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Abstract

The purpose of this thesis is to investigate the interplay of anomaly cancellation and
generalized Chern-Simons terms in four-dimensional chiral gauge theory. The inclusion
of generalized Chern-Simons terms and additional axionic couplings allows to relax the
constraints which are otherwise imposed by anomaly-freedom. There has been a lot of recent
interest in the phenomenology of these additional couplings. Possible models that make
use of this are provided by intersecting brane models in orientifold compactifications of the
type II string theories. If the mass of the anomalous U(1)-gauge boson is low enough, these

models predict small signals that might be detectable in near-future collider experiments.

We start with a detailed discussion of generalized Chern-Simons terms and establish the
connection of generalized Chern-Simons terms with the cancellation of anomalies via the
Green-Schwarz mechanism. With this at hand, we investigate the situation in general N’ = 1
supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency
conditions are shown to encode strong constraints on the allowed anomalies for different
types of gauge groups. The results even apply to N' = 1 matter-coupled supergravity

generalizing previously known actions.

In N/ = 1 supersymmetry or in theories without supersymmtry, the rigid symmtries of
the vector and scalar sector are not directly related. The rigid symmetry group is a subset of
the product of the symplectic duality transformations that act on the vector fields and the
isometry group of the scalar manifold of the chiral multiplets. If nontrivial electic/magnetic
duality transformations are involved, the fields before and after such a symmetry operation
are not related by a local field transformation. In order to use the standard procedure for
gauging a rigid symmetry, one therefore first has to switch to a symplectic duality frame
in which the relevant symmetries act by local field transformations only. This obviously
breaks the original duality covariance. Recently an alternative method has been proposed
that allows one to formally maintain the full duality covariance at each step of the gauging
procedure. This method requires the extension of the usual gauge degrees of freedom and

the particle content, which leads to a new formulation of four-dimensional gauge theories.



In one major part of this thesis we are going to display to what extent one has to modify
the existing formalism in order to allow for the cancellation of quantum gauge anomalies
via the Green-Schwarz mechanism. The results might be relevant for certain N' = 1 flux

compactifications with anomalous fermionic spectrum.

At the end of this thesis we comment on a puzzle in the literature on supersymmetric field
theories with massive tensor fields. These occur naturally in the low-energy effective action of
certain IIB orientifold compactifications with fluxes, where they give rise to scalar potentials
that are not of the standard supersymmetry form. The potential contains a term that does
not arise from eliminating an auxiliary field. We will clarify the origin of this term and display
the relation to a standard D-term potential. In an appendix it is explicitly shown how these
low energy effective actions might be connected to the formulation of four-didmensional gauge

theories discussed at earlier stages of this thesis.
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Inhaltsangabe

In dieser Dissertation untersuchen wir die Rolle verallgemeinerte Chern-Simons Terme
in vierdimensionalen chiralen Eichtheorien, genauer, wie Anomlien weggehoben werden
konnen. Unter Einbeziehung von verallgemeinerten Chern-Simons Termen und zusatzlichen
axionischen Kopplungen ist man in der Lage die Bedingungen, die Abwesenheit von
Anomalien garantieren, zu entschirfen. Phanomenologische Modelle, die gerade diese
Art von Kopplungen beinhalten, sind seit einiger Zeit Mittelpunkt reger Untersuchungen.
Mogliche Realisierungen fiir entsprechende Modelle sind zum Beispiel durch sich schneidende
Branen-Modelle in Orientifoldkompaktifizierungen von Typ IT Stringtheorien gegeben. Die
Vorhersagen der phanomenologischen Untersuchungen dieser Modelle konnten sogar in naher
Zukunft in Kollisionsexperimenten nachgepruft werden, falls nur die Masse des anomalen

U(1)-Eichbosons klein genug ist.

