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1 Abstract 
The vast majority of neurons in the murine brain are generated during embryonic 

neurogenesis. However, at least two neurogenic niches continue to produce specific 

types of neurons throughout life. The adult dentate gyrus harbours stem cells that 

generate dentate granule neurons and the subependymal zone produces distinct types of 

olfactory interneurons. The adult neurogenic subependymal zone is derived from the 

embryonic dorsal and ventral subventricular zone of the telencephalon, i. e. progenitor 

domains which generate both the ventral and dorsal glutamatergic and GABAergic 

neurons, respectively. While a cascade of transcription factors beginning with Pax6 

governs the generation of glutamatergic cortical neurons, transcription factors of the 

Dlx family are crucial for the embryonic neurogenesis of GABAergic neurons. Notably, 

Pax6 and Dlx transcription factors factors are expressed in the adult subependymal 

zone. In this study I investigated the regionalization of the adult subependymal 

neurogenic niche in regard to Pax6 and Dlx and I examined the role of these factors in 

neuronal subtype specification.  

Consistent with their embryonic origin progenitors in the adult brain express Dlx1 and 

Dlx2 in the lateral, but not the dorsal subependymal zone. Using retroviral vectors I 

demonstrated that Dlx2 is necessary for neurogenesis of virtually all olfactory 

interneurons arising from the lateral subependymal zone. Beyond its function in generic 

neurogenesis, Dlx2 plays a crucial role in neuronal subtype specification in the adult 

olfactory bulb promoting specification of dopaminergic interneurons. Strikingly, Dlx2 

requires interaction with Pax6, as Pax6 deletion blocks Dlx2 mediated neuronal 

specification. Of note, however, Pax6 protein is expressed in a gradient being especially 

abundant in dorsal regions of the adult subpenedymal zone. While playing obviously a 

role in the genesis of GABAergic interneurons, I also investigated whether the dorsal 

subependymal zone could give rise to glutamatergic neurons which have so far been 

overlooked. Surprisingly, progenitors located mainly in dorso-rostral regions of the 

subependymal zone express transcription factors previously linked to glutamatergic 

neurogenesis like Pax6 → Neurogenin2 → Tbr2 → Tbr1. These neurons migrate along 

the rostral migratory stream and integrate into the glomerular layer of the olfactory 

bulb. Finally, I provide evidence that these Tbr2-positive cells could become recruited 

following cortical lesions where callosal projection neurons are depleted.  
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2 Introduction 
It has been believed that no new neurons in the adult brain are generated and that 

therefore neuronal loss cannot be compensated. Consequently, the adult brain is devoid 

of neuronal stem cells, and thus of the ability to make new nerve cells and regenerate 

after injuries (S. Ramón y Cajal, 1928). Thus, most of the common brain diseases 

accompanied by neuronal loss cannot be cured. Amongst them are well known ones: 

stroke where a certain brain area lacks oxygen supply followed by neuronal death, 

Parkinson's disease accompanied by the loss of dopaminergic neurons in the substantia 

nigra, and Alzheimer's disease with a general neuronal degeneration. According to this 

dogma, the vast majority of neurons in the mammalian brain is generated during 

embryonic development. However, this doctrine ended in 1969 (J. Altman, 1969) when 

adult generated neurons were found in two regions of the adult mammalian forebrain 

that receive a constant supply of new neurons: the olfactory bulb and the dentate 

gyrus (Fig. 1).  

2.1 An abstract of the history of adult neurogenesis and basic 
principles 

The phenomenon of postnatal and adult neurogenesis had been first described by (J. 

Altman, 1969) although proliferation in the adult central nervous system had been 

suggested previously (E. Allen, 1912). Because techniques were not available for 

tagging these proliferating cells, these investigators could only speculate about their 

fate. This problem was solved when autoradiographic labelling techniques were 

introduced. Proliferating cells could be labelled by injection of [3H]-thymidine which is 

incorporated into the genome during DNA synthesis. This demonstrated on the one 

hand the persisting proliferation in the postnatal and adult forebrain, on the other hand 

tagged cells could be tracked and their fate observed (J. Altman, 1969; M. S. Kaplan 

and J. W. Hinds, 1977). Altman's study suggested that the rostral extension of the rat 

ventricle is a mitotically active region and contains progenitor cells which later 

differentiate into short-axoned neurons, or microneurons in the olfactory bulb (J. 

Altman, 1969). The same labelling technique also suggested neurogenesis in the dentate 

gyrus of the hippocampus in rodents (J. Altman and G. D. Das, 1965; S. A. Bayer, 

1982; S. A. Bayer et al., 1982; S. A. Bayer, 1983). 
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Although Altman was rather cautious in stating cell replacement in the olfactory bulb: 

“Considering the large number of immigrating cells and the relatively small size of the 

receiving area, it is conceivable that the addition of these cells does not have a growth 

but a renewal function a.” [reviewed by (F. Nottebohm, 2002a)].  

 

 
Fig. 1: Overview of adult neurogenic regions in the mammalian forebrain 
Medial view of the whole adult rat head dissected away to show the brain and other structures present at 
the midline. Photograph by Adam C. Puche, copyright Adam C. Puche from The Olfactory Image 
Archive. The boxed area is shown in a schematic drawing in (B).  
(B) Schematic sagittal overview of the adult rat/mouse brain at more lateral levels. The neurogenic areas 
(DG, SEZ) are indicated in red. Cells generated within the subependymal zone migrate along the rostral 
migratory stream to the olfactory bulb.  
DG = dentate gyrus, SEZ = subependymal zone, RMS = rostral migratory stream, OB = olfactory bulb 
(C) Schematic drawing of the rat forehead indicating the vomeronasal organ (VNO) that projects into the 
accessory olfactory bulb (AOB). The main olfactory epithelium (MOE) is located closely to the main 
olfactory bulb (OB). It contains G-Protein couple odorant receptors connected to olfactory sensory 
neurons (OSN) that project into the outer region of the olfactory bulb (S. Firestein, 2001).  
(D) The human olfactory bulb (red; indicated by arrow) is in relation to brain size much smaller 
compared to the rodent brain. It also receives neurons from a subventricular zone overlying the ventricles 
(red) that migrate via a rostral migratory stream (outlined in red) towards the anterior olfactory cortex 
(arrow). 
 

Although Altman’s findings were clearly suggesting neurogenesis, it took many years 

until his hypothesis was proved and accepted. Scientists were not sure that the cells he 

called labelled neurons were, in all cases, neurons. They were concerned that 

neurogenesis was greatest at postnatal ages arguing for a delayed development in these 

brain regions. Furthermore, the incorporation of [3H]-thymidine during DNA repair in 
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neurons could have been observed by Altman (F. Nottebohm, 1985, 2002a). Altman’s 

studies were confirmed when new labelling techniques for proliferating cells gave the 

same results, e. g. by the DNA analogue BrdU and retroviral labelling (H. A. Cameron 

et al., 1993; F. S. Corotto et al., 1993; M. B. Luskin, 1993; C. Lois and A. Alvarez-

Buylla, 1994; H. G. Kuhn et al., 1996). New methods for lineage tracing substantiated 

the available tracking methods by transplantation experiments (S. De Marchis et al., 

2007; M. Kohwi et al., 2007a; F. T. Merkle et al., 2007) and Cre-mediated fate 

mapping (S. Willaime-Morawek et al., 2006; M. Kohwi et al., 2007a; J. Ninkovic et al., 

2007; R. E. Ventura and J. E. Goldman, 2007; K. M. Young et al., 2007; I. Imayoshi et 

al., 2008). 

The mitotically active region was named after its location under the ventricular 

ependyma "subependymal layer" (I. Smart, 1961; P. D. Lewis, 1968) and is called 

nowadays subependymal zone (SEZ) or subventricular zone (SVZ) (Fig. 1). Newly 

generated young neurons or neuroblasts travel along the ventricular wall in rostral 

direction towards the olfactory bulb and form at the ventricle’s anterior extension the 

rostral migratory stream (RMS) migrating into the olfactory bulb. These neuronal 

cells integrate upon their arrival in the olfactory bulb as specific subtypes of 

interneurons. As the size of the olfactory bulb does not substantially change throughout 

life these newly generated neurons must replace previously existing cells (L. Rosselli-

Austin and J. Altman, 1979; M. S. Kaplan et al., 1985; M. Biebl et al., 2000; L. 

Petreanu and A. Alvarez-Buylla, 2002). However, only specific types of neurons are 

generated during adulthood and replaced.  

Notably, adult neurogenesis is not only found in the rodent brain but recently also in 

primates and humans (P. S. Eriksson et al., 1998; E. Gould et al., 1998; D. R. Kornack 

and P. Rakic, 1999; M. A. Curtis et al., 2007) as well as in non-mammalian vertebrates 

and insects (S. A. Goldman and F. Nottebohm, 1983; M. Cayre et al., 1996; B. Adolf et 

al., 2006). Although the human olfactory bulb (anterior olfactory cortex) is 

relatively small in size compared to the rest of the human brain (Fig. 1). Strikingly even 

the human olfactory bulb might be a region of endogenous ongoing neurogenesis and 

consequently there are adult human brain stem cells present. Young immature 

neuroblasts migrate also from a subventricular zone that overlies the caudate nucleus 

via a kind of descending rostral migratory stream (Fig. 1) that takes a turn and then 

passes towards the anterior olfactory cortex which gives rise to the olfactory tract that 

leads finally to the olfactory bulb (M. A. Curtis et al., 2007). The human rostral 
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migratory stream has an amazing length of 17 mm whereas the mediolateral extent is 

2.7 mm (M. A. Curtis et al., 2007); in contrast the rodent rostral migratory steam is only 

a few millimiters long. 

However, two interesting questions still remain to be fully clarified: wyh do the 

olfactory bulb and the dentate gyrus need new neurons throughout life and why is adult 

neurogenesis retained and restricted to few neurogenic regions in the adult brain? 

2.2 The neurogenic niche: why is adult neurogenesis retained and 
restricted to few neurogenic regions? 

A neurogenic niche requires not only specialized stem cells but also needs a special 

microenvironment that enables stem cells to generate progeny and to maintain 

themselves. This process is highly regulated by extracellular factors and signalling 

pathways that are described in more detail later. Consequently, the environment and the 

cells located in the niche allow neurogenesis to occur (I. Ortega-Perez et al., 2007). 

Precursors,, astrocytes, vasculature, microglia, extracellular matrix and the basal 

membrane are also present in non-neurogenic brain areas but they seem to possess 

specific properties in the subependymal zone and dentate gyrus (D. A. Lim et al., 2007; 

Z. Mirzadeh et al., 2008; Q. Shen et al., 2008; M. Tavazoie et al., 2008). Other non-

neurogenic regions might contain stem cells that cannot act without the according niche 

factors (A. Buffo et al., 2008). They may contain precursor cells, but lack the 

permissive microenvironment. The neurogenic potential of a niche can be tested by 

transplantiation studies. When grafted into a neurogenic niche a precursor should be 

able to develop into a neuron and upon insertion into a non-neurogenic area a precursor 

should develop a glial cell or die (R. Seidenfaden et al., 2006; I. Ortega-Perez et al., 

2007). Nevertheless non-neurogenic regions can exhibit reactive neurogenesis upon 

introduction of neurogenic factors (A. Buffo et al., 2005) and contain an endogenous 

stem cell population after injury (A. Buffo et al., 2008).  

The rate of neuronal production in the adult brain is by far lower than during embryonic 

development. If the neurons generated during adulthood would have the same 

properties compared to embryonic neurogenesis then adult neurogenesis can be 

considered insignificant (F. Nottebohm, 2002b). Furthermore, only few organs receive 

or need new neurons throughout life: the olfactory bulb and the dentate gyrus. 
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2.3 Why do the olfactory bulb and the dentate gyrus need new 
neurons throughout life? 

Neurogenesis responds to intrinsic and extrinsic factors and is a highly dynamic process 

(G. L. Ming and H. Song, 2005). Notably, it decreases upon aging in both the 

subependymal and subgranular zone (H. G. Kuhn et al., 1996; K. Jin et al., 2003b; E. 

Enwere et al., 2004). Numerous studies reported enhanced neurogenesis in the dentate 

gyrus upon learning, running and enriched environment (G. Kempermann et al., 1997; 

E. Gould et al., 1999; M. Nilsson et al., 1999; H. van Praag et al., 1999b; H. van Praag 

et al., 1999a; J. Brown et al., 2003; B. Leuner et al., 2004; J. Ninkovic et al., 2007). 

Neurogenesis is related to the performance on a hippocampal dependent task. A 

decrease in the number of newly generated granule neurons is correlated with impaired 

performance (G. Kempermann, 2002; F. Nottebohm, 2002b; I. Ortega-Perez et al., 

2007). Odour enrichment enhanced neurogenesis in the subependymal zone (C. 

Rochefort et al., 2002) and olfactory discrimination learning increases the survival of 

adult-born neurons (M. Alonso et al., 2006; A. Mouret et al., 2008). In summary, 

numerous studies support the notion that adult neurogenesis is a dynamic, plastic 

process that respond to many extrinsic and intrinsic stimuli.  

On the contrary, the functional significance regarding behavioural studies is still under 

debate. Various theories suggested potential roles of adult neurogenesis. Ongoing 

genesis of periglomerular neurons may reflect a basic mechanism for rewiring that 

accommodates learning (C. Rochefort et al., 2002), and continuously born neurons are 

temporarily immature with unique physiological properties (G. Gheusi and P. M. Lledo, 

2007). New neurons may contribute to environmental adaptation, learning and may 

maintain these organs especially plastic (F. Nottebohm, 1985; A. Alvarez-Buylla et al., 

1990; J. R. Kirn and F. Nottebohm, 1993). Notably, also adult generated olfactory 

granule neurons undergo distinct experience-dependent modifications of their olfactory 

responses (S. S. Magavi et al., 2005). Evidence for the functional significance of adult 

neurogenesis could be achieved by ablation of newly born neurons by irradiation, 

treatment with antimitotic drugs or expression of a fragment of the diphtheria toxin in 

newly born neurons (G. Kempermann et al., 1998; T. J. Shors et al., 2002; J. Raber et 

al., 2004; M. D. Saxe et al., 2006; I. Imayoshi et al., 2008). Whereas treatment with 

antimitotic drugs or irradiation did not alter hippocampal depedent spatial memory 

formation (T. J. Shors et al., 2002; M. D. Saxe et al., 2006), other studies suggested that 

ablated adult neurogenesis in the dentate gyrus results in impaired spatial memory 



2.4 The olfactory bulb: function and anatomical structure 7 

 

formation (G. Kempermann et al., 1997; G. Kempermann et al., 1998; J. Raber et al., 

2004; J. S. Snyder et al., 2005; I. Imayoshi et al., 2008). The efficiency of killing 

newborn neurons and strain or species dependent differences may contribute to these 

discrepancies. Interestingly, ablation of newborn neurons for 6 months in the olfactory 

bulb did not alter the ability of odor discrimination (I. Imayoshi et al., 2008). However, 

other studies suggest a role for newly generated neurons in the olfactory bulb which 

examined mice that ablated neurogenesis for one year (G. Gheusi et al., 2000).  

Deletion of TrkB in adult hippocampal progenitors and subsequent cell death in the 

dentate gyrus of the hippocampus do not affect learning. In contrast deletion of TrkB 

increases anxiety-like behaviour and these mice are insensitive to antidepressive 

treatment in depression paradigms (M. Bergami et al., 2008; Y. Li et al., 2008). 

In summary, olfactory and hippocampal neurogenesis may play an important role in 

odor discrimination, the formation of spatial memories, or anxiety and depression but it 

is difficult to prove the functional significance in behavioural tests. More studies with 

behavioural tests may contribute to the clarification of this issue. Since adult 

neurogenesis replaces only specific types of neurons, ablation or knock-down of this 

process is not comparable with an acute lesion which destroys the whole olfactory bulb 

or the dentate gyrus functionally (J. B. Aimone et al., 2006). Newly generated neurons 

may contribute to a rewiring process (C. Rochefort et al., 2002), however the output 

creating neurons of the olfactory bulb are generated during embryonic neurogenesis and 

do not undergo replacement during adulthood (G. Shepherd, 2004; V. Egger and N. N. 

Urban, 2006; G. M. Shepherd et al., 2007).  

2.4 The olfactory bulb: function and anatomical structure 
The olfactory bulb belongs to the central nervous system (CNS), is an outgrowth of the 

forebrain, specialized for processing the molecular signals derived from odour receptors 

that give rise to the sense of smell (S. Firestein, 2001; G. Shepherd, 2004). Based on the 

size of the olfactory bulb compared to the size of the rest of the brain, animals can be 

classified as (i) macrosmatic, such as rodents with large olfactory bulbs, (ii) 

microsmatic, such as primates with relatively small OBs, and (iii) anosmatic animals 

with no or vestigial olfactory bulbs (J. I. Johnson et al., 1994; T. D. Smith and K. P. 

Bhatnagar, 2004). An indication of the importance of olfactory systems is that a 

significant proportion (~ 4%) of the genome of many higher eukaryotes encodes the 

proteins of smell (L. Buck and R. Axel, 1991; S. Firestein, 2001; X. Zhang and S. 
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Firestein, 2002). Most mammals and reptiles have two distinct parts of their olfactory 

system: a main olfactory system and an accessory olfactory system (Fig. 1) (A. C. 

Allison, 1953; H. H. Hoffman, 1963; D. G. Moulton and L. M. Beidler, 1967). The 

latter is important in the specific task of finding a receptive mate (Fig. 1).  

 

 
Fig. 2: Overview of the peripheral and central part of the olfactory system 
Olfactory sensory neurons (OSNs) are the primary sensing cells and harbour odour receptors located in 
their cilia. They send axons to the main olfactory bulb which is part of the central nervous system. The 
incoming signals from terminals of OSNs are processed in the outer layer of the olfactory bulb that is 
organized in glomeruli. Mitral cells are the main class of cells in the olfactory bulb that sends axons to 
other brain centres such as the piriform cortex, the amygdale and the entorhinal cortex (S. Firestein, 
2001). 
 

Known as the vomeronasal system, it specializes in recognizing species-specific 

olfactory signals produced by one sex and perceived by the other. These signals contain 

information not only about location but also reproductive state and availability. 

Behavioural evidence indicates that most often, the stimuli detected by the accessory 

olfactory system are pheromones which are believed to interact with the endocrine 

peripheral part of the olfactory    

bulb including the main olfactory 

epithelium and OSNs 

central part of the olfactory    

bulb (belonging to the CNS)      

and its signal transduction 
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system. In addition to its role in sexual behaviours, it is important in influencing other 

social behaviours such as territoriality, aggression and suckling (L. B. Buck, 2000; S. 

Firestein, 2001). The vomeronasal system projects into the accessory olfactory bulb 

where information is processed and sent to higher brain centers. 

However, this work focuses on the main olfactory system which is responsible for the 

sense of smell. The olfactory bulb receives input from the olfactory sensory neurons, 

integrates and processes incoming signals, and sends output directly to the olfactory 

cortex. It can be divided into two parts: (i) a peripheral part, where olfactory receptors 

detect an external stimulus in the main olfactory epithelium (MOE) belonging to the 

peripheral nervous system, sensing an external stimulus derived from an odour and 

encode this as an electric signal; (ii) the central part where all incoming signals are 

integrated and output is created (Fig. 2).  

The odorants are inhaled through the nasal cavities during breathing and reach the main 

olfactory epithelium (MOE) which is located in the peripheral part of the olfactory 

system. It contains several millions of olfactory sensory neurons (OSNs) that express a 

variety of odour receptors (ORs). They belong to an evolutionary old, sophisticated 

chemical-detecting system of G-protein coupled receptors and represent probably the 

largest family in the genome with more than 1,000 genes for ORs (S. Firestein, 2001). 

A remarkable amount of compounds is detected by the ORs, amongst them are aliphatic 

and aromatic molecules with diverse functional groups, including aldehydes, esters, 

ketones, alcohols, alkenes, carboxylic acids, amines, imines, thiols, halides, nitriles, 

sulphides and ethers (S. Firestein, 2001). ORs are harboured by olfactory sensory 

neurons (OSNs) which are bipolar cells with a single dendrite that reaches up to the 

surface of the tissue and ends in about 20–30 very fine cilia up to 200 µm length. These 

cilia, which lie in the thin layer of mucus covering the tissue, are the site of the sensory 

transduction apparatus. Thin axons from the proximal poles of the cell are bundled. 

However, upon reaching the olfactory bulb they defasciculate and begin to reorganize 

(P. Mombaerts et al., 1996; S. Firestein, 2001; W. W. Au et al., 2002; H. B. Treloar et 

al., 2002) (Fig. 2). 

2.4.1 The basic circuitry of the main olfactory bulb 

Axons from olfactory sensory neurons terminate in a superficial area of the main 

olfactory system (olfactory bulb) which is organized in several layers and signals are 

processed in an outward-inward fashion. Notably, the synaptic architecture of neuronal 
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circuits in the olfactory bulb is conserved across vertebrate classes (A. C. Allison, 

1953; R. Tabor and R. W. Friedrich, 2008).  

 

 
Fig. 3: Overview of a coronal section of the olfactory bulbs 
(A) Coronal section from the adult olfactory bulb indicating the composition of the bulbs in different 
layers: the glomerular layer (GL) is organized in glomeruli and OSNs synapse onto mitral cells here; the 
external plexiform layer (EPL) where only few neurons are located and where some dendrites of mitral 
cells end; the mitral cell layer (MCL) contains only one layer of output creating cells called mitral cells; 
the granule cell layer (GCL) is a dense layer of interneurons synapsing on mitral cell and external tufted 
cell axons; and the deepest layer of the olfactory bulb where newly generated neuroblasts enter from the 
rostral migratory stream. 
(B) Postnatal day 8 mouse olfactory bulb section with a single mitral cell filled with biocytin (red) and 
olfactory receptor axons stained with olfactory marker protein (blue). Photography by Adam C. Puche, 
cell biocytin fill by Philip Heyward, copyright Adam C. Puche. Picture taken from The Olfactory Image 
Archive 
(C) Adult mouse olfactory bulb section with a single superficial tufted cell filled with biocytin (red), 
dopaminergic neurons stained with tyrosine hydroxylase (green) and olfactory receptor axons stained 
with olfactory marker protein (blue). Photography by Adam C. Puche, cell biocytin fill by Sergei Karnup, 
copyright Adam C. Puche. Picture taken from The Olfactory Image Archive 
 

Axons of olfactory sensory neurons terminate in the outer layer which comprise 

glomeruli (glomerular layer), spherical regions of neuropil which serve as input 

modules for the olfactory bulb (Fig. 2, Fig. 3, Fig. 4). The glomerular layer is 

followed by the external plexiform layer constituted predominantly of dendrites of 

mitral and tufted cells, the mitral cell layer which contains the output creating mitral 

cells. The corresponding cell bodies are located in a thin sheet (mitral cell layer) in case 

of the mitral cells around 200 – 450 µm under the glomerular cell layer or in case of the 

tufted cells in the external plexiform layer [reviewed in (G. Shepherd, 2004; V. Egger 
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and N. N. Urban, 2006; G. Gheusi and P. M. Lledo, 2007)] (Fig. 3, Fig. 4). The inner 

part of the olfactory bulb is called granule cell layer and harbours interneurons 

connected with mitral cells (Fig. 3). These interneurons act mostly inhibitory and 

mediate synaptic interactions across glomeruli or output creating mitral cells (G. 

Shepherd, 2004; R. Tabor and R. W. Friedrich, 2008).  

The most prominent inter-glomerular synaptic pathway is the mitral cell – interneuron - 

mitral cell pathway, where periglomerular or granule cells are excited by the 

glutamatergic mitral cell via interneuron synapses and feed back GABAergic 

inhibition onto the same and other mitral cells (G. Shepherd, 2004; R. Tabor and R. W. 

Friedrich, 2008). This might shape spatio-temporal patterns of the olfactory bulb output 

activity and may thereby optimize odour representations for processing in higher brain 

regions. 

 

 
Fig. 4: Basic circuitry of the main olfactory bulb 
Olfactory sensory neurons that express the same odorant receptor gene project their axons to either of 
two glomeruli in the olfactory bulb. Three populations of sensory neurons, each expressing a different 
odorant receptor gene, are depicted in different colors. Their axons converge on specific glomeruli, 
where they synapse with the dendrite of local interneurons (periglomerular neurons) and second-order 
neurons (mitral cells). The lateral dendrites of mitral cells contact the apical dendrites of granule cells. 
Short axon cells are bulbar interneurons that contact both apical and lateral dendrites of mitral cells (G. 
Gheusi and P. M. Lledo, 2007). 
 

The glomerulus is the basic unit in the odour map and there are about 1,800 glomeruli 

in the rodent olfactory bulb (A. C. Allison, 1953). In a remarkable example of 

convergence, glomeruli receive input from between 5,000 and 10,000 olfactory receptor 

cells but output onto only 50 neurons, the mitral cells (P. Mombaerts et al., 1996; G. 

Glomerular Cell Layer (GL) 

Granule Cell Layer 

(GCL) 

Mitral Cell Layer (MCL) 
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Shepherd, 2004; V. Egger and N. N. Urban, 2006; A. Walz et al., 2006). By combining 

so much input, the olfactory system is able to detect even very faint odours. Inside the 

glomerulus, the axons of OSNs contact the dendrites of several types of cells; amongst 

them are mitral and tufted cells, short-axon cells and periglomerular interneurons (Fig. 

2, Fig. 3, Fig. 4) which are described in detail in the following paragraphs. 

Only two cell types create output from the olfactory bulb to other brain regions: mitral 

cells and external tufted cells. They use glutamate as their primary neurotransmitter in 

contrast to most other cell types in the olfactory bulb. While these cell types differ in 

their axonal and dendritic projection patterns, they both form dendro-dendritic 

synapses with interneurons that exert predominantly inhibitory effects (J. M. Christie et 

al., 2001; G. Shepherd, 2004; V. Egger and N. N. Urban, 2006; M. Wachowiak and M. 

T. Shipley, 2006) (see also 2.4.2 Intrinsic neurons: Periglomerular and granule 

neurons). Interestingly, the dendritic tree of a mitral or tufted cell belongs to one single 

glomerulus (Fig. 2, Fig. 3, Fig. 4). Axonal projections of mitral cells gather at the 

posterolateral surface to form the lateral olfactory tract (K. Kishi et al., 1984; G. 

Shepherd, 2004; A. Walz et al., 2006) and target a number of brain areas, including the 

piriform cortex (main part of the olfactory cortex), the medial amygdala, and the 

entorhinal cortex (J. A. Dusek and H. Eichenbaum, 1997). The piriform cortex is 

probably the area most closely associated with identifying the odour. The medial 

amygdala is involved in social functions such as mating and the recognition of animals 

of the same species. The entorhinal cortex is associated with memory, e.g. to pair 

odours with proper memories (J. E. Schwob and J. L. Price, 1984; A. Walz et al., 2006).  

Only few neurons are located in the external plexiform layer, as it is mostly 

constituted of dendrites from mitral and external tufted cells. Some cell bodies of 

external tufted cells are located here as well as intrinsic neurons expressing 

parvalbumin (K. Toida et al., 2000). Interestingly, most of the granule neurons establish 

reciprocal dendro-dendritic contacts with secondary dendrites of mitral/tufted cells in 

the externalplexiform layer, while the primary dendrite has hardly synapses and is 

therefore responsible for the transmission of the incoming signal to the cell body (G. 

Shepherd, 2004). 

As mentioned above, other neurons synapse in the glomerular layer besides mitral cells 

and olfactory sensory neurons. These are known collectively as juxtaglomerular or 

periglomerular neurons and are mainly GABAergic (for details see chapter: 2.4.2 

Intrinsic neurons: Periglomerular and granule neurons). In addition short axon cells 
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have been suggested to be glutamatergic and to contact both apical and lateral dendrites 

of mitral cells (J. L. Price and T. P. Powell, 1970; G. Gheusi and P. M. Lledo, 

2007).Their dendrites branch in the interglomerular spaces (G. Shepherd, 2004). A 

second type of short axon cells exist in deeper layers of the olfactory bulb (deep short 

axon cells) which exhibit different functions: (i) intrabulbar projections from deep to 

superficial layers, (ii) projection into the olfactory bulb and into higher olfactory areas, 

and (iii) influence of olfactory bulb activity by selectively innervating GABAergic 

interneurons (M. D. Eyre et al., 2008). 

2.4.2 Intrinsic neurons: Periglomerular and granule neurons 

Periglomerular neurons are located in the outer layer of the olfactory bulb (glomerular 

layer) where the mitral cells receive input from the olfactory sensory neurons. In 

contrast, granule neurons exhibit their function on the output creating axonal parts of 

mitral cells. Therefore, one glomerulus connected to specific mitral cells and granule 

neurons can be seen as one basic "olfactory colum" and might be analogue with 

orientation columns in the visual cortex (G. Shepherd, 2004). 

Periglomerular neurons (PGNs) are located in the glomerulus and belong to one of 

the smallest neurons in the brain and were originally described by Cajal as glial cells. 

Their cell body is only around 6 – 8 µm in diameter (A. J. Pinching and T. P. Powell, 

1971b) and their bushy dendrites arborize mostly within one glomerulus intermingling 

with the terminals of OSNs and the dendritic branches of mitral and external tufted 

cells (Fig. 5) (G. Shepherd, 2004). Axons of periglomerular neurons function as 

information transmitter to neighbouring glomeruli and act either inhibitory or excitatory 

(G. M. Shepherd, 1963; W. J. Freeman, 1974; T. V. Getchell and G. M. Shepherd, 

1975a, b). Notably, olfactory sensory neuron axons do not terminate randomly within 

one glomerulus but rather occupy distinct intraglomerular parts (L. J. Land et al., 1970; 

L. J. Land and G. M. Shepherd, 1974; H. Treloar et al., 1996). They synapse onto mitral 

and external tufted cells, but are also connected to periglomerular neurons via 

axodendritic synapses (A. J. Pinching and T. P. Powell, 1971a, b). Furthermore, PGNs 

form dendro-dendritic synapses onto mitral and tufted cells and vice versa.  

Notably, periglomerular neurons are heterogeneous in regard to their neurochemical 

identity; however the majority is GABAergic demonstrated by the presence of GABA 

and the GABA synthesizing enzyme GAD65 and GAD67 in the corresponding GFP 

knock-in mice (P. Panzanelli et al., 2007; S. Parrish-Aungst et al., 2007) (Fig. 5). 



14 2 Introduction 

 

 

  
Fig. 5:Schematic overview of the neurochemical identity of periglomerular neurons in the adult 
mouse olfactory bulb.  
(A) Most of the glomerular neurons are of GABAergic identitiy as confirmed in the GAD65 and 67 GFP 
knock-in mice. Whereas granule neurons are homogeneous, periglomerular neurons can be subdivided 
according to their neurochemical identity. Calretinin (CR), Calbindin (CB) and Tyrosine hydroxlyase 
(TH). Adapted from (K. Kosaka and T. Kosaka, 2007). 
(B) At least two different types of cells periglomerular neurons can be classified: Type 1 extends its 
dendrites throughout the sensory and the synaptic compartments of the glomerular neuropil and receive 
synapses from the olfactory sensory neurons. This type is composed of at least two groups of neurons; 
the first is GABAergic including the dopaminergic/TH positive ones, and the second is GABA negative. 
Type 2 periglomerula neurons restrict their dendrites to the synaptic subcompartment of the glomerular 
neuropil, so they do not receive synapses from the olfactory sensory neurons. This type includes two 
subgroups; the first expresses the calcium-binding protein calbindin D-28K and the second calretinin. 
Big arrows represent symmetrical synaptic contacts, and small arrows represent asymmetrical synaptic 
contacts. ON = olfactory sensory neuron; PG = periglomerular neuron; adapted from (M. Gutierrez-
Mecinas et al., 2005) 
 

Amongst them are tyrosine hydroxylase-positive, calretinin-positive and calbindin-

positive cells (K. Kosaka et al., 1995; K. Toida et al., 2000; P. Panzanelli et al., 2007; 

S. Parrish-Aungst et al., 2007). Interspecies differences in the neurochemical 

composition of periglomerular cells could indicate different modes in the modulation of 

olfactory information. Based on their connectivity two subpopulations can be 

distinguished: (i) type 1 periglomerular neurons, which receive excitatory synaptic 

input from the olfactory sensory neurons, and (ii) type 2 cells, which establish few or 

no synapses with olfactory sensory neuron axons (K. Kosaka et al., 1997; K. Toida et 

al., 1998; K. Toida et al., 2000; P. Panzanelli et al., 2007). Notably, both classes are 

dendritically interconnected with those of the principal neurons in the glomerular 

neuropil (Pinching and Powell, 1971a; Toida et al., 1998, 2000).  

A 

B 
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The majority of periglomerular neurons is generated postnatally (S. A. Bayer, 1983) 

and these cells undergo replacement during adult neurogenesis (J. Ninkovic et al., 

2007; I. Imayoshi et al., 2008). Upon integration into the network periglomerular 

neurons have been reported to maintain structural plasticity partially and newly born 

neurons provide a source for wiring plasticity in the olfactory bulb (A. Carleton et al., 

2003; P. M. Lledo et al., 2006; A. Mizrahi, 2007; M. S. Grubb et al., 2008). 

Granule neurons (GNs) are as small as periglomerular neurons (6 - 8 µm) and are 

grouped in horizontal clusters (G. Shepherd, 2004; I. Imayoshi et al., 2008). Their name 

originates from their grainy appearance to early microscopists in the inner parts of the 

olfactory bulb. Their processes are extended radially and perpendicular and terminate in 

the external plexiform layer. According to their depth several classes of granule 

neurons have been identified and suggested that may have different functions (G. M. 

Shepherd, 1972): Superficial GNs sending their dendrites mainly to the superficial 

external plexiform layer, deep GNs send their dendrites mainly to the deep external 

plexiform layer amongst the dendrites of mitral cells and intermediate GNs that all 

extend dendrites into the external plexiform layer. Granule cells do not possess axons 

and are exclusively connected to mitral cells by dendro-dendritic synapses. As a result 

of its bi-directionality, the dendro-dendritic synapse can cause mitral cells to inhibit 

themselves (auto-inhibition), as well as neighbouring mitral cells (lateral inhibition). 

This circuit is the main output controlling circuit of the olfactory bulb.  

Like periglomerular neurons also these neurons are generated during postnatal 

development and throughout adulthood. Upon migration and maturation granule 

neurons have been classified into five different developmental stages: (1) tangentially 

migrating neuroblasts (days 2–7); (2) radially migrating young neurons (days 5–7); (3) 

GCs with a simple unbranched dendrite that does not extend beyond the mitral cell 

layer (days 9–13); (4) GCs with a nonspiny branched dendrite in the external plexiform 

layer (days 11–22); and (5) mature GCs (days 15–30) (L. Petreanu and A. Alvarez-

Buylla, 2002). Interestingly, shortly after the development of spines around half of the 

granule neurons undergo apoptosis. The survival might depend on the level of activity 

that they received as suppression of activity results in increased cell death (L. Petreanu 

and A. Alvarez-Buylla, 2002). In contrast to periglomerular neursons, granule neurons 

are relatively homogeneous in their neurochemical identity: the great majority is 

GABAergic and few calretinin-positive cells can be detected, but most of the cells do 

not stain for Tyrosine Hydroxylase or Calbindin (R. Batista-Brito et al., 2008). 
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In summary, intrinsic neurons of the olfactory bulb are important for signal 

transduction and for shaping output acitivity. This may thereby optimize odour 

representations for processing in higher brain regions. But how are these specific 

neurons generated from neural stem cells? 

 

2.5 The dentate gyrus compared to the subependymal zone 
The second neurogenic niche beside the subependymal zone in the adult forebrain is 

located within the hippocampus: the dentate gyrus. The hippocampus is an organ 

involved in the long-term storage of memories and receives most of its input from the 

entorhinal cortex which fibres end in the outer molecular layer of the dentate gyrus. The 

CA3 region is targeted by the mossy fibres originating from the granule neurons in the 

dentate gyrus (Fig. 6). The pyramidal neurons of the CA3 region are connected to those 

of the CA1 region via the Schaffer collaterals. The hippocampus signals back to the 

cortex, and other brain regions, e.g. hypothalamic areas, and the amygdala. Notably, 

even in the human dentate gyrus and olfactory bulb new neurons appear after treatment 

with the DNA analogue BrdU which is incorporated into the genome during DNA 

synthesis (P. S. Eriksson et al., 1998). 

In contrast to the subependymal zone, the production of these adult generated neurons 

occurs locally in the subgranular layer and young neurons integrate functionally only 

a few cell layers away in the granular cell layer a couple of weeks after birth (F. H. 

Gage, 2000; G. Kempermann et al., 2004; G. L. Ming and H. Song, 2005; R. F. Hevner 

et al., 2006; N. Toni et al., 2008). Unlike the subependymal zone, the dentate gyrus 

generates mostly glutamatergic granule neurons (G. Kempermann et al., 2004; G. L. 

Ming and H. Song, 2005; R. F. Hevner et al., 2006; N. Toni et al., 2008), even though a 

small proportion of newly generated GABAergic interneurons have been reported (S. 

Liu et al., 2003). Hence the conserved transcription factor sequence in the dentate gyurs 

is distinct from the subependymal zone and matches cortical development, cerebellum, 

and dentate gyrus (Fig. 7) (R. F. Hevner et al., 2006): Pax6  Tbr2  NeuroD  

Tbr1. Also the bHLH transcription factors Mash1 and Neurogenin2 are expressed in the 

dentate gyrus in proliferating progenitors (B. Seri et al., 2004; I. Ozen et al., 2007; M. 

Uda et al., 2007).  
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Fig. 6: Generation of granule neurons in the dentate gyrus (G. L. Ming and H. Song, 2005). 
Adult neurogenesis in the dentate gyrus of the hippocampus undergoes five developmental stages. Stage 
1. Proliferation: Stem cells (blue) with their cell bodies located within the subgranular zone in the dentate 
gyrus have radial processes that project through the granular cell layer and short tangential processes. 
These stem cells give rise to transient amplifying progenitors (light blue). Stage 2. Differentiation: 
transient amplifying progenitors differentiate into immature neurons (green). Stage 3. Migration: 
Immature neurons (light green) migrate a short distance into the granule cell layer. Stage 4. 
Axon/dendrite targeting: Immature neurons (orange) extend their axonal projections along mossy fiber 
pathways to the CA3 pyramidal cell layer. They send their dendrites in the opposite direction towards the 
molecular layer. Stage 5. Synaptic integration: New granule neurons (red ) receive inputs from the 
entorhinal cortex and send outputs to the CA3 and hilus regions. DG = dentate gyrus region; ML = 
molecular cell layer; GL = granular cell layer. 
 

