the virial radius for the ΛCDM halo in the sample. The drop of the value of
B(< r) in the innermost regions of the halos is evident but in these runs is given by a superposition of
effects due to hydrodynamical forces and to the modified gravitational interaction. On large scales, the
bias tends to converge to the linear value, as expected.
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forces from the coupled dark energy scalar field, as we can infer from the fact that also the

ΛCDM curve, where no coupled dark energy is present, shows a departure from the large

scale value of 1.0 when approaching the centre of the halos. Once again we make use of

our additional test simulations ΛCDM-NO-SPH and RP5-NO-SPH in order to disentangle

the two effects. In Figs. 6.19,6.20 we show the same four plots as in Fig. 6.17,6.18 for the

two simulations without hydrodynamic forces, and the appearance of a non-linear bias

imprinted only by the coupled dark energy scalar field acting on cold dark matter particles

is then absolutely evident. On the other hand, the absence of any bias, as expected, in the

ΛCDM-NO-SPH run shows clearly that no major numerical problems can be responsible

for the effect in the RP5-NO-SPH simulations.

It is interesting that the above effect produces a baryon deficit in virialized halos,

i.e. they contain fewer baryons than expected based on their mass and the universal

cosmological baryon fraction. In particular, this means that one cannot expect that

baryon fractions determined through X-ray measurements in clusters would yield the

cosmological value. In order to give a rough estimate of the magnitude of the discrepancy

we compute the baryon fraction within the virial radius r200 of all the halos in our sample

defined as

fb ≡
Mb(< r200)

Mtot(< r200)
(6.6)

for our four fully self-consistent simulations. We plot in Fig. 6.21 as a function of halo

virial mass the relative baryon fraction defined as:

Yb ≡
fb

Ωb/Ωm

. (6.7)

For the ΛCDM case, our results for the evolution of Yb are consistent with the value of

Yb ∼ 0.92 found by the Santa Barbara Cluster Comparison Project (Frenk et al., 1999),

and with the more recent results of Ettori et al. (2006) and Gottloeber and Yepes (2007),

while for the coupled models the relative baryon fraction shows a progressive decrease

with increasing coupling, down to a value of Yb ∼ 0.86− 0.87 for the RP5 case.

It is also important to notice that this effect is always towards lower baryon fractions

in clusters with respect to the cosmological value. This could in fact alleviate tensions

between the high baryon abundance estimated from CMB observations, and the somewhat

lower values inferred from detailed X-ray observations of galaxy clusters (Vikhlinin et al.,

2006; McCarthy et al., 2007; LaRoque et al., 2006; Afshordi et al., 2007).
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Figure 6.19: Variation of the integrated bias B(< r) for the two high-resolution simulations without
hydrodynamical forces on baryon particles for the same two halos shown in Fig. 6.17. The enhancement
of the bias due to the extra scalar force in the core of highly non-linear structures appears here clearly.
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Integrated Bias for Group nr. 76
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Figure 6.20: Variation of the integrated bias B(< r) for the two high-resolution simulations without
hydrodynamical forces on baryon particles for the same two halos shown in Fig. 6.18. The enhancement
of the bias due to the extra scalar force in the core of highly non-linear structures appears here clearly.
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1013 1014

M200 [h-1 MO • ]

0.80

0.85

0.90

0.95

1.00

Y b

RP5
RP2
RP1

!CDM

Figure 6.21: Variation with virial mass M200 of the relative baryon fraction Yb within the virial radius
r200 of all the halos in our sample. The colored diamonds represent the relative baryon fraction of each
single halo, while the filled circles and the colored curves show the behavior of the mean relative baryon
fraction in each mass bin for the four fully self-consistent high-resolution simulations. A decrease of
Yb with increasing coupling is clearly visible both in the distribution of the individual halos and in the
averaged curves.
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Conclusions

In the present work we have investigated the phenomenology of dynamic dark energy

models based on the evolution of a classical scalar field moving in a self-interaction

potential, for the case in which this scalar field interacts directly with other cosmic fluids.

After reviewing the most relevant features of this kind of phenomenological models

and of the techniques used to constrain them at the background and linear perturbation

level in Chapters 1, 2, and 3, we have presented and discussed our results in Chapters 4,

5, and 6.

Our investigation of such interacting dark energy models has been pursued from two

different perspectives. The first one concerns the possibility to extend the simplest models

of interaction to a situation where multiple dark matter families differently coupled to the

dark energy scalar field are present in the energy budget of the Universe, as a possible

solution of the Coincidence Problem. The second one concerns the study of the impact

that the simplest models of interacting dark energy can have on the non-linear stages

of structure formation, by means of the detailed analysis of high resolution N-body

simulations.

The former aspect is discussed in Chapter 4, where we have shown that a simultaneous

solution of the Fine Tuning and of the Coincidence problems can be given by a

cosmological evolution consisting of two disjoint scaling solutions driven by two distinct

dark matter families differently coupled to the dark energy scalar field. We have dubbed

this scenario as the “Growing Matter” model, since the dark matter family driving the

late time scaling solution needs to be strongly coupled to the dark energy scalar field such

that the mass (and the energy density) of such Growing Matter species does increase with

time.