Nach einer kurzen Einfithrung in Quantenanomalien diskutieren wir im Detail die verall-
gemeinerten Chern-Simons Terme und erlautern unter welchen Umsténden sie mit Hilfe eines
Mechanismus nach Green und Schwarz zum Wegfall von Anomalien fithren kénnen. Diese
ersten Ergebnisse erlauben eine umfassende Untersuchung der entsprechenden Situation in
allgemeinen N' = 1 supersymmetrischen Feldtheorien mit verallgemeinerten Chern-Simons
Termen. Wie gezeigt wird, konnen die starken Anforderungen, die sich aus der Abwesenheit
von Anomalien unterschiedlicher Eichgruppen ergeben, durch zwei einfache Bedingungen
zum Ausdruck gebracht werden. Dies gilt ebenfalls in N’ = 1 Supergravitationstheorien mit

Kopplungen an massive Felder, bekannte Wirkungen verallgemeinernd.

Globale Symmetrien jener Sektoren, die Vektorfelder und Skalarfelder enthalten, stehen
in N' = 1 Supersymmetrie oder in nicht supersymmetrischen Theorien in keiner direkten
Verbindung. Die globale Symmetriegruppe ist eine Untergruppe des Produkts der symplek-
tischen Dualitatstransformationen, die auf die Vektorfelder wirken und der Isometriegruppe
der skalaren Mannigfaltigkeit der chiralen Multipletts dar. Nichtriviale Transformationen
der elektisch/magnetischen Dualitdt wirken derart auf Felder, dass diese nicht mehr in

einer lokalen Beziehung mit den transformierten Feldern stehen. Wenn man nun eine
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globale Symmetrie standardgeméfl eichen will, dann mufl man erst in einen symplektischen
Dualitatsrahmen wechseln, in dem die Felder uber lokale Transformationen untereinander
in Beziehung stehen. Dies bricht offensichtlich die urspriingliche Dualitatskovarianz. Vor
nicht all zu langer Zeit wurde eine alternative Methode vorgeschlagen, die es erlaubt,
bei jedem Schritt des Eichprozesses die volle formale Dualitatskovarianz zu bewahren.
Diese Methode verlangt eine Erweiterung der gewdhnlichen Eichfreiheitsgrade und die
Einfiihrung neuer Felder. Auf diese Art wird eine neue Formulierung der Eichtheorien in
vier Dimensionen erreicht. In einem der Hauptteile der Dissertation werden wir sehen, wie
genau nun dieser Formalismus modifiziert werden muss, damit auch Quantenanomalien mit
Hilfe des Mechanismus nach Green und Schwarz entfernt werden konnen. Diese Resultate

sind relevant fiir gewisse N' = 1 Flusskompaktifizierungen mit anomalem Fermionspektrum.

Am Ende der Dissertation wenden wir uns einem Punkt zu, der in der Literatur zu super-
symmetrischen Feldtheorien mit massiven Tensorfeldern angemerkt wurde. Diese Theorien
erscheinen fur gewohnlich in den effektiven Niederenergie-Wirkungen gewisser IIB Orien-
tifoldflusskompatifizierungen und erzeugen Potentiale fiir Skalarfelder von aussergewOhnlicher
Form. Diese Potentiale enthalten einen Term, der nicht aus der Elimination eines Hilfsfeldes
resultiert. Wir werden diesen Punkt klaren und auch die Beziehung dieser Potentiale zu
gewOhnlichen D-Term Potentialen aufzeigen. Im Anhang zu dieser Arbeit ist dargestellt, wie
genau diese effektiven Niederenergie-Wirkungen mit einigen der zuvor erwahnten vierdimen-

sionalen Eichtheorien in Zusammenhang stehen.
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1 Introduction

In quantum physics an anomaly is the failure of a symmetry of the classical theory to be a
symmetry of the full quantum theory. In chiral gauge theories an anomaly of the gauge sym-
metry may occur because the chirality of the gauge interactions may cause loop contributions
(e.g. to m-point functions) that violate the symmetries of the classical action. For quantum
gauge theories this is fatal, as such a gauge anomaly leads to a loss of renormalizeability.
To avoid this, one usually has to impose a number of nontrivial constraints on the possible
charges of the chiral fermions in such a way that the anomaly is absent. Without introducing
any new particle or interaction, this amounts to demanding that the anomalous Feynman dia-
grams cancel. The vanishing of all anomalous one-loop diagrams already provides a sufficient

condition for anomaly-freedom to all loop orders [1].