 
Fig. 7: Transcription factor expression during neurogenesis in the adult mouse dentate gyrus (R. F. 
Hevner et al., 2006). 
At least three progenitor and two post-mitotic stages are identified during the development of granule 
neurons. Colored bars at the top of the figure represent the transcription factors expressed during each 
stage of development. Nuclei of individual cells are color coded to signify the transcription factors that 
they express. Curved arrows indicate that these progenitor cell types may be capable of self-renewing 
divisions.  
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The subependymal zone differs from the dentate gyrus in several aspects: (i) so far only 

GABAergic interneuron production has been reported from the subependymal zone and 

hence the transcriptions factor sequence differs from the dentate gyrus; (ii) neuroblasts 

destined for the olfactory bulb migrate away forming the rostral migratory stream until 

they reach the olfactory bulb; (iii) the subependymal zone underlies the lateral 

ventricular wall and neural stem cells of the subependymal zone contact the ventricle. 

The cellular architecture of the subependymal zone includes therefore ependymal cells 

besides migrating neuroblasts, neural stem cells and transit-amplifying precursors. 

2.6 The cytoarchitecture of the subependymal zone 
The subependymal zone is located at the lateral wall of the lateral ventricle and 

generates neurons destined for the olfactory bulb, which migrate through the rostral 

migratory stream. The neurogenic zone is only a few cell layers thick. The "niche" is 

defined as "a specific location in a tissue whose microenvironment enables stem cells to 

reside for an indefinite period of time and produce progeny cells while self-renewing" 

(I. Ortega-Perez et al., 2007).  

The below listed cell types are located in the subependymal neurogenic niche (Fig. 8):  

1.- ependymal cells, lining the ventricular wall 

2.- astrocytes, amongst them are the neurogenic, astrocytic neural stem cells 

(NSCs) 

3.- transit-amplifying progenitors (TAPs) that are the immediate progeny of 

stem cells with a very fast cell cycle 

4.- neuroblasts generated from transit amplifying progenitors, which migrate 

away from the subependymal zone forming the rostral migratory stream that 

leads to the olfactory bulb 

 

1. The ependymal cells are mostly multiciliated and form tight-junctions 

thereby separating the cerebrospinal fluid circulating in the ventricles and spinal cord 

from the brain tissue (Fig. 8). At the end of neurogenesis radial glia transform into 

astrocytes but also form the ependymal layer (P. Malatesta et al., 2003; F. T. Merkle 

and A. Alvarez-Buylla, 2006). They cover most of the apical surface (ventricular 

surface), connected by tight junctions and cilia arise from basal bodies (γ-Tubulin+) (F. 

Doetsch et al., 1997; Z. Mirzadeh et al., 2008). These cilia beating has been linked to 



2.6 The cytoarchitecture of the subependymal zone 19 

 

the movement of the cerebrospinal fluid in the ventricular lumen (K. Sawamoto et al., 

2006). Moreover, this study suggested that the orientation of neuroblasts correlates with 

the flow of the cerebrospinal fluid (K. Sawamoto et al., 2006). At least two types of 

ependymal cells can be distinguished according to the number of cilia (Z. Mirzadeh et 

al., 2008). Ependymal cells have previously been considered as stem cells (C. B. 

Johansson et al., 1999), however proliferation of this cell type had not been confirmed 

under physiological conditions in the telencephalon (F. Doetsch et al., 1999b; Z. 

Mirzadeh et al., 2008). However, after injury in the spinal cord ependymal cells 

proliferate (K. Meletis et al., 2008). In neurogenic zones, ependymal cells are grouped 

in pinwheel-structures around one cluster of stem cells that only cover a small area in 

the middle of the pinwheel. Notably, in non-neurogenic zones, i. e. the third ventricle, 

ependymal cells are shaped more regularly (Z. Mirzadeh et al., 2008). 

 

2. Neural Stem Cells (NSCs) of the supendymal zone are a subpopulation of 

GFAP (glial fibrillary acidic protein) expressing astrocytes that generate neuronal 

progeny destined for the olfactory bulb (F. Doetsch et al., 1999b; T. Imura et al., 2003; 

A. D. Garcia et al., 2004; N. Sanai et al., 2004; S. Ahn and A. L. Joyner, 2005; J. 

Ninkovic et al., 2007; I. Imayoshi et al., 2008). Different types of astrocytes are found 

in the subependymal zone: (i) mature differentiated astrocytes containing a small soma 

and numerous processes are usually located further away from the ventricular surface; 

(ii) neurogenic neural stem cells are located in close vicinity to the ependymal cells 

lining the ventricular wall, contacting the ventricle with a single endfoot; (iii) astrocytes 

with processes parallel to the ventricular surface (tangential neural stem cells) had been 

identified and suggested to resemble radial glia or translocating astrocytes in the 

embryonic forebrain (Q. Shen et al., 2008). Neural stem cells exhibit a rather slow cell 

cycle as demonstrated by the use of the DNA-base analogue BrdU. After BrdU 

administration, label-retaining cells (neural stem cells) retain BrdU for extended 

periods due to their relatively long cell-cycle (M. Carlen et al., 2002; D. Colak et al., 

2008; M. Tavazoie et al., 2008).  

Notably, label-retaining neural stem cells divide close to blood vessels (K. L. Baker et 

al., 2006; Q. Shen et al., 2008; M. Tavazoie et al., 2008) and express the laminin 

receptor a6b1 integrin (VLA6), which is lost upon differentiation, and this receptor 

allows direct adhesion of neural stem cells to vascular cells (Q. Shen et al., 2008). 

Furthermore, neural stem cells are exposed to an extracellular matrix that is thought to 
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trap niche growth factors; this matrix includes basal lamina structures that contain 

laminin (F. Mercier et al., 2002; A. Kerever et al., 2007; Q. Shen et al., 2008). 

 

 
Fig. 8: Three-dimensional model of the adult subependymal neurogenic niche (Z. Mirzadeh et al., 
2008).  
Three-dimensional model of the adult subependymal neurogenic niche illustrating stem cells (blue), 
transit-amplifying progenitrors (green), and neuroblasts (red). GFAP+ (blue) neural stem cells have a 
long basal process that terminates on blood vessels (orange) and an apical ending at the ventricle surface. 
Note the pinwheel organization (light and dark brown) composed of ependymal cells (brown and peach) 
encircling stem cells apical surfaces. 
 

Only one primary cilium arises from a single basal body of stem cells that cover very 

little parts of the ventricular surface and group together in a donut-like structure 

surrounded by a pinwheel of ependymal cells (Z. Mirzadeh et al., 2008). Notably, the 

number of stem cells is nowadays estimated to nearly one-third of all cells touching 

the ventricular wall (Z. Mirzadeh et al., 2008), in contrast to previous suggestions (F. 

Doetsch et al., 1997). Two hot-spots have been claimed according to the presence of 

the number of stem cells accessing the ventricle: the anterior-ventral wall and the 

posterior-dorsal region of the ventricular wall (Z. Mirzadeh et al., 2008).  

One common in vitro method to prove the multipotency of neural stem cells is the 

neurosphere assay (see methods for details). The ventricular wall is isolated, 

dissociated, and single cells are kept in a suspension culture under the addition of 



2.6 The cytoarchitecture of the subependymal zone 21 

 

growth factors (EGF/FGF2) (B. A. Reynolds and S. Weiss, 1992; C. M. Morshead et 

al., 1994; C. B. Johansson et al., 1999; B. Berninger et al., 2007). After some days cells 

start to proliferate and neurospheres form which can be passaged for a long time (self-

renewal). After plating in adherent, differentiation conditions neurosphere cells 

differentiate into astrocytes, neurons and oligodendrocytes (multipotency). A second 

method to demonstrate the ability of stem cells is an in vivo method. After elimination 

of transit-amplifying cells and neuroblasts with the antimitotic drug cytosine-b-D-

arabinofuranoside (Ara-C), stem cell astrocytes divide to rapidly regenerate the 

subependymal zone (F. Doetsch et al., 1999a; M. Tavazoie et al., 2008).  

Neural stem cells and ependymal cells can be distinguished by the expression pattern of 

different antigens: stem cells are GFAP+, S100b-negative, CD24-negative, Vimentin-

negative, whereas ependymal cells were GFAP-negative, CD24+, Vimentin+, S100ß+ 

(Z. Mirzadeh et al., 2008). Apical processes of stem cells were nestin+ and CD133+ 

(prominin+). Notably, all these proteins are not exclusively expressed in neural stem 

cells, like Sox2 or GFAP, and cannot be used as exclusive neural stem cell marker (A. 

D. Garcia et al., 2004; M. Tavazoie et al., 2008). Furthermore, the radial glia marker 

brain lipid-binding protein (BLBP) (E. Hartfuss et al., 2001) and the LeX antigen, 

which is the trisaccharide 3-fucosyl-N-acetyllactosamine (H. C. Gooi et al., 1981; A. 

Capela and S. Temple, 2002), is not exclusively expressed in GFAP-positive astrocytes 

but also includes the EGF receptor positive cells (TAPs) (J. C. Platel et al., 2008b). 

Neural stem cells can be distinguished from non-dividing and/or non-neurogenic 

astrocytes by the incorporation of the DNA base analogue BrdU. However, due to the 

slow cell-cylcle BrdU has to be given for 1 – 2 weeks in the drinking water followed by 

a chase with BrdU-free water to allow dilution of BrdU in fast dividing cells. 

The adult subependymal zone retains many developmental characteristics, e. g. the 

expression of specific extracellular matrix components and growth factors which 

regulate the expression of transcription factors promoting either the neurogenic or the 

oligodendrogliogenic lineage. A range of external signal cascades have been identified 

over the last years. The primary cilium of adult neural stem cells exhibits an antenna 

like function (J. J. Breunig et al., 2008; Y. G. Han et al., 2008), but also receptors on 

the cell surface of transit-amplifying progenitors and neuroblasts detect external 

signals. Various cell types respond differently when exposed to external signals 

depending on their receptor cocktail, the presence or absence of a primary cilium, as 
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well as their contact to blood vessels. Some prominent signalling patways are shortly 

introduced in the following paragraphs.  

Notch signalling is regulating stem cell survival through Notch receptor activation 

which induces the expression of the specific target genes amongst them are hairy and 

enhancer of split 3 (Hes3), Hes5, and Sonic hedgehog (Shh) (G. Stump et al., 2002; A. 

Androutsellis-Theotokis et al., 2006). Notch encodes a transmembrane receptor that is 

cleaved to release an intracellular domain (Nicd) that is directly involved in 

transcriptional control (A. Goriely et al., 1991; S. Artavanis-Tsakonas et al., 1999; A. 

Androutsellis-Theotokis et al., 2006). This cleavage occurs after binding of its ligands 

Delta-like 4 (Dll4) and Jagged 1 (Jag1) (A. Chitnis et al., 1995; K. K. Johe et al., 1996). 

Sonic hedgehog signaling components like Patched (Ptc), Smo, Suppressor of fused 

and Gli transcription factors concentrate in primary cilia (S. Ahn and A. L. Joyner, 

2005; K. C. Corbit et al., 2005; C. J. Haycraft et al., 2005; R. Rohatgi et al., 2007) and 

have a critical role in the expansion and establishment of progenitors. Furthermore, loss 

of primary stem cell cilia leads to abrogated Shh activity which in turn leads to 

increased cell cycle exit, and morphological abnormalities in the adult dentate gyrus (J. 

J. Breunig et al., 2008; Y. G. Han et al., 2008). In olfactory neurogenesis Hedgehog 

signalling is required for maintenance of neural stem cells (S. Ahn and A. L. Joyner, 

2005; F. Balordi and G. Fishell, 2007b, a). 

Bone morphogenic protein (BMP) mediated signalling is active in adult neural stem 

cells of the SEZ and is crucial to initiate the neurogenic lineage (D. Colak et al., 2008). 

The BMP pathway is locally enriched in the venricular wall of the adult mouse brain: 

BMP ligands 2, 4, 6, and 7, the feedback inhibitor Noggin, the BMP specific type II 

receptor, the transcription factor Smad4 that mediates BMP signaling, and Id1 and Id3, 

which act as downstream targets of the BMP pathway, are present in the adult 

subependymal zone (D. A. Lim et al., 2000; P. Peretto et al., 2002; X. Fan et al., 2003; 

P. Peretto et al., 2004; D. Colak et al., 2008). Adult deletion of the transcription factor 

Smad4 in adult neural stem cells and their progeny does not affect self-renewal of 

neural stem cells (D. Colak et al., 2008). However, a great reduction of neuroblasts was 

observed already ten days after ablation of Smad4 (D. Colak et al., 2008). 

Concomitantly the transcription factor Olig2 was upregulated strongly in transit-

amplifying progenitors and results in migration of cells to the corpus callosum and 

increased oligodendrogliogenesis (D. Colak et al., 2008). Thus, BMP signalling is 

active in neural stem cells and transit-amplifying progenitors and required for 



2.6 The cytoarchitecture of the subependymal zone 23 

 

progression into the neuronal lineage. Deletion of Smad4 and infusion of Noggin into 

the lateral ventricle resulted in an increase in Olig2-positive oligodendrocytes 

precursors at the expense of neurogenesis (D. Colak et al., 2008). Notably, blockade of 

the BMP signalling in the dentate gyrus, e. g. by Noggin infusion, expands the neural 

stem cell pool (M. A. Bonaguidi et al., 2008). 

Besides the above described signalling pathways there are many more growth factors 

and proteins involved in maintaining neural stem cells and influencing neurogenesis. 

Amongst them is PEDF (pigment epithelium-derived factor) which is secreted by 

components of the murine subependymal zone. Intraventricular PEDF infusion resulted 

in activation of slowly dividing neural stem cells, whereas a blockade of endogenous 

PEDF decreased their proliferation (C. Ramirez-Castillejo et al., 2006). The soluble 

carbohydrate-binding protein Galectin-1 is expressed in astrocytes of the SEZ 

including the neural stem cells. Infusion of Galectin-1 into the ventricle suggested that 

Galectin-1 is an endogenous factor that promotes the proliferation of NSCs in the adult 

brain (M. Sakaguchi et al., 2006). Platelet-derived growth factor (PDGF) affects 

astrocytic neural stem cells expressing the PDGF receptor (PDGFR α) (E. L. Jackson et 

al., 2006) but rather promotes oligodendrogliogenesis than self-renewal.  

 

3. Transit-amplifying progenitors (or transit-amplifying precursors; TAPs) are 

the immediate progeny of neural stem cells with a very fast cell cycle as demonstrated 

by short BrdU labelling. A single pulse of the thymidine analogue BrdU for one hour 

before sacrifice labels transit-amplifying progenitors and some neuroblasts. Neural 

stem cells are hardly labelled according to their long cell cycle. Recent studies 

suggested that also transit-amplifying progenitors like neural stem cells divide in the 

close vicinity of blood vessels and often contact the vasculature at sites devoid of 

Aquaporin 4(AQP4) staining (M. Tavazoie et al., 2008) and express the EGF receptor 

(C. M. Morshead et al., 1994; K. B. Seroogy et al., 1995; C. S. Weickert et al., 2000; F. 

Doetsch et al., 2002; M. Tavazoie et al., 2008). At least two lineages of transit-

amplifying progenitors had been identified according to the generated progeny: (i) 

transit-amplifying progenitors that express the transcription factors Mash1 and Olig2 

generate oligodendrocytes migrating towards the white matter (M. A. Hack et al., 2005; 

C. A. Marshall et al., 2005; B. Menn et al., 2006; D. Colak et al., 2008); (ii) neurogenic 

transit-amplifying progenitors that generate granule and periglomerular neurons express 

transcription factors in various combinations, amongst them are Pax6, members of the 
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Dlx-gene family and Mash1 (F. Doetsch et al., 2002; C. M. Parras et al., 2004; M. A. 

Hack et al., 2005; B. Menn et al., 2006; D. Colak et al., 2008).  

As mentioned above, BMP-mediated signalling is necessary for the progression of 

transit-amplifying precursors towards the neuronal lineage. Ablation of the 

transcription factor Smad4 which is present in neural stem cells and transit-amplifying 

precursors blocks BMP-signalling and leads to aberrant expression of Olig2, even in 

transit-amplifying precursors that express Dlx2 (D. Colak et al., 2008). 

Transit-amplifying progenitors in the subependymal zone express the epidermal 

growth factor receptor (EGFR) on their cell surface (C. M. Morshead et al., 1994; K. 

B. Seroogy et al., 1995; F. Doetsch et al., 2002; M. Tavazoie et al., 2008). The EGFR is 

activated by binding of its specific ligands including epidermal growth factor, heparin-

binding EGF-like growth factor, and transforming growth factor α (TGFα). Upon 

activation by its growth factor ligands the EGFR dimers stimulate intracellular tyrosine 

kinase activity. Infusion of EGF into the murine lateral ventricle increased proliferation 

in the subependymal zone and concomitantly decreased the number of cells migrating 

towards the olfactory bulb (C. G. Craig et al., 1996; H. G. Kuhn et al., 1997; J. Fallon et 

al., 2000). The responding cellular population to EGF infusion includes transit-

amplifying progenitors (F. Doetsch et al., 2002).  

Another important regulator in mammalian neural development has been implicated 

with adult neurogenesis: The canonical Wnt signalling pathway of which ß-catenin is 

an important downstream component (A. Patapoutian and L. F. Reichardt, 2000). Wnt-

signalling plays an important role in neurogenesis of the developing and adult dentate 

gyrus (J. Galceran et al., 2000; S. M. Lee et al., 2000; D. C. Lie et al., 2005). Forced 

expression of ß-catenin with retoviral vectors promotes the proliferation of transit-

amplifying progenitors in the subependymal zone and inhibits their differentiation into 

neuroblasts (K. Adachi et al., 2007). 

 

4. Several 10,000 neuroblasts are newly generated each day and form chain-

like structures during their journey along the ventricular wall. Finally, they form the 

rostral migratory stream at the subependymal zone's rostral extension between the 

white matter and the striatum. Upon their entrance in the core of the olfactory bulb 

these chains detach and the neuroblasts start to migrate radially and finally integrate 

into the olfactory bulb network. However, only few neuroblasts can manage to fully 
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mature and find their place in the mature network. Most of them fail and die after a few 

weeks (L. Petreanu and A. Alvarez-Buylla, 2002; G. Kempermann et al., 2004).  

Neuroblasts still divide as demonstrated by a short BrdU pulse during their journey to 

the olfactory bulb (M. B. Luskin, 1993). Notably, blood vessels seem to act as guide 

for their migration and ran parallel in the RMS whereas this is not the case to such 

extent along the ventricular wall (M. Tavazoie et al., 2008). Reelin acts as detachment 

signal for chain-migrating neuroblasts (I. Hack et al., 2002), as well as the extracellular 

matrix glycoprotein tenascin-R, which in addition promotes their radial migration in the 

olfactory bulb (A. Saghatelyan et al., 2004). Overlapping antigens expressed by these 

young migrating neurons are doublecortin (DCX) (J. G. Gleeson et al., 1999), PSA-

NCAM and mCD24 (V. Calaora et al., 1996; F. Doetsch et al., 1997). 

Many components of GABAergic signalling have been identified in the subependymal 

zone: GABA is synthesized and released by neuroblasts (R. R. Stewart et al., 2002; A. 

J. Bolteus and A. Bordey, 2004; X. Liu et al., 2005; J. C. Platel et al., 2008a). 

Neuroblasts and neural stem cells express GABAA receptors that are activated by 

GABA (R. R. Stewart et al., 2002; D. D. Wang et al., 2003; A. J. Bolteus and A. 

Bordey, 2004; X. Liu et al., 2005). GABA levels are regulated by GABA transporters 

expressed in neural stem cells but not in neuroblasts (A. J. Bolteus and A. Bordey, 

2004; J. C. Platel et al., 2007). Tonic GABAA receptor activation reduces proliferation 

and the migration speed of neuroblasts (L. Nguyen et al., 2003; A. J. Bolteus and A. 

Bordey, 2004; X. Liu et al., 2005). Migration of neuroblasts is a process that is also 

tightly regulated by several molecules and signalling pathways. Brain derived 

neurotrophic factor (BDNF) as a very prominent representative is expressed in the 

SEZ-RMS-OB system as well as its receptor TrkB and p75 (T. Zigova et al., 1998; A. 

Mackay-Sima and M. I. Chuahb, 2000; E. Gascon et al., 2005; S. Chiaramello et al., 

2007). The hepatocyte growth factor (HGF) and its receptor Met protein are 

expressed in the olfactory bulb and throughout the migratory pathway (D. Garzotto et 

al., 2008). HGF promotes migration of RMS neuroblasts, acting both as an inducer and 

attractant (D. Garzotto et al., 2008). Furthermore, directional migration towards the 

olfactory bulb is controlled by chemorepulsion (Slit-Robo signalling; (W. Wu et al., 

1999; K. Sawamoto et al., 2006)) and molecules acting as attractants by the olfactory 

bulb, such as Netrin-1, and GDNF (S. Murase and A. F. Horwitz, 2002; G. Paratcha et 

al., 2006).  
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Taken together, neural stem cell maintenance, transit-amplifying precursor divisions, 

neurogenic lineage decisision, and migration of neuroblasts from the subependymal 

zone towards the olfactory bulb are tightly controlled processes with diverse signalling 

pathways involved in this regulation. Signalling pathways often result ulitmately in the 

change of transcriptional profiles. Some of these pathways are exhibiting their function 

via gradient expressions like in development. Recent reports suggest that also the adult 

subependymal zone is regionalized (W. Kelsch et al., 2007; F. T. Merkle et al., 2007; 

K. M. Young et al., 2007) what will be described in more detail in the following 

chapter. 

2.7 Comparison of the architecture of embryonic and adult 
subependymal zone 

Adult neural stem cells are derived from embryonic neuroepithelial cells, which form 

an apical layer of ventricular zone precursors. At early developmental stages 

neuroepithelial cells function as primary progenitors and divide symmetrically to 

expand the stem cell pool. Consequently only few neurons are produced; amongst them 

are the Cajal-Retzius cells. Neuroepithelial cells have an elongated shape spanning 

from the ventricular to the pial surface. At later stages they either transform directly 

into neurons or divide asymmetrically, generating a radial glia cell that remains in the 

ventricular zone (radial glia cell) and a daughter cell that migrates radially outward (P. 

Malatesta et al., 2003; T. E. Anthony et al., 2004; W. Haubensak et al., 2004; M. Gotz 

and W. B. Huttner, 2005; F. T. Merkle and A. Alvarez-Buylla, 2006). Radial glia are 

present in the dorsal and ventral telencephalon and divide to generate striatal neurons 

and oligodendrocytes either directly or via an intermediate progenitor (basal 

progenitors) forming a subventricular zone that gives rise to cortical neurons (M. Gotz 

and W. B. Huttner, 2005; F. T. Merkle and A. Alvarez-Buylla, 2006).  

Radial glia cells exist until neonatal stages where they generate oligodendrocytes, and 

olfactory bulb interneurons. Soon after birth they retract their processes and transform 

into ependymal cells or astrocytes, few forming later the adult neual stem cell pool (A. 

D. Tramontin et al., 2003; F. T. Merkle and A. Alvarez-Buylla, 2006). Notably, the 

adult subependymal zone has essentially a similar structure like the embryonic 

neurogenic zone. Neural stem cells in the adult brain are intercalated into the 

ependymal layer and have direct access to the ventricle via a single endfoot (Q. Shen et 

al., 2008). Beneath is a subventricular zone of active proliferation and differentiation of 
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transit-amplifying progenitors that give rise to neuroblasts and oligodendrocytes (Q. 

Shen et al., 2008). Neuroblasts migrate along the lateral wall of the lateral ventricle 

towards the olfactory bulb (M. B. Luskin, 1993), whereas in the embryo they migrate 

along radial glia processes (S. C. Noctor et al., 2004; S. C. Noctor et al., 2007).  

Taken together, the embryonic and adult neurogenic niches are similar in their cellular 

architecture. However, different types of neurons are generated during embryonic 

neurogenesis and this raises the question which brain regions contribute to the adult 

subependymal zone and do they produce the same neurons as in development? 

 

 
Fig. 9: The embryonic versus the adult neurogenic niche (Q. Shen et al., 2008). 
In the embryo, an apical layer of stem cells produces an actively proliferating subventricular zone that 
generates neurons that migrate toward the pia guided by radial glia. Coincident with neurogenesis, the 
vasculature grows from the pial surface toward the germinal cells. 
The adult subependymal zone has an essentially similar structure: apical neural stem cells, believed to 
include the subependymal zone stem cells, are intercalated into the ependymal layer and directly contact 
the ventricle. Just subjacent is an subventricular zone of active proliferation, differentiation, and 
migration, including Mash1+ and Olig2+ transit-amplifying progenitors, PSA-NCAM+/DCX+  
neuroblasts. The adult germinal zone is intimately associated with a subependymal zone vascular plexus. 
LV = lateral ventricle. 
 

2.8 Regionalization of the embryonic telencephalon and adult 
subependymal neurogenic niche 

The origin of dorsal and ventral radial glia forming later the adult subependymal zone 

may contribute to the regionalization of this structure. Although the lateral wall of the 

lateral ventricle (the lateral subependymal zone) appears as the major source of adult 

olfactory neurogenesis, injections of permanent lineage tracers into the lateral 

subependymal zone hardly labelled any progeny migrating to the glomerular layer of 

the olfactory bulb, while more such cells were observed following injection into the 

rostral migratory stream (M. A. Hack et al., 2005; M. Alonso et al., 2008; J. G. 

Mendoza-Torreblanca et al., 2008). Different regions of origin for distinct types of 
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periglomerular neruons were recently further substantiated by transplantation 

experiments (S. De Marchis et al., 2007; M. Kohwi et al., 2007a; F. T. Merkle et al., 

2007) and recent studies suggest the restriction of precursors to generate neurons with a 

pre-determined pattern, i. e. dendritic targeting or neurochemical identity was 

independent of the host environment and therefore a cell-autonomous effect (W. Kelsch 

et al., 2007; F. T. Merkle et al., 2007).  

2.8.1 Regionalization in the embryonic telencephalon 

In order to give evidence for the regionalization of the adult subependymal zone, Cre-

mediated fate mappings were performed. Reporter activity of an Emx1-Cre line would 

demonstrate the contribution of the dorsal telencephalon to the adult subependymal 

neurogenic niche (S. Willaime-Morawek et al., 2006; M. Kohwi et al., 2007a; R. E. 

Ventura and J. E. Goldman, 2007; K. M. Young et al., 2007; R. Batista-Brito et al., 

2008). Indeed, fate mapping confirmed that the dorsal Emx1-derived telencephalon 

contributes to the adult subependymal zone. During embryonic development Pax6 is 

expressed in the doral telencephalon in the Emx1-expressing territory where mainly 

glutamatergic neurons arise (J. A. Gorski et al., 2002; P. Malatesta et al., 2003; T. T. 

Kroll and D. D. O'Leary, 2005) (Fig. 10). However, the Gsh2-derived brain region 

(ventral telencephalon) generates GABAergic neurons (J. C. Szucsik et al., 1997; H. 

Toresson et al., 2000; H. Toresson and K. Campbell, 2001).  

 

 
Fig. 10: Neural stem cells and their progeny in the developing forebrain (adapted from (K. M. 
Young et al., 2007). 
All regions of the telencephalic neuroepithelium contribute to the adult subependymal zone. Schematic 
depicting the different embryonic neuroepithelial domains targeted by Cre mice crossed with a GFP 
reporter and their relative contribution to generating the adult subependymal zone. 
 

In the adult olfactory bulb the Emx1-derived area generates around 25 % of all new 

BrdU+ neurons in the olfactory bulb compared to 70 % of the Gsh2-derived lineage (K. 

M. Young et al., 2007). Therefore the lateral ventricular wall is the main source of 
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olfactory interneurons. Interestingly, no Calbindin+ neurons were detected from the 

Emx1-derived lineage, but dopaminergic, tyrosine hydroxylase+ and even more 

Calretinin+ interneurons were observed (K. M. Young et al., 2007). 

Notably, different transcription factors pattern these territories thereby specifying 

progenitors and are introduced shortly in the following paragraphs. 

2.8.2 Patterning during embryonic development 

The dorsal and ventral telencephalon generate glutamatergic and GABAergic neurons, 

respectively, as well as Olig2+ oligodendrocytes arising from ventral regions. Pax6 and 

Tbr1&2 are important transcription factors for the gernation of glutamatergic neurons, 

whereas Gsh1&2, Mash1 and Dlx transcription factors drive the generation of 

GABAergic striatal projection and cortical interneurons. 

In the Emx1-derived brain region, Pax6 is present in radial glia cells and governs the 

generation of glutamatergic neurons (M. Gotz et al., 1998; N. Heins et al., 2002; T. T. 

Kroll and D. D. O'Leary, 2005; V. Nikoletopoulou et al., 2007). Pax6 belongs to the 

paired-like class of transcription factors with two highly conserved motifs: a 

homeodomain and a paired domain, (D. Bopp et al., 1986; S. Cote et al., 1987; C. 

Walther and P. Gruss, 1991) and classified in vertebrates as the Pax multi-gene family 

(U. Deutsch et al., 1988; G. R. Dressler et al., 1990; B. Jostes et al., 1990; D. Plachov et 

al., 1990; M. D. Goulding et al., 1991; C. Walther and P. Gruss, 1991; C. Walther et al., 

1991).  

 
Fig. 11: mRNA scheme indicating domains of the transcription factor Pax6 (N. Haubst et al., 2004). 
Pax6 exhibits two DNA binding sites, namely the homeodomain and the paired domain, which is in turn 
subdivided into the PAI and RED domain both able to bind DNA independently. Exon5a is 14 amino 
acids long and is inserted in the Pax6(5a) splice variant. HD = homeodomain, TA = transactivation 
domain, PD = paired domain 
 

Several splice variants are known in the Pax6 gene: a truncated form lacking the paired 

domain (paired-less) and Pax6(5a) with a 14 amino acid insertion into the PD (J. A. 

Epstein et al., 1994; Z. Kozmik et al., 1997; M. K. Duncan et al., 2000; T. R. Anderson 

et al., 2002; R. Mishra et al., 2002; N. Haubst et al., 2004). In addition several point 

mutations of the Pax6 gene are described, amongst them the very well studied Sey mice 

(Small eye) which lack the transactivation domain of Pax6 due to a point mutation 



30 2 Introduction 

 

 

inserting a stop codon (B. L. Hogan et al., 1986; B. L. Hogan et al., 1988; R. E. Hill et 

al., 1991). This functional null mutant does not posess eyes and nasal cavities, dies 

perinatally and shows severe defects in forebrain development (B. L. Hogan et al., 

1986; B. L. Hogan et al., 1988; R. E. Hill et al., 1991; M. Gotz et al., 1998; J. Briscoe et 

al., 1999; T. T. Kroll and D. D. O'Leary, 2005).  

In contrast, the homeodomain transcription factor Gsh2 is expressed in the medial and 

lateral ganglionic eminence and drives the generation of GABAergic neurons, such as 

cortical interneurons and striatal GABAergic projection neurons (Fig. 10) (J. C. Szucsik 

et al., 1997; D. D. Eisenstat et al., 1999; H. Toresson et al., 2000; H. Toresson and K. 

Campbell, 2001). Gsh2 is expressed in both of the ganglionic eminences while Gsh1 is 

largely confined to the medial ganglionic eminence (J. C. Szucsik et al., 1997; H. 

Toresson et al., 2000; H. Toresson and K. Campbell, 2001). Gsh2 function is essential 

for the molecular identity of early striatal progenitors and in its absence the ventral 

telencephalic regulatory genes Mash1 and Dlx are lost from most of the striatal 

germinal zone (J. C. Szucsik et al., 1997; H. Toresson et al., 2000; H. Toresson and K. 

Campbell, 2001).  

The transcription factor Dlx2 belongs to the homeobox containing family which 

consists of Dlx1, 2, 5, and 6. Distal-less (Dll) has been originally described in 

drosophila distal limb and antenna development (J. R. Whittle et al., 1986; S. M. Cohen 

et al., 1989; S. M. Cohen and G. Jurgens, 1989). Vertebrate Dlx genes play 

developmental roles of ears, nose, mandible and maxilla (G. W. Robinson et al., 1991; 

G. Q. Zhao et al., 1994; D. Acampora et al., 1999; M. J. Depew et al., 1999; K. S. 

Solomon and A. Fritz, 2002).  

In addition, Dlx transcription factors function in forebrain development (S. A. 

Anderson et al., 1997a; S. A. Anderson et al., 1997b; O. Marin et al., 2000; S. J. 

Pleasure et al., 2000). The vast majority of telencephalic interneurons originate in the 

ventral telencephalon – the medial and lateral ganglionic eminences where Dlx genes 

are predominantly present (Fig. 12) (S. W. Wilson and J. L. Rubenstein, 2000; J. G. 

Corbin et al., 2001; O. Marin and J. L. Rubenstein, 2001; S. A. Anderson et al., 2002). 

The Dlx gene family specifies GABAergic interneurons migrating to the cortex 

during embryonic neurogenesis, but controls also the generation of GABAergic striatal 

projection neurons (S. A. Anderson et al., 1997b; S. A. Anderson et al., 2001; G. 

Panganiban and J. L. Rubenstein, 2002; M. A. Petryniak et al., 2007; G. Colasante et 
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al., 2008); thereby repressing Olig2 and consequently an oligodendrocyte fate (M. A. 

Petryniak et al., 2007). 

 

 
Fig. 12: Dlx transcription factors in the developing forebrain (adapted from (G. Panganiban and J. 
L. Rubenstein, 2002)). 
The left schematic shows the appearance of GABAergic interneurons from the medial ganglionic 
eminence (MGE) and lateral ganglionic eminence (LGE) migrating to the neocortex (NCX). Dlx 
transcription factors (yellow) appear to be present in the same regions.  
The right panel shows the current model of the sequential appearance of Dlx transcription factors: Dlx2 
and Dlx1 are both present in the subventricular zone (SVZ) but only weakly expressen in the ventricular 
zone (VZ) where the stem cells are located. Upon maturation of GABAergic neuroblasts they start to 
migrate and to express the transcription factors Dlx5 and Dlx6. Notably, Dlx5 is expressed in the SVZ 
and mantle zone (MZ) whereas Dlx6 is prominent in the outer mantle zone. 
 

Furthermore, Dlx 1& 2 down-regulate Notch signalling during neurogenesis and 

promoting differentiation of progenitors (K. Yun et al., 2002). Notably, Dlx 

transcription factors appear sequentially during embryonic neurogenesis starting with 

Dlx1 and 2 expression in the subventricular zone (SVZ) and weak expression in the 

ventricular zone (VZ). Upon maturation Dlx5 and 6 are expressed in in the 

subventricular zone and in the mantle zone (MZ) (Fig. 12).  

 

The mouse homologue of the transcription factor mouse achaete scute homologue 1 

(Mash1) carries a DNA binding basic helix-loop-helix motif (bHLH) (L. C. Lo et al., 

1991; F. Guillemot and A. L. Joyner, 1993; F. Guillemot et al., 1993). Mash1 belongs 

to the family of proneural genes (N. Bertrand et al., 2002). During murine embryonic 

development Mash1 is expressed in the ventral telencephalon (L. C. Lo et al., 1991; F. 

Guillemot and A. L. Joyner, 1993; M. H. Porteus et al., 1994; C. Fode et al., 2000) 

where it is involved in the generation of GABAergic neurons, modulation of Notch 

signalling, and specifiying oligodendrocytes (S. Casarosa et al., 1999; S. Horton et al., 

1999; C. Fode et al., 2000; K. Yun et al., 2002; C. M. Parras et al., 2007; M. A. 

Petryniak et al., 2007). 
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Fig. 13: The basic helix-loop-helix motif (left) and the homeodomain (right) binding to DNA 
(adapted from (T. Shimizu et al., 1997; V. J. Lynch et al., 2006)) 
 

The transcription factor Olig2 also carries a basic helix-loop-helix (bHLH) motif and is 

essential for the generation of all oligodendrocytes in the central nervous system (Q. R. 

Lu et al., 2000; H. Takebayashi et al., 2000; J. Wang et al., 2000; Q. Zhou et al., 2000; 

L. Dimou et al., 2008). In contrast to most other proneural genes Olig2 acts not as 

activator, but as repressor instead (R. Mizuguchi et al., 2001; B. G. Novitch et al., 

2001; M. A. Hack et al., 2005). During embryonic development Olig2 is expressed in 

ventral regions from which oligodendrocytes arise which migrate later to the dorsal 

telencephalon (J. A. Alberta et al., 2001; S. Nery et al., 2001; N. Tekki-Kessaris et al., 

2001; D. H. Rowitch et al., 2002; M. A. Petryniak et al., 2007). Notably, Olig2 function 

is also required for the generation of motorneurons in the spinal cord (D. J. Anderson, 

2001; R. Mizuguchi et al., 2001; B. G. Novitch et al., 2001). 

As adult neurogenesis originates from stem or progenitor cells not only in the lateral, 

but also medial and dorsal subependymal zone (F. T. Merkle et al., 2007), this raises 

the question whether distinct molecular determinants mediating patterning at earlier 

developmental stages may still be active in the adult and influence the subtype 

specification of olfactory bulb interneurons. 

2.8.3 Patterning in the adult subependymal zone 

Generation of progeny from adult neural stem cells, maturation of neuroblasts, and their 

differentiation into distinct subpopulations reflects a complex network of transcription 

factors which act as intrinsic fate determinants (J. Ninkovic et al., 2007). Since the 

dorsal and ventral telencephalon both contribute to the adult subependymal zone, 

distinct subsets of interneurons may originate from different sets of progenitors that are 
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specified by transcription factors depending on their respective region of origin. In this 

chapter, some of the known transcription factors in adult olfactory neurogenesis will be 

briefly introduced: Pax6, Mash1, and Olig2. 

In adult olfactory neurogenesis, Pax6 plays a neurogenic role in the subependymal 

zone and is important for GABA and dopaminergic periglomerular neuron 

specification (T. L. Dellovade et al., 1998; M. A. Hack et al., 2005; M. Kohwi et al., 

2005). In the subependymal zone Pax6 is present in a subset of transit-amplifying 

progenitors and in neuroblasts of the rostal migratory stream (M. A. Hack et al., 2005). 

When neurosphere cells derived from the adult subependymal zone are transduced with 

retroviral vectors encoding Pax6 and GFP, a potent neurogenic effect could be observed 

(M. A. Hack et al., 2004). Consistently, over-expression in vivo led to up-regulation of 

DCX, promoting the neurogenic lineage, while dominant-negative approaches or Cre-

mediated ablation of Pax6 blocked neurogenesis significantly (M. A. Hack et al., 2005).  

Upon arrival in the olfactory bulb Pax6 is down-regulated in most of the newly arriving 

neuroblasts except in a subpopulation destined to become dopaminergic periglomerular 

neurons (M. A. Hack et al., 2005). Importantly, over-expression of Pax6 by retroviral 

vectors into the rostral migratory stream which is a niche for periglomerular neurons 

led to a prominent increase in the generation of dopaminergic periglomerular neurons 

(M. A. Hack et al., 2005). In summary, Pax6 plays a crucial role in neurogenesis and in 

dopaminergic periglomerular neuron fate. 