We have also proposed to identify the Growing Matter component with cosmic
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neutrinos, which avoids introducing a new unknown particle in the model, and we have

derived the main features of a cosmological model where neutrinos trigger the onset of

the accelerated expansion of the Universe at the time when they become non-relativistic

due to the fast growth of their average mass.

Interestingly, the model relates some relevant cosmological quantities (as the present

dark energy density or the present dark energy equation of state w) to the average neutrino

mass mν , and according to these relations the observed values for such cosmological

quantities are compatible within the present laboratorary bounds on mν .

In particular, the most remarkable results of the model are given by equation 4.17:

[ρφ(t0)]
1/4 = 1.27

(
γmν(t0)

eV

)1/4

10−3eV , (6.8)

which gives the present dark energy density in terms of the neutrino mass and of the

dimensionless parameter γ of the model, and by equation 4.18:

w = −1 +
mν(t0)

12eV
, (6.9)

that relates the present dark energy equation of state to the neutrino mass.

The latter aspect is then discussed in Chapters 5 and 6, where we have investigated the

non-linear effects of coupled quintessence models. To do so we have developed and tested

a modified version of the cosmological N-body code GADGET-2 suitable for evolving these

kinds of cosmological models. The numerical implementation we have developed is in fact

quite general and not restricted to the simple specific models of coupled quintessence that

we have investigated in this work. Instead, our implementation should be well suited for

a much wider range of dark energy models. We also note that the ability to selectively

enable or disable each of the modifications presented in Chapter 5, makes the code suitable

for cosmological models that are unrelated to the coupled dark energy scenario but require

similar new degrees of freedom that our implementation allows. These are:

1. the expansion history of the Universe can be specified according to any desired

evolution of the Hubble rate as a function of the scale factor a;

2. a global variation in time of the gravitational constant and/or a variation in time

of the gravitational strength for each individual matter species. This includes
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the possibility to have a long range repulsive interaction between different particle

species;

3. variation in time of the particle mass of each individual matter species;

4. friction or anti-friction terms in the equation of motion for each individual matter

species.

With this implementation we have investigated the effects on structure formation of

coupled dark energy models with a constant coupling βc to the cold dark matter fluid.

We have shown that the halo mass function is modified in coupled dark energy models,

but can still be well fitted at different redshifts by the Jenkins et al. (Jenkins et al., 2001)

fitting formula, or by the Sheth & Tormen (Sheth and Tormen, 1999) formula, which

yields a moderately better agreement, especially at z > 0.

We have confirmed the analytic prediction that density fluctuations in baryons and

cold dark matter will develop a bias on all scales due to the presence of a fifth-force acting

only between cold dark matter particles. We have also shown that in addition to this the

bias is enhanced when moving from the linear regime of very large scales to smaller and

progressively more non-linear scales.

We have investigated the evolution of the bias between baryons and cold dark matter

overdensities down to the very non-linear regime found in the inner part of collapsed

objects, in the same fashion as described in Macciò et al. (2004). We found here similar

results with this previous work, namely an enhancement of the bias in the non-linear region

within and around massive halos. We also recover from this analysis the large scale value

of the linear bias computed from the power spectrum when integrating the bias function

up to very large radii from the centre of cold dark matter halos. The enhancement of

the bias in highly non-linear structures has an impact on the determination of the baryon

fraction from cluster measurements, and we have computed for all our halos the evolution

of this fraction with coupling within the virial radius r200, finding that the baryon fraction

is reduced with increasing coupling by up to ∼ 8 − 10% with respect to ΛCDM for the

largest coupling value.

We have also investigated the effect of the coupling on the halo density profiles. We

find that they are remarkably well fit over the resolved range by the Navarro, Frenk,

and White formula (Navarro et al., 1997) for any value of the coupling. There is a clear
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trend for a decrease of the inner halo overdensity with respect to ΛCDM with increasing

coupling (or, equivalently, an increase of the scale radius rs for increasing coupling). This

result conflicts with previous claims for the same class of coupled dark energy models

(Macciò et al., 2004).

Using a number of special test simulations, we have identified the origin of this

effect of reduced halo concentrations for increasing coupling. It actually arises from a

combination of two peculiar features that the coupling introduces in the Newtonian limit of

gravitational dynamics. The first of these is the decrease of cold dark matter particle mass

with time (the opposite of what happens for the Growing Neutrino Scenario described

above, where the mass increases due to the negative value of the coupling) which causes

the absolute value of the total potential energy of a halo to decrease, and hence effectively

moves the system to a configuration where an excess of kinetic energy is present relative to

virial equilibrium. The second one is the additional “anti-friction” term, which directly

raises the total energy of halos by accelerating their particles in the direction of their

peculiar velocity. Both of these effects cause a halo to slightly expand in order to restore

virial equilibrium, and this reduces the halo concentration.

In conclusion, we have developed a general numerical implementation of coupled dark

energy models in the GADGET-2 code. We have then performed the first fully self-consistent

high-resolution hydrodynamic N-body simulations of interacting dark energy models with

constant coupling, and carried out a basic analysis of the non-linear structures that

formed. Interestingly, we found that a larger coupling leads to a lower average halo

concentration. Furthermore, both the baryon fraction in massive halos and the inner

overdensity of cold dark matter halos decrease with increasing coupling. These effects

alleviate the present tensions between observations and the ΛCDM model on small scales,

implying that the coupled dark energy models are viable alternatives to the cosmological

constant included in standard ΛCDM.
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