 

 
Fig. 14: Dlx5/6-Cre derived periglomerular neurons and their transcriptional profiles (adapted 
from (Z. J. Allen, 2nd et al., 2007a)). 
The vast majority of the mature TH-positive population express the transcription factors Pax6, ER81 and 
Meis2. The majority of the calbindin-positive population express the transcription factor Meis2 while a 
small population, indicated by parenthesis, has been shown to express Pax6 (M. A. Hack et al., 2005). 
Nearly all of the calretinin-positive population expresses the transcription factor Sp8 (R. R. Waclaw et 
al., 2006) while slightly more than half express Meis2 and/or ER81. 
 

Besides Pax6 other transcription factors are expressed in dopaminergic 

periglomerular neurons, such as ER81 and Meis2 (Z. J. Allen, 2nd et al., 2007a). The 
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transcription factor Sp8 is involved in the generation of calretinin-positive 

periglomerular neurons and is only present in a subset of neuroblasts in the rostral 

migratory stream (R. R. Waclaw et al., 2006; Z. J. Allen, 2nd et al., 2007a). Notably, 

Pax6 presence in the adult dentate gyrus has also been reported in radial glia-like 

progenitors that label only with Pax6 and in early intermediate stage progenitors that 

label with both Pax6 and Tbr2 (R. F. Hevner et al., 2006).  

In the adult murine brain Mash1 is present in both neurogenic niches, the dentate gyrus 

and the subependymal zone extending into the rostral migratory stream (C. M. Parras et 

al., 2004). Transit amplifying cells of the subependymal zone express Mash1 that is 

required for at least two lineages, the neuronal and oligodendrocyte lineage (C. M. 

Parras et al., 2004). Retroviral over-expression of Mash1 in the adult dentate gyrus 

leads to the generation of oligodendrocytes in this region (S. Jessberger et al., 2008). In 

the subependymal zone Mash1 colocalizes partially with Olig2 which is crucial for the 

generation of oligodendrocytes.  

The bHLH transcription factor Olig2 which acts as repressor is present in the adult 

subependymal zone and is localized in a subset of transit amplifying progenitors (M. 

A. Hack et al., 2005; B. Menn et al., 2006). Retroviral over-expression of Olig2 in this 

brain region leads to the massive generation of oligodendrocytes migrating towards the 

white matter (M. A. Hack et al., 2005). Over-expression of a dominant-negative form 

of Olig2 which triggers activation of Olig2 target genes abolishes generation of 

oligodendrocytes from the subependymal zone (M. A. Hack et al., 2005). 

Furthermore, expression of Olig2 in neurogenic transit-amplifying progenitors is 

suppressed by BMP-mediated signalling. When BMP-signalling is blocked, e. g. 

deletion of the transcription factor Smad4 or infusion of Noggin, Olig2 is aberrantly 

expressed in transit-amplifying precursors generating now Olig2-positive 

oligodendrocytes precursors. These cells migrate into the white matter and corpus 

callosum forming later mature oligodendrocytes (D. Colak et al., 2008).  

2.9 Candidate genes  
Notably, expression of Dlx2 in the adult subependymal zone had been reported 

previously (M. H. Porteus et al., 1994; F. Doetsch et al., 2002). However, little is 

known about the expression profile of Dlx2-positive cells in the subependymal zone 

and about their fate in the olfactory bulb. I therefore investigated the function of Dlx2 
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in the adult subependymal zone and in neuronal subtype specification for olfactory 

interneurons. 

2.9.1 The role of Dlx2 in adult neurogenesis in regard to Pax6 

Dlx1 & Dlx2 belong to the key molecular regulators for GABAergic neuron 

specification during development besides Gsh1 & Gsh2 since the respective double 

mutant mice loose virtually all GABAergic telencephalic interneurons prior to birth (S. 

A. Anderson et al., 1997a; D. D. Eisenstat et al., 1999; H. Toresson et al., 2000; H. 

Toresson and K. Campbell, 2001). However, the function of these transcription factors 

in adult neurogenesis is yet unknown as most of the mouse mutants die perinatally. We 

therefore aimed to determine here whether Dlx transcription factors maintain their 

region-specific expression in the adult forebrain and whether they still act to determine 

all or only a specific subset of olfactory interneurons. Expression of Dlx2 had been 

observed in transit-amplifying progenitors and neuroblasts (M. H. Porteus et al., 1994; 

F. Doetsch et al., 2002). Furthermore, Pax6 had been shown to be present in virtually 

all neuroblasts and Olig2 as a marker for transit-amplifying progenitors (M. A. Hack et 

al., 2005). Given this co-existence in the same cell types I examined whether Pax6 is 

required for Dlx2 function and if these transcription factor would interact on the 

molecular level. 

 
Fig. 15: Schematic summarizing the known network of some transcription factors in the adult 
subependymal zone. 
The transcription factors Dlx2 and Olig2 are both present in transit-amplifying progenitors (TAPs), 
whereas Pax6 is expressed in neuroblasts. The aim of the study was to study the function of the 
transcription factor Dlx2 in regard to Pax6.  

2.9.2 Tbr1 & Tbr2 

Since previous reports demonstrated the contribution of the Emx1-derived, Pax6 

expressing dorsal telencephalon to the adult subependymal zone (K. M. Young et al., 

2007; S. Willaime-Morawek and D. van der Kooy, 2008), I investigated the 

regionalization of the subependymal zone in regard to the presence of transcription 

factors of the embryonic dorsal telencephalon. Furthermore, I examined if the dorsal 
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wall would generate glutamatergic neurons destined for the olfactory bulb. 

Consequently this would suggest that neural stem cells of the dorsal subependymal 

zone recapitulate their developmental program. In the adult subependymal zone Pax6 is 

expressed in a gradient from dorsal to ventral, whereas Dlx transcription factor are 

exclusively expressed in the lateral ventricular wall. During embryonic development, 

dorsal progenitors generate predominantly glutamatergic neurons, in a Pax6-dependent 

manner, including those of the olfactory bulb (T. Nomura and N. Osumi, 2004; T. T. 

Kroll and D. D. O'Leary, 2005; V. Nikoletopoulou et al., 2007). Thus, the entire 

population of olfactory projection neurons is thought to derive from a Pax6-expressing 

territory and Pax6 is crucial for the formation of the olfactory bulb (T. L. Dellovade et 

al., 1998; D. Jimenez et al., 2000). In the developing cerebral cortex, Pax6 regulates 

Neurogenin1 and Neurogenin2 which are crucial to specify at least deep cortical layer 

neurons towards a glutamatergic fate (C. Schuurmans et al., 2004). In addition, in the 

cerebral cortex and hippocampus Pax6 and its target Neurogenin2 regulate expression 

of the T-box transcription factors Tbr1 and Tbr2 expressed in early postmitotic 

glutamatergic neurons and their intermediate progenitors (R. F. Hevner et al., 2006).  

Given the glutamatergic progeny of the dorsal telencephalon during development and 

its contribution to the adult subependymal zone, I searched for progenitor cells in the 

dorsal part of the subependymal zone that may generate glutamatergic neurons in the 

adult olfactory bulb. 

 
Fig. 16: Schematic depicting the dorsal region (dSEZ) and lateral region (latSEZ) of the adult 
subependymal zone. 
Previous study demonstrated the regionalization of the adult subependymal zone. However, during 
development glutamatergic neurons are generated in the dorsal telencephalon forming later the dorsal 
wall of the subependymal zone (dSEZ). Therefore, we investigated if transcription factors would be 
expressed in the dSEZ that governs the generation of glutamatergic olfactory neurons. OB = olfactory 
bulb; RMS = rostral migratory stream; dSEZ = dorsal subependymalzone; latSEZ = lateral subependymal 
zone, vSEZ = ventral subependymal zone. 

dSEZ latSEZ or vSEZ 

 

OB 

RMS 



3 Aims of this study 37 

 

3 Aims of this study 
The postulated regionalization of the adult subependymal zone and the transcriptional 

network specifying olfactory interneurons is still debated and should be addressed in 

this study.  

In my thesis, the regionalization of the adult subependymal zone should be clarified. 

The candidate gene Dlx2 should be studied in regard to regionalization, expression 

pattern and function in adult neurogenesis and subtype specification in the olfactory 

bulb. The function of Dlx2 should be examined in vivo by the construction and 

injection of retroviral vectors for gain- and loss-off-function experiments. Furthermore, 

the in vivo results should be supported by in vitro models (neurosphere assay and direct 

plated subependymal zone progenitors) and in vivo time-lapse imaging should be 

employed to further elucidate the function of Dlx2.  

In addition, the contribution of the dorsal subependymal zone which is derived from the 

embryonic dorsal telenecpehalon should be elucidated in regard to glutamatergic 

olfactory neurogenesis. Transcription factors involved in cortical glutamatergic 

neurogenesis should be identified in the dorsal adult subependymal zone. If these 

factors would be present in these regions their progeny in the rostral migratory stream 

and in the olfactory bulb should examined using labelling methods like the DNA base 

analogue BrdU, retroviral injections, as well as transgenic mouse lines 

 

. 
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4 Results 
 

4.1 A Dlx2- and Pax6-dependent transcriptional code for 
periglomerular neuron specification 

 

4.1.1 Region-specific expression of Dlx1, 2, 5&6 in the adult telencephalon 

In order to examine the expression patterns of Dlx genes in the adult telencephalon we 

used in situ hybridization with probes specific for Dlx1, 2, 5 and 6 mRNAs. Dlx 1 and 

Dlx 2 mRNAs were abundantly expressed in the lateral - but not the dorsal or medial – 

wall of the lateral ventricle, in the rostral migratory stream (RMS) and the olfactory 

bulb (OB) (Fig. 17 A, B). In contrast neither Dlx5 nor Dlx6 mRNAs were detected 

within the subependymal zone, but started to be expressed at low levels within the 

rostral migratory stream, and became abundant in the olfactory bulb (Fig. 17 C, D) (G. 

Levi et al., 2003). This is consistent with the developmental profile of higher 

expression levels of Dlx5& 6 at later stages of cell maturation (D. D. Eisenstat et al., 

1999). Note that the weak signal present in the white matter of the cerebral cortex is 

also seen in the sense control and hence reflects background (Fig. 17 E, E’, E’’). In 

addition, in the dentate gyrus neither Dlx2 mRNA nor protein of Dlx transcription 

factors was found in immunohistochemistry using a pan-Dlx antibody (which is 

directed against the homeodomain of Dlx2 and therefore recognizes also Dlx1, 5 and s) 

(G. Panganiban et al., 1995; R. J. Kohtz et al., 2001; J. Feng et al., 2004) (Fig. 17 F, G), 

reminiscent of the absence of these transcription factors in this dorso-medial region 

during development. 

The exclusive expression of Dlx1 & 2 all along the ventral-lateral, but not the dorsal 

wall of the lateral ventricle is consistent with the expression pattern during embryonic 

development and is pronouncedly different from the localisation of Pax6-positive cells 

(Fig. 18 D). Dlx transcription factors are present in the ganglionic eminences whereas 

Pax6 is prominent in the dorsal telenecephalon. In the adult subependymal zone only 

some Pax6-positive cells are located along the lateral ventricular wall and most are 

detected dorsally and in the rostral migratory stream (Fig. 18 D, E; Hack et al., 2005).  
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Fig. 17: Expression pattern of the Dlx transcription factors in the adult murine brain. 
In situ hybridization for (A) Dlx1, (B) Dlx2, (C) Dlx5 and (D) Dlx6 mRNA. Note the intense mRNA 
signal for Dlx1 and Dlx2 in the adult subependymal zone in contrast to Dlx5 and Dlx6. In the RMSrostral 
migratory stream and olfactory bulb, Dlx1 and Dlx2, as well as Dlx5 and Dlx6 mRNA are present. 
Boxed areas are shown in higher magnifications 
.(E) Sense control for Dlx2 in situ hybridization shows no labelling in the subependymal zone and 
olfactory bulb. (E’-E’’) higher magnifications of boxed areas.  
(F) In situ hybridization for Dlx2 mRNA shows no labelling in the dentate gyrus  
(G) Immunostaining for pan-Dlx (K. Jin et al.) in the dentate gyrus shows absence of all transcription 
factors of the Dlx family on the protein level. LV = Lateral Ventricle, GCL = granule cell layer, GL = 
glomerular cell layer, RMS= rostral migratory stream; Scale bar: 100µm 
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Next we performed double-immunohistochemistry for Pax6 in combination with the 

pan-Dlx antibody which recognizes Dlx1 & 2 in the subependymal zone (given the 

absence of Dlx5 & 6 mRNA in this brain region). Sections from an embryonic day E14 

mouse brain demonstrate that Pax6 is prominent in dorsal regions giving rise to cortical 

neurons. In contrast Dlx transcription factors are expressed in the ventral telencephalon 

(Fig. 18 A). In the adult rostral migratory stream both Pax6 and Dlx transcription 

factors are present in neuroblasts (Fig. 18 B, C). But are these transcription factors also 

co-expressed in the adult forebrain? I observed that the majority of cells were only Dlx-

immunoreactive (80 ± 3%) but Pax6-negative in the adult subependymal zone. Only 1 

in 10 Dlx-positive (Dlx+) cells also displayed Pax6 immunoreactivity and a similar 

proportion of cells within the subependymal zone expressed only Pax6 (Fig. 18 D, E). 

In contrast, within the rostral migratory stream the majority of cells expressed Pax6 and 

20% co-expressed Pax6 and Dlx (Fig. 18 D’’, E). The high number of the only Pax 

immunoreactive cells in dorsal regions of the subependymal zone and the beginning of 

the rostral migratory stream may suggest that these cells may give rise to another 

separate lineage that is Dlx-negative. Consistently, Pax6 expression was detected in 

DCX-negative cells suggesting that they are progenitors. Interestingly, amongst the 

doublecortin-positive (DCX+) neuroblasts in the rostral migratory stream Dlx-positive 

cells predominated (90 %) and an even higher proportion of double-positive cells 

(about 40 %) was observed. Taken together, the expression patterns of Dlx and Pax6 

genes in the adult telencephalon resemble their regionalization during development.  
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Fig. 18: Pax6 and Dlx immunoreactive cells in the adult subependymal zone and rostral migratory 
stream 
(A) Micrograph depicting a sagittal section of an embryonic day 14 section. Immunofluorescence for 
Pax6 (red) and pan-Dlx (green) demonstrates that Dlx transcription factors are present in ventral regions. 
In contrast, Pax6 expression is restricted to the dorsal telencephalon. GE = ganglionic eminence; LV = 
lateral ventricle. 
(D) Overview of the lateral wall of the lateral ventricle (LV) depicting the subependymal zone (SEZ) and 
rostral migratory stream (RMS) double stained for Dlx and Pax6 proteins. High magnification images of 
boxed areas in (A') show the subependymal zone and (A'') the rostral migratory stream. Arrows indicate 
double-positive, arrowheads single-positive cells.  
(E) Histogram depicting the proportion of cells immunoreactive for only one or both of these 
transcription factorss. Notably, the proportion of Pax6+ cells and cells immunoreactive for both Dlx and 
Pax6 increases from the subependymal zone to the rostral migratory stream (comparison between SEZ 
and RMS for Dlx+, Pax6+ and Dlx+/Pax6+, P < 0.001 (ANOVA), number of cells analysed = 332 for 
SEZ and number of cells analyzed = 363 for RMS, n = 3 animals).  
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4.1.2 Identity of Dlx-immunoreactive cells in the subependymal zone and 
olfactory bulb 

Next we characterized the identity of cells expressing Dlx transcription factors. While 

astroglia-like stem cells divide rather slowly, they give rise to rapidly dividing 

transient-amplifying progenitors (TAPs), a large proportion of which then generates 

DCX-positive neuroblasts that continue to divide and commence migrating towards the 

olfactory bulb. Dlx-immunoreactivity was absent in GFAP-positive cells that comprise 

the neural stem cell compartment (Fig. 19 A).  

In order to label fast proliferating cells like transit-amplifying progenitors we gave a 

short pulse of the DNA base analogue 5-Bromo-2′-deoxy-Uridine (BrdU) which is 

incorporated into the genome of all dividing cells during DNA synthesis. Since transit-

amplifying progenitors divide much faster compared to neural stem cells, a single BrdU 

pulse before sacrifice labels only these progenitors including a proportion of still 

dividing neuroblasts. However, if BrdU is given into the drinking water for longer 

periods (2 – 3 weeks) dividing cells including neural stem cells are labelled by the 

DNA base analogue. If the BrdU period is followed by a chase of BrdU-free water 

labelled transit-amplifying progenitors differentiate into neuroblasts and migrate 

towards the olfactory bulb, alternatively they further proliferate, thereby diluting the 

BrdU again. Neural stem cells remain in the subependymal zone and their slow cell 

cycle does not allow prominent dilution of the BrdU. Therefore these slowly 

proliferating cells can be visualized after long BrdU pulses followed by a BrdU-free 

chase. 

One hour before sacrifice we injected the DNA base analogue BrdU to label fast 

proliferating cells. We observed Dlx-positive (Dlx+) cells amongst the BrdU labelled 

compartment consistent with previous data (F. Doetsch et al., 2002). To distinguish Dlx 

expression in transit-amplifying progenitors from neuroblasts, we performed triple-

immunohistochemistry with Dlx, BrdU and DCX (Fig. 19 B) and classified transient-

amplifying progenitors as BrdU+/DCX-negative and neuroblasts as BrdU+/DCX+ cells 

(transit-amplifying progenitors are white and light grey and neuroblasts black and dark 

grey in Fig. 19 E). Two thirds of all transit-amplifying progenitors were Dlx-positive 

(Fig. 19 E), whereas the remaining third was BrdU-positive/Dlx-negative. Consistent 

with the presence of Dlx transcription factors in transit-amplifying progenitors, most of 

the DCX-negative/Dlx-positive cells were colablled with Mash1, a transcription factor 

present in transit-amplifying progenitors (Fig. 19 C) (C. M. Parras et al., 2004).  
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Fig. 19: Dlx-immunoreactive cells in the adult subependymal zone and rostral migratory stream. 
The panels in (A – D) depict example micrographs to identify the cell types expressing Dlx as indicated 
in the panels. Histogram in (E) depicts the composition of BrdU-positive cells comprising transit-
amplifying progenitor cells (TAPs; white and light grey bars) and neuroblasts (dark grey and black bars) 
in the subependymal zone. Note that virtually all neuroblasts are Dlx-positive, while about a forth of all 
transit-amplifying progenitors are Dlx-negative (number of cells analyzed in total = 295, n = 3 animals).  
Scalebars: (A) 100µm, (A’-G) 10µm, insets in (C-G) 10µm; LV = Lateral Ventricle, Str = Striatum, SEZ 
= subependymal zone, RMS = rostral migratory stream 
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Previous reports demonstrated the presence of the transcription factor Olig2 in the adult 

subependymal zone and its role in the generation of oligodendrocytes (M. A. Hack et 

al., 2004; M. A. Hack et al., 2005; B. Menn et al., 2006; D. Colak et al., 2008). Indeed 

we found that the BrdU+/Dlx-negative cells express Olig2 (Fig. 19 D) as Dlx-

immunoreactivity was not co-localized with Olig2 (Fig. 19 D) (D. Colak et al., 2008). 

While not all transit-amplifying progenitors express Dlx virtually all neuroblasts were 

Dlx-immunopositive in the ventral subependymal zone (Fig. 19 D) as described also for 

Dlx2 protein (Doetsch et al., 2002). 

Upon maturation neuroblasts migrate along the lateral wall of the lateral ventricle and 

form the rostral migratory stream before entering the olfactory bulb. Notably, Dlx 

protein was still present in the young neurons reaching the stream and within the 

olfactory bulb in neurons that had already down-regulated DCX upon maturation. 

Interestingly, we noted a particularly high Dlx-immunoreactivity in the glomerular 

layer (Fig. 20 A). Interestingly, pan-Dlx immunostaining was confined to most of the 

calbindin-positive and virtually all tyrosine hydroxylase-positive (TH+) periglomerular 

neurons (TH+/Dlx+: 99 ± 1 %, n = 3 animals, 340 cells; Fig. 20 B, C), i.e. the GABA-

immunoreactive subtypes, while calretinin-positive periglomerular neurons were 

characteristically devoid of pan-Dlx-immunoreactivity (Fig. 20 D).  

The dopaminergic subpopulation accounted for 31 ± 8 % (n = 3 animals, 841 cells 

counted) of all Dlx-positive cells. Given that Pax6 is involved in the generation of 

dopaminergic periglomerular neurons (M. A. Hack et al., 2005) and Dlx1 & 2 are co-

expressed with Pax6 in the subependymal zone, we further tested if this would be the 

case in the dopaminergic subpopulation. Immunohistochemistry with a Dlx2 specific 

antibody and Pax6 demonstrated that virtually all Pax6-positive periglomerular neurons 

also co-expressed Dlx2 (Fig. 20 E). Amongst the Dlx2-positive cells in the glomerular 

layer 41 ± 6 % (n = 3 animals, 518 cells counted) displayed Pax6 immunoreactivity. 

Thus this data suggest that these factors may interact to specify the dopaminergic 

neuron fate as implicated in the developing ventral thalamus (G. S. Mastick and G. L. 

Andrews, 2001; G. L. Andrews et al., 2003).  

Since only Dlx1 and Dlx2 are expressed in the subependymal zone, we focussed our 

functional analysis in the remainder of this study on one of these, namely Dlx2.  
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Fig. 20: Dlx-immunoreactive cells in the adult olfactory bulb. 
(A-E) Fluorescent micrographs depicting pan-Dlx (A-D) or Dlx2 (E) immunoreactivity in an overview of 
the OB (A) or within the GL (B-E) in double-stainings as indicated in the panels. Note that some Dlx+ 
cells are also immunoreactive for calbindin or TH as well as the transcription factor Pax6 (arrows 
indicating double-positive cells for Dlx and marker). (A) Scalebar: 100µm, (B-E) Scalebar: 10µm. OB = 
olfactory bulb, GCL = granule cell layer, GL = glomerular layer, TH = Tyrosine Hydroxylase. 
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4.1.3 Dlx2 acts potently neurogenic on adult subependymal zone derived cells in 
vitro 

4.1.3.1 Dlx2 over-expression in neurosphere derived cells leads to neurogenesis 

We first performed gain-of-function studies in vitro, by transducing adult 

subependymal zone derived neurosphere cells with pseudotyped retroviral vectors 

encoding GFP behind an IRES sequence for control and Dlx2-IRES-GFP for Dlx2 

over-expression (Fig. 21 A). Reliable co-expression of Dlx2 and GFP was confirmed 

(Fig. 21 B - E).  

 
Fig. 21: Expression of Dlx protein following retroviral transduction with Dlx2. 
(A) Schematic drawing of the retroviral constructs used for control and manipulation of Dlx2. 
Immunofluorescence for GFP, Dlx2 and DAPI as indicated on neurosphere cultures 7 days after 
retroviral over-expression of Dlx2. Microcraphs showing (B) GFP, (C) Dlx2, (D) DAPI and (E) overlay.  
Scalebar: 100µm. 
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membrane is not existent during that time window and retroviral vectors are 

incorporated into the genome.  

 

 
Fig. 22: Expression of Dlx protein following retroviral transduction with Dlx2 
(A, B) Fluorescence micrographs of subependymal zone derived neurosphere cells after 7 days 
differentiation immunostained for ßIIITubulin (red), GFAP (blue) and GFP (green). Note the vastly 
increased number of transduced (GFP+) cells co-localising with the neuron-specific antigen ßIIITubulin 
following Dlx2 over-expression (B) compared to control (A). Scale bars: 10µm  
(C) Histogram depicting the proportion of transduced cells (GFP+) acquiring an astroglial (GFAP+, 
blue), neuronal (ßIIITubulin+, red) or none of these fate following viral transduction in subependymal 
zone dervived neurosphere cells (D; P = 0.03 (GFAP comparison, t-Test), P = 0.004 (ßIIITubulin 
comparison, t-Test), control number of cells analyzed in total = 979; Dlx2 number of cells analyzed in 
total = 1192, n = 3 independent experiments each).  
 

When control transduced neurosphere cells were examined seven days later, the 

majority of GFP-positive cells were GFAP-positive astrocytes, while only one fifth 

were ß-III-Tubulin-positive neurons (Fig. 22). In pronounced contrast, the vast majority 

of neurosphere-derived cells transduced with Dlx2 acquired a neuronal fate (Fig. 22), at 

the expense of the astroglial population. This data suggests that Dlx2 is a potent inducer 

of a neuronal fate in this in vitro model of adult neural stem cells, reminiscent of its 

function during development (G. Panganiban and J. L. Rubenstein, 2002). 
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Next, we performed the same experiment but using lentiviral vectors. Lentiviruses are 

able to cross the nuclear membrane by the use of integrase complexes and hence are 

able to transduce non-dividing cells (L. Naldini, 1998). Interestingly, the neurogenic 

effect of Dlx2 over-expression was less pronounced by lentiviral vectors. We still 

observed a small increase in the number of ß-III-Tubulin-positive neurons, mostly at 

the expense of marker negative cells (Fig. 23 A, B, E). Additionally, the number of 

oligodentrocyte marker O 4 immunoreactive cells decreased (Fig. 23 C, D), whereas the 

proportion of GFAP-positive astrocytes remained stable in both conditions. Dlx2 over-

expression may therefore prevent an oligodendrocytes fate, but could not force destined 

astrocytes to switch their fate into the neuronal lineage. As the effect of Dlx2 retroviral 

over-expression was by far more prominent than with lentivirus we chose the former 

for the following in vivo experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 23: Dlx2 lentiviral over-expression in neurospheres exhibits only small neurogenic effects 
(A - B) Fluorescence micrographs of subependymal zone derived neurosphere cells after 7 days 
differentiation immunostained for ß-III-Tubulin (young neurons), GFAP (astrocytes, blue) and GFP 
(green). 
(C – D) Immunohistochemistry on differentiated neurospheres for the oligodendrocytes antigen O4 
shows decreased expression upon Dlx2 lentiviral transduction.  
(E) Histograms depicting the proportion of transduced neurosphere cells (GFP+) expressing the neuronal 
marker ß-III-Tubulin (red), the astrocytes marker GFAP (blue) or none of these (green). Dlx2 seems to 
act mostly on the marker negative population that comprises oligodendrocytes and progenitor cells. 
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4.1.3.2 Primary non-expanded adult subependymal zone progenitors 

Next we aimed to examine whether Dlx2 was not only sufficient to instruct 

neurogenesis, but was also required for neurogenesis from adult neural stem cells.  

Neurosphere-derived cells are expanded in growth factors like epidermal growth factor 

(EGF) and fibroblast growth factor 2 (FGF2) under non-adherent conditions (B. A. 

Reynolds and S. Weiss, 1992; M. A. Hack et al., 2004; B. Berninger et al., 2007; A. 

Chojnacki and S. Weiss, 2008). Following differentiation and retrieval of growth 

factors neurosphere derived cells generate intrinsically few neurons and differentiate 

predominantly into GFAP+ astrocytes (Fig. 22). Additionally, they up-regulate 

transcription factors of the oligodendroglial lineage like Olig2 (M. A. Hack et al., 
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2004). Therefore this culture system is less suitable for a loss of function analysis of 

Dlx2. 

However, we developed a culture system for primary adult subependymal zone derived 

cells cultured in the absence of EGF and where the cells are directly plated after 

preparation FGF2 (for details see Material and Methods: 6.9.2 Non-expanded adult 

progenitor cultures). Notably, most cells (except GFAP+ astroglia) in the cultures not 

treated by EGF and FGF2 were Dlx-immunoreactive (Fig. 24).  

 
Fig. 24: Expression of Dlx protein in adult primary non-expanded adult progenitors. 
(A-A’’) Immunohistochemistry 7 days after transduction with control viral vectors. Micrographs show 
immunohistochemistry for (A) Dlx, (A') GFP and (A'') overlay. Arrows indicate Dlx+ cells with 
neuroblast morphology and arrowhead indicateds Dlx-negative cell with astrocytic morphology. 
 

When I quantified the number of intrinsically generated neurons I found that the cell 

type composition was distinct from neurosphere derived cultures. The proportion of 

neurons and astrocytes in vitro 3 days and 7 days after plating was identified byr 

immunohistochemistry for ß-III-Tubulin, O4 or GFAP and DAPI (Fig. 25). Notably 

more than half of the cells adopted a neuronal identity similar to the in vivo situation. 

Only around 10 % of the DAPI-positive cells expressed the astrocyte marker GFAP and 

after 7 days in vitro a similar number of O4-positive oligodendrocytes was observed. 

Notably, also in vivo a lot of neuroblasts are present in the subependymal zone, 

whereas differentiated neurosphere generate only 10 – 20 % neurons. This data suggest 

that primary subependymal zone cultures comprise progenitors that preferentially give 

rise to cells with a neuronal identity similar to the in vivo situation.  

In order to better characterise these progenitor cultures I next analysed the composition 

of individual clones. I took advantage of retroviral vectors encoding GFP to follow the 

progeny of single transduced cells that had divided at the time of transduction. Cultures 

were transduced 2 – 4 hours after seeding and coverslips were fixed seven days after 

transduction and analysed when less than 40 clones were present.  
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Fig. 25: Identity of the cultured cells 3 days and 7 days in vitro. 
Immunohistochemistry for ßIIITubulin (violet) or GFAP (red) or O4 (yellow) counterstained with DAPI 
demonstrated that the majority of the cells is of neuronal identity 3 days and 7 days in vitro. 
Oligodendrocytes could be only observed 7 days after in vitro and to a similar extent than astrocytes.  
 

Just considering the size of the clones most of them were rather small in size (1 - 2) and 

often only a single cell was observed suggesting that the sister cell died. We detected 

only few clones with more than 6 cells. Immunohistochemistry for the neuronal marker 

ß-III-Tubulin, the astrocytic marker (GFAP), and GFP (green) was performed to 

identify transduced cells. Most of the clones were of neuronal identity (ß-III-Tubulin). 

Only few non-neuronal clones and mixed clones were observed.  

In order to correlate the size and the identity of the clones we further analysed the size 

and the identitfied as follows. Clones were classified into three types: purely neuronal 

clones, in the case that all cells were found immunoreactive for GFP and the neuronal 

marker ß-III-tubulin; purely non-neuronal or glial clones, if all cells comprised within 

were ß-III-Tubulin-negative, but expressed the glial markers GFAP or the 

oligodendrocytes marker O4; and mixed clones, for the case that at least one of the cells 

was ß-III-Tubulin reactive while at least another cell was found positive for GFAP or 

O4. As expected, most of the small clones were of neuronal identity (Fig. 26 A, B). 

Interestingly, non-neuronal clones were also small in size. Mixed clones were typically 

larger in size and even when clones were mixed most of the transduced cells were of 

neuronal nature (Fig. 26 C, D, F). 

In summary, clonal analysis showed that a great proportion of neurons are generated 

from precursors in vitro. Interestingly, few mixed clones could be identified. Like in 

vivo where most of the astrocytes are quiescent and only few function as neural stem 
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cell with a slow cell cycle this situation is perfectly mimicked in this culture system 

with only few mixed clones. The retroviral clonal analsysis indicates that cultured adult 

subependymal zone progenitors are distinct with respect to their proliferative 

properties, differing either in cell divison cycle length or their capacity to undergo 

several rounds of cell divisions. 
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Fig. 26: Clonal analysis 7 days post retroviral transduction in subependymal progenitor cultures. 
Immunohistochemistry for GFP (green), GFAP (white), GFP (green) , ßIII Tubulin (red) and DAPI 
(blue).  
(A, B) Example of neuronal and (C, D) mixed clones. Orange arrows indicate astrocytes in mixed clones.  
(E) Relatively few oligodendrocyte clones were found in the retroviral clonal analysis which were 
positive for the oligodendrocyte marker O4. 
(F) Clonal size plotted additionally with their identity demonstrated again that most clones were of 
neuronal identity. Pure non-neuronal clones were rare and even mixed clones contained mainly neurons. 

4.1.3.3 Dlx2 and Dlx2-Engrailed over-expression in adult subependymal zone 
progenitors 

We took advantage of the above described culture system to test the role of endogenous 

Dlx2, using a retroviral vector encoding a chimeric protein in which the Dlx2 

homeodomain had been fused to the Engrailed repressor domain (Fig. 29 A and 

Material & Methods). The homeodomain of Dlx2 was amplified by PCR from a mouse 

Dlx2 cDNA containing plasmid (gift from G. Mastick) and inserted into a pCDNA3 

vector. The Engrailed repressor domain (plasmid kindly provided by Mineko Kengaku) 

was also amplified by PCR and inserted into the pCDNA3 vector. The whole cassette 
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was digested and ligated into the pmxig retroviral vector between the LTR and the 

IRES followed by GFP for visualization. This construct is converting Dlx2-mediated 

transactivation into repression (S. E. Harris et al., 2003; J. M. Woda et al., 2003; T. Kaji 

and K. B. Artinger, 2004) (Fig. 29 A). 

 
Fig. 27: Dlx2-Engrailed transduction does not alter neurogenesis in embryonic E 13 cultures. 
Cultures of embryonic day E 13 transduced with control (A, C) or Dlx2-Engrailed (B, D) viral vectors 
and kept for 3 days in vitro (DIV). The number of ß-III-Tubulin+ cells did not alter, suggesting that 
Dlx2-Engrailed did not interfere with neurogenesis in cortical progenitors from embryonic day 
E13.Arrows indicated double-positive cells for GFP and ß-III-Tubulin.  
 

In order to confirm the specificity of the Dlx2-Engrailed construct we further tested its 

specificity independently in the present study, beyond the previous data on the function 

of Dlx2-Engrailed fusion proteins as repressors and antagonists of the endogenous Dlx2 

function (S. E. Harris et al., 2003; J. M. Woda et al., 2003; T. Kaji and K. B. Artinger, 

2004). As cells isolated from the embryonic day 13 (E 13) cerebral cortex that contain 

very few, if any Dlx2+ progenitors cells at this stage, we used them to determine 

potential off-target effects of Dlx2-Engrailed. E 13 cortical progenitors infected with 

Dlx2-Engrailed still differentiated normally into neurons (control GFP+/ß-III-Tubulin+ 

94.5 %; Dlx2-Eng 97 %, one experiment, number of cells analyzed for control = 618 

and Dlx2-Eng = 355), suggesting that Dlx2-Engrailed transduction does not interfere 

with neurogenesis in cells that do not express Dlx2 (Fig. 27). Therefore we conclude 
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that the effect of Dlx2-Engrailed is specific and reveals the need of endogenous Dlx2-

regulated targets to be up-regulated for neurogenesis to proceed normally.  

As a second test in vivo, we injected the above described construct of Dlx2-Engrailed 

into the dentate gyrus of the hippocampus. Neurogenesis in this region leads to the 

generation of glutamatergic granule neurons and Dlx-proteins are not present in this 

region (Fig. 20). Injection of Dlx2-Engrailed containing retrovirus did not prohibit the 

generation of DCX-positive neuroblasts seven days later (Fig. 28), further supporting 

the specificity of this construct. 

 
Fig. 28: Injection of control and Dlx2Eng retroviral vector into the dentate gyrus. 
Immunohistochemistry for GFP (green) and neuroblasts (DCX, red) after injection of control and 
Dlx2Eng retroviral vectors into the dentate gyrus 7 days later. Neuroblasts were present following 
injections of control and Dlx2Eng retroviral vectors in an equal manner. Arrows indicate double-positive 
cells for GFP and DCX. 
 

Given the specificity of the Dlx2-Engrailed construct we transduced direct plated 

subependymal cultures to turn Dlx2 mediated activation into repression. In general 

upon retroviral transduction of these cultures control virus transduced cells generate a 

much higher proportion of neurons (about 60 %) than cells derived from neurospheres 

(about 20 %) that have been expanded in the presence of EGF and FGF2 (Fig. 22). 
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Fig. 29: Dlx2 acts potently neurogenic in adult subependymal zone cells in vitro. 
(A) Schematic drawing of the retroviral constructs used for control and manipulation of Dlx2. 
(D – F) Retroviral transduction of primary non-expanded adult progenitor cultures with (B) control, (C) 
Dlx2 and (D) Dlx2-Engrailed and double-stained for neurons (TuJ1, red) and astrocytes (GFAP, blue) as 
indicated. Representative examples for ß-III-Tubulin+ neuroblasts are indicated by arrows. Arrowheads 
indicate GFAP+ astrocytes. Scalebar: 100µm. 
Histograms depicting the proportion of transduced cells (GFP+) acquiring an astroglial (GFAP+, blue), 
neuronal (ß-III-Tubulin+, red) or none of these fate following viral transduction in primary non-expanded 
adult progenitors (E, ß-III-Tubulin+ P < 0.001 (ANOVA), control number of cells analyzed in total = 
1002; Dlx2 number of cells analyzed in total = 850; Dlx2-Eng number of cells analyzed in total = 525, n 
= 3 independent experiments each) 7 days after differentiation. Note the potent neurogenic effect of Dlx2 
in these adult progenitors. 
 

Following forced expression of Dlx2-Engrailed in primary subependymal zone cells, 

neurogenesis was drastically reduced, while GFAP-positive astrocytes were increased 

in number (Fig. 29). Conversely, over-expression of Dlx2 resulted in a further increase 

in neurogenesis with nearly 90 % of GFP-positive cells acquiring a neuronal (ß-III-

Tubulin-positive) fate (Fig. 29). These data therefore suggest a powerful neurogenic 

role of Dlx2 in adult stem and progenitor cells.  
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4.1.4 Dlx2 acts potently neurogenic in adult subependymal zone cells in vivo 

To examine whether Dlx2 transcriptional activity is also required for adult neurogenesis 

in vivo, we performed stereotactic injections of the above described retroviral vectors 

into the lateral subependymal zone (M. A. Hack et al., 2005; D. Colak et al., 2008) (for 

details see chapter: 6.2.2 Stereotactic injections). The majority of the control transduced 

cells analysed 3 days post injection (dpi) into the subependymal zone were DCX-

positive neuroblasts (Fig. 30 A, E; for description of the quantification see Methods 6.7 

Quantitative analysis and statistics) and increased even further following forced 

expression of Dlx2 (Fig. 30 B, E). Conversely, the number of DCX-positive cells was 

drastically reduced to about one third of the control numbers following transduction 

with the retrovirus encoding Dlx2-Engrailed (Fig. 30 C, E). 

Fig. 30: Dlx2 acts potently neurogenic in adult subependymal zone cells in vivo. 
(A, B, C; E) Representative examples of micrographs depicting transduced (GFP+) cells following 
stereotactic injections of (A) control, (B) Dlx2 and (C) Dlx2-Engrailed retroviral vectors into the adult 
subependymal zone and double-stained for the neuroblast-specific antigen DCX (Doublecortin) or the 
transcription factor Olig2 (D). The histogram in (E) depicts the proportion of transduced cells with 
different fates 3 days post injection (dpi): neuroblasts (DCX+, red), astroglia (GFAP+, blue) or 
oligodendroglial precursors (Olig2+, grey). (DCX+, P < 0.001 (ANOVA), Olig2+, P = 0.0013 
(ANOVA), GFAP+, P = 0.0020 (ANOVA), total cells analysed: control = 243, Dlx2 = 229; n = 4 
animals each, Dlx2-Eng number of cells analyzed in total = 349; n = 3 animals; significance is indicated 
by the following symbols: *, °, #). Scalebar: 10µm; LV = lateral ventricle, SEZ = subependymal zone 
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Dlx2 is required for fast proliferation of subependymal zone progenitors, but not 

sufficient to elicit a further increase 

To further understand Dlx2 may affect the number of neuroblasts in the adult 

subependymal zone, we considered either a role in neuronal fate specification, given 

the fast alterations in progenitor fate observed already by three days post injection (3 

dpi), or possible effects on neuroblast survival and proliferation, respectively. To 

examine cell death, sections were stained for activated caspase3, but virtually no 

caspase3+/GFP+ cells could be detected, in contrast to the effects seen for Dlx 

transcription factors in the retina (J. de Melo et al., 2007). To examine the proliferation 

of the transduced cells, we injected BrdU at 3 dpi, one hour prior to perfusion of the 

animals (see Material & Methods). Following Dlx2 transduction no difference was 

detectable in the labelling index, as given by the proportion of BrdU+ cells amongst all 

GFP-positive cells (control 30 ± 6 %, cells counted in total = 243; Dlx2 24 ± 11 %, 

cells counted in total = 229, n = 4 animals each group; comparison of control and Dlx2, 

P > 0.05 (Bonferroni’s multiple comparison test). However, after Dlx2-Engrailed 

transduction the proportion of BrdU-positive cells had markedly decreased (8 ± 2 %, 

cells counted in total = 140, n = 3 animals, comparison of control, Dlx2 and Dlx2-Eng 

P = 0.0203 (ANOVA) and P < 0.05 (Bonferroni’s multiple comparison test)), 

suggesting that Dlx2-mediated activation of target genes is required for the high 

proliferative rate of transit-amplifying progenitors and neuroblasts. As, however, the 

increase in neuroblasts caused by Dlx2 over-expression was not accompanied by 

alterations in proliferation Dlx2 seems to affect the neuronal fate decision directly, 

while at the same time also being required for regulating progenitor proliferation. 

To further support this hypothesis we examined the expression of the transcription 

factor Mash1 which is present mostly in transit-amplifying progenitors of both the 

neuronal and oligodendroglial lineage (C. M. Parras et al., 2004). Mash1 is colocalized 

with Dlx transcription factors in DCX-negative transit-amplifying progenitors (Fig. 19 

D), however a substantial portion of Mash1 coexpresses Olig2 predominantly in dorsal 

regions of the subependymal zone close to the white matter (Fig. 31). Upon Dlx2 over-

expression this transcription factor was down-regulated and following transduction with 

Dlx2-Engrailed Mash1 presence was unaffected compared to the control (Fig. 32). 

Therefore Dlx2 over-expression promotes differentiation to the neuronal lineage, while 

Dlx2-Engrailed promotes proliferation of the same number of transit-amplifying 

progenitors. Next we examined the longterm fate of the Dlx2-Engrailed transduced 
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cells. As Mash1 is present in these cells but these cells do not proceed to the neuronal 

lineage, we examined the transcription factor Olig2 which is important for the 

generation of oligodendrocytes (Q. R. Lu et al., 2002; D. H. Rowitch, 2004). 

 

 

 

 

 

 

 

 

Fig. 31: Mash1 and Olig2 co-expression in the adult dorsal subependymal zone 
Immunohistochemistry for Mash1 (green) and Olig2 (red) shows colocalization of both transcription 
factors in some cells. Inset is shown at higher magnification. 

 
Fig. 32: Mash1 expression in transduced cells 3 days post injection into the adult subependymal 
zone 
(A-C) Immunohistochemistry for GFP (green) and Mash1 (red) in representative examples of control, 
Dlx2 over-expression and Dlx2Eng mediated functional repression. Note that upon Dlx2-Engrailed over-
expression, many cells are Mash1 positive. Violett arrows indicated double-positive cells for Mash1 and 
GFP. 
(D) Histogram depicting the percentage of Mash1+/GFP+ cells amongst all GFP+ cells in the adult 
subependymal zone  three days post injection; total cells analysed: control = 488, Dlx2 = 188, EngDlx2 = 
191; n = 3 animals each.  
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4.1.5 Increase in astrocyte fate following blockade of Dlx2-mediated 
transcriptional activation in the adult subependymal zone 

Already at 3 dpi we observed an 8 fold increase in the number of GFP+/Olig2-positive 

(Olig2+) cells (Fig. 30 E), as well as in the number of cells co-expressing NG2, an 

antigen commonly detected on oligodendrocyte progenitor cells (NG2+: control: 0.7 ± 

0.2%, Dlx2-Eng: 12 ± 5%, P = 0.017 (t-Test), control n = 4 animals, Dlx2-Eng n = 3 

animals), suggestive of an apparent increase in oligodendroglial fate decision. 

However, also the number of cells co-expressing GFP and GFAP was increased by 5 

fold (Fig. 30 E).  

Indeed, the astrocytic progeny derived from Dlx2-Engrailed transduced cells continued 

to increase in number when assessed at later stages (21 dpi). Three weeks after Dlx2-

Engrailed injection the subependymal zone became virtually devoid of GFP-positive 

neuroblasts, while now the population labelled by GFAP had become predominant 

amongst all Dlx2-Engrailed transduced cells (Fig. 33 A, B). Compared to the 3-day 

analysis the proportion of Olig2+ and NG2-positive cells amongst the GFP-positive 

cells had remained relatively constant (Fig. 33 A, C; 5 E) (Olig2+: Dlx2-Eng 3 dpi 35 ± 

5 %, Dlx2-Eng 21 dpi 31 ± 6 %, P = 0.8048 (t-Test); NG2+: Dlx2-Eng 3 dpi 12 ± 5 %, 

Dlx2-Eng 21 dpi 8 ± 2 %, P = 0.2526 (t-Test), n = 3 animals for 3 dpi and n = 4 animals 

for 21 dpi). However, a small but significant increase in the number of 

oligodendrocytes, identified by the antigen Adenomatous polyposis coli (APC) (D. M. 

McTigue et al., 2001; H. Ding et al., 2003; P. Malatesta et al., 2003), could be observed 

following interference with Dlx2-mediated transactivation (Fig. 33 A, D, E), suggestive 

of some increase in oligodendrogliogenesis that had been initiated already 3 days after 

transduction as visible by the increase in olgiodendroglial progenitors and then these 

cells further proceeded to mature into APC-positive oligodendrocytes. Intriguingly, 

however, the proportion of oligodendrocyte progenitors did no longer increase between 

3 and 21 days after transduction with Dlx2-Eng, but rather GFAP-positive cells then 

increased in number.  

Normally, oligodendrocyte progenitors leave the subependymal zone and migrate 

towards the white matter tract forming the corpus callosum in medial regions where 

they differentiate into mature oligodendrocytes (M. A. Hack et al., 2005; B. Menn et 

al., 2006; D. Colak et al., 2008). To examine whether these cells are increased in 

number after Dlx2-Engrailed transduction, we monitored the position of GFP-positive 

cells by quantifying the proportion of all GFP-positive cells (21 dpi) located in the 
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olfactory bulb, rostral migratory stream, subependymal zone or corpus callosum as 

described before (M. A. Hack et al., 2005; D. Colak et al., 2008). While most cells 

derived from subependymal zone cells transduced with the control virus had reached 

the olfactory bulb 21 dpi and their number further increased after Dlx2 transduction, 

only 42 ± 6 % of cells transduced with the Dlx2-Engrailed virus had reached the (Fig. 

33 F). Thus, the majority of Dlx2-Engrailed transduced cells fail to migrate towards the 

OB and most of these remain in the subependymal zone (Fig. 33 F). Some of the Dlx2-

Engrailed transduced cells had also migrated to the white matter, and even though their 

proportion was small it was significantly increased compared to that of the control virus 

transduced cells (Fig. 33 F).  

 

 

 

 

 

 

 

 

 

Fig. 33: Increase in astrocyte fate following blockade of Dlx2-mediated transcriptional activation in 
the adult subependymal zone 
(A) Quantification of transduced cells within the subependymal zone after a survival time of 3 weeks (21 
dpi) following injection with viruses encoding GFP or Dlx2-Engrailed. The proportion of GFP+/GFAP+ 
(blue) cells increased strongly after Dlx2-Engrailed injection, mostly at the expense of GFP/DCX+ 
neuroblasts. The number of Olig2+ cells (grey) remained similar and a slight increase in the number of 
NG2+ and APC+ (black) cells was observed. (DCX+, P < 0.001 (t-Test), NG2+, P = 0.7825 (t-Test), 
Olig2+, P < 0.001 (t-Test), APC+, P = 0.0218 (t-Test), number of cells analyzed in total: control = 68, 
Dlx2-Eng = 98, n = 4 animals each, significance is indicated by the following symbols: *, #, °, +).  
(B-E; G) Cellular identities of the progeny after Dlx2-Engrailed transduction shown in 
immunohistochemistry for GFP and specific markers as indicated in the panels; of note, GFP+/Olig2+ 
cells indicated by arrows do not co-localise with GFP+/GFAP+ cells shown by arrowheads in (E); (B-D) 
arrows indicate GFP+/marker+ cells. Scalebar: 10µm 
(F) Quantification of the distribution of cells three weeks after injection into the subependymal zone. The 
proportion of transduced GFP-positive cells located in the subependymal zone, rostral migratory stream, 
olfactory bulb, and white matter was quantified. The majority of control transduced cells had reached the 
olfactory bulb with their number further increased following Dlx2 transduction. Conversely, only 42 % 
of Dlx2-Eng transduced cells reached the olfactory bulb. Of note, the proportion of transduced cells 
remaining in the subependymal zone increased following Dlx2-Engrailed transduction. P < 0.001 (2-way 
ANOVA comparison of all regions and groups); control number of cells analyzed in total = 376, n = 4 
animals; Dlx2 number of cells analyzed in total = 344, n = 3 animals Dlx2-Eng number of cells analyzed 
in total = 195, n = 3 animals). 
Scalebar: 10µm; LV = lateral ventricle, SEZ = subependymal zone, RMS = rostral migratory stream, OB 
= olfactory bulb, WM = white matter 
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Interestingly, however, this does not mean that all of these cells became 

oligodendrocytes, as even amongst the cells that had reached the white matter following 

Dlx2-Engrailed transduction GFAP-positive astrocytes were detected (Fig. 33 G). Thus, 

interference with Dlx2-mediated transcripitional activation results in virtual absence of 

neuroblast generation by 3 weeks, but favours mostly the generation of GFAP-positive 

cells – a notable difference to the effect of Dlx2 deletion during embryonic 

development (M. A. Petryniak et al., 2007).  
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4.1.6 Dlx2 promotes, but is not required for migration of adult subependymal 
zone and rostral migratory stream progenitors  

As Dlx2-Engrailed transduced cells remained largely in the subependymal zone, and 

Dlx transcription factors regulate migration of embryonic neuroblasts (I. Cobos et al., 

2007; T. N. Le et al., 2007), the migration of transduced cells were monitored by live 

time-lapse microscopy (see Material & Methods:6.4 Time-lapse videoimaging; 

collaboration with Armen Saghatelyan). Only cells exhibiting migratory behaviour 

were included in the analysis, thereby excluding both dead and non-migrating cells (S. 

C. Nam et al., 2007). Control, Dlx2 and Dlx2-Engrailed containing retroviral vectors 

were injected into the subependymal zone and rotral migratory stream and acute slices 

of the adult mouse forebrain were prepared five days later. Time-lapse videoimaging of 

transduced cells in the subependymal zone and rostral migratory stream revealed that 

Dlx2 transduction increased the velocity of migration by about 30 % compared to 

controls (Fig. 34 A, B, for statistics and cell numbers see Figure legend; collaboration 

with Armen Saghatelyan & Marina Snapyan). As a consequence of the increased 

velocity the mean distance that cells propagated increased after Dlx2 over-expression 

(Fig. 34 C).  
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Fig. 34: Migration analysis with time lapse videoimaging 
Control, Dlx2 and Dlx2-Engrailed containing retroviral vectors were injected into the subependymal 
zone and rostral migratory stream and slices were prepared five days later.  
(A) Example for migrating cells following transduction with Dlx2. Arrows indicate migrating cells, 
asterisk indicates non-migrating cell. Scale bar: 50um 
(B) Micrograph depicting velocity of migrating cells in µm per hour. In both sets of experiments Dlx2 
transduction increased the velocity of migration by about 30 % compared to controls. (SEZ control 114 ± 
3 µm/h, n= 87 cells, Dlx2 142 ± 6 µm/h, n= 22 cells, Dlx2Eng 127 ± 9 µm/h, n = 12 cells; 2 - 4 slices 
each condition; P < 0.001 (ANOVA); RMS control 114 ± 4 µm/h, n = 29 cells, Dlx2 148 ± 5 µm/h, n = 
43 cells, Dlx2Eng 111 ± 6 µm/h, n = 22 cells, 2 - 3 slices, P = 0.0025 (ANOVA)). 
(C) Micrograph showing the mean distance migration in 15s. As a consequence of the increased velocity 
the mean distance that cells propagated increased after Dlx2 over-expression. (SEZ control 0.47 ± 0.013 
µm/15 sec, n = 86 cells, Dlx2 0.59 ± 0.024 µm/15 sec, n = 22 cells, Dlx2Eng 0.53 ± 0.039 µm/15 sec; n 
= 11 cells, 2 - 4 slices each condition; P = 0.0401 (ANOVA); RMS control 0.47 ± 0.017 µm/15 sec, n = 
29 cells, Dlx2 0.60 ± 0.016 µm/15 sec, n = 43 cells, Dlx2Eng 0.46 ± 0.025 µm/15 sec, n = 22 cells, 2 - 3 
slices each condition, P < 0.001 (ANOVA)) 
 

Thus, Dlx2 over-expression promotes migration of cells in both, rostral migratory 

stream and subependymal zone. In contrast, GFP+ cells transduced with Dlx2-

Engrailed were not significantly altered in their speed of migration (Fig. 34 B). These 

data therefore suggest that Dlx2 promotes migration of neuroblasts and that the high 

number of cells remaining in the subependymal zone following Dlx2-Engrailed 

transduction is not due to migration deficits, but rather alterations in fate and 

proliferation. 

4.1.7 Dlx2 promotes a dopaminergic periglomerular neuron fate in the adult 
olfactory bulb 

As mentioned above, Dlx2 expression is maintained at particularly high levels in 

periglomerular neurons prompting us to examine its later role in neuronal subtype 

specification. As we had previously observed that viral injections into the 

subependymal zone do not result in substantial numbers of neuronal progeny 

populating the glomerular layer, we injected the viral vectors into the rostral migratory 

stream (Fig. 35 A) (M. A. Hack et al., 2005). After Dlx2 over-expression, we observed 
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an approximately 3 fold increase in the proportion of neurons populating the glomerular 

layer compared to control injections (Fig. 35 B).  
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Fig. 35: Dlx2 promotes a dopaminergic periglomerular neuronal fate in the adult olfactory bulb 
(A) Schematic drawing of a sagittal mouse brain section with a red arrow indicating the injection site.  
(B) Histogram depicting the proportion of newly generated periglomerular neurons amongst the GFP+ 
cells transduced with control, Dlx2 or Dlx2-Engrailed viral vectors injected into the rostral migratory 
stream. Significantly more periglomerular neurons are generated following Dlx2 transduction whereas 
their number decreased following Dlx2-Engrailed transduction. (control n = 5 animals, Dlx2 n = 4 
animals, Dlx2-Eng n = 2 animals, number of cells analyzed in total: control = 3158, Dlx2 = 2185, Dlx2-
Eng = 148; P < 0.001 (ANOVA) indicated by * in the panel). 
(C, D, E) depict fluorescent micrographs showing representative examples of transduced periglomerular 
neurons: GFP (green) and (C) calbindin (red), (D) calretinin (red) and (E) tyrosine hydroxylase (TH) 
(red). Note that all three types of PGNs are generated following retroviral transduction. Arrows highlight 
positive cells; arrowheads indicate marker-negative cells. Higher magnifications of the accordant 
markers are shown in C’-C’’’, D’-D’’’ and E’-E’’’.  
(F) Histogram showing composition of GFP+ periglomerular neurons. Calbindin+/GFP+ periglomerular 
neurons remained constant in the control and Dlx2 transduction. However, the proportion of tyrosine 
hydroxylase + periglomerular neurons following Dlx2 transduction increased stongly, mostly at expense 
of the calretinin+/GFP+ periglomerular neurons. (21d: calbindin+, P = 0.3669 (t-Test); calretinin+, P = 
0.0235 (t-Test); TH+, P< 0.001, n = 3 animals each group, number of cells analyzed in total: control = 
336, Dlx2 = 412; 56d: TH+, P < 0.001 (t-Test), number of cells analyzed in total: control = 174, Dlx2 = 
76, n = 4 animals each group; significance is indicated by the following symbols: *, #, °) 
Scale bar: 10µm, CTX = Cortex, SEZ = Subependymal Zone, RMS = Rostral migratory stream, OB = 
olfactory bulb, PGN = periglomerular neuron, TH = Tyrosine Hydroxlase 
 

Next, we examined whether the increased number in periglomerular neurons was 

biased towards a specific subtype. After injection of the control virus into the rostral 

migratory stream, 4 ± 1 % of all GFP-positive periglomerular neurons were calbindin+, 

18 ± 0.5 % calretinin+ and 7 ± 0.75 % tyrosine hydroxylase+.  

After Dlx2 over-expression we detected a profound increase (4-fold) in the proportion 

of tyrosine hydroxylase+ periglomerular neurons, mostly at the expense of the 

calretinin-positive periglomerular neurons (Fig. 35 C – F). Notably, no tyrosine 

hydroxylase expressing periglomerular neurons could be observed amongst the few 

cells detectable after transduction with Dlx2-Engrailed. Given the fact that tyrosine 

hydroxylase expression is known to increase with maturation (P. C. Brunjes, 1994; B. 

Winner et al., 2002; M. A. Hack et al., 2005), we examined whether Dlx2 over-

expression had only accelerated the expression of tyrosine hydroxylase, or had indeed 

permanently increased the proportion of this neuronal subtype. Consistent with the 

gradual maturation of tyrosine hydroxylase expression, eight weeks after control 

injections into the rostral migratory stream, the proportion of tyrosine hydroxylase+ 

neurons had further increased to 29 ± 3 % (from 7 % after 3 weeks). However, 

following Dlx2 over-expression a still larger number of periglomerular neurons 

expressed tyrosine hydroxylase indicating that Dlx2 has not merely accelerated 

maturation, but had permanently altered neuronal subtype acquisition (Fig. 35 F). Thus, 

Dlx2 over-expression promotes the acquisition of a periglomerular neuronal fate with a 

strong bias towards the dopaminergic subtype.  
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4.1.8 Dlx2 requires Pax6 to promote dopaminergic periglomerular neurons fate 

As the above results obtained with Dlx2 manipulation were highly reminiscent of our 

previous results with Pax6 (M. A. Hack et al., 2005), we were prompted to ask whether 

Dlx2 indeed requires Pax6 in olfactory bulb neuronal subtype specification or whether 

it acts redundantly with Pax6, in particular because both transcription factors are co-

expressed in periglomerular neurons (Fig. 20). To clarify this issue, we examined the 

effect of Dlx2 over-expression in the absence of Pax6 protein. To delete Pax6 we 

injected a virus encoding Cre recombinase (Cre-IRES-GFP) into mice in which the 

Pax6 gene had been flanked with loxP sites (before exon 4 and at an intron between 

exon 6 and 7 (R. Ashery-Padan et al., 2000; M. A. Hack et al., 2005). As previously 

shown, injection of Cre encoding virus allows the efficient deletion of Pax6 in adult 

progenitors (Fig. 36 B - E) (R. Ashery-Padan et al., 2000; M. A. Hack et al., 2005).  

To examine the effect of Dlx2 over-expression on the fate of periglomerular neurons 

following Cre-mediated deletion of Pax6 we performed co-injections of the Dlx2 

encoding virus (Dlx2-IRES-DsRed) together with either a control virus or the Cre-

encoding virus into the rostral migratory stream and examined their respective 

progenies with immunostainings for GFP and RFP 3 weeks later. Labelled cells were 

(i) only green for control or Cre expression, (ii) only red upon Dlx2 over-expression or 

(iii) yellow when neuroblasts were transduced by both viruses (Fig. 37 A, B). 

Transduction with the Dlx2 encoding virus reproducibly resulted, as expected, in a 

profound increase in the proportion of periglomerular neurons (Fig. 37 A – E; for 

overview see panels C, D). Strikingly, however, the effect of Dlx2 over-expression was 

totally abrogated in the absence of Pax6, i.e. in cells double-infected with the Cre and 

Dlx2 encoding viruses (Fig. 37 E). Thus, Dlx2 requires Pax6 to instruct periglomerular 

neuron fate. 
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Fig. 36: Cre-mediated deletion of Pax6 results in loss of Pax6 protein. 
(A) Schematic drawing of the retroviral constructs used for control, over-expression and Cre-mediated 
deletion of Pax6 in mice in which exon 4 - 6 of the Pax6 gene had been flanked by loxP sites (construct 
indicated on the bottom with violet triangles indicating loxP-sites and black rectangles for exons). Note 
that the construct for Dlx2 over-expression is followed by an IRES-DsRed cassette.  
(A-D) Immunohistochemistry for GFP (green), DsRed (red) and Pax6 (blue) 21 days after injection of 
viral vectors encoding for either GFP (control) and Dlx (red) or Cre and Dlx (red) into the RMS. All 
examples are taken from the glomerular layer.  
 

 

 

Fig. 37: Dlx2 requires Pax6 to promote a dopaminergic periglomerular neuron fate. 
(B-E) Injections of the above constructs (A) into the rostral migratory stream (RMS) resulted in green 
(Control or Cre) and yellow (co-transduced with Dlx2-DsRed) cells in the olfactory bulb. Note the 
decreased generation of yellow periglomerular neurons (depicted by arrows) following loss of Pax6 
protein in the glomerular layer. Arrowheads depict only green periglomerular neurons.  
(F) Quantification of newly generated periglomerular neurons 21 days post injection (dpi) after injection 
into the RMS of either control and red Dlx2 virus or Cre and red Dlx2 virus into homozygous Pax6 
floxed mice. (P < 0.001 (ANOVA), comparison of control + Dlx2DsRed with Dlx2DsRed only P > 0.05 
(Bonferroni’s multiple comparison test), Control and Dlx2-Red number of cells analyzed in total = 4678; 
Cre and Dlx2-Red number of cells analyzed in total = 3024; n = 4 animals each). Notably, the generation 
of periglomerular neurons could not be rescued by Dlx2 over-expression following Cre-mediated 
deletion of Pax6. 
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Similar results were obtained when periglomerular neuronal subtypes were examined. 

Following transduction with the Cre encoding virus the proportion of tyrosine 

hydroxylase+ neurons amongst all periglomerular neurons decreased (control 7 ± 1 %, 

Cre 1 ± 0.8 %, control cells counted in total = 126, Cre cells counted in total = 111, n = 

3 animals each, P = 0.035 (t-Test)), whereas the relative contribution of calretinin+ 

cells to the total population of periglomerular neurons increased (from 16 ± 4 % after 

control virus transduction to 76 ± 4 % after Cre virus transduction, P < 0.001 (t-Test), 

control cells counted in total = 189, Cre cells counted in total = 206, n = 4 animals 

each, Fig. 38 A - C). This data suggest that in the absence of Pax6 periglomerular 

neurons fail to adopt a dopaminergic fate switching predominantly to a calretinin-

positive phenotype instead. Of note, the proportion of calbindin+ cells was hardly 
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affected (control 3 ± 2 %, Cre 4 ± 2 %, Cre+Dlx2 2 ± 1.5 %, P = 0.3679 (ANOVA), 

control cells counted in total = 92, Cre cells counted in total = 138, Cre+Dlx2 cells 

counted in total 63, n = 4 animals each, Fig. 38 A). Notably, the increase in calretinin+ 

neurons amongst the periglomerular neurons upon Cre-containing virus transcuction 

and Pax6 deletion could no longer be reverted by Dlx2 over-expression when it had co-

infected Cre-transduced cells (76 ± 5 % Calretinin+ cells amongst the double-infected 

cells, cells counted in total = 105, n = 4 animals), and no tyrosine hydroxylase 

expressing neurons were detected either (Cre+Dlx2 cells counted in total = 68, n = 4 

animals). Thus, Dlx2 requires Pax6 to promote the dopaminergic periglomerular neuron 

subtype identity and to prevent the acquisition of a calretinin-positive subtype (Fig. 38).  

 

retroviral injection into the RMS 21d

0

10

20

30

40

50

60

70

80

90

Calretinin+ TH+ Calbindin+

%
 m

ar
ke

r+
/G

FP
+ 

of
 G

FP
+ 

PG
Ns

control
Dlx2
Cre
Cre+Dlx2

 

 
 
 

 

 

 

Fig. 38: Absence of Pax6 leads to the generation of calretinin-positive+ periglomerular neurons. 
(A) Quantification of the different periglomerular neuron subtypes generated upon control, Dlx2, Cre and 
Cre+Dlx2 injection. TH-positive neurons amongst all periglomerular neurons decreased (control 7 ± 1 %, 
Cre 1 ± 0.8 %, control cells counted in total = 126, Cre cells counted in total = 111, n = 3 animals each, P 
= 0.035 (t-Test)). Calretinin-positive cells to the total population of periglomerular neurons increased 
from 16 ± 4 % after control virus transduction to 76 ± 4 % after Cre virus transduction, P < 0.001 (t-
Test), control cells counted in total = 189, Cre cells counted in total = 206, n = 4 animals each. 
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(B – C) Generation of calretinin-positive periglomerular neurons was much more frequent upon Cre 
injection into Pax6 floxed mice. Insets show higher magnification of transdcuced cells. 
SEZ = Subependymal zone, OB = Olfactory bulb, IP = immuno precipitates, GL = glomerular layer, 
GCL = granule cell layer, CTX = Cortex, PGN = periglomerular neuron. 
 

4.1.9 Dlx2 acts neurogenic in the absence of Pax6 in the adult subependymal 
zone 

Given that the absence of Pax6 leads to a shift of periglomerular neuron fate towards 

the generation of the Calretinin-positive subtype and that Dlx2 over-expression at the 

same time could not rescue this effect, we examined the neurogenic effects Dlx2 over-

expression in the absence of Pax6 in the subependymal zone. We injected the Cre 

recombinase encoding virus (Cre-IRES-GFP) and the Dlx2-IRES-DsRed at the same 

time into the subependymal zone of Pax6 floxed mice (Fig. 39). Absence of Pax6 

protein was confirmed in Cre-GFP transduced cells (Fig. 39 A, B). Preliminary results 

indicate that predominantly Cre-GFP expressing cells reside in the subependymal zone 

18 days post injection. In contrast, the majority of Dlx2 over-expressing cells and most 

double-transduced cells were found in the rostral migratory stream (Fig. 39 C). This 

data might suggest that Dlx2 over-expression promotes subependymal neurogenesis in 

the absence of Pax6. 
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Fig. 39: Dlx2 retroviral mediated neurogenesis in the subependymal zone in the absence of Pax6. 
Injection of Dlx2-DsRed (red) and Cre-GFP (green) retrovirus into the subependymal zone of Pax6 
floxed mice. (A, B) Immunostaining for Pax6 protein indicated that almost all of the Cre-GFP expressing 
cells were negative for Pax6.  
(C) Cre-GFP positive cells resided  predominantly in the subependymal zone 18 days post injection 
(violoett arrows highlight Cre-GFP positive cells). Most of the double transduced cells were observed in 
the rostral migratory stream.  
 

4.1.10 Molecular interaction between Pax6 and Dlx2 

At the molecular level this result could be explained by two scenarios: (i) both 

transcription factors may cooperate by mutually regulating their expression, albeit 

otherwise controlling a specific set of different target genes; (ii) they may interact 

directly, for instance by partaking in the same transcriptional complex.  

In order to investigate whether Pax6 is a target of Dlx2, we over-expressed Dlx2 in 

neurosphere cells. Of note, similar results were obtained when analyzing the Dlx2-GFP 

transduced cells in vivo – neither in the subependymal zone nor in the olfactory bulb 

were all Dlx2-transduced cells Pax6+ as expected if Dlx2 would up-regulate Pax6. 

Thus, it appears that at least in this cellular context these transcription factors do not 

cross-regulate each other’s expression – a finding also consistent with the heterogeneity 

of Dlx only, Pax6 only and Dlx/Pax6-double-positive cells in vivo (Fig. 19).  
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Fig. 40: Co-Immunoprecipitation of Dlx by Pax6. 
Western Blot for pan-Dlx on Pax6 precipitated total lysates of subependymal zone (SEZ), olfactory bulb 
(OB) and Cortex (CTX). No signal for Dlx proteins was detected in the wash fraction or 
immunoprecipitates from the cerebral cortex, whereas Dlx transcription factors were pulled down by 
Pax6 antibody in lysates prepared from both the subependymal zone and, even more strongly, the 
olfactory bulb. 
 

Wash input IP

1     2      3            1      2       3         1     2     3   
Fig. 41: Controls for Co-Immunoprecipitation of Dlx by Pax6. 
Control Western Blot for pan-Dlx on Pax6 precipitated total lysates of olfactory bulb. Input of total 
olfactory bulb lysate is in the middle, whereas washing after precipitation is on the left, 
immunoprecipitates (IP) are on the right side.  
Number 1 is indicating normal immunoprecipitation with Pax6 antibody and protein-G coupled agarose 
beads.  
Number 2 did not contain immunoprecipitates of Dlx protein. No agarose beads were used, but Pax6 
antibody was added.  
Number 3 indicates control immunoprecipitation without antibody, but agarose beads were added.  
 

Thus, Pax6 and Dlx transcription factors appear to be regulated independently, but may 

act concertedly when contained in the same cells. To test this hypothesis and in 

particular the possibility that these transcription factors partake in the same 

transcriptional complex, we performed an immunoprecipitation analysis. Total lysates 

were prepared from adult mouse subependymal zone, olfactory bulb, and cerebral 

cortex and were immunoprecipitated with a mouse monoclonal anti-Pax6 antibody 

(Developmental Studies Hybrdimoa Bank, purified and concentrated by Dr. Dorothea 

Schulte) and Dlx protein was then revealed by western blot analysis of these 

precipitates (Fig. 40). While no signal for Dlx proteins was detected in the wash 
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fraction or immunoprecipitates from the cerebral cortex (where Pax6 and Dlx2 do not 

co-localize in the same cells), Dlx transcription factors were found in western blots of 

lysates immunoprecipitated with the Pax6 antibody prepared from both the 

subependymal zone and, even more strongly, the olfactory bulb. This data therefore 

suggests that Dlx proteins and Pax6 physically interact and require each other to exert 

some of their key functions in adult neurogenesis. 
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4.2 The generation of glutamatergic neurons in adult olfactory 
neurogenesis 

4.2.1 Tbr1 and Tbr2 expression in a dorsal subregion of the rostral 
subependymal zone 

During development, progenitors of GABAergic neurons in the ventral telencephalon 

express several members of the Dlx transcription factor family (Dlx1,2,5,6) and the 

proneural transcription factor Mash1, while progenitors of glutamatergic neurons in the 

dorsal telencephalon express Pax6 and different members of the proneural transcription 

factor family, Neurogenin1 and Neurogenin2 (Ngn2) (N. Bertrand et al., 2002). I have 

described in the first part of my studies the persistence of such spatial distribution in the 

adult subependymal zone. Dlx expressing progenitors are mostly located in the lateral 

ventricular wall derived from the ventral telencephalon and Pax6-positive progenitors 

prominently expressed in dorsal regions of the subependymal zone (dSEZ) (Fig. 19) 

(M. A. Hack et al., 2005).  

According to embryonic development, we further investigated the persistence of a 

dorso-ventral organization of the adult subependymal zone. Consequently we 

hypothesized that the ventral-lateral wall would give rise to GABAergic olfactory 

interneurons as described previously (M. Kohwi et al., 2007a; K. M. Young et al., 

2007; R. Batista-Brito et al., 2008; M. S. Brill et al., 2008), but that the dorsal wall 

might maintain progenitor/stem cells for the generation of glutamatergic neurons. As 

the transcription factor sequence generating glutamatergic neurons is conserved in 

embryonic neocortical neurogenesis, adult dentate gyrus and developing cerebellum (R. 

F. Hevner et al., 2006) and includes Pax6, Neurogenin,2, Tbr2 and Tbr1, we started by 

examining the existence and expression of T-box transcription factors Tbr1 and Tbr2.  

Immunohistochemistry for Tbr2 and Tbr1 in the adult mouse forebrain showed that 

indeed, Tbr1-positive and Tbr2-positive cells were detected in the dorsal wall of the 

subependymal zone and rostral migratory stream (RMS) (Fig. 42 A - C). The 

expression was most abundant in medial sections with a gradient to lateral sections 

where I could observe only very few Tbr1 and Tbr2 expressing cells. Next I examined 

the identity of these Tbr immunorreactive cells. Expression of these transcription 

factors in mature cortical neurons in the adult forebrain and olfactory bulb has been 

described previously (R. F. Hevner et al., 2006; Z. J. Allen, 2nd et al., 2007a; B. J. 
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Molyneaux et al., 2007), but so far no Tbr expressing progenitors have been observed 

in the adult subependymal zone. 

 

Fig. 42: Tbr1 and Tbr2 transcription factors are present in the adult subependymal zone and 
rostral migratory stream. 
(A) Schematic drawing depicting the dorsal (dSEZ, red) and the lateral or ventral wall (latSEZ; vSEZ, 
green) of the subependymal zone. Periglomerular neurons derived from the dorsal and ventral lineage are 
depicted in green and red, respectively. 
Both, Tbr2 (B) as well as Tbr1 (C) protein is only detectable in dorsal regions of the subependymal zone 
and rostral migratory stream but not in the lateral wall of the lateral ventricle. WM = white matter, Ctx = 
Cortex, LV = lateral ventricle, RMS = rostral migratory stream 
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4.2.2 Tbr2- and Tbr1-expressing cells define a subset of GAD67-negative 
proliferating neuroblasts 

In order to examine whether that Tbr1 and Tbr2 expressing cells in the rostral 

migratory stream are indeed derived from neural stem cells in the supependymal zone 

we used several approaches: (i) labelling of proliferating cells with the DNA base 

analogue BrdU; (ii) in vivo genetic fate mapping in adult mice with the inducible form 

of Cre under the Glast promotor turning on a GFP reporter in adult neural stem cells 

that is then inherited to their progeny; and (iii) retroviral vector injections into the 

rostral migratory stream which transduces only dividing cells.  

We first gave BrdU in the drinking water for three weeks to adult animals (over 8 

weeks) in order to label neural stem cells and their progeny. Indeed I observed BrdU 

birth dated cells in the adult rostral migratory stream by immunohistochemistry for 

Tbr1 or Tbr2 (Fig. 43 C, D). Next, we tested if one of the Tbr expressing populations 

would also be labelled by a short BrdU pulse. Upon a single BrdU pulse one hour 

before sacrifice, a small proportion of Tbr2-positive cells (7 ± 1%, n(cells)=285) had 

incorporated BrdU (Fig. 43, while no Tbr1 and BrdU colocalization (1 ± 1%, 

n(cells)=201) was detectable. However, when we examined cells three days or longer 

after the BrdU injection, Tbr1-positive cells had become double-positive, suggesting 

that they are the immediate progeny of Tbr2-positive progenitors (Fig. 43).  

 

 

 

 

 

 

Fig. 43: Tbr2 expression in proliferating progenitors and Tbr1 expression in postmitotic 
neuroblasts. 
(A) Tbr2+ (red) cells are fast proliferating as shown by a short BrdU pulse (BrdU immunohistochemistry 
(green)).  
(B) In contrast, Tbr1+ (red) cells are not labelled by a short BrdU (green) pulse suggesting that Tbr1 is 
expressed in later maturation stages. Boxed areas are shown at higher magnifications. 
(C, D) Proliferating Tbr1&2+ cells shown in immunohistochemistry for BrdU (green) and Tbr (red) 
following a BrdU pulse of three weeks in drinking water.  
(E) Histogram depicting the number of proliferating Tbr1+ and Tbr2+ cells in the rostral migratory 
stream 2h, and 3days after 2 BrdU pulses with 2h interval. Tbr2 expression is detected first and only after 
3 days Tbr1 is present demonstrating the presence of these transcription factors in the chronology Tbr2, 
Tbr1.  
Scalebar: 20 µm; Str = Striatum, WM = white matter 
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Since Tbr1 and Tbr2 positive cells proliferate and are present in the rostral migratory 

stream I performed immunohistochemistry for the neuroblast marker DCX. The 

majority of Tbr2 expressing cells (70 ± 8%, n(cells)=255) and virtually all Tbr1-

positive cells (97 ± 2%, n(cells)=265) were DCX-positive neuroblasts or immature 

neurons (Fig. 44 A - B). While Tbr2-positive neuroblasts proliferate themselves, we 

next asked whether these are derived from adult neural stem cells of the subependymal 

zone we performed fate mapping analysis using GLAST::CreERT2 mice crossed with a 

GFP reporter line (Z/EG; see material&methods for detail) (A. Novak et al., 2000; T. 

Mori et al., 2006).Indeed one week after end of tamoxifen induction the reporter line 
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under the GLAST-promotor at the age of eight weeks we confirmed the origin of Tbr-

expressing cells from an astrocyte-like neural stem cell (Fig. 44 D). 

Fig. 44: Tbr expressing neuroblasts are derived from adult neural stem cells. 
(A, B) Tbr2+ (A, red) and Tbr1+ (B, red) cells both colocalize with the neuroblast marker DCX (green) 
in the rostral migratory stream. Boxed areas represent higher magnifications. 
(C) Histogram depicting the number of doubleocrtin (DCX) positive neuroblasts expressing Tbr2 (black) 
or Tbr1 (white), respectively. (n = 3 animals, n(cells; Tbr1) = 315, n(cells; Tbr2) = 289). 
(D) Adult recombination of a GFP reporter (Z/EG) under the Glast promoter at the age of eight weeks 
resulted in Tbr2+/GFP+ cells migrating away from the subependymal zone. Induction was performed for 
five days, followed and animals were sacrificed after one week at the end of tamoxifen induction. Scale 
bar = 20 µm. LV = lateral ventricle, Str = Striatum, WM = white matter, dSEZ = dorsal subependymal 
zone, RMS = rostral migratory stream 
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Additionally, proliferation of progenitors in the adult forebrain which give rise to Tbr2-

positive and Tbr1-positive migrating neuroblasts was also observed following retroviral 

transduction in the rostral migratory stream. Retroviruses transducing exclusively 

dividing cells and encoding GFP were injected into the rostral migratory stream. Seven 

days after the injection I observed double-positive cells for GFP and Tbr1 or Tbr2 close 

to the olfactory bulb confirming that Tbr1 and Tbr2 expressing cells originate from 

proliferating progenitors and migrate towards the olfactory bulb (Fig. 45 A - B). Both, 

Tbr2 and Tbr1 expressing cells co-localize with GFP in equal proportions (Tbr2: 5 ± 

1 %, n(cells)=160; Tbr1: 3.5 ± 2 %, n(cells)=116; Fig. 45 C).  

So far all neuroblasts generated in the subependymal zone and rostral migratory stream 

have been thought to differentiate into GABAergic granule neurons and and 

periglomerular neurons. The latter can be classified into distinct subpopulations 

according to their expression of tyrosine hydroxylase, calbindin or calretinin (S. 

Parrish-Aungst et al., 2007). However, only a small calretinin-positive population had 

been postulated to be GABA-negative (K. Kosaka and T. Kosaka, 2007). Since almost 

all neuroblast are destined to become GABAergic olfactory neurons they already 

express glutamic acid decarboxylase (GAD) and synthesize GABA in the rostral 

migratory stream (J. C. Platel et al., 2007). I examined the presence of GAD in Tbr1 

and Tbr2 immunoreactive cells in the mouse line GAD67::GFP where a GFP cassette is 

knocked in the GAD67 locus (N. Tamamaki et al., 2003). First, we confirmed the 

reliable co-expression of GFP or GAD67 on mRNA level in GAD67::GFP mice (Fig. 

46). Virtually all GFP expressing cells were also positive for GAD mRNA. 

Accordingly, in-situ hybridization for GFP mRNA confirmed the reliable co-expression 

of the protein GFP in GAD67::GFP mice. Immunohistochemistry for GAD67-GFP and 

Tbr1 or Tbr2 demonstrated that T-box transcription factor containing neuroblasts in the 

rostral migratory stream were negative for GAD67, while virtually all other neuroblasts 

were GFP-positive as expected (Fig. 45 D - G). Thus, Tbr1 and Tbr2 expressing 

neuroblasts / young neurons express none of the enzymes required for the synthesis of 

the neurotransmitter GABA, suggesting that they may be biased towards a different 

neurotransmitter fate, supposedly glutamatergic fate. 
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Fig. 45: Tbr1 and Tbr2 define a subset of GAD67-negative migrating neuroblasts. 
(A, B) Retroviral transduction demonstrated presence of GFP-positvie and Tbr1 or Tbr2 positive 
neuroblasts seven days after injection into the rostral migratory stream. Arrows indicate double-positive 
cells expressing GFP and Tbr1 or Tbr2; arrowheads indicate Tbr1 or Tbr2 positive cells that were not 
GFP transduced. 
(C) Quantification of double positive cells for GFP and Tbr1 or Tbr2, respectively, shows that equal 
subpopulations of Tbr1 and Tbr2 are present. When Tbr-positive neuroblasts in the rostral migratory 
stream were quantified higher numbers were observed as retroviral vectors transduce only dividing cells. 
n = 3 animals. 
(D, E) Tbr2-positive (D, red) and Tbr2-positive (E, red) cells in the rostral migratory stream are GFP-
negative in GAD67::GFP mice. Inserts show higher magnifications of the boxed areas.  
(F, G) Triple immunohistochemistry for DCX (blue), GFP, and Tbr2 (F, red) or Tbr1 (G, red) in 
GAD67::GFP mice. Tbr expressing cells colocalize with DCX in the rostral migratory stream, however 
they are negative for Gad67-GFP. 
Scalebar: 20µm, Str = Striatum, WM = white matter, dSEZ = dorsal subependymal zone, latSEZ = lateral 
subependymal zone, RMS = rostral migratory stream, Ctx = Cortex, OB = olfactory bulb 
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Fig. 46: GFP and GAD67 mRNA colocalize in GAD67::GFP mice.  
Reliable expression of GFP in the GAD67 genomic locus was confirmed on mRNA level for GFP and 
GAD67. (A – C) In-situ hybridization for GFP combined with immunohistochemistry for GFP and (C) 
GAD67.  
(D – F) GAD67 mRNA was present in nearly all GFP-positive cells. Very few GFP-positive cells did not 
contain GAD67 mRNA, but mRNA for GAD67 always colocalized with GFP.  
SEZ = subependymal zone; Ctx = Cortex; RMS = rostral migratory stream; Str = Striatum. 
 

4.2.3 Tbr2 and Tbr1 expressing cells are distinct from Dlx expressing 
progenitors 

Given that Tbr1 and Tbr2 expressing cells define a GAD-negative subset of neuroblasts 

we hypothesized that they should not express Dlx transcription factors. Indeed, no co-

expression between Dlx proteins and either Tbr1 was observed (Fig. 47 A): the Dlx-

positive lineage arising from ventral regions, whereas the dorsal lineage would express 

Tbr transcription factors.  

 

Are other transcription factors present in the Tbr lineage that could suggest that these 

progenitors give rise to olfactory neurons with a glutamatergic identity? Glutamatergic 

hippocampal neurogenesis has been suggested to arise from a Pax6 and/or Mash1 

positive progenitor that would up-regulate only at later stages T-box transcription 

factors, first Tbr2 and later Tbr1. In the dorsal telencephalon, Pax6 and Neurogenin2 
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are up-stream of T-box genes (C. Englund et al., 2005; P. Mattar et al., 2008). Notably, 

a large fraction of Mash1-positive cells expresses Dlx proteins. Hence I performed 

immunohistochemistry for Pax6 or Mash1 in combination with Tbr2 and Tbr1. 

 

Interestingly, a minor population of Tbr2 expressing progenitors and virtually no Tbr1-

positive cells contained Mash1 (Tbr2: 11 ± 2%, n(cells)=375; Tbr1: 3 ± 1.5%, 

n(cells)=321; Fig. 47). This data are consistent firstly, with the colocalization of Tbr 

proteins and the neuroblast marker DCX and secondly, with previous reports which 

demonstrate that Mash1 is mostly contained in transit-amplifying progenitors (C. M. 

Parras et al., 2004). Accordingly, a minor population of Tbr2 positive cells would be 

also expressed in transit-amplifying progenitors whereas Tbr1 expression is exclusively 

restricted to positmitotic neuroblasts. These data are consistent with the short BrdU 

pulse where only Tbr2, but not Tbr1-positive cells are labelled. In contrast to Mash1 

expression, Pax6 protein was present in Tbr2 and Tbr1 positive cells (Tbr2: 34 ± 3%, 

n(cells)= 692; Tbr1: 30 ± 5%, n(cells)=420; 3 animals each) (Fig. 47 D, E). 

Interestingly, Pax6 and Mash1 protein colocalize partially in the adult subependymal 

zone (Fig. 47 F). 
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Fig. 47: Pax6 and Mash1 expression in regard to Tbr transcription factors. 
(A) The Dlx transcription factor family (pan-Dlx, green) does not colocalize with Tbr1 (red) as shown by 
immunohistochemistry.  
(B, C) Mash1 colocalizes in wildtype mice only with Tbr2, but not with Tbr1.  
(D, E) Fluorescent micrograph depicting immunohistochemistry for Pax6 (green) and Tbr2 (red) and 
Tbr1 (red). Both transcription factors colocalize substantially with Pax6. Boxed areas are shown in 
higher maginifactions.  
(F) Pax6 and Mash1 are colocalized in dorsal and ventral regions of the adult subependymal zone. Boxed 
area is shown in higher magnification in (F'). 
Scale bars 20μm. dSEZ = dorsal subependymal zone, vSEZ = ventral subependymal zone, RMS = rostral 
migratory stream, Ctx = Cortex, LV = lateral ventricle 

4.2.4 Adult generation of glutamatergic neurons in the olfactory bulb 

To elucidate the neuronal fate of the Tbr expressing neuroblasts, I examined by 

immunohistochemistry if periglomerular neuronal markers would colocalize with Tbr 

proteins in the glomerular layer. However, most of the common markers for 

periglomerular neurons such as calbindin, calretinin and tyrosine hydroxylase did not 

colocalize with Tbr1+ or Tbr2+ cells (Fig. 48). In addition none of the Tbr expressing 

cells expressed GFP in the GAD67::GFP mouse line, indicating that they are not 
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GABAergic. Notably, some of the Tbr-positive cells express Reelin (I. Hack et al., 

2002) (Fig. 48 C, D).  

To test if the Tbr1 or Tbr2 expressing cells in the glomerular layer of the olfactory bulb 

are the progeny of Tbr progenitors generated in the adult subependymal zone or if these 

cells are generated during embryogenesis we gave BrdU for three weeks into the 

drinking water followed by a BrdU free period of three weeks. None of the Tbr-

expressing cells colocalized with BrdU demonstrating that Tbr expressing cells in the 

glomerular layer are not generated during adulthood but during embryonic 

neurogenesis instead. Consequently we hypothesized that the progeny of adult Tbr 

expressing cells down-regulate Tbr transcription factors upon entrance in the olfactory 

bulb and that there are glutamatergic interneurons present without Tbr transcription 

factors. Consistently we could not detect Tbr proteins in the granule layer of the 

olfactory bulb as all granule neurons are GABAergic. 
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Fig. 48: Tbr1 and Tbr2 cells in the olfactory bulb are GAD67, calbindin, calretinin and tyrosine 
hydroxylase negative. 
(A, B) Tbr1 and Tbr2 are expressed in the adult olfactory bulb in the mitral cell layer and glomerular 
layer. Notably, no Tbr-positive cells were observed in the granule cell layer. (C, D) Some of the Tbr+ 
cells expressed Reelin, but most other common markers did not colabel Tbr-positive cells. 
Immunohistochemistry for Tbr (red) and (E, F) Calbindin, (G, H) Calretinin and (I, J) Tyrosine 
Hydroxylase (TH) did not result in colocalisation.  
(K, L) In addition Tbr-positive cells are negative for the GABA synthesizing enzyme GAD67 in the 
olfactory bulb of Gad67::GFP mouse line.  
(M) Tbr2 (red) and BrdU (green) do not colocalize in the glomerular layer of the olfactory bulb. 
MCL = mitral cell layer, EPL = external plexiform layer, GL = glomerular layer; Scalebar = 20 µm. 
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Given the down-regulation of Tbr transcription factors upon arrival into the olfactory 

bulb and the hypothesis that Tbr expressing progenitors of the dorsal subependymal 

zone would generate glutamatergic progeny, we performed in-situ hybridization for the 

vesicular glutamate transporter 1 or 2 (vGluT1 or vGluT2) to test the glutamatergic 

identity of adult BrdU labelled cells in the olfactory bulb. Indeed, we detected intense 

vGluT1 and vGluT2 mRNA signals in numerous cells located in the mitral cell layer 

(G. Gheusi et al., 2000), the external plexiform layer (EPL) and the glomerular layer 

(GL), but not in the granule cell layer (Fig. 49 A, B).  

Notably, mitral cells expressed both transporters vGluT1 and vGluT2. Tbr expressing 

cells in the olfactory bulb are mostly glutamatergic interneurons and expressed either 

vGluT1 or vGluT2 (C - G). Notably, a substantial proportion of vGluT1 or vGluT2 

mRNA containing cells did not colocalize with Tbr protein. In general, the vGluT1 and 

vGluT2 mRNA expressing cells showed a great heterogeneity and several classes of 

interneurons are present: (i) Tbr1 and Tbr2 positive cells without mRNA for vGluT1 or 

vGluT2; (ii) vGluT1 or vGluT2 mRNA positive cells that did not colocalize with Tbr 

proteins; (iii) neurons that expressed both, Tbr proteins or vGluT mRNA.  
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Fig. 49: Glutamatergic neurons in the olfactory bulb express partially Tbr1 and Tbr2. 
(A, B) In situ hybridization for vGluT2 and vGluT1 in the adult olfactory bulb shows mRNA expression 
in the mitral cell layer (MCL), external plexiform layer (EPL) and glomerular layer (GL). Insets show 
higher maginifactions of the gomerular layer. 
In-situ hybridization for vGluT1 (C, D) and vGluT2 (E, F) counterstained with immunohistochemistry 
for Tbr1 (red, C, E) and Tbr2 (red, D, F). Notably, not all vGluT+ cells are Tbr+. Arrows indicate 
double-positive cells for vGluT and Tbr, whereas arrowheads indicate only vGluT+ cells. Insets show 
higher magnifications. 
GCL = granule cell layer, MCL = mitral cell layer; Scalebars = 20 µm 
 

We further tested the generation of glutamatergic neurons that had down-regulated Tbr 

transcription factors in the adult olfactory bulb by combining BrdU-labelling with in-

situ hybridization for vGluT1 or vGluT2 (Fig. 50). BrdU was given for three weeks in 

the drinking water followed by three weeks chase with BrdU free water to allow 

sufficient time for neurotransmitter differentitation. Consistent with previous reports a 

substantial proportion of the BrdU-positive cells differentiate into periglomerular 

neurons immunoreactive for tyrosine hydroxylase, calbindin or calretinin (K. Kosaka et 

al., 1995; B. Winner et al., 2002; Z. J. Allen, 2nd et al., 2007a; P. Panzanelli et al., 

2007; S. Parrish-Aungst et al., 2007). The GABAergic phenotype of periglomerular 

neurons was also confirmed in GAD67::GFP mice where more than 80 % of the BrdU+ 

cells colocalized with GAD67-GFP (Fig. 50 A - E) (P. Panzanelli et al., 2007). 

Strikingly a small proportion of BrdU-positive cells (2 ± 0.5%, n(cells)=1632) located 

in the glomerular layer were found to coexpress vGluT2 mRNA (Fig. 50 E, F, G).  
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Fig. 50: Newly generated glutamatergic neurons defina a subpopulation of BrdU-positive 
periglomerular neurons and integrate functionally in the olfactory bulb. 
For fate mapping analysis BrdU was given for three weeks into the drinking water followed by a chase of 
four weeks without BrdU to allow sufficient time for neurotransmitter differentitation. Established 
periglomerular neuron markers are expressed at significant frequencies: Immunohistochemistry for BrdU 
(green) and Calretinin (red) (A), Tyrosine Hydroxylase (TH) (red) (B), and Calbindin (red) (C). Orange 
arrows indicate double-positive cells for BrdU and corresponding periglomerular neuron marker. 
(D) The majority of BrdU+ cells (red) is of GABAergic identity as demonstrated with 
immunohistochemistry for GFP (green) in GAD67::GFP mice.  
(E) Quantification of marker expression of BrdU+ cells amongst the periglomerular neurons. Notably, 
the majority of adult born periglomerular neurons adopt a GABAergic transmitter phenotype.  
(F, G) In-situ hybridization for vGluT2 and immunohistochemistry for BrdU (green) resulted in double-
positive cells in the glomerular layer of the adult olfactory bulb. Notably these BrdU+/vGluT2+ cells are 
negative for Tbr2. Higher magnication is shown in (G, G’). 
(H, I) Funtional integration of glutamatergic periglomerular neurons as shown by c-fos 
immunohistochemistry (green), BrdU (red) and vGluT2 ISH. 
(J – J'') Four weeks after adult recombination in GLAST::CreERT2 mice crossed with the RosC reporter 
line colocalization of vGluT2 and YFP was observed. Boxed area is shown in higher magnification in (K 
– K'') 
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Notably, no double-positive cells were observed shortly after BrdU-labelling 

suggesting that these BrdU cells are not dying cells. None of the vGluT1 expressing 

neurons (n(cells)=1236) could be labelled by BrdU, suggesting that only the vGluT2, 

but not the vGluT1 expressing subset of cells are adult generated. Moreover, no vGluT1 

or vGluT2 expressing cells in the external plexiform layer had incorporated BrdU, 

indicating that these interneurons are not generated in the adult olfactory bulb. Finally, 

we examined whether adult-generated vGluT2-positive (vGluT2+) cells become 

functionally incorporated into neuronal circuits by staining for the immediate early 

gene c-fos known to be regulated by neuronal activity (S. S. Magavi et al., 2005; M. P. 

Leussis and S. C. Heinrichs, 2007). Indeed, c-fos immunoreactivity was detected in a 

substantial fraction of cells positive for both BrdU and vGluT2 (Fig. 50 H, I; 

experiment performed by Jovica Ninkovic) suggesting that these glutamatergic neurons 

generated 3 - 6 weeks earlier become functionally active by this time. Moreover, we 

observed the long-term survival of vGluT2 expressing neurons until two months after 

BrdU-labelling, suggesting that at least some of them are stably incorporated into the 

adult olfactory bulb network.  

 

4.2.5 Adult generated neurons form functional glutamatergic synapses 

While co-expression of vGluT2 and c-fos are in BrdU-positive cells within the 

olfactory bulb is a strong indicator for functional glutamatergic neurons being 

generated in the adult, we further aimed to ensure the establishment of functional 

glutamatergic synapses by adult generated neurons using electrophysiology. Towards 

this end, we took advantage of the culture system of primary subependymal progenitors 

(for details see 6.9.2 Non-expanded adult progenitor cultures). This culture system 

allows maintenance of isolated subependymal zone progenitors in vitro without EGF 

and FGF2 in defined medium. Under these conditions cultured progenitors give rise 

predominantly to neuronal progeny. First, we isolated the whole wall including lateral 

and ventral regions. While seven days after plating the majority of cells express 

members of the Dlx gene family, in agreement with their GABAergic fate, a small 

percentage (1.5 %; n(cells)=574) expressed Tbr2 consistent with their low abundance in 

the subependymal zone in vivo (Fig. 51 ). Interestingly, Tbr2-positive cells appeared as 

small clusters of 2 - 4 cells, consistent with a clonal origin of these cells.  
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To examine whether Tbr2 expressing cells may be enriched in cultures prepared from 

the dorsal wall of the lateral ventricle we separated the upper dorsal part from the lower 

ventral part of the ventricle during culture preparation. Seven days after plating, I 

quantified the number of Tbr2-positive cells per DAPI stained nuclei and found a 

striking regionalization. Compared to the mixed culture where I found 1.5 % Tbr2 

expressing cells virtually no Tbr2-positive cells were detectable in cultures derived 

from the ventral part of the ventricular wall. However, in the cultures of cells from the 

dorsal subependymal zone four times more Tbr2-positive cells were present (Fig. 51 

D). This data demonstrates the enrichment of dorsal wall cultures with Tbr2 expressing 

progenitor cells and that these progenitors are derived from the dorsal subependymal 

zone. To test if Tbr2-positive cells are indeed generated in vitro we transduced the 

dorsal and ventral cultures two to four hours after plating with retroviral vectors 

encoding only GFP. Indeed we found some GFP transduced Tbr2 expressing clones 

seven days after plating in dorsal wall derived cultures. Additional 

immunohistochemistry for GFP, Tbr2 and ß-III-Tubulin demonstrated the neuronal 

idendity of these progenitors and their generation in vitro (Fig. 51 E). 

Further in line with the presence of Tbr2-positive progenitors in these cultures we 

found a small proportion of cells that exhibited vGluT immunoreactivity which became 

concentrated in puncta after several weeks in vitro suggesting the formation of 

functional glutamatergic synapses (Fig. 51 ). To determine the presence of functional 

glutamatergic synapses unambiguously we performed perforated patch recordings (B. 

Berninger et al., 2007).  

Fig. 51  shows a representative example of an adult subependymal zone derived neuron 

that exhibited a CNQX sensitive autaptic response (electrophysiology performed by 

Benedikt Berninger). This data demonstrate that adult subependymal zone cells can 

generate glutamatergic neurons that form functional synapses in vitro.  
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Fig. 51: Cultured adult subependymal zone stem and progenitor cells give rise to a small 
proportion of glutamatergic neurons in vitro. 
(A) Micrograph depicts two subependymal zone neuroblasts expressing Doublecortin (DCX) (green) and 
Tbr2 (red) after 3 days in vitro (3 DIV); DAPI in blue. The insert shows a high magnification view of the 
Tbr2+ nuclei.  
(B) Micrograph depicts two neurons derived from primary cultured progenitors expressing vGluT (green) 
immunoreactivity 32 DIV. The insert shows the punctuate pattern of vGluT immunoreactivity suggestive 
of synaptic localization.  
(C) Left: micrograph shows an adult subependymal zone derived cultured glutamatergic neuron; right: 
stimulation of the neuron evoked an autaptic response that was blocked by the AMPA/kainite receptor 
antagonist CNQX revealing its glutamatergic nature. Electrophysiology performed by Benedikt 
Berninger. 
(D) Quantification of Tbr2+ cells per DAPI+ nuclei in mixed, ventral and dorsal ventricular wall 
cultures. Mixed cultures contained 1.5 % Tbr2+ progenitors. Whereas ventral wall culture preparation 
hardly contained Tbr2+ cells, dorsal wall culture preparation were enriched of Tbr2+ progenitors and 
contained four times more Tbr2+ cells. 
(E) Tbr2+ cells are generated in vitro demonstrated by retroviral transduction two hours after plating. 
Immunohistochemistry for GFP (green), Tbr2 (red) and ßIIITubulin (blue) after seven days in vitro 
demonstrated the proliferation of progenitors and generation of this cell type in vitro. 
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4.2.6 Tbr2-expressing progenitors migrate towards sites of neocortical injury 

One of the implications of this discovery of endogenous progenitors for glutamatergic 

neurons in the adult subependymal zone is the possibility of their recruitment towards 

sites of neocortical injury where they may replace glutamatergic neurons. We therefore 

employed an injury model which has previously been shown to elicit remarkable repair 

of cortical neurons from endogenous sources of progenitors which either migrated from 

the adult subependymal zone towards the lesion site or alternatively, were activated 

locally (S. S. Magavi et al., 2000; J. Chen et al., 2004).  

In this lesion model rhodamine labelled latex beads (Lumaflour) were coupled with the 

phototoxic chemical chlorine e6 (see Material & Methods for detailed protocol). 

Following cortical injections the coupled latex beads are retrogradely transported and 

label only callosal projection neurons in the contralateral cortex (S. S. Magavi et al., 

2000). Subsequent laser illumination of the contralateral hemisphere allows activation 

of chlorine e6 followed by a release of oxygen radicals which kills exclusively chlorine 

e6 beads containing neurons. 

4.2.6.1 Chlorine e6 coupled latex beads on embryonic day E 14 cultures 

In order to test the functionality of chlorine e6 coupled beads in neurons, I prepared 

cortical embryonic day E 14 cultures. I added 2 µl coupled latex beads suspension to 

each well onto embryonic day 14 cortical cultures at three days in vitro. Laser 

illumination was performed 7 days after latex beads addition and all cultures were fixed 

two days after laser illumination. As control no beads were added, neither laser 

illumination was performed. A second control consisted of laser illumination without 

the addition of coupled latex beads. No difference could be observed between the 

controls demonstrating that the laser illumination alone or the addition of coupled latex 

beads suspension did not induce neuronal cell death (Fig. 52 A, B). Only cells in wells 

containing chloreine e6 geads died following laser illumination (Fig. 52 C, D) 

Following laser illumination for 10 minutes per well of a 24-well plate at lower (0.1 W) 

and higher (0.5 W) laser dosis, cultures were severly affected. Hardly any cell with 

neuronal morphology could be observed after illumination for 10 minutes with 0.5 W 

suggesting that a lot of cells die quickly upon coupled latex beads uptake and high 

energy dosis of laser leading to chlorine e6 activation. Also after a smaller energy dose 

(illumination for 10 minutes with 0.1 W) cells with neuronal morphology were less 

frequently observed in these cultures.  
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Fig. 52: Laser test in vitro leads to induction of cell death in embryonic day E14 cultures. 
After 3 days in vitro coupled latex particles were added to half of the embryonic day E 14 cultures. All 
cultures were fixed two days after laser illumination.  
(A) In the control no laser illumination and no latex particles were added. (B) In the second control laser 
illumination was performed without the addition of latex particles. Notably, no difference was observed 
between control experiments suggesting that the laser itself does not exhibit toxic effects in vitro.  
(C, D) Cultures were severly affected after 10 minutes illumination with laser under both conditions with 
0.1 W (C) and 0.5 W (D). 

4.2.6.2 Transport of rhodamine latex beads and laser illumination 

Next I tested the retrograde transport of rhodamine latex beads (without coupling to 

chlorine e6) in vivo. Latex beads were injected into the cortex of adult mice. At least 

three up to eight injections were performed using a glass capillary at a maximal depth 

of 1.0 mm at the approximate level of bregma. To allow sufficient transport, animals 

were sacrificed seven days after beads injection. Rhodamine latex beads suspension 

remained close to the injection site. Immunohistochemistry for the mature neuronal 

marker NeuN (green) demonstrated that on the contralateral hemisphere demonstrated 

that the beads (red) have been transported retrogradely and are localised in the soma of 

contralateral projection neurons (Fig. 53).  

Following injection of coupled chlorine e6 latex beads, I observed the same transport 

properties like in pure latex beads suspension. Following laser illumination, the 

neuronal marker NeuN (green) is down-regulated in the region containing neurons that 

had taken up and retrogradely transported the chlorine e6 beads (Fig. 54) and 

C  beads + laser 0.1 W 

A  control B  control with laser 

D      beads + laser 0.5 W 
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neuroblasts were observed in the cortical area close to the subependymal zone 

presumably invading the cortex from this neurogenic niche (Fig. 54). 

 

 
Fig. 53: Transport of rhodamine latex beads to the contralateral hemisphere. 
Immunohistochemistry for NeuN (green) showed that latex particles are located in the soma of neurons 
in the contralateral hemisphere.Orange arrows indicate neurons containing latex beads. 
 

 
Fig. 54: Consequences of laser illumination in vivo 
After an energy dose of 10 minutes and 10 mW the neuronal marker NeuN (green) is down-regulated 
suggestive of a neuronal loss upon laser illumination. Close to the subependymal zone (SEZ) neuroblasts 
(DCX, red) invaded the cortex presumably migrating from this neurogenic niche to the lesion site. 
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4.2.6.3 Tbr2-expressing progenitors migrate towards sites of neocortical injury 

Given that Tbr2 immunoreactive progenitors are generated from dorsal regions of the 

subependymal zone and this neocortical injury paradigm is close to precisely these 

subependymal regions, we investigated if Tbr2-positive progenitors could be detected 

in the injured neocortex. Indeed, one week after laser treatment, clusters of 

Tbr2+/DCX+ neuroblasts were found in the corpus callosum (Fig. 56 ) and some 

Tbr2+/DCX+ cells had also entered the cortical grey matter (Fig. 56), while such 

invasion was never observed in control mice that did not undergo latex beads injection 

or laser illumination (Fig. 55).  

Thus, our data suggest that Tbr2-expressing progenitors in the adult dorsal 

subependymal zone may serve as an endogenous source of progenitors that can be 

recruited to the cerebral cortex upon injury.  

 

Fig. 55: Tbr2-positive cells are present in the rostral migratory stream in control mice. 
(A) Schematic drawing depicting a coronal forebrain section. The white matter is indicated as grey fields 
underneath migrate neuroblasts towards the olfactory bulb (rostral migratory stream, blue). Orange boxed 
field is shown at higher magnification in (B). 
(B) Immunostaining for Tbr2 (green) and DCX (red) demonstrates that Tbr2 expressing cells partially 
express DCX and are present in dorsal regions of the subependymal zone and rostral migratory stream.  
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Fig. 56: Tbr2-positive cells migrate towards the lesioned cerebral cortex and express DCX. 
(A) Overview of the lesioned cortex and rostral migratory stream one week after ChlorineE induced 
lesion of callosal projection neurons. Tbr2 expressing cells are present in dorsal regions of the 
subependymal zone and rostral migratory stream (arrows) and are sometimes clustered (B).  
Notably, Tbr2-positive neuroblasts (C) are able to enter the cortical grey matter and may provide a source 
of endogenous repair.  
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5 Discussion 
 

5.1 Summary 
In this study I give evidence for the functional regionalization of the adult 

subependymal zone and the molecular mechanisms implementing the regionalization. 

In the ventral wall of the subependymal zone which is derived from the ganglionic 

eminences neuroblasts are specified by the transcription factor Dlx2. In contrast, the 

dorsal wall of the subependymal zone expresses transcription factors linked to cortical 

glutamatergic neurogenesis. 

Dlx1 & Dlx2 are present in the majority of neuroblasts in the rostral migratory stream 

and in virtually all neuroblasts in the ventral subependymal zone and additionally, in 

the majority of ventral transit-amplifying progenitors. Notably, besides Dlx and BrdU 

double-positive transit-amplifying progenitors, I found Dlx-negative transit-amplifying 

progenitors some expressing Olig2 (Fig. 57).  

Fig. 57: Schematic lineage diagram of the adult ventral subependymal zone 
The simplified diagram shows the lineage progression of adult neural stem cells (NSCs) of the adult 
subependymal zone. At least two distinct types of transit-amplifying progenitors (TAPs) are generated 
either from different or the same neural stem cells. Oligodendrocyte precursors (OPCs) of the white 
matter tract are generated from TAPs that express transcription factors Olig2 and Mash1. In contrast, 
transit-amplifying progenitors destined for generating neuronal progeny are positive for transcription 
factors of the Dlx-gene family and Mash1. Upon maturation neuroblasts express further transcription 
factors, such as Pax6, Dlx, Sp8 and Er81. TAP = transit-amplifying progenitor; PGN = periglomerular 
neuron; GN = granule neuron; OPC = oligodendroglial precursor cell 
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Given that over-expression of Olig2 in the adult subependymal zone promotes 

generation of oligodendrocytes (M. A. Hack et al., 2005) it is likely that this progenitor 

pool gives rise to oligodendrocytes. Thus, at least two populations in the ventral 

subependymalzone generate neuronal and oligodendroglial progeny. Notably, the 

transcription factor Mash1 is present in both lineages (Fig. 19 C, Fig. 31). 

Dominant-negative Dlx2 constructs demonstrate that repression of Dlx-mediated target 

gene activation leads to a block in neurogenesis and converts cells into the astroglial 

lineage. However, a small proportion of neuroblasts reached the olfactory bulb 

following Dlx2-Engrailed transduction suggesting that these cells were not affected and 

might be originated from the dorsal subependymal zone. Besides the generic role for 

Dlx2 in adult ventral neurogenesis Dlx2 plays a crucial role in periglomerular neuron 

specification. Cell-autonomous manipulations by injections of retroviral vectors 

demonstrate that Dlx2 potently promotes the specification of neuroblasts and regulates 

neuronal subtype specification favouring a dopaminergic periglomerular neuron fate. 

Notably, the latter effect occurs by a cooperation of Dlx2 and Pax6 at the expense of 

the calretinin-positive periglomerular neuron fate. Pax6 functions not only in 

specification of dopaminergic neurons but also plays a neurogenic role in the adult 

subependymal zone. We demonstrate that Pax6 is expressed highly in dorsal regions 

and low in ventral regions of the subependymal zone.  

Here I described the adult generation of a novel population of glutamatergic olfactory 

neurons most likely arising from the dorsal wall of the subependymal zone. I 

demonstrated the presence of Tbr2 and Tbr1 expressing cells in the dorsal 

subependymal zone by immunohistochemistry. Furthermore I provided evidence that 

Tbr1 and Tbr2 positive cells are generated in the adult subependymal zone by BrdU 

labelling, retroviral injections into the rostral migratory stream, and in vivo genetic fate 

mapping. Consistent with the transcription factor sequence in cortical development 

(Pax6  Ngn2  Tbr2  Tbr1) I demonstrate colocalization of Tbr proteins with 

Pax6 and that Tbr1 is followed by Tbr2. Furthermore we detected proliferating 

Neurogenin2-GFP expressing cells in Neurogenin2+/GFP mice (J. Seibt et al., 2003) that 

colocalized with Tbr2 protein in the rostral migratory stream (collaboration with Olivier 

Raineteau; experiments performed by Eleanor Helps). Notably, this lineage is distinct 

from Dlx expressing progenitors arising in ventral regions of the subependymal zone. 

We followed the fate of Tbr-GFP expressing progenitors by fate mapping analysis in 

Tbr2BAC-GFP mice (G. S. Kwon and A. K. Hadjantonakis, 2007) (collaboration with 



100 5 Discussion 

 

 

Robert Hevner; experiments performed by Rebecca Hodge). Notably, we found 

BrdU+/Tbr2-GFP+ cells that had down-regulated Tbr2 protein located in the 

glomerular layer of the olfactory bulb. Furthermore, we demonstrate the generation of 

adult born vGluT2 expressing cells on mRNA and protein level in the olfactory bulb 

and give evidence for their functional integration with c-fos staining. Consistently, in 

subependymal zone cultures, we observed generation of Tbr2 progenitors and a small 

number of glutamatergic neurons that form functional glutamatergic synapses.  

Thus, the high degree of specificity in the neuronal subtypes generated in the adult 

olfactory bulb is due to an unsuspected diversity of subependymal zone progenitors that 

are defined by their combinatorial expression of different transcriptional cues. These 

specific transcriptional codes are reminiscent of the patterning during development. 

5.2 Function of Dlx2 in adult ventral-lateral neurogenesis 
In order to examine the function of Dlx2 in the adult subependymal zone we 

constructed retroviral vectors for over-expression and dominant-negative approaches. 

Dlx2 over-expression in subependymal zone progenitors resulted in a higher proportion 

of DCX-positive neuroblasts amongst the transduced cells, due to an increase in 

neuronal specification, but not proliferation. Moreover, a larger proportion of Dlx2 

transduced cells reached the olfactory bulb, due to an increase in migration velocity. 

Accordingly, Dlx2-Engrailed transduction causes a severe decline of neuroblasts both 

in vivo and in vitro. Dlx2-Engrailed primarily suppresses those genes that would 

normally be activated by Dlx2, but possibly affects also targets of Dlx1. As little is 

known about the targets of these transcription factors or the proteins with which they 

interact to regulate their targets, we cannot exclude that Dlx2-Engrailed may also act on 

Dlx1 regulated genes. The possible compensation for the loss of Dlx2 by Dlx1 as 

observed in mice with targeted deletion of these genes individually (M. Qiu et al., 1995; 

S. A. Anderson et al., 1997a) prompted us to take this approach rather than a protein 

knock-down that may require elimination of both Dlx1 and Dlx2. Our results 

demonstrate that Dlx2 and/or Dlx1 activated target genes are essential for progression 

towards a neuronal lineage and for initiation or maintenance of a high proliferation rate. 

Indeed, the latter role fits well with the early expression of Dlx2 in transit-amplifying 

progenitors (F. Doetsch et al., 2002).  

In the light of my data on the neurogenic function of Dlx2 in adult subependymal zone 

progenitors, the expression of Dlx transcription factors in a subset of transit-amplifying 
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progenitors (Colak et al., 2008) suggests that the neurogenic lineage becomes already 

determined at the transit amplifying progenitor stage. The existence of at least two 

subtypes of transit-amplifying progenitors in the ventral subependymal zone, 

characterized by the mutual exclusive expression of Olig2 and Dlx1 & Dlx2 under 

physiological conditions, suggests that these cells belong to distinct lineages. In 

contrast to the observations in the adult subependymal zone, substantial coexpression of 

Dlx1 & Dlx2 and Olig2 occurs in the embryonic ventral telencephalon where a 

common oligodendrocytes / interneuron precursor has been identified (G. Miyoshi et 

al., 2007; M. A. Petryniak et al., 2007). During embryonic development, deletion of 

Dlx1 & 2 results in a fate switch from neuro- to oligodendrogenesis (M. Kohwi et al., 

2007b). Therefore, we examined the transcription factor Olig2, a key determinant of 

oligodendrocyte fate in development (Q. R. Lu et al., 2002; D. H. Rowitch, 2004) and 

adulthood (M. A. Hack et al., 2005; B. Menn et al., 2006; D. Colak et al., 2008). Here 

specification towards the neuronal lineage appears to occur via a gradual Dlx1 & Dlx2-

mediated down-regulation of Olig2, while the lack of co-expression of these 

transcription factors in the adult subependymal zone suggests that other mechanisms 

are involved in the suppression of Olig2. Indeed we found that in the adult 

subependymal zone, BMP–mediated signalling – which is conspicuously absent in the 

developing ventral telencephalon (T. Shimogori et al., 2004; M. Fernandes et al., 2007) 

- is required for Olig2 suppression (D. Colak et al., 2008). Thus, besides similarities, 

there are important differences in the precise molecular mechanisms involved in 

neuronal versus oligodendroglial fate specification in the developing and adult 

telencephalon. Indeed, many adult subependymal zone progenitors adopt an astroglial 

identity following expression of Dlx2-Engrailed, while most cells deficient of Dlx1 and 

Dlx2 in the developing telencephalon revert to an oligodendroglial fate (M. A. 

Petryniak et al., 2007). Intriguingly, adult neural stem cells are of astroglial identity (F. 

Doetsch et al., 1999b) and we observed a certain proportion of GFAP-positive, Dlx2-

Engrailed transduced cells incorporating the DNA analogue BrdU, suggesting that 

some progenitors, when inhibited to progress towards neurogenesis, revert to an 

astrocytic fate what might include a neural stem cell fate. This possibility could be 

tested in a neurosphere forming assay upon injection of Dlx2-Engrailed into the 

subependymal zone. The transduced Dlx2-Engrailed stem cells could be isolated, 

cultured, and could be identified by GFP that they inherit to their daughter cells within 

a sphere. 
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5.3 Transcriptional code for GABAergic versus glutamatergic 
periglomerular neuron specification 

5.3.1 Specification of GABAergic periglomerular neurons from ventral – 
lateral Dlx transcription factors expressing progenitors 

Besides its role in generic neurogenesis, Dlx2 also exerts an important function in 

neuronal subtype specification, promoting the acquisition of a periglomerular neuron 

identity, in particular of the dopaminergic subtype. Notably, these effects of Dlx2 are 

virtually identical to those of Pax6 (M. A. Hack et al., 2005). Like in the case of Dlx2, 

over-expression of Pax6 results in increased neurogenesis, while interfering with Pax6 

function inhibits neurogenesis (M. A. Hack et al., 2005). Moreover, Pax6 promotes the 

subtype specification of dopaminergic periglomerular neurons (M. A. Hack et al., 2005; 

M. Kohwi et al., 2005). These findings are suggestive of a cooperation of these 

transcription factors. While we found no evidence for either of these factors regulating 

expression of the other in adult subependymal zone derived cells, co-

immunoprecipitation of Pax6 and Dlx proteins demonstrated their physical interaction. 

More strikingly, in the absence of Pax6 protein Dlx2 no longer promotes the acquisition 

of a periglomerular neuron fate demonstrating that Pax6 and Dlx2 are each required for 

the specification of tyrosine hydroxylase expressing periglomerular neurons. Cells 

double-positive for Dlx2 / Pax6 increase from roughly 10 % in the subependymal zone 

to 20 % in the rostral migratory stream suggesting that some of the tyrosine 

hydroxylase positive cells are already generated in the subependymal zone. The 

proportion of double-positive cells is even higher considering only the neuroblast 

population reaching about 40 %. This higher percentage of double-positive cells within 

the rostral migratory stream is consistent with our previous findings that the rostral 

migratory stream contains most of the stem / progenitors giving rise to periglomerular 

neurons including dopaminergic neurons in mice (M. A. Hack et al., 2005; M. Alonso 

et al., 2008) and in rat (Mendoza-Torreblanca et al., 2008). However, the proportion of 

periglomerular neurons resulting from rostral migratory stream injections is only 10 % 

after three weeks and even smaller for the proportion of tyrosine hydroxylase positive 

neurons amongst these. This could be explained by a large fraction of the newly 

arriving neurons undergoing cells death, or by Pax6 and Dlx2 cooperating on a broader 

fate specification that is then further refined by extrinsic signals within the olfactory 

bulb.  
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Thus, the present and previous studies suggest the following transcriptional code for the 

specification of GABAergic periglomerular neurons: (i) Calretinin+ periglomerular 

neurons lack Pax6 and Dlx, but express Sp8 (Z. J. Allen, 2nd et al., 2007a), (ii) 

calbindin+ periglomerular neurons contain Dlx and Meis2, (Z. J. Allen, 2nd et al., 

2007b), but not Pax6, and (iii) dopaminergic periglomerular neurons contain both Dlx 

and Pax6 (and Meis2 and Er81, Allen et al., 2007). Our functional analysis highlights 

the necessity for Pax6 and Dlx co-expression and collaborative function for the 

specification of dopaminergic periglomerular neurons. In the absence of the function of 

Pax6, periglomerular neurons fail to differentiate along the dopaminergic lineage, but 

rather assume a calretinin+ fate (hence the periglomerular neurons subtype lacking 

Pax6 and Dlx2).  

The above mentioned transcriptional code would suggest that over-expression of Dlx2 

in the absence of Pax6 would lead to a calbindin+ fate. However, Dlx2 over-expression 

could not rescue or convert the fate of transduced cells into calbindin+ periglomerular 

neurons in the absence of Pax6, consistent with the absence of endougenous Pax6 in 

this population. Notably, the transcription factor Meis2 is required for a calbindin+ fate. 

If Meis2 expression would be inhibited by the presence of Pax6, Cre-mediated loss of 

Pax6 would lead to upregulation of Meis2 and a calbindin+ fate upon over-expression 

of Dlx2. As this is not the case, Pax6 presence at early maturation stages might be 

required for Meis2 expression. Additionally, over-expression of Dlx2 might not be able 

to induce Meis2 presence and hence could not convert the transduced cells into a 

calbindin+ fate. This would suggest that Meis2 might be regulated by Pax6, but not 

Dlx2, expression. Alternatively, additional unkown factors besides Dlx2 and Meis2 

might be required to assess a calbindin+ periglomerular neuron fate.  

Notably, calretinin+ neuron specification requires Sp8 (Z. J. Allen, 2nd et al., 2007a) 

and in the absence of Sp8 Pax6 is up-regulated, suggesting that the balance between 

Pax6 / Dlx2 and Sp8, respectively, regulates the proportion of periglomerular neurons 

with distinct identities. Conversely, over-expression of either Pax6 or Dlx2 promotes 

dopaminergic at the expense of calretinin+ periglomerular neurons. This indicates that 

the respective increase in calretinin+ periglomerular neurons is not merely a ‘passive’ 

consequence of the loss of the dopaminergic phenotype, but rather that Dlx2 and Pax6 

actively inhibit calretinin+ subtype specification.  

These observations also bear relevance in regard to the diverse origin of periglomerular 

neuron subtypes at distinct positions and the proposition that distinct stem cell pools are 
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fate-restricted towards the generation of specific neuronal subtypes (M. A. Hack et al., 

2005; W. Kelsch et al., 2007; F. T. Merkle et al., 2007). Our studies indicate a 

substantial degree of plasticity: forced expression of either Pax6 or Dlx2 in the rostral 

migratory stream can convert progeny towards a tyrosine hydroxylase positive 

periglomerular neuron fate both at the expense of calretinin+ periglomerular neurons 

and granule cells indicating that independent of their respective origin the derivatives of 

distinct stem cell pools have the competence to interpret the transcriptional cues and 

adopt different neuronal subtypes. Given that the majority of adult subependymal zone 

stem cells are derived from the ganglionic eminences (K. M. Young et al., 2007), the 

fate restriction of their progeny may be acquired already at the embryonic stage and 

inherited to the adult offspring. Alternatively, adult subependymal zone stem cells may 

be exposed to local domains of niche factors such as BMP and Sonic hedgehog (V. 

Palma et al., 2005; D. Colak et al., 2008) thereby creating distinct progenitor domains 

with different fate restrictions.  

5.3.1.1 Function of dopaminergic periglomerular neurons in the adult olfactory bulb 

Periglomerular neurons synapse on the incoming olfactory sensory neurons and on 

mitral cells. The vast majority of periglomerular cells are of GABAergic identity, 

nevertheless they exhibit a great heterogeneity. Some of the glutamic acid 

decarboxylase (GAD) immunoreactive periglomerular neurons release in addition to 

their neurotransmitter GABA also dopamine and express tyrosine hyrdroxylase (B. J. 

Maher and G. L. Westbrook, 2008). Interestingly, upon odour deprivation or naris 

occlusion the levels of tyrosine hydroxylase expression decrease dramatically and 

recover after functional inputs are restored (H. Baker et al., 1984; E. Weruaga et al., 

2000; J. G. Brinon et al., 2001). This suggests that the expression of tyrosine 

hydroxylase in periglomerular neurons depends on peripheral stimulation (H. Baker et 

al., 1983; H. Baker, 1990). Notably, early neonatal unilateral anosmic rats showed 

reduced size of the deprived olfactory bulb and a loss of neurons in the granule cell 

layer and glomerular cell layer (P. C. Brunjes, 1994). This indicates that the day of 

naris occlusion plays a crucial role in the results, which is consistent with the postnatal 

generation of some olfactory neurons (P. C. Brunjes, 1994). 

Furthermore, axonal projections of periglomerular neurons are generally short and their 

size is rather small compared to dopaminergic neurons of the substantia nigra. 

Dopaminergic periglomerular neurons synapse on olfactory sensory neurons and belong 
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to the type I glomerular neurons (K. Kosaka et al., 1997) and act in concert with 

calbindin+ and calretinin+ periglomerular neurons. Dopamine has been shown to 

inhibit synaptic transmission from the olfactory nerves by acting presynaptically on 

dopamine (D2) receptors (A. Y. Hsia et al., 1999; D. A. Berkowicz and P. Q. 

Trombley, 2000; M. Ennis et al., 2001; G. Shepherd, 2004) and postsynaptically on 

GABAA receptors (I. Brunig et al., 1999; G. Shepherd, 2004). Dopamine receptor 

activation in the olfactory bulb causes a significant depression of synaptic transmission 

at the first relay between olfactory receptor neurons and mitral cells (A. Y. Hsia et al., 

1999). Thus dopamine plays an important role in olfactory bulb processing and acts 

directly on input control.  

The generation of dopaminergic tyrosine hydroxlase positive periglomerular neurons is 

of particular interest in light of diseases where dopaminergic neurons degenerate, e. g. 

Parkinson's disease (S. B. Dunnett et al., 2001; J. Lotharius and P. Brundin, 2002). 

Transplantation or migration of endogenous progenitors that give rise to dopaminergic 

neurons and integrate synaptically would have the potential to ease these diseases. 

Several embryonic brain cell transplantation studies in Parkinson's disease have been 

performed with various results (S. B. Dunnett et al., 2001; I. Mendez et al., 2008). 

Additionally, it is of particular importance to understand the molecular cues leading to 

a dopaminergic phenotype in adult neurogenesis, since these cells might serve as a 

potential source for endogenous repair.  

5.3.2 Specification of glutamatergic periglomerular neurons from dorsal 
Tbr1 & Tbr2 expressing progenitors 

Thus far, the adult subependymal zone had been viewed as a region giving rise nearly 

exclusively to GABAergic olfactory interneurons. Here we describe a novel type of 

olfactory interneuron that has a glutamatergic phenotype. The transcription factors 

involved in the generation of glutamatergic neurons is conserved in cortical, cerebellar 

and hippocampal neurogenesis and follows the sequence Pax6  Ngn2  Tbr2  

Tbr1.  

5.3.2.1 Transriptional code of adult-born glutamatergic olfactory neurons 

Our discovery of generation of glutamatergic olfactory neurons not only further support 

the concept of subependymal regionalization, but also suggests the persistence of 

several Pax6 regulated lineages in the adult subependymal zone. While Pax6 is co-
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expressed and functions together with Dlx2 in the adult subependymal zone to generate 

dopaminergic olfactory interneurons (M. A. Hack et al., 2005), Neurogenin2 or Tbr2 

never colocalized with Dlx transcription factors. However, they also overlapped with 

Pax6, supporting the existence of two different lineages arising from Pax6-positive 

progenitors. This much smaller population up-regulates Neurogenin2 and Tbr2 at the 

neuroblast stage, followed by Tbr1. Notably, the dorsal subependymal zone that 

contains the Neurogenin2 expressing progenitors has been shown to originate from the 

dorsal telencephalon during embryogenesis (K. M. Young et al., 2007), the region that 

also expresses Neurogenin2 during development (G. Gradwohl et al., 1996; L. Sommer 

et al., 1996; C. Fode et al., 2000). These data therefore suggest that patterning and 

regionalization persists at least partially from development into the adult neurogenic 

zones.  

As observed for Pax6, also Mash1 expressing progenitors seem to proceed along two 

different lineages. Mash1 is clearly involved in the generation of GABAergic granule 

cells and periglomerular neurons, at least at postnatal stages (C. M. Parras et al., 2004). 

Notably, both Mash1 as well as Pax6 are already expressed in transit-amplifying 

progenitors, i.e. prior to the neuroblast fate (C. M. Parras et al., 2004). Neurogenin2 and 

Tbr1 appear later in the lineage, exclusively at the neuroblast stage. While some of the 

cells expressing these two transcription factors still divide and incorporate BrdU, Tbr1 

expressing cells no longer divide and hence represent postmitotic DCX-positive 

neuroblasts migrating towards the olfactory bulb. Indeed, this sequence of transcription 

factors has been shown to be a direct functional cascade of transcriptional regulation 

during cortical development: (i) Pax6 directly regulates Neurogenin2 (R. Scardigli et 

al., 2003), (ii) and Neurogenin2 regulates Tbr2 and Tbr1 (C. Fode et al., 2000; C. 

Schuurmans et al., 2004; B. Berninger et al., 2007; P. Mattar et al., 2008). In both 

cases, the loss of Pax6 or Neurogenin2 leads to an at least partial diversion from the 

generation of glutamatergic to GABAergic neurons (C. Schuurmans et al., 2004; V. 

Nikoletopoulou et al., 2007; D. D. O'Leary et al., 2007). Moreover, over-expression of 

Neurogenin2 in adult derived neurosphere cells is sufficient to up-regulate Tbr1 and 

direct virtually all neurons towards a functional glutamatergic identity (B. Berninger et 

al., 2007). Additionally, we performed short-term fate mapping analysis using Tbr2BAC-

GFP in order to follow the GFP-positive progeny derived from Tbr2 expressing 

progenitors (collaboration with Robert Hevner) (D. Geschwind, 2004; G. S. Kwon and 

A. K. Hadjantonakis, 2007). We observed that adult Tbr2 expressing progenitors found 
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in the rostral migratory stream have already largely down-regulated the Tbr2 protein 

when they arrive in the olfactory bulb, while some still express Tbr1. However, several 

weeks after BrdU incorporation, most of the BrdU labelled vGluT2-positive neurons 

did no longer contain Tbr1, suggesting that Tbr1 becomes also down-regulated. 

In summary, this molecular code therefore strongly implicates the Neurogenin2-

positive and Tbr2-positive progenitors as candidates for the generation of the vGluT2 

expressing glutamatergic olfactory neurons of the glomerular layer. Taken together 

with the observation that progenitors located in the dorso-rostral subependymal zone 

also contribute to the generation of some non-GABAergic, calretinin+ interneurons (M. 

Kohwi et al., 2005; K. Kosaka and T. Kosaka, 2007; S. Parrish-Aungst et al., 2007; K. 

M. Young et al., 2007) these findings further support the regional differences between 

dorsal and ventral regions of the adult subependymal zone with the later generating 

GABAergic neurons while the former generate additional neurons, including the 

glutamatergic subtype.  

5.3.2.2 Functional integration and electrophysiology of glutamatergic olfactory 
neurons 

Here we provide two independent sets of evidence that a subset of adult subependymal 

zone stem or progenitor cells can indeed generate glutamatergic neurons. Firstly, we 

found that some adult birth-dated BrdU labelled cells in the glomerular layer express 

vGluT2, a transporter for glutamate into synaptic vesicles. Secondly, in primary adult 

subependymal zone cultures we could detect vGluT immunoreactive neurons which 

exhibited the characteristic punctuate pattern suggestive of the formation of functional 

synapses. Additionally we also observed functional glutamatergic transmission by 

electrophysiology. I also provide evidence that these Tbr2-positive progenitors are 

indeed generated in these cultures by retroviral transduction shortly after preparation.  

The physiological maturation and integration of glutamatergic olfactory cells is 

supported by the expression of the immediate-early gene c-fos, a member of a family of 

transcription factors that are rapidly regulated by neuronal activity (S. S. Magavi et al., 

2005). Detection of c-fos has previously been used to demonstrate integration of 

newborn neurons in the adult dentate gyrus (S. Jessberger et al., 2007) and the olfactory 

bulb (K. M. Guthrie et al., 1993; S. S. Magavi et al., 2005). In the olfactory bulb, c-fos 

and other immediate-early genes are specifically expressed in neurons and reflect with 

fidelity the pattern of neuronal activity (S. S. Magavi et al., 2005). Neuronal activity in 
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the olfactory bulb measured by electrophysiological as well as optical imaging 

techniques produces a similar pattern as immediate early gene expression in the 

olfactory bulb (D. A. Wilson and M. Leon, 1988; M. Meister and T. Bonhoeffer, 2001; 

S. S. Magavi et al., 2005). The expression of c-fos in the BrdU labelled vGluT2-

positive olfactory neurons therefore strongly supports a functional integration of these 

newborn glutamatergic neurons into the neuronal network several weeks after their 

birth. Consistent with their glutamatergic identity these cells do not express 

GABAergic neuron markers. Thus, we conclude that vGluT2 expressing neurons are 

truly glutamatergic neurons rather than exhibiting a mixed transmitter phenotype like 

dopaminergic - GABAergic periglomerular neurons. 

5.3.2.3 Generation of specific glutamatergic subtypes at embryonic and adult stages 

Glutamatergic neurons in the olfactory bulb comprise several sets of projection 

neurons, amongst them are mitral and tufted cells, and several classes of glutamatergic 

interneurons in the external plexiform layer and glomerular layer, such as short axon 

cells and external tufted cells or tufted interneurons (K. Kosaka and T. Kosaka, 2007; 

S. Parrish-Aungst et al., 2007; S. Saino-Saito et al., 2007). Several members of the T-

box transcription factor family, such as Tbr1, Tbr2 and Tbx21 (R. F. Hevner et al., 

2001), are expressed in olfactory bulb projection neurons and interneurons in the 

external plexiform layer and glomerular layer (A. Bulfone et al., 1998; Z. J. Allen, 2nd 

et al., 2007a). Our analysis of Tbr1 and Tbr2 in combination with the expression of the 

vGluT1 & vGluT2 revealed a surprising heterogeneity. A significant proportion of 

vGluT1 and / or vGluT2 expressing cells in the glomerular layer do not express Tbr1 or 

Tbr2, while other vGluT1 or vGluT2 positive cells express these factors. This is not due 

to their recent birthdate, as already three weeks after BrdU incorporation vGluT2 

expressing neurons have down-regulated Tbr1 or Tbr2. In contrast other olfactory 

neurons born during embryonic neurogenesis, e. g. mitral cells, maintain these 

transcription factors. Notably, periglomerular neurons that maintain Tbr1 or Tbr2 

expression are both generated during embryonic neurogenesis what can be 

demonstrated by BrdU labelling at embryonic day E14 (experiments performed by 

Jovica Ninkovic). Given that vGluT2-positive but not vGluT1-positive olfactory 

neurons are adult generated we further tested if the embryonically generated vGluT2 or 

vGluT1 positive population would remain constant over time or decrease with age. We 

injected BrdU at embryonic day E 14 and sacrificed animals at postnatal day P16 or 
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P60. Consistent with the notion that vGluT2 expressing neurons generated in the 

embryo become replaced by adult generated ones, the proportion of vGluT2-positive 

cells labelled with BrdU at E14 declined whereas the vGluT1 expressing population 

remained constant between P16 and P60, supporting the view that the vGluT1-positive 

population is entirely established at embryogenesis and not altered by adult 

neurogenesis (experiment performed by Jovica Ninkovic). Thus, some olfactory 

neurons differ in their expression of either vGluT1 or vGluT2. Notably, mitral cells 

express both vGluT1 and vGluT2. Amongst these different types only the vGlut2-

expressing neurons (not co-expressing Tbr1 or 2) located in the glomerular layer, but 

not those in the external plexiform layer, were generated in the adult subependymal 

zone, while the generation of most other subtypes of glutamatergic neurons in the 

olfactory bulb is restricted to embryonic development. This specificity has also been 

observed for the GABAergic interneurons with only some of them continuing to be 

newly generated life-long while other subtypes are exclusively generated at embryonic 

stages (D. C. Lagace et al., 2007; J. Ninkovic et al., 2007; R. Batista-Brito et al., 2008; 

I. Imayoshi et al., 2008).  

5.3.2.4 Function of glutamatergic periglomerular cells in the adult olfactory bulb 

An exciting question is the functional role of this specific glutamatergic interneuron 

population in the adult olfactory bulb. It has been previously shown that vGluT2 

expression is particularly high in the glomerular layer and besides being present in 

olfactory nerve endings it can be also detected in juxtaglomerular neurons such as 

external tufted neurons (M. M. Gabellec et al., 2007). Thus, the fact that the newly 

added glutamatergic neurons become selectively incorporated into the glomerular layer 

is consistent with their specific choice of vGluT2 expression. The intriguing specificity 

of adult generation of vGluT2 expressing neurons in the glomerular layer prompts the 

suggestion that they perform a specific role in the glomerular neuronal network, the 

first synaptic station of the incoming afferents. Interestingly, synapses using vGluT2 for 

loading synaptic vesicles generally appear to exhibit a higher release probability 

compared to those expressing vGluT1 (G. J. Murphy and J. S. Isaacson, 2003). Since 

periglomerular neurons send their axons into the neighbouring glomeruli one function 

might be to activate nearby glomeruli. For this reason, the neuronal network in the 

glomerular layer is not only composed of inhibiting neurons, but also contains 

excitatory glutamatergic periglomerular neurons. Hence, the newly discovered 
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generation of glutamatergic interneurons in the glomeruli might enhance the complex 

view about the connectivity between neighbouring glomeruli and processing of 

incoming signals from the olfactory sensory neurons. The selective replacement of the 

vGluT2 expressing subtype might suggest that they change the network over time and 

that these glomeruli change their pattern of activation over time.  

Periglomerular neurons are particularly affected by adult neurogenesis and are 

constantly turned over (J. Ninkovic et al., 2007). Furthermore, we could not determine 

so far if the newly generated glutamatergic olfactory neurons belong to type 1 or type 2 

periglomerular neurons. Whereas type 1 periglomerular neurons contact olfactory 

sensory neurons, type 2 establishes synapses mostly with mitral or external tufted cells. 

Notably, some type 2 calretinin+ but GABA immunonegative neurons have been 

identified in the mouse olfactory bulb (K. Kosaka and T. Kosaka, 2007). Amongst the 

periglomerular neurons generated over a period of nine months in adult mice, the 

dopaminergic-GABAergic subpopulation dominates, followed by a prominent 

contribution of calretinin+ neurons (J. Ninkovic et al., 2007). However, about 5 % of 

adult generated periglomerular neurons were marker-negative for calbindin, calretinin, 

GABA, and tyrosine hydroxylase (J. Ninkovic et al., 2007) and hence may correspond 

to the newly generated vGluT2 expressing population described here.  

Additionally, adult generated neurons respond in a different manner to odour stimuli 

than embryonic generated neurons. Newly generated neurons are most responsive to 

novel odours soon after their synaptic integration into the olfactory network. Moreover, 

their learning/habituation paradigms are different, with the adult generated neurons 

rather enhancing their activity upon repetitive stimulation while the embryonic 

generated neurons decrease their response (S. S. Magavi et al., 2005).  

These considerations further highlight the distinct contribution that each of these 

neuronal subtypes makes to the neuronal network, not only due to the specific 

generation of subpopulation of interneuron during adult neurogenesis but also due to 

their different turn-over and functional activity.  

5.4 Regionalization of the adult subependymal zone and neuronal 
subtype specification 

Recent evidence indicates that the subependymal zone in adult mice is regionalized. 

Stem cells of the rostral migratory stream produce a substantial number of 

periglomerular dopaminergic neurons (M. A. Hack et al., 2005; M. Alonso et al., 2008; 
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J. G. Mendoza-Torreblanca et al., 2008); Cre-mediated fate mapping with reporter lines 

demonstrate that the adult subependymal zone contains stem cells derived from 

multiple regions of the embryonic neuroepithelium (medial and lateral ganglionic 

eminence, and cortex) and generate distinct subtypes (calbindin, calretinin, and tyrosine 

hydroxylase) of olfactory interneurons in different proportions (M. Kohwi et al., 2007a; 

K. M. Young et al., 2007); especially Emx1-Cre lines demonstrated the participation of 

the dorsal wall of the lateral ventricle that generates tyrosine hydroxylase and calretinin 

expressing periglomerular neurons, however, no calbindin-positive cells derived from 

Emx1-Cre could be observed (K. M. Young et al., 2007); superficial and deep granule 

neurons are generated from two different pools of neural stem cells residing in rostral 

and caudal regions of the subpependymal zone (W. Kelsch et al., 2007); and a detailed 

analysis of the progeny of neural stem cells along the whole ventricular rostro-caudal 

axis demonstrated that stem cells in different locations give rise to distinct 

subpopulations of olfactory interneurons (F. T. Merkle et al., 2007). Consistent with the 

idea of regionalization, neural stem cells produce the specific progeny characteristic for 

their region of origin even when they were heterotopically grafted in other areas of the 

subependymal zone or grown in culture (W. Kelsch et al., 2007; F. T. Merkle et al., 

2007). These data suggest that adult neural stem cells are restricted in their potential 

and are only able to generate specific types of neurons (H. Simon et al., 1995). Taken 

together, these reports show the regionalized generation of distinct olfactory 

interneuron populations produced from fate restricted neural stem cell pools. However, 

the subependymal zone was so far still believed to generate nearly exclusively 

GABAergic interneurons with a small population of Calretinin-positive periglomerular 

neurons that were GABA-immunonegative (K. Kosaka and T. Kosaka, 2007; P. 

Panzanelli et al., 2007; S. Parrish-Aungst et al., 2007).  

Notably, when we cultured the dorsal and ventral wall separately, I observed an 

enrichment of Tbr2-positive progenitors only in the dorsal wall derived cultures. Thus, 

Tbr2 expressing progenitors are derived from dorsal neural stem cells. Furthermore, 

this excludes the alternative that Tbr2-positive progenitors are generated in ventral 

regions and up-regulate Tbr2 during migration to dorsal-rostral regions of the 

subependymal zone. Thus, our in vitro and in vivo data demonstrate the adult 

subependymal zone as a novel source for adult generated glutamatergic olfactory 

neurons.  
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In my studies I now identified a Dlx-dependent lineage arising from ventral regions of 

the adult subependymal zone which expresses Dlx and Pax6 and a novel dorsal 

subependymal progenitor pool that undergoes the same transcription factor sequence 

that characterizes the specification of many glutamatergic subtypes throughout the 

brain, e. g. cortical and cerebellar neurogenesis (R. F. Hevner et al., 2006): Pax6  

Neurogenin2  Tbr2  Tbr1. Pax6 is coexpressed in most Neurogenin2 or Tbr2 

expressing cells and Pax6 is also expressed in some Dlx-positive cells in the 

subependymal zone. Pax6 and Tbr2 expressing cells partially colocalize with Mash1, a 

transcription factor present in progenitor cells, whereas hardly any Tbr1 expressing cell 

was positive for Mash1. Additionally, after a short BrdU pulse, I observed only 

Tbr2/BrdU double-positive cells. However, three days after the BrdU pulse we found 

Tbr1/BrdU+ cells suggesting that these are the immediate progeny of Tbr2-expressing 

progenitors.  

My findings highlight that neural stem cells rather than being plastic and homogenous, 

produce only a specific type of neuron according to their developmental origin. My 

data are consistent with previous reports which suggest that the dorsal wall of the 

subependymal zone generate olfactory interneurons and contributes to adult olfactory 

neurogenesis (R. E. Ventura and J. E. Goldman, 2007; K. M. Young et al., 2007; S. 

Willaime-Morawek and D. van der Kooy, 2008). However none of these studies 

reported that neural stem cells of the dorsal wall would generate glutamatergic progeny. 

5.4.1 The role of Pax6 and Mash1 in neural lineages arising from the 
subependymal zone 

According to the developmental origin of dorsal subependymal neural stem cells we 

discovered Tbr1 & Tbr2, and Neurogenin2 expressing cells in this neurogenic niche. 

We demonstrated immunofluorescence for Tbr1 and Tbr2, and secondly took advantage 

of Tbr2BAC-GFP mice for fate mapping analysis of Tbr2-expressing cells. We could also 

detect Neurogenin2 protein and GFP in Ngn2+/GFP mice, and most of these Ngn2-GFP 

expressing cells colocalized with Tbr2 or Tbr1 protein (collaboration with Olivier 

Raineteau). Notably, Tbr1 and Tbr2 both colocalized with Pax6 in the dorsal 

supbependymal zone and rostral migratory stream. This data not only support the 

concept of regionalization, but also suggest the persistence of an unkown progenitor 

pool. Furthermore, this lineage is derived from a Pax6 expressing progenitor state. 

Notably, Pax6 and Mash1 colocalize and Mash1 is also present at early progenitor 
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stages. Interestingly, also ventral derived lineages in the adult subependymal zone are 

regulated by Pax6 and are furthermore defined by the presence of Dlx1 & Dlx2. 

Interestingly, during embryonic development Pax6 and Dlx are also shared in a lineage 

(G. S. Mastick and G. L. Andrews, 2001). In contrast Pax6-positive progenitors arising 

from dorsal regions express sequentially Neurogenin2, Tbr2, and Tbr1 (Fig. 58). 

Moreover, Pax6 is crucial for adult neurogenesis since loss-off-function experiments 

demonstrated a block into the neuronal lineage progression (M. A. Hack et al., 2004; 

M. A. Hack et al., 2005). During embryonic neurogenesis Pax6 is present in radial glial 

cells and governs the generation of cortical neurons whereas it is present only at low 

levels in the lateral ganglionic eminence (M. Gotz et al., 1998; N. Heins et al., 2002; P. 

Malatesta et al., 2003; T. T. Kroll and D. D. O'Leary, 2005). The expression of Pax6 

laregely restricted to dorsal regions in the adult subependymal zone reflects its 

embryonic expression and supports the regionalization of the adult neurogenic niche. 

However, the direct interaction of Dlx transcription factors and Pax6 in the ventral 

subependymal zone and rostral migratory stream exhibits a difference to the embryonic 

telencephalon where Pax6 is exclusively expressed in dorsal regions (M. Gotz et al., 

1998; N. Heins et al., 2002; C. Englund et al., 2005). This developmental 

regionalization is further maintained by the expression of Dlx transcription factor that is 

predominantly present in ventral regions of the adult subependymal zone. According to 

their developmental regionalization Dlx transcription factors never colocalized with 

Tbr1 (Fig. 42). This data suggest that there are at least two different lineages arising 

from Pax6 expressing progenitors, a larger defined by Pax6 and Dlx expression and a 

smaller lineage defined by the subsequent appearance of the transcription factor Pax6, 

Neurogenin2 and Tbr2 (Fig. 58).  

Pax6-positive cells in the subependymal zone can be specified towards a specific 

neuronal lineage at the transit-amplifying progenitor state, or neural stem cells are 

determined to generate specific progeny depending on their location. My data suggest 

that neural stem cells in different regions generate specific lineages, one expressing 

Pax6 and/or Dlx in ventral regions and one determined by the presence of 

Pax6/Tbr1 & Tbr2 in dorsal regions. 
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Fig. 58: Summary of the transcription factor sequence in a subset of neuroblasts derived from the 
rostral-dorsal subependymal zone. 
At least two separate lineages can be distinguished from progenitors expressing Mash1+ and Pax6+: (i) 
the majority expressing transcription factors of the Dlx gene family that are linked with the generation of 
GABAergic olfactory interneurons and are GAD67-positive. Following maturation this lineage forms 
GABAergic periglomerular neurons. (ii) a subpopulation express Neurogenin2, followed by the T-
domain transcription factors Tbr1 and Tbr2 that are GAD67-negative. This subset of periglomerular 
neurons is directed to a glutamatergic fate and express vGluT upon maturation in the olfactory bulb. PGN 
= periglomerular neuron 
 

Interestingly, the bHLH transcription factor Mash1 is coexpressed with Pax6 in transi-

amplifying progenitors giving rise to neuronal lineages. The ventrally arising lineage 

expresses besides Pax6 and Dlx additionally Mash1, whereas the dorsal Pax6 derived 

lineage would co-expess Mash1 at early stages, and later on Neurogenin2 and Tbr2. 

This suggests that Pax6 / Mash1-positive transit-amplifying precursors can give rise to 

both GABA and glutamatergic lineages. This may further imply that Pax6 / Mash1-

expressing transit-amplifying progenitors may be able to generate different sets of 

neurons, comprising both GABAergic and glutamatergic neurons. Alternatively these 

two transcription factors may be shared between different lineages - like in 

development (H. Toresson et al., 2000) - that are distinct right from the start (Fig. 58), 

as suggested recently (F. T. Merkle et al., 2007).  

In the ventral embryonic telencephalon Mash1 in combination with Dlx1 & Dlx2 

regulate Notch signaling (K. Yun et al., 2002). Whereas Mash1 is necessary to maintain 

Notch signaling, Dlx transcription factors down-regulate Notch signaling and promote 

lineage progression. Mash1 and Dlx1 & Dlx2 are both expressed in transit-amplifying 
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progenitors in the subependymal zone. As soon as these progenitors progress into the 

neuronal lineage (DCX+), Mash1 is down-regulated and we hardly detected any 

Mash1+/Dlx+/DCX+ neuroblast. Consistently Mash1 expression is less frequent upon 

retroviral over-expression of Dlx2 in the adult subependymal zone which promotes 

neuroblast formation. This is consistent with the down-regulation of Mash1 upon 

maturation and maintenance of Dlx2 in ventral embryonic progenitors (K. Yun et al., 

2002). Furthermore Notch signaling regulates stem cell numbers of the subependymal 

zone (T. O. Alexson et al., 2006; A. Androutsellis-Theotokis et al., 2006; J. J. Breunig 

et al., 2007) and Mash1 might be necessary to keep Notch signaling active in 

progenitors of the adult subependymal zone.  

Besides the neuronal lineages, Mash1 protein is also present in Olig2-positive transit-

amplifying precursors giving rise to oligodendrocytes (C. M. Parras et al., 2004; M. A. 

Hack et al., 2005). In Mash1 mutants both neurons and oligodendrocytes in 

subependymal zone derived neurosphere are decreased in number (C. M. Parras et al., 

2004). Thus Mash1 specifies also non-neuronal cell types arising from the 

subependymal zone and may exert a more generic function which is required at a 

similar step in neuronal and oligodendrocyte lineages.  

5.5 Neurogenic potential in vitro – plasticity of progenitors 

5.5.1 In vitro models for studying the behaviour of adult neural stem cells 

In order to study neural stem cells in vitro, we used the neurosphere assay in which 

cultured cells are expanded in the presence of growth factors, namely epidermal growth 

factor (EGF) and fibroblast growth factor 2 (FGF2). Under these non-adherent 

conditions a small number of cells form neurospheres which can be differentiated in 

neurons, oligodendrocytes, and astrocytes (B. A. Reynolds and S. Weiss, 1992; M. A. 

Hack et al., 2004; B. Berninger et al., 2007; A. Chojnacki and S. Weiss, 2008). 

However, neurospheres are distinct in their behaviour compared to the in vivo situation: 

(i) neurospheres differentiate upon plating predominantly into GFAP+ astrocytes and 

give rise to only a small number of neurons probably due to the treatment with EGF 

and FGF2 (M. B. Luskin, 1993; F. Doetsch et al., 2002); and (ii) they down-regulate 

transcription factors like Dlx which are linked to a neuronal fate and instead up-regulate 

Olig2 (M. A. Hack et al., 2004).  
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Therefore we established a new culture system that mimicks the in vivo situation better 

than the neurosphere assay. Instead of expansion in non-adherent conditions and 

treatment with growth factors, we directly plated the cells after preparation. Retroviral 

transduction demonstrated that these cells generate predominantly neurons, and only 

few astrocytes and oligodencrocytes. Furthermore, retroviral clonal analysis 

demonstrated that only few cells underwent asymmetrical cell divisions and gave rise to 

large clones. More often we observed small pure neuronal clones and only few pure 

non-neuronal clones.  

Taken together, primary non-expanded subependymal cultures may provide an 

alternative model for studying the cell biological processes like cell cycle and 

symmetric or asymmetric cell divisions as compared to the classical neurosphere assay. 

Furthermore, this model may allow important insights into the molecular mechanisms 

underlying cell fate specification. 

5.5.2 Neurogenic potential of Dlx2 in adult subependymal zone derived cultures 

We used both the neurosphere assay and primary subependymal zone cultures to test 

the effects of Dlx2 and Dlx2-Engrailed overexpression. However, since neurosphere 

derived cultures do not express endogenously Dlx transcription factors, we over-

expressed Dlx2-Engrailed in direct plated subependymal zone progenitors. Notably, we 

observed the same ablation of neurogenesis like in vivo. We observed an increase in the 

number of GFAP-positive astrocytes following Dlx2-Engrailed transduction compared 

to the control. Concomitantly less Dlx2-Engrailed transduced cells adopted a neuronal 

fate compared to the control transduced cells. Gain-off-function experiments with Dlx2 

in adult subependymal zone derived neurospheres which hardly express Dlx 

transcription factors endogenously demonstrated the neurogenic potential of Dlx2 

retroviral transduction. Notably, even in non-expanded primary subependymal zone 

progenitors, retroviral over-expression of Dlx2 further promoted the generation of 

neuroblasts compared to the control. However, when I performed the same experiments 

in neurosphere cells using lentiviral vectors that also transduce non-dividing cells I 

observed only a small neurogenic effect. The number of ß-III-Tubulin+ cells was 

increased mostly at the expense of marker negative cells, comprising oligodendrocytes 

and progenitors. This might suggest that oligodendrocyte precursors are easier to 

convert towards a neuronal fate than neurosphere derived GFAP-positive astrocytes. 

Consistently their number is not altered upon lentiviral over-expression of Dlx2. 
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Furthermore, this might also suggest that the differentitation state of a cell is of 

particular importance. Because retroviral vectors transduce exclusively dividing cells, 

the infected cells are during transduction in a less differentiated state and might be 

easier to convert into a neuronal fate.  

Also other transcription factors present in the adult subependymal zone exhibit a 

neurogenic potential, like Pax6 or Neurogenin2. The functional relevance of 

Neurogenin2 expression in the specification of glutamatergic neurons from adult 

subependymal zone cells may be suggested by the fact that over-expression of 

Neurogenin2 in adult derived neurosphere cells is sufficient to up-regulate Tbr1 and 

directs virtually all neurons towards a functional glutamatergic identity (B. Berninger et 

al., 2007). Interestingly, adult neurosphere cells spontaneously generate glutamatergic 

neurons at a low rate providing additional evidence for the notion that the adult 

subependymal zone harbours stem cells that give rise to glutamatergic neurons. 

Furthermore, retroviral transduction of Neurogenin2 in postnatal cortical astrocytes 

cultures exhibited a substantial increase of neurons in these cultures.  

The neurogenic effect of Dlx2 in neurosphere cells supports the conclusion that Dlx2 is 

sufficient to instruct progenitors to acquire a neuronal, GABAergic fate. However, in 

more challenging conditions like transduction of non-dividing neurosphere derived 

cells the potential of Dlx2 is restricted. Interestingly, Neurogenin2 exhibited the same 

neurogenic potential in neurosphere derived cultures but also could convert a 

substantial portion of postnatal astrocytes into a neuronal fate. 

5.6 Hope for endogenous brain repair 
The combinatorial transcription factors codes of adult subependymal zone progenitors 

located at distinct positions to specify distinct neuronal phenotypes bears interesting 

implications for repair. If progenitors or even stem cells are restricted to a specific 

neuronal fate (F. T. Merkle et al., 2007), this may imply that specific subsets can serve 

for repair of only specific types of neurons. Thus, the regionalization of the 

subependymal zone and the discovery of a novel source of progenitors generating 

glutamatergic neurons in the adult may provide a reservoir for cortical repair of such 

neurons, whereas ventral regions would be more suitable for striatal injuries.  

Several lesion models demonstrated the possibility to recruit new neurons from these 

two regions although to low extents (S. S. Magavi et al., 2000; A. Arvidsson et al., 

2002; H. Nakatomi et al., 2002; J. Chen et al., 2004; T. Collin et al., 2005; T. 
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Yamashita et al., 2006). The potential of these regions to contribute to endogenous 

repair may depend on the range of neuronal subtypes they can produce or alternatively 

on the plasticity of progenitors to adopt to a new environment. While earlier 

transplantation studies had proposed a broad potential of neural stem cells in regard to 

the generation of different neuronal subtypes (F. H. Gage, 2000), this view has recently 

been challenged by the demonstration of the existence of distinct stem cells with 

restricted potential regarding subtype specification (F. T. Merkle et al., 2007).  

The endogenous repair of glutamatergic neurons has been demonstrated in different 

lesion models (S. S. Magavi et al., 2000; H. Nakatomi et al., 2002; J. Chen et al., 2004) 

with neurons apparently originating from distinct sources of progenitors. While repair 

of glutamatergic projections neurons in the hippocampus originates from a 

periventricular region overlying the hippocampus (H. Nakatomi et al., 2002), the repair 

of neocortical layer 2, 3 or layer 6 neurons after chlorine e6 induced neocortical cell 

death seems to originate in the subependymal zone at rather rostral positions or 

alternatively local progenitors residing in the neocortex are activated locally (S. S. 

Magavi et al., 2000). To test the recruitment of Tbr-positive progenitors I established 

this lesion model for specific callosal cortical projection neurons. Indeed, using the 

latter model we could demonstrate the emergence of Tbr2+ neuroblasts from the dorso-

rostral subependymal zone into the neocortex. This is precisely the location where 

Tbr2-positive progenitors reside also in the intact brain, suggesting that neuronal cell 

death in the neocortex is able to recruit these progenitors for repair. While these 

progenitors normally generate glutamatergic interneurons of the glomerular layer, at 

least some of them can seemingly be diverted towards a different glutamatergic fate, 

such as the cortical projection neurons (S. S. Magavi et al., 2000; J. Chen et al., 2004). 

Interestingly, the transcription factor code that we observed in the glutamatergic 

progenitors of the adult subependymal zone is identical with the generation of 

glutamatergic cortical pyramidal neurons in neocortical development with Pax6 

preceeding Neurogenin2 followed by Tbr2 and Tbr1 (R. F. Hevner et al., 2006). 

However, glutamatergic olfactory neurons apparently down-regulate Tbr1 upon arrival 

and integration into the olfactory network, whereas deep layer cortical neurons 

maintain Tbr1 expression. This implies that it may take only a few molecular changes 

to redirect these progenitors towards specific subtypes of glutamatergic neurons.  

Notably, injury of striatal projection neurons also prompts the recruitment of neuronal 

progenitors to the generation of DARPP32+, medium spiny GABAergic neurons (A. 
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Arvidsson et al., 2002), a subtype that is normally not generated in the adult forebrain. 

Interestingly, these striatal projection neurons seem to be replaced from progenitors 

streaming out of the ventral subependymal zone, the same region namely the lateral 

ventricular wall where these neurons originate during development (H. Toresson et al., 

2000). Indeed, this is the region of the adult subependymal zone that continues to 

express Dlx transcription factors (M. H. Porteus et al., 1994; F. Doetsch et al., 2002), 

while Pax6+ (M. A. Hack et al., 2005), and even more Neurogenin2+ and Tbr2+ 

progenitors are restricted to the dorsal subependymal zone in adulthood, reminiscent of 

their patterning during development (N. Bertrand et al., 2002).  

Taken together, these data suggest that adult neuronal progenitors are specified towards 

the generation of GABAergic and glutamatergic neurons in a region-specific manner, 

providing distinct reservoirs of progenitor pools for repair of GABAergic and 

glutamatergic neurons respectively. Within their respective transmitter fate these 

progenitors can apparently be endogenously reprogrammed towards the generation of 

other GABAergic neurons, such as the medium spiny neurons (A. Arvidsson et al., 

2002) or glutamatergic projection neurons (S. S. Magavi et al., 2000) upon injury. 

Understanding the molecular code of these distinct subtypes of adult progenitors is 

therefore a major step towards utilizing these neurons for repair of specific types of 

neurons. Indeed, the recent discovery of molecular fate determinants of subsets of 

cortical projection neurons (B. J. Molyneaux et al., 2007) may allow directing this 

novel source of adult progenitors for glutamatergic neurons much more efficiently 

towards the repair of cortical projection neurons. 

Thus, the combinatorial code of different transcription factors activated in adult 

subependymal progenitors located at specific positions allows the generation of highly 

specific subtypes of both GABAergic as well as glutamatergic neurons in the adult 

subependymal neurogenic niche and shows that this regional specificity has profound 

implications for repair.  
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6 Material & Methods 

6.1 Standard Solutions 
 

Para-Formaldehyde (PFA) 4% (1 l):  

PFA was diluted with autoclaved Millipore water from a frozen (-20°C) 20% PFA 

stock in 50 ml aliquots prepared according to the following protocol: 

67 g Na2HPO4 x 2H2O were dissolved in 800 ml water thereby heated up to 60°C 

(temperature control!). 200 g PFA (Sigma) was added and stirred for around 5 minutes, 

until the cloudy solution was homogenous. Around 18 g of NaOH pellets were added 

until complete dissolvent of PFA. The pH was adjusted to 7.4 with 37% HCl.  

Phosphate buffered Saline (PBS) (0.15 M): 

400 g NaCl (1.37 mol/l), 10g KCl (0.02 mol/l), 10 g K2HPO4 (0.015 mol/l), 58.75 g 

Na2HPO4 x 2 H2O (0.066 mol/l) were dissolved in 5 liter millipore water and 

autoclaved in 1l-bottles. This 10x PBS stock was diluted 1:10 with autoclaved 

Millipore water to around 0.15 M 1x PBS. 

Storing solution for vibratome sections (100 ml): 

30 ml Glycerol, 30 ml Ethylenglycol, 30 ml autoclaved H2O, and 10 ml phosphate 

buffer 10x [0.25 M, pH 7.4: NaH2PO4xH20 6.5 g, NaOH 1.5 g up to 40 ml H20]. The 

storing solution was stored in the fridge and can also be sterile filtered to avoid 

contamination.  

Lysis buffer for tail biopsies (10 ml): 

1 ml 1 M Tris HCL pH 8.5, 100 µl 0.5 M EDTA, 200µl 10% SDS, 2 ml 1 M NaCl, 6.6 

ml H2O (autoclaved) are stored together at RT in one solution. Before lysis 100 µl 

Proteinase K (10 mg/ml) was added freshly. 

Tris 10 mM for DNA (1 l): 

1,211 g Trisbase (M=121.1 g/mol) dissolved in 1 liter Millipore water. pH was adjusted 

to 8.0 with HCl.  

Electrophoresis buffer (1 l) for Western Blot: 

30.3 g Trizma, 144 g Glycine, and 10 g SDS are dissolved in 1 liter of water. pH was 

adjusted to 8.45. 



6 Animals 121 

 

Sample buffer for Western Blot: 

2 ml 1 M Tris-HCl pH 8.5, 8 ml 20% SDS, 5 ml Glycerol, 1.6 ml ß-Mercaptoethanol, 

3.4 ml H2O, 50 mg Bromphenolblue. Store aliquots at -20°C. 

TBST for Western Blot: 

100 ml TBS 10x [1 l: 12.1 g TRIS-Base and 87.8 g NaCl are dissolved in 900 ml 

autoclaved water and pH is adjusted with 5 M HCl to pH 8.0. Autoclave.], 10 ml 20% 

Tween [200 ml H2O and 50 ml Tween 20], and 900 ml H2O are mixed. 

6.2 Animals 
The following mouse lines were used for the experiments. All animal procedures were 

performed in accordance to the policies of the use of animals and humans in 

Neuroscience Research, revised and approved by the Society of Neuroscience and the 

state of Bavaria under license number 55.2-1-54-2531-23/04 and license number 55.2-

1-54-2531-144/07. 

 mice (22 − 25 g) were used as wildtype animals at the age of 2 – 3 months. No 

difference was made between genders and both females as well as males were used for 

injections and histology.  

 mice contain the Pax6 gene flanked by loxP sites (R. Ashery-Padan et al., 2000); the 

two loxP sites are located before exon 4 and at an intron between exon 6 and 7, the 

region encoding the amino terminus of Pax6, including the initiatior methionine and 

most of the paired domain (Fig. 37). Mice heterozygous for this genotype were crossed 

with mice homozygous for this genotype; for injections these animals were used at the 

age between 2 − 3 months. 

 mice (T. Mori et al., 2006) express the fusion protein of Cre recombinase with the 

mutated estrogen receptor (ERT2) in the Glast locus (knock-in). When induced with 

tamoxifen (see also tamoxifen induction) the CreER fusion protein translocates to the 

nucleus and cuts out DNA pieces located between two loxP sites. This mouse line was 

crossed with the  (A. Novak et al., 2000) wich contains a Stop signal flanked by loxP 

sites followed by a GFP. Upon Tamoxifen induction and Cre shuttling to the nucleus 

GFP expression is turned on under the pCAGGS promoter.This mouse line was used to 

monitor the progeny of Glast-expressing astrocytes from the subependymal zone. The 

progeny could be monitored by GFP immunohistochemistry; the Glast::CreERT2 

mouse line was crossed with the Z/EG reporter line on a Pax6 flox/flox and Pax6 flox/wt 

background. To increase the number of triple-transgenic animals the following crossing 
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was performed: Pax6 flox/flox Glast::CreERT2 wt/+ Z/EG mice with Pax6 flox/wt 

Glast::CreERT2 wt/+ Z/EG animals. Mice that were Glast::CreERT2 +/+ were only used 

for matings, but not for experiments. 

 mice (N. Tamamaki et al., 2003) where GFP expression is driven by the expression of 

the GABA synthesising enzyme GAD (Glutamic Acid Decarboxylase) and therefore 

the vast majority of the GABAergic neurons in the adult brain are detectable via GFP 

staining. These mice were kept on a Black6 background and crossed on this 

background.  

Beside GAD67::GFP mice, we used also GAD65-GFP transgenic mice. In this line, a 

6.5 kb segment of the GAD65 gene that includes 5.5 kb of the 5'-upstream region, the 

first two exons and a portion of the third exon and the introns in between drives the 

expression of GFP (G. Lopez-Bendito et al., 2004). The expression of GFP in the 

olfactory bulb was similar to GAD67::GFP mice (data not shown). 

 mice were used in the study of Tbr transcription factors in adult neurogenesis. These 

animals mimick the expression of Tbr2 (G. S. Kwon and A. K. Hadjantonakis, 2007) by 

a bacterial-artificial-chromosome (BAC). The BAC transgene was obtained from the 

GENSAT consortium (D. Geschwind, 2004). The BAC covers around 225 kb of mouse 

genomic DNA, containing sequences spanning about 186 kb upstream and about 18 kb 

downstream of the Eomes (Tbr2) locus. Enhanced green fluorescent protein (EGFP) 

and a polyA sequence were inserted directly upstream of the Eomes coding region 

preserving gene structure while providing a readout of promoter activity. This mouse 

strain was kept on the original pure FVBN background. Tbr2BAC-GFP mice were used to 

visualize Tbr2 protein in the adult dorsal wall of the subependymal zone, rostral 

migratory stream, and olfactory bulb and short term fate mapping of Tbr2-positive 

cells.  

6.2.1 Genotyping 

To maintain colonies and experimental mice, numbered ear clips were put alternating 

the left and right ear: even numbers in the right ear, uneven numbers left ear. Numbers 

ranged from 0001 – 9999 and tail biopsies of less than 5 mm length were taken. The 

tails were transferred to 1.5 ml reaction tubes and incubated in 0.5 ml lysis buffer (see 

standard solutions) over night at 55°C (or at least for 3 hours) in a tail shaker at 55x10 

rpm (Uniequip, Vortemp 56EVC). After lysis hairs and tissue residues were re-moved 

by centrifugation at 10,000 rpm for approximately 5 minutes. The supernatant was 
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transferred to a new 1.5 ml tube and DNA was precipitated by adding 0.5 ml 

Isopropanol, followed by another centrifugation step (max. speed, 10 minutes). The 

supernatant was removed from the pellet and tubes were dried upside down for 1 hour 

at room temperature, or alternatively for 30 min at 37°C until the DNA was completely 

dry and the pellet was transparent. The dry DNA was dissolved in 150 µl 10 mM Tris 

Buffer pH 8, followed by 1 − 2 hours shaking at 55°C.  

The DNA was kept at 4°C until PCRs were performed. In general 1 − 2 µl DNA and 10 

mM dNTPs were used in 30 µl reaction tubes. The final concentrations of primers for 

PCR were 10 pM in the reaction mix. 

6.2.1.1 Pax6 floxed mice 

The genotyping protocol for the Pax6flox/flox and Pax6flox/wt mice was adapted from 

Ashery-Padan et al., 2000.  

Primer sequences:  

Pax1: 5’- GCG GTT GAG TAG CTC AAT TCT A - 3’ 

Pax2: 5’- AGT GGC TTG GAC TCC TCA AGA -3’ 

Pax3: 5’- CGT GTG CCC CAG CTT CCG GT - 3’ 

Reaction mix: 2.5µl 10x buffer, 2.0µl MgCl2, 1.0µl dNTPs, 1µl Primer 1, 2 and 3, 0.3µl 

Taq Polymerase, 14.2µl H2O, 2µl DNA.  

Cycling conditions (PCR program): 

 94°C 2 min 
30 x 94°C 50 sec 
 58°C 50 sec 
 72°C 50 sec 
 72°C 10 min 
Band size: WT 300 bp, Pax6 floxed allel 400 bp 

6.2.1.2 Glast::CreERT2 mice 

The genotyping protocol of the Glast::CreERT2 mice was adapted from Mori et al., 

2006.  

Primer sequences:  

Glast F8 (forward): GAG GCA CTT GGC TAG GCT CTG AGG A 

Glast R3 (reverse): GAG GAG ATC CTG ACC GAT CAG TTG G 
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CER 1 (CreERT2 specific primer): GGT GTA CGG TCA GTA AAT TGG ACA T 

Reaction mix: 3.0 µl 10x buffer, 3.0µl MgCl2, 6µl Q-Solution (Qiagen), 0.6µl dNTPs, 

1µl each Primer, 1.0µl Taq Polymerase, 12.4µl H2O, 1µl DNA.  

Cycling conditions (PCR program): 

 94°C 2 min 
35 x 94°C 20 sec 
 55°C 20 sec 
 72°C 30 sec 
 72°C 5 min 
Band size: WT 700 bp, Glast::CreERT2 recombinant 400 bp 

6.2.1.3 Z/EG reporter, GAD67::GFP, and GAD65-GFP mice 

The genotyping protocol of the GAD67::GFP, GAD65-GFP, and the Z/EG reporter line 

is the same as the primers are designed for detection of DNA encoding for GFP. 

Primer sequences: 

eGFP-F2: CTA CGG CAA GCT GAC CCT GAA GTT C 

eGFP-R2: GCC GAT GGG GGT GTT CTG CTG GTA G 

Reaction mix: 2.5 µl 10x buffer, 1.0µl MgCl2, 0.5µl dNTPs, 1µl each Primer, 0.5µl Taq 

Polymerase, 1.0µl Glycerol, 1.0µl DMSO, 15.5µl H2O, 1µl DNA.  

Cycling conditions (PCR program): 

 94°C 2 min 
35 x 94°C 20 sec 
 55°C 20 sec 
 72°C 30 sec 
 72°C 5 min 
Band size: WT no band, transgenic 400 bp 

6.2.1.4 Tbr BAC-GFP mice 

Genotyping of the TbrBAC-GFP mice was adapted according to the protocol from the 

mutant mouse regional resource center, UC DAVIS (D. Geschwind, 2004; G. S. Kwon 

and A. K. Hadjantonakis, 2007).  

Primer sequences: 

11151 F1: 5’- CCG TCT GCG ATT CGC TAA A - 3’ 

GFP R2: 5’- TAG CGG CTG AAG CAC TGC A - 3’ 
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Reaction mix: 2.5 µl 10x buffer (with 15mM MgCl2), 0.5µl dNTPs, 0.5µl each Primer, 

0.5µl Taq Polymerase, 19.5µl H2O, 1µl DNA.  

Cycling conditions (PCR program): 

 95°C 1 min 
35 x 94°C 20 sec 
 55°C 30 sec 
 72°C 30 sec 
 72°C 5 min 
Band size: WT no band, transgenic 300 bp 

6.2.2 Stereotactic injections 

Microsurgery for viral injections into different regions of the adult murine brain was 

performed according to the following protocol. 

Anaesthesia: 

For viral injections mice were deeply anaesthetised with around 100 µl up to 180µl 

(depending on the body weight) using the following mix: 1.0 ml Ketamin 10%, 

(injected at approximately 100 mg/kg body weight; cp-pharma, Burgdorf, Germany), 

0.25 ml 2% Xylazinhydrochlorid (injected at 5 mg/kg body weight; trade name 

Rompun, Bayer, Leverkusen, Germany) and 2.5 ml 0.9 % NaCl solution (Braun, 

Germany). For injection of the anaesthesia insulin needles (U-100, 1 ml, BD Micro 

Fine, PZN: 324870) were the most suitable device because of their very short and thin 

cannula. After injection of the aneaesthesia mice were checked for pain reactions, i.e. 

pinching the tail or toes. Otherwise 20 – 50 µl anaesthetics were additionally injected. 

Injection: 

Mice were fixed in the stereotactic apparatus (Stoelting) and eyes were kept wet using 

0.9% NaCl solution or Bepanthen Augen- und Nasensalbe. The fur on top of the head 

was disinfected with 70% EtOH and a small midline incision was performed. The skull 

was dried with a Sugi (Kettenbach GmbH, REF 31603) and bregma was searched by 

pressing gently on the skull with forceps. The digital display of the stereotactic 

apparatus was set to zero after an empty glass capillary (Kwik-Fil Borosilicate glass 

capillaries, WPI, 1B150F-4) was set onto bregma and a very small dot with a pen was 

put on the skull under the glass capillary to find the zero point for the following 

injections easier. The capillary was set to the coordinates and a dot was put on the skull 

at the position of the coordinates. A drill (Foredom) was used to open the skull 

cautiously at the position of the dots and I took care that the meninges stayed intact. 
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Coordinates were re-checked, using again the empty glass capillary. A new capillary 

was inserted containing now viral suspension and set again onto bregma. The digital 

display was adjusted to zero again and 0.5 – 1 µl viral suspension was injected at the 

coordinates very slowly (5 – 10 min) using an air system (WPI, picopump, PV 820; 

connected to a Jun-Air compressor). A pulse generator (pulse/delay generator PDG 

204) gave a pulse every 5 or 10 sec and pulses were given at the lowest possible 

pressure and pulse length. After finishing the injection the capillary was retracted 2 

minutes up to 5 minutes. The skin covering the skull was sewed by filaments (Ethicon 

Vicryl, 4-0, SH-1 plus, 21.8 mm 1/2c, 70 cm filament) with at least two stitches. For 

recovery from anaesthesia mice were put in an airing cupboard at 37°C and checked 

every 5 – 10 minutes.  

Coordinates (relative to Bregma): 

SEZ: 0.7 (anterioposterior), 1.2 (mediolateral) and 2.0 - 1.6 (dorsoventral)  

RMS: 2.55 (anterioposterior), 0.82 (mediolateral), 2.9 - 3.0 (dorsoventral) 

Lateral Ventricle: 0.0 (anterioposterior), 0.8 (mediolateral), -2.0 (dorsoventral) 

Dentate Gyrus: -2.0 (anterioposterior), 1.6 (mediolateral), -1.9 (dorsoventral) 

6.3 Virus – vector construction and production 
Retroviral vectors have been used in most experiments in the present study and only in 

very few experiments lentiviral vectors. Therefore, I focus mostly on retroviral vectors 

in the technical part, since the preparation of the virus and the DNA is basically the 

same. 

6.3.1 Viral vectors designed in this study 

Two retroviral backbones have been used in this study: pMXIG and CAG-DsRed. The 

inserts into the pMXIG vector does not contain any internal promoter but its inserts are 

driven directly from the viral LTRs. Transduced pMXIG cells could be easily 

monitored by GFP immunostaining as this vector contains an IRES-GFP cassette.It 

shows therefore very strong transcription of inserted viral DNA and has an early onset 

of protein expression, i. e. GFP could be detected 24 hours after transduction. However, 

LTR sequences are often silenced and I noted a decrease in reporter positive cells 2 – 3 

weeks after transduction.  
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The  contains besides the LTR an internal chicken ß-actin promoter. As this vector is 

also a self-inactivating retroviral vector (SIN-vector) the LTR is inserted further 

upstream into the genome and silencing occurs to a lower extent compared to the 

pMXIG retroviral vector. This issue became more relevant in survival times over 3 

weeks. Furthermore, the CAG-driven vector contains an IRES-DsRED cassette and was 

used in combination with IRES-GFP vectors for double transductions. Transduced cells 

could be monitored by immunostaining for RFP. Both vectors contain furthermore an 

Ampicillin resistence.  

 

Dlx2 viral vectors: 

The complete cDNA of Dlx2 in the pCAX expression plasmid (kind gift of G. Mastick, 

for details see also (G. L. Andrews et al., 2003)) was removed by use of EcoRI and 

XhoI and inserted into the multiple cloning site of pMXIG using again the EcoRI and 

XhoI site (T. Nosaka et al., 1999; M. A. Hack et al., 2005; D. Colak et al., 2008). The 

multiple cloning site of the pMXIG vector is located between the upstream LTR and 

the IRES sequence. Dlx2 cDNA was also inserted into a lentiviral vector encoding for 

IRES-GFP and a ubiquitin promoter. This vector was only used in neurospheres 

experiments to transduce also non-dividing cells. 

The Dlx2 sequence was also inserted into the CAG-driven retroviral vector with IRES 

DsRed. The Dlx2 insert was amplified by PCR using the same primers as for the 

lentiviral vector but flanked by basepairs recognized by the enzymes Sfi and PmeI. 

Primer sequences for Dlx2 for insertion into the lentiviral vector:  

mDlx2f  GAGGATCCACCATGACTGGAGTCTTTGACAGTC 

mDlx2r  GTCCACTCGAGGTTAGAAAATC 

The amplified fragment contains full length Dlx2 cDNA and is 1011 basepairs long.  

PCR Reaction mix: 15 µl 10x buffer, 1.5 µl MgSO4, 2.25 µl dNTPs, 2.25 µl each 

Primer, 1.5 µl Pfx Polymerase, 39.75 µl H2O, 1 µl pure vector DNA. PCR was tested 

with 10 % Enhancer, 5 % Enhancer and no enhancer. The best results were obtained 

with 10 % Enhancer provided with the Polymerase.  

Cycling conditions (PCR program): 
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 94°C 5 min 
30 x 94°C 15 sec 
 63°C 30 sec 
 68°C 70 sec 
 72°C 5 min 
 

 

 

Dlx2-Engrailed retroviral vector: 

The Dlx2-Engrailed fusion-construct was made by subcloning the homeodomain 

coding region of mouse Dlx2 (pCAX-Dlx2) and the Engrailed Repressor Domain 

(pSlax13-EnR; kindly provided by M. Kengaku) by PCR. The amplified fragments 

were then digested with XhoI and XbaI (for Dlx2 homeodomain) and with BamHI and 

XhoI (for Engrailed Repressor domain) and ligated into pCDNA 3.1. The fusion protein 

was digested with BamHI and XbaI and inserted into the retroviral vector pMXIG. 

Dlx2 homeodomain:  

mDlx2HDr  GCTCTAGATTATATCTCGCCGCTTTTCCACATC 

mDlx2HDf  ATCTCGAGAAGGAAGACCTTGAGCCTGAAA 

Primers amplify the cDNA of the homeodomain of Dlx2 and is 246 basepairs long. 

PCR reaction mix: 5µl 10 x buffer, 0.5 µl MgSO4, 0.75 µl dNTPs, 0.75 µl each Primer, 

0.5 µl Pfx Polymerase, 13.25 µl H2O, 0.5 µl pure vector DNA. 
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Cycling conditions (PCR program): 

 94°C 5 min 
30 x 94°C 15 sec 
 61°C 30 sec 
 68°C 30 sec 
 72°C 5 min 
 

Drosophila Engrailed: 

drEngf  GAGGATCCACCATGGCCCTGGAGGATCGCTGCAG 

drEngr  ATCTCGAGGTTCAGGTCCTCCTCGGAGAT 

The amplified fragment contains drosophila Engrailed and is 930 basepairs long.  

PCR Reaction mix: 15 µl 10 x buffer, 1.5 µl MgSO4, 2.25 µl dNTPs, 2.25 µl each 

Primer, 1.5 µl Pfx Polymerase, 39.75 µl H2O, 0.5 µl pure vector DNA. The mastermix 

was divided into three parts and 10 % enhancer, 5 % enhancer or no enhancer was 

added. Best results were obtained with 10 % enhancer. 

Cycling conditions (PCR program): 

 94°C 5 min 
30 x 94°C 15 sec 
 60°C 30 sec 
 68°C 65 sec 
 72°C 5 min 
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6.3.2 DNA preparation for virus production (CsCl-Gradient) 

This method provides very pure DNA and contains only supercoiled plasmid DNA 

while nicked (relaxed circled) DNA is separated. A 250 ml bacterial culture was used.  

Harvest:  

Notably, care was taken that the culture was not overgrown. Optimum was around 90% 

confluency. Spin down bacteria at 5000 x g for 20 minutes and drain off supernatant, 

re-suspend the pellet in 10 ml Qiagen buffer1 with RNAse. After complete re-

suspension, 10 ml Qiagen buffer 2 for lysis was added, tube shaked gently and 

incubated for exactly 5 minutes. 10 ml of cold Qiagen buffer 3 (kept on ice) was addd, 

and mixed well. The mixture was filtered through a folded paper filter pre-wetted with 

clean water into a 50 ml tube (volume around 25 ml, some rest may stay in the filter). 

DNA was precipitated by adding 20 ml Isopropanol to the filtrate (1:1), mixed, and 

followed by a centrifugation step at 8000 x g for 1 hour at 4°C. Supernatant was 

drained off, the white pellet was washed carefully with 70% EtOH and spun again for 

10 minutes. After draining off EtOH the wet pellet was dissolved in 15 ml TE pH 8.0. 

The pH of the solution should be around pH 8 (otherwise adjust pH).  

Phenol extraction (may be omitted): 

The Pour DNA solution was poured into a Phase Lock Heavy 50 ml tube, 7.5 ml of 

phenol equilibrated with TE and 7.5 ml Chloroform was added and shook well. Then 

the solution was spun at 1500 x g at RT for 20 min in a swing out rotor. The upper, 

aequeous phase was poured into a new 50 ml tube and 1.5 ml of 3 M Sodium Acetate 

pH 5.2 and 15 ml Isopropanol was added for DNA precipitation, mixed well and 

centrifuged at 8000 x g for 1 hour at 4°C. The supernatant was drained off and the 

pellet was washed with 70 % EtOH and spun again for 10 minutes. Rests of EtOH were 

removed, the DNA pellet was air-dried until transparency. Dry pellets may be stored at 

-20°C. 

CsCl-gradient preparation and ultracentrifugation:  

The dry pellet was dissolved completely in 8.0 ml TE. The DNA solution (8.0 ml) was 

added to 8.80 g CsCl in a 50 ml tube and the salt was dissolved completely (solution 

will get cold). 800µl of saturated EtBr was added and the solution was mixed until a 

fine precipitate was formed. Samples were warmed up to 37°C for 15 minutes in the 

water bath and centrifuged at full speed in a swing out rotor for 10 minutes so that the 

precipitate was clinged to the surface and the wall of the Falcontube. (Phenolextraction 
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may be omitted but then more precipitate will be formed!). The supernatant was filled 

into an 11.2 ml OptiSeal tube (Beckmann) until the meniscus touched the basis of the 

tube’s neck. Tubes were balanced precisely to 0.0 g for the following 

ultracentrifugation step: 65.000 rpm for 5 hours and 30 minutes at 20°C at maximum 

acceleration and slow brake settings. Start of the centrifuge was delayed so that the spin 

ended at the next working day. After centrifugation finished visible DNA bands were 

immediately extracted. 

Extraction of the EtBr from the rotor tube:  

For harvest of the DNA band, a UV lamp in vertical direction and a dark room are 

required, as well as skin protection (i. e. wear lab coats, nitril gloves and face 

protection).  

When the centrifuge stopped, tubes were removed from the rotor as soon as possible, 

and the tube was fixed in front of the UV-lamp in a holder. The tube’s shoulder was 

pierced with a canula (around 22 G) for ventilation of the tube when DNA-band was 

withdrawed. The tube was put in a fitting clamp, so that the band was visible halfway 

down the tube. Now the second needle (around 22 G) was put into the tube shortly 

under the DNA band. The UV-lamp was used to check the height of the DNA band 

(upper band: nicked DNA, lower band: super-coiled DNA). The needle was connected 

to a 2 ml syringe and as much DNA was sucked as possible by moving the syringe up 

and down. Content of the syringe was transferred into a 15 ml tube. DNA can be stored 

at that stage at room temperature overnight under light protection. 

Removal of EtBr from the DNA: 

An equal volume of n-Butanol saturated with TE was added to each of the DNA + EtBr 

solutions, shook well and spun briefly in a swing out rotor and upper organic phase was 

removed. The extraction was repeated until lower aqueous phase was completely 

colourless (around 5 – 6 times). Then an equal volume of Diethyl-Ether was added, 

solution was mixed and upper, organic phase was removed to remove rests of n-

Butanol from the water phase. The Ether will remove itself during the next steps due to 

room temperature. DNA solutions were transferred into 50 ml tubes and diluted with 2 

volumes of sterile TE. 1/10 new volume of 3 M Sodium-Acetate pH 5.2 and another 2 

volumes of cold 100 % EtOH (stored at -20°C) were added, the solution was mixed and 

incubated on ice for 1 – 2 hours or overnight at 4°C, followed by a centrifugation step 

10000 x g for 1 hour at 4°C. Supernatant was removed and washed with 10 ml cold 

100 % EtOH, spun again at 10000 x g for 10 minutes and again rests of EtOH were 
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removed. The pellet was air-dried until transparency. DNA was dissolved under a tissue 

culture flow in 500 µl of sterile 10 mM Tris-HCl pH 8. Vigorous shaking was avoided! 

DNA solution was transferred into a 1.5 ml reaction tube, eventually followed by 

another spin at full speed for 5 minutes to further remove insoluble particles. Average 

yield: around 1 mg of pure DNA.  

6.3.3 Retroviral preparations 

The retrovirus preparation with GPG293 cells requires only the addition of the 

retroviral expression plasmid, as all other viral genes are integrated in the genome of 

these cells (W. S. Pear et al., 1993; J. K. Yee et al., 1994).  

The lentiviral production follows basically the same protocol. The cell line used for 

lentiviral preparation does not contain any integrated viral DNA; therefore three 

plasmids have to transfected. 

Growing GPG293 cells: 

GPG293 cells were used for preparation of all retroviruses. These cells were kept in 

culture and passaged up to twenty times maximum until a new vial of frozen cells was 

defrosted.  

Cells were kept in DMEM/high glucose/Glutamax (Gibco) containing 10% FCS 

(Invitrogen, heat inactivated at 56°C for 30 min), 5ml/500ml Non-Essential Amino 

Acids (NEAA, 100 x, Gibco), 5ml/500ml Sodium-Pyruvate (100 x, Gibco) and under a 

triple selection of antibiotics (basic medium): 

1 mg/ml penicillin/streptomycin (Gibco, general antibiotic for tissue culture, no specific 

function or repression in GPG293 cells) 

1 mg/ml tetracycline (Sigma, repression of the VSVG production) 

2 mg/ml puromycin (Sigma, selection for the integrated VSVG gene and Tet-repressor 

that regulates VSVG expression) 

0.3 mg/ml G418 (=Geneticin, Gibco, selection for integrated MMLV genome (gag-

pol)).  

The medium above was stored for maximum 6 weeks in the fridge to avoid decay of the 

antibiotics. Cells were passaged two times per week using diluted 0.25% Trypsin (1:5 

with PBS) and splitted at a ratio of 1:3 to 1:5.  
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Retroviral preparation: 

GPG293 cells were expanded in 75cm2 flasks to yield a sufficiently lare number of 

cells for viral packaging. The first step of viral production is to seed the cells in 10-cm 

culture dishes in basic medium without Tetracycline (but all other antibiotics), whereby 

VSVG expression is induced. At least three 10-cm dishes were used for one viral vector 

batch fitting into one ultracentrifuge tube (Beckmann). Otherwise 6 plates were used 

for supernatant for two centrifugatial tubes. The next day after splitting (confluency 80-

90%), cells were washed with Opti-MEM (Gibco) containing 10% FCS (6ml per 10cm-

dish) to remove any antibiotics. Two washing steps were performed to ensure absence 

of antibiotics, followed by an incubation step of around one hour. Transfection of the 

GPG cells was performed with the following mix (W. S. Pear et al., 1993; J. K. Yee et 

al., 1994; M. A. Hack et al., 2004; D. Colak et al., 2008): (for 6 plates) 2 x 50ml tubes 

with 9 ml Opti-MEM (1.5 ml for each 10-cm dish in each tube), with 360 µl 

Lipofectamine 2000 (Invitrogen, 60 µl per 10-cm dish) in one tube, mix. 150 µg of pure 

DNA (24 µg DNA per 10-cm dish) was added to the second tube and mixed. Solutions 

were allowed to settle for 5 minutes at room temperature and checked if the 

Lipofectamin gets slightly cloudy. The content of the Lipofectamin tube was added to 

the DNA containing solution, mixed and incubated 30 minutes until Lipofectamin-

DNA complexes are formed. Then 3 ml of transfection mix was added in a dropwise 

manner per plate. Transfection medium was replaced the next morning by packaging 

medium (DMEM/high glucose/Glutamax, 10% FCS, NEAA, Pyruvate) (10 - 12 ml of 

packaging medium per 10-cm dish).  

The first medium collection (harvest) was performed 48 hours after transfection and a 

second harvest was done three days following transfection. All centrifuge tubes, screw 

caps and rotor buckets were sterilized in pure 100% EtOH. Culture medium was 

collected in falcon tubes and transfected GPG cells were fed with packaging medium. 

The supernatant was filtered through a pre-wetted low-protein binding 0.45 µm low-

protein binding PVDF filter (Millipore) followed by an ultracentrifugation step at 

50000 x g for 90 minutes at 4°C (Beckmann, SW40Ti rotor). Supernatant was removed 

carefully with a Pasteur pipette connected to a vacuum pump. The transparent pellet 

was soaked for at least 3 hours on ice or over night in a TBS-5 buffer [to around 300ml 

ultrapure water add: 20 ml 1 M Tris-HCl, pH 7.8, 10.4 ml 5 M NaCl, 4 ml 1 M KCl, 2 

ml 1 M MgCl2, fill up to 400 ml with ultrapure water and store at 4°C] and re-
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suspended carefully with a 200 µl-pipette. Aliquots of 5 µl or 10 µl were stored at -

80°C.  

 

Determination of retroviral titres: 

Viruses were used for injections when titres were above 106 viral particles per µl. 

Dissociated embryonic day E14 – E15 cells from cortex or striatum were used for 

determination of titres. Transduction was performed 2 hours after plating and at least 6 

wells transduced with the same retroviral batch were prepared with the following 

dilution series: 1 µl of virus was pipetted in the first well and 1 µl was pre-diluted into 

400 µl medium. 200 µl (0.5 µl virus in total), 100 µl (0.25 µl virus in total), 20 µl 

(0.05 µl virus in total), 10 µl (0.025 µl virus in total) and 1 µl (0.0025 µl virus in total) 

of virus containing medium was put into according wells. Cells were cultured for 2 – 3 

days in 24-well plates on PDL coated cover-slips to allow expression of the transgene. 

After fixation for 15 minutes at room temperature in 4 % PFA, cells were processed for 

GFP immunohistochemistry. Colonies were counted. In most cases the 1 µl (0.0025 µl) 

or 10 µl (0.025 µl) transduction of the diluted retrovirus with medium allowed to count 

single colonies and thereby to assess the viral titre.  

6.3.4 Principles of viral targeting of adult neural stem cells 

Tissue specific deletion and over-expression of candidate genes can be performed 

elegantly by the Cre-loxP system where Cre is driven by a cell type specific promoter 

(i. e. GlastCreERT2) and cuts out a candidate gene flanked by loxP sites. However, 

most cells of one type are affected. 

Alternatively, adult neural stem cells can be manipulated in vivo by injected viral 

vectors. Advantageously, the manipulated cells stay in a normal, healthy environment 

and non cell-autonomous effects maybe avoided. The number of transduced cells can 

be varied by varying the titre and thereby cell autonomous effects can be studied upon 

low titre injection. Gain- and loss-off-function experiments can be performed in 

wildtype animals by the use of dominant-negative as well as over-expression constructs 

of the candidate gene. However, mice have to undergo a surgery during injection and a 

very small lesion due to insertion of the glass capillary cannot be avoided. In addition, 

beforehand it is important to study the transduction pattern: distinct viruses show 

specific transduction pattern of cells and depending on which cells should be 

manipulated one should consider the transduction pattern. Here, we compared two 
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species: Retrovirus versus Lentivirus (both VSVG pseudotyped) (for details see chapter 

6.3.4.2 Comparison of Retrovirus versus Lentivirus).  

Moreover, viral vectors can also be modified with cell type specific promoters. 

Consequently, only cells which switch on this promoter will activate the virally inserted 

gene, e. g. the synapsin promoter for neurons, and the GFAP promoter for astrocytes. 

However, this approach is not feasible when cells change their fate upon differentiation: 

i. e. the human GFAP promoter is only active in astrocytes, but during generation of 

TAPs and transition into neuroblast this promoter is switched off and GFP can only be 

followed for a short time.  

Viral vectors can also be altered by different envelope proteins. Here, I tested the 

LCMV (lympho chorio meningitis virus) glycoprotein. I observed upon cortical 

injections a predominant transduction of GFAP-positive astrocytes (Fig. 59). Injection 

into the adult subependymal zone exhibited neuroblasts transduction after 2 - 3 days 

post injection. Therefore this virus could not be used for specific targeting of adult 

neural stem cells as it also targets neuroblasts. Finally, the location of the injection site 

can be altered. Neuroblasts can be transduced rather late upon maturation in the rostral 

migratory stream or early in the lineage directly in the subependymal zone. Notably, 

GFAP+ neural stem cells extend processes between the ependymal cells into the 

ventricular wall. This process extension into the ventricle was taken as an advantage to 

transduce cells by ventricular injections. 

  
Fig. 59: Cortical injection of LCMV pseudotyped lentivral vectors. 
(A) 7 days post injection into the cortex most of the transduced cells exhibits an astroglial identity as 
demonstrated in immunohistochemistry for GFP (green) and GFAP (red). 
(B) Boxed area is shown in higher magnification in (B). Note the activation of GFAP around the 
injection site due to the lesion from the capillary injection. 

A B 
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6.3.4.1 Injection into the lateral ventricle 

As slow dividing neural stem cells extend processes into the ventricle, ventricular 

injections have been performed. To hit the processes of neural stem cells, viral vectors 

were very slowly infused into one ventricle over a time of at least 10 minutes (1-2 µl). 

This experiment was done in young (3 – 4 weeks old C57Bl/6 mice) and adult mice 

(more than 8 weeks). Retroviral injections gave in both cases very poor transduction 

rates due to the slow division of stem cells. As this type of virus transduces only 

dividing cells, no ependymal cells were transduced and hardly any neuroblast could be 

observed in the olfactory bulb. In contrast, Lentiviruses transduced a lot of ependymal 

cells, both in adult and young mice but the number of transduced GFAP+ astrocytes 

decreased dramatically with age of the animals (Fig. 60).  

 
Fig. 60: Ventricular injection of lentiviral vectors into 3 weeks old mice 
(A) Overview of the ventricle, rostral migratory stream and olfactory bulb. Endogenous GFP expression 
is enhanced by immunohistochemistry for GFP (green). Mice survived for one week after injection.  
(B, C) Two examples of transduced neural stem cells: Immunohistochemistry for GFP (green) and GFAP 
(red). Note the transduced green and red fibres. These cells must have contacted the ventricle as they are 
virally transduced and are therefore considered as neural stem cells. Insets show higher magnifications of 
the boxed areas. LV = lateral ventricle, RMS = rostral migratory stream, OB = olfactory bulb. 

RMS 

OB 

 
LV 
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As neural stem cells are amongst the GFAP expressing astrocytes neuroblasts could be 

observed in the olfactory bulb only in young animals. Neural stem cells could be 

transduced until the age of four weeks. In older animals the number of transduced stem 

cells decreased dramatically. This technique maybe applied for the manipulation of 

ependymal cells in adult animals, but not for the manipulation of astrocytes and their 

progeny. Higher viral titres and injection volume may be increased to have better 

transduction rates in adult mice. However, as the total volume of the first and second 

ventricle in the mouse is around 12 µl, injections volumes are limited. We therefore 

injected directly into the subependymal zone in the present studies. 

6.3.4.2 Comparison of Retrovirus versus Lentivirus 

Only Lentiviruses have an integrase complex and are therefore able to cross the nuclear 

membrane and insert their genome into non-dividing cells. As a consequence 

transduction occurs randomly at the injection site in every cell type. Retroviruses lack 

this complex, although they are also crossing the cell membrane as well and enter the 

cytoplasm. If the cell is not dividing within a certain time window, no transduction will 

occur (L. Naldini, 1998).  

 
Fig. 61: Comparison of transduced cells in the SEZ after retro- and lentiviral injection. 
The transduced cells were identified by GFP immunohistochemistry counterstained for the neuroblasts 
specific antigen DCX and the astrocytes specific anitgen GFAP. Cells that were negative for both GFAP 
and DCX were considered to be TAPs or oligodendrocyte precursors. Note the strong increasein the 
number of transduced GFAP+ cells upon lentiviral transduction.  
 

For comparison of Retro- and Lentiviruses GFP encoding vectors were injected into the 

subependymal zone and brains were analyzed two days later. Quantification of the 

transduced cells was performed by immunohistochemistry for GFP and two markers: 

GFAP for astrocytes and DCX for neuroblasts (Fig. 61).  
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Adult neural stem cells are slow dividing, in contrast to their progeny. Transit-

amplifying progenitors and some neuroblasts are fast dividing. Retroviral vectors 

therefore incorporate mostly into these transit-amplifying progenitors and neuroblasts, 

whereas lentiviral vectors transduce mostly GFAP-positive neural stem cells. 

6.4 Time-lapse videoimaging 
Sagittal sections (250 μm) from virally injected adult (2-3 months old) mouse forebrain 

were prepared and maintained at 32°C. Slices were continually superfused (2 ml/min) 

with artificial cerebrospinal fluid (ACSF) containing (in mM): 125 NaCl, 26 NaHCO3, 

10 glucose, 3 KCl, 2 CaCl2, 1.3 MgCl2 and 1.25 Na2HPO4 (bubbled with 95 % O2/5 % 

CO2; pH = 7.4). For time-lapse videoimaging of cell migration images (at least 6-10 z-

sections, with abouth 10μm interval) were acquired every 15 sec for at least 1 hour with 

a BX61WI (Olympus) up-right microscope equipped with CCD camera (CoolSnap 

HQ2) and DG-4 Xenon light source (Sutter Instruments). Multiple z-steps acquisition 

in our time-lapse experiments of cell migration allowed us to follow the same cell in 

different z-planes. 

6.5 Histology and BrdU administration 
For immunohistochemistry, animals were deeply anaesthetized using 5 % 

Chloralhydrate (0.15 ml/10 g bodyweight) and transcardially perfused first with a pre-

flush of PBS followed by 4 % PFA in PBS. Brains were postfixed in 4 % PFA 

overnight and the following day cyroprotected with 30% sucrose solution in PBS and 

after brains had sank down in the sucrose solution they were cut at 20 µm thickness at 

the cryostate. For long term storage cryosections were frozen at -20°C. Alternatively, 

and later the preferred method, vibratome sections were cut at 60-µm thickness. After 

perfusion and postfixation in 4 % PFA overnight (this step can be omitted) brains were 

washed once in PBS, embedded in 4 % agarose in PBS and cut at the same day. For 

long term storage of vibratome sections 1ml of storing solution (see standard solutions) 

and at least 5 sections per 1.5 ml tube were stored at -20°C. Sections can be stored for 

at least 2 years. 

For detection of proliferating cells, the DNA base analogue 5-Bromo-2′-deoxy-Uridine 

(BrdU, Sigma) was injected intraperitoneally (50 mg/kg body weight) one to two hours 

before perfusion to label fast proliferating cells (short pulse). BrdU was dissolved at a 
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concentration of 5 mg/ml in sterile 0.9 % NaCl solution (Braun). Complete 

dissolvement could only be reached by 2 hours at 37°C. Aliquots were stored at -20°C. 

BrdU was given into the drinking water at a concentration of 1mg/ml (sometimes 1 % 

sucrose was added for sweetening the water) and stirred for at least 1 hour at room 

temperature. 50 ml of BrdU-water was sufficient for 2 - 3 mice per cage for 2 - 3 days 

and was exchanged two times per week. BrdU drinking water was stored in the fridge 

for several weeks. 

6.6 Immunohistochemistry 
Primary antibodies (for details see table) were incubated with specimen overnight at 

4°C in 0.1 M PBS containing 0.5 % Triton-X-100 (Sigma) and 10 % normal goat serum 

(Gibco) or 0.5 % Triton-X-100 containing 2 % Bovine Serum Albumin (Sigma).For 

detection of BrdU in proliferating cells, sections were incubated in 2 M HCl for 1 hour 

at room temperature, followed by one incubation step with borate buffer (0.1 M, 10 

min, pH 8.5 – 8.6) for 10 minutes for neutralisation of the pH. Afterwards sections were 

rinsed once in PBS and incubated in the primary α-BrdU-antibody in 0.5 % Triton-X-

100 containing either 10 % NGS or 2 % Bovine Serum Albumin. Following incubation 

in the primary antibody, specimen were washed in PBS 1 – 3 times and incubated in 

solutions containing subclass specific secondary antibodies conjugated to Alexa 488 

(1:1000, Invitrogen), Cy2, Cy3, Cy5 (1:1000, Dianova) or biotin (1:200, Vector 

Laboratories). For stainings of coverslips from the in vitro experiments secondary 

antibodies conjugated to FITC and TRITC were preferred (less background). After 

several washes in PBS specimen were placed by the use of brushes on glass slides and 

dried shortly (in case of the vibratome sections) and embedded with Aqua Polymount 

(Polysciences, 18606).  

Some weakly expressed antigens were detected by high sensitivity tyramide signal 

amplification (Perkin Elmer) that allowed amplification of the signal and simultaneous 

detection of twoproteins by two antibodies generated in the same animal.. After 

incubation of specimen in the primary and biotinylated secondary antibody, specimen 

were washed again and incubated with a horseradish-peroxidase coupled to 

Streptavidin. The colour (green or red) was precipitated on the specimen in an 

amplification buffer for 4 min at a dilution of 1:75. This kit was also used for 

fluorescent in-situ hybridization in combination with a horse-radish peroxidase coupled 

anit-Digoxigenin antibody (Roche).  
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Antigen Full name of antigen company Pretreatment species dilution 

α-activated 
Caspase 

 Promega Tyramide Kit rabbit 1:100 

α-APC Adenomatous polyposis coli Calbiochem  mouse 1:200 

α-BrdU 5-Bromo-2′-deoxy Uridine Abcam 
Biozol 

2M HCl, 
0.1M Borate 
buffer 

rat 1:400 
1:100 

α-
Calbindin 

Calcium binding protein Sigma  mouse IgG1 1:2000 

α-
Calretinin 

Calcium binding protein Chemicon  mouse IgG1 1:2000 

α-c-Fos  Calbiochem   1:2000 

α-Ctip2 Pyramidal neurons in cortex layer 
V 

abcam  rat 1:500 

α-Cux1 Pyramidal neurons in cortex layer 
II and III 

Santa Cruz  rabbit 1:100 

α-DCX Doublecortin Chemicon 
Abcam 

 guineapig 
rabbit 

1:2000 
1:2000 

α-Dlx Distal-Less; homeobox TF Gift of J. Kohtz 2 days ON rabbit 1:750 

α-Dlx2 Distal-Less 2; homeobox TF Chemicon Tyramide Kit rabbit 1:200 

α-GAD65 Glutamic acid decarboxylase 65 Chemicon  mouse 
IgG2a 

1:1000 

α-
GAD65/67 

Glutamic acid decarboxylase 
65/67 

Sigma  rabbit 1:500 

α-GFP Green fluorescent protein Invitrogen 
Aves Lab 

 Rabbit 
chick 

1:500 
1:500 

α-Mash1 Mammalian achate schute 
Homolog 2; bHLH TF 

Gift of D. 
Anderson 

Tyramide Kit mouse IgG1 1:200 

α-NeuN Neuronal nuclei Chemicon  mouse IgG1 1:100 

α-NG2 Chrondoitinsulphate  
glycoprotein 

Chemicon  rabbit 1:200 

α-O4 Oligodendrocyte progenitor 
marker 

Gift of J. Price No Triton mouse IgM 1:50 

α-Olig2 bHLH TF;  Chemicon  rabbit 1:1000 

α-Pax6 Paired domain TF Developmental 
Studies 
Hybridoma Bank 
Chemicon 

 mouse IgG1 
 

rabbit 

1:500 
 

1:500 

α-RFP Red fluorescent protein Chemicon 
Rockland 

 rabbit 1:500 

α-Tbr1 T-box TF 1 Chemicon  rabbit 1:1000 
α-Tbr2 T-box TF2 Chemicon  rabbit 1:1000 

α-TH Tyrosine Hydroxylase Chemicon  mouse 
IgG2a 

1:1000 

α-ß-
IIITubulin 

Neuronal marker Sigma  mouse 
IgG2b 

1:500 

α-vGluT1 vesicular glutamate  
transporter 1 

Synaptic 
Systems 

 rabbit  1:2000 

α-vGluT2 vesicular glutamate  
transporter 2 

Synaptic 
Systems 

 rabbit 1:2000 
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6.7 Quantitative analysis and statistics 
Stainings were analyzed at an Olympus FV1000 or Leica SPE laser-scanning confocal 

microscope with optical sections of maximum 0.5 – 2 µm intervals. Virally transduced 

cells were identified by GFP-immunoreactivity and colocalization with cell type 

specific antigens was quantified either in single optical sections of confocal pictures or 

for each GFP-positive cell at high magnification at the epifluorescence Olympus 

microscope (BX61). Between 5 and 10 sections per animal or between 2 and 5 

coverslips per in vitro experiment were counted until comparable numbers of 

transduced GFP-positive cells per animals or experiments were reached. 

Quantifications of immunohistochemistry in wildtype animals and the number of 

single- or double-positive cells were assessed with single optical sections using the 

Olympus Fluoview program. The total number of cells counted in all (injected) animals 

or experiments is indicated in the text or figure legends. One (injected) animal or 

experiment represents one mean value (n) and standard deviations were calculated 

between animals or experiments (unless indicated otherwise). All error bars are 

presented as standard errors of the mean (± SEM). Group comparisons were made with 

the unpaired t-test and P-values smaller than 0.05 were considered significant, P-values 

smaller than 0.001 were considered highly significant. Significant changes are indicated 

with the following symbols on top of the corresponding diagram bars (*, #, °, +). In 

addition, for group comparisons between three groups (control, Dlx2 and Dlx2-Eng) 

ANOVA tests were performed to test for the significance. 

The formula for the standard deviation of the mean is calculated by:  

 

N = number of samples 

Xi = value of the sample 

r = mean of all samples 

The standard deviation of the mean was calculated by the following formula:  

 

N = number of samples used to sample the mean. 
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The statistical significance for two groups was calculated by the t-Test by the use of 

statistical softwares. P-values smaller than 0.05 were considered significant, P-values 

smaller than 0.001 were considered highly significant. 

 

S2
n = sample variance of x or y calculated by the formula  

 = mean value of all samples of x 

 = mean value of all samples of y 

6.8 In situ hybridization 
In situ hybridization was carried out on cryostate sections of 20µm thickness or 

vibratome sections of 60 µm thickness whith the latter giving better results probably 

due to the thickness that shows stronger signal and better penetration of the in situ 

probe from both sides. In general the in vitro transcription and the in situ hybridization 

were carried out under semi-sterile conditions using sterile pipet tips and gloves. 

An in situ hybridization can be divided into two main steps: (i) generating the anti-

sense RNA specific for the according RNA in the tissue by in vitro transcription 

(described in chapter 6.8.1 In vitro transcription); (ii) hybridization of the RNA probe 

and its detection in the section (described in 6.8.2 In situ hybridization). In general the 

in situ hybridizations were developed in a stain visible in normal light. However, in 

special cases a fluorescent in situ hybridization protocol was applied (see chapter 

6.8.3). 

6.8.1 In vitro transcription: generation of digoxigenin labelled probes 

The cDNA containing ISH plasmid was linearized by use of an enzyme at the end 

cDNA probe insert. Therefore, the RNA polymerase falls off the DNA strand at a 

defined point after transcribing the according cDNA into RNA.  

Linearization of 1 µg DNA was performed with 1 µl of the according enzyme and 2 µl 

10 x buffer in 20 µl final volume. After digestion DNA was purified by use of a column 

(Qiagen) or Phenol extraction (described above).  

Transcription was performed in an 1.5 ml reaction tube by using 1 µg DNA, 2 µl 

digoxigenin labelled dNTPs (Roche), 4 µl 5 x buffer (Stratagene), 1 µl RNAse inhibitor 
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(Roche) and 1 µl of the according RNA Polymerase (T3, T7, Sp6) (Stratagene). The 

mixture was kept for 1 - 2 hour at 37°C and RNA was cleaned over a RNA binding 

column (Qiagen). 1 µl of the resulting RNA probe was examined on a gel for RNA 

presence. All probes were then tested on sections. As a rule of thumb 2 µl per 100 µl 

hybridization buffer was used first until the optimal concentrations were determined. 

6.8.2 In situ hybridization 

For vibratome sections the hybridization was performed in a sterile Eppendorf tube and 

the following steps in 24- or 6-well plates. For cryostate sections the hybridization was 

carried out in chambers containing chamber solution (1 x SSC containing 50 % 

Formamide) to avoid drying of the sections overnight. The amount of hybridization 

buffer was calculated per slide or sections: For a cryostate section 150 µl hybridization 

buffer was used or alternatively 500 µl for 3 - 4 vibratome sections in one reaction tube. 

After adding the probe to the hybrization buffer the mixture was heated up to 74°C for 

4 minutes to separate RNA strands and mixed again. Vibratome sections were added to 

the tube containing the hybrdisation solution or the buffer was put onto the slides with 

the cryostate sections and sterile glass slides (shortly breamed) were carefully put on 

top and the chamber solution was added into the chamber. Hybrization was carried out 

in an oven or water bath at 65°C overnight. 

Hybridization buffer  10 ml 
Formamid 5 ml 
20 x SSC 1.5 ml 
Deinhardt’s solution 50x 200 µl 
50 % Dextran sulfate 2 ml 
t-RNA 500 µl 
H2O Up to 10 ml 
 

The next day the washing solution was pre-warmed in a water bath to 65°C. Cryostate 

sections were moved to a sterile washing chamber, vibratome sections were moved into 

a 6-well plate containing washing solution. Sections were incubated twice for 30 

minutes at 65°C in washing solution followed by two washing steps in 1 x MABT for 

30 minutes at room termperature. 
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Washing solution  50 ml 
20 x SSC 2.5 ml 
10 % Tween 0.5 ml 
Formamide 25 ml 
H2O 22 ml 
 

MABT 5x  2 l 
Maleic acid (500 mM end concentration) 116.08 g 
NaCl (750 mM end concentration) 87.7 g 
10% Tween 20 20 ml 
H2O 1980 ml 
Adjust pH to 7.5 ~ 70 g NaOH 
 

Blocking solution was prepared. For vibratome sections 500 µl per probe was use in a 

24-well plate and for cryostate sections 500 µl per slide was used. The blocking 

solution was added drop wise onto the slides that were put back into the chamber and 

covered by parafilm to avoid drying. Vibratome sections were transferred from a 6-well 

to a 24-well plate and sections were incubated for 1 hour at room temperature. The  

coupled to alkaline phosphatase (Fab Fragments, Roche, 1:2000) was diluted in 

blocking solution meanwhile. The blocking solution on the slides was discarded and 

replaced by antibody containg solution and covered again by parafilm. The vibratome 

sections were transferred to the next well containing the antibody solution. Sections 

were incubated at 4°C over night.  

Blocking solution  10 ml 
MABT 5 x 2 ml 
Bovine Serum 2 ml 
10 % Blocking Reagent 2 ml 
H2O 4 ml 
The next day, sections were washed 4 – 5 times in 1 x MABT buffer and twice in 

freshly prepared AP staining buffer. NBT and BCIP (3.5 µl per ml AP staining buffer) 

(Roche) were added to the AP buffer and put onto the sections until the desired staining 

intensity was reached. Reaction was stopped by washing the section in autoclaved 

water. Sections were processed for immunohistochemistry as described above or 

mounted and coversliped. 
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AP staining buffer  50 ml 
1 M Tris pH 9.5 5 ml 
10 % Tween 20 0.5 ml 
5 M NaCl 1 ml 
1 M MgCl2 2.5 ml 
H2O Up to 50 ml 

6.8.3 Fluorescent in situ hybridization 

Fluorescent ISHs were performed for combination with immunohistochemistry and 

colocalisation at the confocal level. The tyramide Kit (Perkin Elmer) was applied in 

combination with anti-Digoxigenin antibody coupled with horse-radish-peroxidase 

(anit-DIG-POD, Roche, 11 207 733 910).  

 

Prehybridization 

- Cut sections at 75 μm (ISH immediately after cutting is best, storage at 4°C in 4% 

PFA is possible) 

- Remove sections for use and wash in PBS (make with DEPC water) 2 X 5 min 

- Wash briefly (30 seconds) in DEPC water 

- Incubate for 5 min in 2.3 % sodium metaperiodate (dissolve in DEPC water) 

- Wash briefly (30 seconds) in DEPC water 

- Wash in 100 mM Tris pH 7.5 for 5 min 

- Incubate in 1 % sodium borohydrate (dissolved in 100 mM Tris pH 7.5) for 10 min 

- Wash briefly in PBS  

- Wash 2 X 5 min in PBS 

- Incubate 5 min in 4% PFA 

- Wash 2 X 5 min in PBS 

- Incubate in pre-hybridization solution for 1 hour at 55°C 

- Incubate in hybridization mix with specific probes overnight at 55°C 

 

Postbridization 

- Wash 2 X 30 min in 2X SSC, 50 % formamide at 55°C  

- Wash 5 min in 2 X SSC at 55°C 

- Wash 30 min in 0.5 X SSC, 60°C 
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- Wash 30 min in 0.1 X SSC, 60°C 

- Wash 2 X 5 min in Buffer 1 

- Block for 30 min at room temperature in TNB blocking buffer  

- For DIG labeled probes, incubate overnight at 4°C with anti-digoxigenin-HRP (anti-

DIG-POD) diluted 1:100 - 1:250 in TNB buffer 

- Wash 3 X 5 min in TNT buffer 

- Incubate in amplification diluent solution (provided with the Kit) for 10 min 

- Wash 3 x 5 min in TNT buffer 

- For fluorescence visualization, incubate in Streptavidin conjugated fluorophore 

(Texas Red or Rhodamine; NEL721) diluted 1:100 – 1:500 in TNB buffer 

- Wash 6 X 10 min in TNT buffer or overnight 

- Mount and coverslip  

 

Reagents 

NTE:       Prehybridization Solution: 

NaCl 5 M, 50 ml     25 ml Formamide 

Tris pH 8 1M, 5 ml     7.5 ml SSC 20X 

EDTA 0.5M pH8, 1 ml    Water to 50 ml 

Water to 500 ml final volume    

       Buffer 1 (10 X, 1 l): 

Hybridization Mix (10 ml):    60.55 g Trisbase (FW= 121.1g/mol) 

50 x Dendhardt’s solution 200 μl   87.66 g NaCl (FW = 58.44 g/mol) 

t-RNA 500 μl      Volume to 1 L, pH 7.5 

50 % Dextran sulfate 2 ml     

Formamide 5 ml     TNT Wash Buffer: 

SSC 20 X 1.5 ml     0.1 M Tris, pH 7.5 

Water 800 μl      0.15 M NaCl 

       0.3% Triton X-100 

TNB Buffer: 

0.1 M Tris, pH 7.5 
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0.15 M NaCl 

0.5 % (wt/vol) blocking reagent (TSA kit, Perkin Elmer) 

Stir for 1-2 hr at 60°C until fully dissolved. Filter and store at <20 °C. Solution should 

be milky white in colour with no particulates. 

6.9 Tissue culture 
Different approaches have been used in this study: SEZ-derived neurospheres as stem 

cell expansion in vitro with EGF / FGF2; primary subependymal zone culures without 

EGF / FGF2. E13 or E14 cultures for viral tittering and specificity test of the Dlx2-

Engrailed construct.  

6.9.1 Neurosphere cultures 

For culturing neurosphere cells from the adult subependyma we followed the protocol 

described by Johansson et al. (1999). 5 – 6 C57Bl/6 mice were used for one 

preparation. Mice were killed in a CO2 containing chamber; decapitated and whole 

brains were isolated and kept in HBSS containing 10 mM Hepes until dissection. 

Brains were cut at the midline between the two hemispheres and in the middle. The 

medial wall of the ventricle was removed and the lateral wall was isolated by cutting 

beneath the wall with scissors. These tissue pieces were kept in HBSS/Hepes. At the 

end of the preparation 3.4 mg Trypsin (Sigma, T9201) and 3.5 mg Hyaluronidase 

(Sigma, H3884) was weighed in a 15ml-Falcon tube. Aliquots of weighed 

Trypsin/Hyaluronidase were kept at -20°C. 

 

Solutions 1 – 3 are thawn and stored on ice during the tissue preparation: 

Solution 1 [5ml per prep.] Solution 2 [10ml per prep] 

HBSS 10x (Life Tech) [50ml] HBSS 10x (Life Tech) [25ml] 
D-Glucose (Sigma, Stock: 300mg/ml) 
[9ml] 

Sucrose (Sigma) [154g] 

HEPES (Life Tech, 1M) [7.5ml] H2O [up to 500ml] 
H2O (autoclaved, Millipore) [up to 
500ml] 
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Solution 3 [19ml per prep.] 

BSA (Sigma) [20g] 
HEPES (Life Tech, 1M) [10ml] 
EBSS (Gibco, 1X) [up to 500ml] 
 

The dissociation medium was freshly prepared by adding 5 ml of Solution 1 to the 

enzymes in the Falcontube and filter sterilized. Tissue was disscociated for 15 min at 

37°C, gently triturated with a 5 ml pipette for 5 times up-and-down and again 

dissociated for 15 min at 37°C. At the end of the maximal incubation time of 30 

minutes there were still some pieces of tissue visible. 

Tissue was mixed with 5 ml ice cold Solution 3 and cells were passed through a 70 µm-

strainer (Falcon, 2350) to remove bigger pieces of tissue, followed by a centrifugation 

step at 1300 rpm for 5 minutes in a Falcontube. The supernatant was removed and cells 

were resuspended in 10 ml ice cold Solution 2 and centrifugated at 2000 rpm for 

10 minutes. This centrifugation step is similar to a sucrose gradient and gets rid of dead 

cells which are very small in size. The supernatant was again removed and cells were 

resuspended in 2 ml ice cold Solution 3. A new 15 ml tube was filled with 12 ml ice 

cold Solution 3 and 2 ml of the cell suspension was added on top of the new tube, 

followed by another centrifugation step at 1500 rpm for 7 minutes. The supernatant was 

removed and re-suspended in 6 ml Neurosphere media in a small cell culture flask.  

Neurosphere media  50 ml 
DMEM/F12 + Glutamax 47 ml 
B27 supplement  1 ml 
Penicillin/Streptomycin (100x) 0.5 ml 
HEPES (1M) 0.4 ml 
EGF2 (20 µg/ml) 1µl/ml; add fresh 
FGF (10 µg/ml) 1µl/ml; add fresh 
 

Cells were cultured in the presence of 20 ng/ml EGF and 10 ng/ml FGF2 (added every 

second day) under non-adherent conditions to allow for the formation of neurospheres. 

Neurosphere cells were passaged three times. For passaging the neurosphere containing 

medium was collected in a 15 ml tube and centrifuged at 800 rpm for 5 minutes. Most 

of the supernatant was removed spearing 500 µl in which cells were then dissociated 

mechanically. Cells were counted after the first split two little flasks and after the 

second one, big flasks were used.  
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For improvement of the neurosphere growth conditioned medium of previous culture, 

sterile filtered medium was used until plating of the neurospheres on poly-D-lysine 

coated cover slips at a density of 120,000 cells per well (24 well plates) in medium 

containing FGF2. At that stage cells were transduced with pseudotyped retroviruses 

(see also (M. A. Hack et al., 2004)). The next day the medium was replaced by 

Neurobasal supplemented with B27 without any addition of growth factors. 

6.9.2 Non-expanded adult progenitor cultures 

This culture system was newly established in the laboratory in order to better mimic the 

in vivo. Neurospheres are grown under the addition of growth factors like EGF and 

FGF2, and up-regulate transcription factors that are not present in neural stem cells 

under physiological conditions, for example Olig2 (M. A. Hack et al., 2004). In contrast 

subependymal zone primary cultures grown without EGF / FGF2 express transcription 

factors that are down-regulated in neurospheres like transcription factors of the Dlx 

family (Fig. 24).  

Dissociation of the subependymal zone was performed as described above (for details 

see chapter: 6.9.1 Neurosphere cultures). Six mice were prepared and the 

subependymal cells were then plated on six cover-slips coated with poly-D-lysine 

without any addition of EGF and FGF2 in DMEM/F12+Glutamax supplemented 

medium (neurosphere medium) and transduced by viral vectors 2 - 4 hours later. The 

next day the medium was filled up to 1 ml and one day later half of the medium was 

replaced by fresh medium. After 7 days in culture, cells were fixed with 4 % PFA in 

PBS for 15 minutes at room temperature and processed for antibody staining. 

Alternatively, after 4 weeks in culture, electrophysiology was performed and cells were 

fixed afterwards in PFA 4 % and processed for immunohistochemistry. 

6.9.3 E13 embryonic cultures 

The day of the vaginal plug was considered as embryonic day E 0. The timed pregnant 

females were killed and embryos were removed by a caesarean section and the whole 

uterus was isolated. Embryos were decapitated, the brain was isolated from the skull, 

the hemispheres separated, and the meninges removed. The telencephali were dissected 

and put into HBSS/HEPES into a 15ml-Tube, followed by a centrifugation step of 

5 minutes at 1000 rpm. The supernatant was removed off and 2 – 3 ml of 

DMEM/PS/FCS was added. Cortices were dissociated mechanically by the use of a 
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fire-polished Pasteur pipette coated with DMEM/PS/FCS. The cell suspension was 

centrifuged again at 1000 rpm for 5 minutes and suspended in 1 – 3 ml DMEM/PS/FCS 

and counted in a Neubauer chamber. Cells were plated at a density of 300,000 cells per 

well in a volume of 500µl medium. Viral transduction was performed between 2 and 3 

hours after plating and the next day the same volume of differentiation medium 

(DMEM-Glutamax/PS/B27) was added to reduce the serum concentration. The same 

step was done on the day 4 and 6 in vitro. Cells were fixed on the seventh day in vitro 

and processed for immunohistochemistry. 

6.10 Co-Immunoprecipitation and Western Blot 
For one Co-Immunoprecitpitation of Dlx and Pax6 at least 6 olfactory bulbs, 4 cortices 

and 12 subepenymal zones were used. Tissue was shock-frozen in liquid nitrogen or on 

dry ice directly after preparation and may be stored at -80°C. However, best results 

were obtained when the tissue’s lysis was performed on the same day of preparation. 

All steps are performed on ice! 

Buffer B (high salt): 2.0 ml of low salt Buffer A plus 160 µl 5 M NaCl solution in 

water. 

Buffer BP (binding buffer): mixture of Buffer A and Buffer B (3:1.8). Isotonic NaCl 

concentration. 

Buffer A (low salt)  5 ml 

Hepes (1M) 50 µl 
KCl (1M) 50 µl 
H2O 4.9 ml 
Proteinase Inhibitor Cocktail 
- Leupeptin (1mg/ml) 
- Aprotinin (500µg/ml) 
- Pepstatin (1mg/ml in MeOH) 
- Pefablock (100mg/ml) 

 
10 µl 
10 µl 
20 µl 
20 µl 

 

Total lysate: 

Tissue was defrosted on ice and 500 µl Buffer B was added and and the tissue was 

chopped into pieces with a blue pipette tip, followed by pottering to completely break 

tissue pieces. Then the liquid was put back into a 1.5 ml reaction tube on ice and 

incubated for 5 minutes to allow swelling of the cells. Then the cells were sonifiered 

three times every 5 minutes (10 % amplitude), and Igepal 10 % was added to a final 

concentration of 1 % in each sample. Samples were then incubated on ice for 
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45 minutes. Thereafter, samples were centrifuged for 5 minutes at 10.000 rpm at 4°C 

and the supernatant was carefully removed (= total lysate). The pellet contains DNA, 

nuclear membrane and not soluble particles. As the samples are until now in high salt 

the salt concentration has to be reduced to 0.9 % NaCl (isotonic). Thereafter 500 µl 

total lysate received 800 µl buffer A; this mixture contains now all soluble proteins and 

145 mM NaCl.  

 

Preclearing: 

ProteinG agarose beads (Immunoprecipitation Kit, Roche, 11 719 386 001) were 

washed. per sample 70 µl 50 % proteinG-agarose, spun down very shortly, supernatant 

was removed and 200 µl Buffer BP was added. In total 2 – 3 washes were performed. 

After the last washing step, as much of the supernatant was removed as possible. The 

extract was added to the washed beads and incubate for 30 minutes up to one hour in a 

rolling wheel shaker that also turns the Eppendorf tubes upside down. For removal of 

the proteinG agarose beads that bound the unspecific proteins, these were shortly 

centrifuged shortly and the supernatant was transfered to a new 1.5 ml reaction tube. 

These samples are now clean for the following immunoprecipitation. Keep 20 µl of the 

supernatant for Western Blot Gel (= input control). 

 

Co-Immunoprecipitation: 

3 – 5 µl specific antibody (Pax6 mouse IgG1, Developmental Studies Hybridoma Bank, 

2.2 mg/ml; purified by Dr. D. Schulte) per sample was added and the extract was 

incubated for 1 – 2 hours at 4°C in a rolling wheel shaker. ProteinG-agarose beads were 

washed meanwhile as described above: 50 – 100 µl 50 % proteinG-agarose beads per 

sample, depending on the amount of tissue and antibody. Extract containing the 

antibody was added to the beads and incubated overnight on the rolling wheel shaker at 

4°C. The next day samples were spun shortly (1 minute at 10.000 rpm at 4°C) and 

supernatant was transferred to a new tube. The extract contained all proteins that are not 

precipitated under the used conditions (may be analyzed by Western Blot). ProteinG 

agarose beads contain now the precipitated protein complexes. The beads were washed 

at least 4 (!) times with 600 µl Buffer BP and the last time with 1 ml 1 x PBS (+ 

inhibitors). 20 µl aliquots from the first and the last washing step for Western Blot Gel 

(= washing controls) were kept on ice or -20°C. 
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As much supernatant was removed from the beads as possible from the last washing 

step and sample buffer was added (see standard solutions) and heated up to 95°C for 5 

minutes. Probes were placed immediately on ice. Proteins can now be stored at -20°C 

or immediately processed for Western Blot.  

 

Western Blot gel: 

Samples were loaded on SDS-PAGE gels. 

Collecting Gel 4 %, 7.5 ml: 4.575 ml clean H2O, 0.975 ml acryl amide (Biorad), 

1.875 ml gel buffer pH 6.8 (0.5 M Tris pH 6.8), 37.5 µl 20 % SDS, 37.5 µl APS, 7.5 µl 

TEMED (Biorad).  

Separation Gel 12 %, 15 ml (2 gels with 1.5 mm thickness): 5.1 ml clean H2O, 6 ml 

30 % acryl amide, 3.75 ml gel buffer pH 8.8 (1.5 M Tris pH 8.8), 75 µl 20% SDS, 75 µl 

10 % APS, 7.5 µl TEMED. 

The Western Blot Gels run under the following conditions: 1 h 80 V, 2 h 120 V. Gels 

were equilibrated for 30 minutes in Transfer buffer (200 ml MetOH, 100 ml 

electrophoresis buffer (see standard solutions), and 700 ml H20).  

Blot:  

Membranes (PVDF, Biorad) were prewetted with MetOH, which was replaced stepwise 

by transfer buffer. Blot was performed in semi-dry conditions (Panther, Platin): 

320 mA per gel / 15 V limited, 45 minutes. Immediately after the end of the blot PVDF 

membranes were washed three times for 5 minutes in 1 x TBST (see standard 

solutions). 

Detection: 

Membranes were prepared for antibody staining by blocking in 1 x TBST containing 

5 % milk powder (Biorad) for 1 hour at room temperature. The primary antibody Dlx2 

(1:1000 in TBST containing 5 % milk powder) was applied overnight at 4°C followed 

by another washing step the next day for three times 15 minutes in 1 x TBST. The 

secondary HRP labelled antibody (anti-rabbit 1:10.000 in TBST containing 5 % milk 

powder) was applied for two hours at room temperature. Afterwards membranes were 

washed again three times in 1 x TBST for at least 30 minutes. Detection of proteins on 

the membranes was done in a dark chamber using an ECL-Plus detection Kit 

(Amersham). The Kit was prepared (2 ml Solution A; 50 µl Solution B) and the film 
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(Amersham photo paper) was developed with different length of illumination (between 

1 minute and 30 minutes depending on the strength of the light signal). 

6.11 Chlorine e6 induced lesion model of cortical projection neurons 
This lesion model is described in (J. D. Macklis and R. Madison, 1985; R. D. Madison 

and J. D. Macklis, 1993; V. L. Sheen and J. D. Macklis, 1994, 1995; S. S. Magavi et al., 

2000; J. Chen et al., 2004) and was established according to the published protocols. 

The principle of photoacitvated cell death includes injection of chlorine e6 coupled latex 

beads into the cerebral neocortex, retrograde transport through callosal projection 

neurons into the contralateral hemisphere, and illumination with a red laser (wavelength 

633 nm). This leads to the release of oxygen radicals from chlorine e6 and consequently 

to neuronal death.  

 
Fig. 62: Principle of targeted neuronal cell death of callosal projection neurons (adapted from (V. 
L. Sheen and J. D. Macklis, 1995)). 
(A) Latexbeads were coated with chlorine e6 and re-suspended in a small volume. The nanospheres were 
injected into the ipsilateral side of the cortex several times. Nanospheres are taken up by axons of cortical 
projection neurons and transported through the corpus callosum to the contralateral hemisphere as 
depicted by pink cell bodies. Callosal projection neurons are present especially in layer II, III, and V of 
the cortex.  
(B) The contralateral hemisphere was illuminated with a red laser (wave length 633 nm) as depicted in 
the lower scheme. Upon wave-length specific illumination chlorine e6 produces singlet oxygen radicals 
that lead to activation of apoptotic pathways and cell death of callosal projection neurons in layer II, III, 
and V of the cortex.  
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Microsphere coating with chlorine e6 and injection: 

1.79 mg Chlorine e6 (Frontier) was dissolved in 3 ml 0.01 M phosphate buffer [diluted 

from an autoclaved 0.1 M stock solution with autoclaved Millipore water; 0.1 M stock: 

1.76 g of NaH2PO4 x 2 H2O and 6.9 g of Na2HPO4 x 2 H2O (Merck) were dissolved in 

0.5 l millipore water, pH was adjusted to 7.4 and autoclaved]. 5 mg of 1-Ethyl-3-(3-

dimethylaminopropyl)-carbodiimide (M = 191.7 g/mol, MP Biomedicals) was added to 

the chlorine e6 solution and the mixture was kept for 30 minutes on ice (= activation of 

Chlorine e6).  

25 µl of rhodamine latex microspheres (latexbeads, Lumaflour, USA) were diluted in 

150 µl 0.01 M phosphate buffer and 1.5 ml of the activated Chlorine e6 solution was 

added into the tube and shook for 1 hour at RT. The reaction was stopped by the 

addition of 0.1 M glycine buffer [0.1 M glycine buffer pH 8; glycine (Sigma)]. Coated 

beads were centrifuged in an ultracentrifuge at 100,000 g (32,000 rpm; 30 – 40 minutes, 

SW40Ti) and washed at least twice until the supernatant was completely clear with 

0.01 M phosphate buffer. After the last washing step as much of the supernatantas 

possible was removed an the pellet was resuspended and resuspended in 50 µl volume  

0.01 M phosphate buffer (normally no additional buffer was added any more).  

Injection of the coated beads was done as described above. Around 200 nl coated 

latexbeads were injected into the cortex at least five times at the level of bregma and 

laser illumination was performed 5 – 7 days later on the contralateral hemisphere. After 

removal of the skull bone (window of 2 mm diameter) illumination was performed for 

variable length of time [1 – 5 minutes] and at variable intensities [1 mW – 50 mW]. 
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7 Appendix 

7.1 Abbreviations 
APS Ammonium persulfate 
bHLH basic Helix-Loop-Helix 
BrdU 5-Bromo-2′-deoxy-Uridine 
cDNA complementary DNA 
CTX Cortex 
DAPI 4’-6-Diamidino-2-phenylindol 
DCX Doublecortin 
DIV days in vitro 
Dlx2Eng Dlx2 homeodomain cDNA fused to the       

engrailed repressor domain 
DNA Desoxyribonucleic acid 
dNTPs Deoxy-nucleotide-triphposphates 
E embryonic day 
EGF epidermal growth factor 
eng engrailed repressor domain 
EPL external plexiform layer 
EtBr Ethidium Bromide 
EtOH Ethanol 
FGF fibroblast growth factor 
Fig. Figure 
GABA γ-amino-butyric acid 
GAD Glutamic Acid Decarboxylase 
GE ganglionic eminence 
GFAP Glial fibrillary acidic protein 
GFP green fluorescent protein 
GL glomerular layer 
GN granule neuron 
HC Hippocampus 
HRP Horse radish peroxidase 
IRES internal ribosome entry site 
ISH In situ hybridization 
LTR long terminal repeat 
LV lateral ventricle 
MCL mitral cell layer 
MetOH Methanol 
mRNA messenger ribonucleid acid 
n number of samples 
NE neuroepithelium 
OB Olfactory Bulb 
ON overnight 
P postnatal day 
PBS phosphate buffered saline 
PCR polymerase chain reaction 
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PFA paraformaldehyde 
PGN periglomerular neuron 
RFP red fluorescent protein 
RMS rostral migratory stream 
RNA ribonucleic acid 
rpm rounds per minute 
SDS Sodium dodecyl sulfate 
SDS-PAGE SDS – polyacrylamid gel electrophoresis 
SEM standard error of the mean 
SEZ subependymal zone 
STDEV standard deviation 
SVZ Subventricular zone 
TAP transit-amplifying progenitor 
TEMED N,N,N’,N’-tetramethylethylenediamine 
TF transcription factor 
TH Tyrosine Hydroxylase 
TSA tyramid signal amplification 
UTR untranslated region 
VZ Ventricular zone 
WM White matter 
WT wildtype 
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