It is possible to relax these constraints if gauge variations of the classical action are able
to cancel some of the anomalous one-loop contributions. In this case the classical action itself
cannot be gauge invariant, of course. In the simplest example, the action contains an axionic
coupling of a scalar a(z) to the field strength of some vector field of the form aF A F, where
a(z) transforms with a shift under some Abelian gauge symmetry with gauge parameter A(z),
i.e. da(r) o« A(z). An Abelian anomaly may be exactly cancelled by the gauge variation of
this axionic coupling, which is proportional to AF A F. This is a simple four-dimensional
example of the Green-Schwarz mechanism [2].

The scalar a(z) is usually called “axion” and its kinetic term has to be of Stiickelberg-type
in order to be gauge invariant, i.e. proportional to (9,a— A,)?. The Stiickelberg coupling im-
plements the shift symmetry via an Abelian gauge boson that gains a mass due to its coupling
to the axion. If the mass of such a gauge boson is low enough and if it has suitable inter-
actions with the Standard Model particles, it may lead to observable signals in near-future
collider experiments. There has recently been quite some interest in the phenomenological
studies of such anomalous Z'-type bosons [3-16]. A natural framework for such models is
provided by intersecting brane models in type II orientifolds' because the four-dimensional

Green-Schwarz mechanism is rather generic in these kind of models [23].

Interestingly, the Green-Schwarz mechanism alone is often not enough to cancel all con-

'"More details on intersecting brane models can be found in, e.g., [17-22] and references therein.



1 INTRODUCTION

tributions from gauge anomalies in these orientifold compactifications [12,13]2. Especially
the cancellation of mixed Abelian anomalies between anomalous and non-anomalous Abelian
factors is in general not achieved by the Green-Schwarz mechanism alone. Instead, one needs
the help of topological terms, so-called generalized Chern-Simons terms, which are not gauge
invariant. In general, it is the combination of the Green-Schwarz mechanism and the gen-
eralized Chern-Simons terms which possibly cancels the complete gauge anomaly. In [12]?
the question was raised, how to generate the generalized Chern-Simons terms from certain
string compactifications. It was shown that the generalized Chern-Simons terms are a generic
feature of the orientifold models we referred to above and may lead to new observable signals
of Z'-bosons. Another possibility was mentioned in [26] where certain flux and generalized
Scherk-Schwarz compactifications [27,28] were used to explain possible origins. There is also
the possibility to obtain N' = 2 supergravity theories with generalized Chern-Simons terms
from ordinary dimensional reduction of certain five dimensional N = 2 supergravity theories

with tensor multiplets* [29].

It should be emphasized that the generalized Chern-Simons terms need not necessarily
appear in combination with the Green-Schwarz mechanism and anomalies. Originally, these
terms were first discovered in extended gauged supergravity theories [32] which are manifestly
free of anomalies due to the usual incompatibility of chiral gauge interactions with extended
supersymmetry in four dimensions. This motivated the discussions in [26-29, 33-39] which
demonstrated how generalized Chern-Simons terms cancel axionic shifts in different classical
setups. In all these cases the absence of gauge anomalies imposes strong restrictions on the

form of possible gauged axionic shift symmetries.

In light of the above mentioned possible phenomenological applications and given their
generic occurence in various string theory compactifications, it is surprising that the general
interplay between the Green-Schwarz mechanism, generalized Chern-Simons terms and ' = 1
supersymmetry was not very well understood until rather recently. It is the purpose of this
thesis to give a systematic account of these issues as they were developed in [88] during the

past years.

2For related phenomenological work, see also [14-16,24, 25]
®The basic ideas are presented by means of a simple toy model in [13].
“These five dimensional ' = 2 supergravity theories are discussed in [30, 31].



The outline of this thesis is as follows. In section 2, we review the most important facts
about quantum anomalies in chiral gauge theories. We will illustrate how the triangle diagram
causes a violation of the conservation law of axial currents. Then we will review how the
anomaly can also be understood by the Jacobian of the path integral measure under axial
transformations. With this at hand we will present the Wess-Zumino consistency condition
and, at the end of section 2, we will shortly comment on some general aspects of anomaly
cancellation.

In section 3, we construct generalized Chern-Simons terms along the lines of [34]. We
will further show that there are no nontrivial generalized Chern-Simons terms for semisimple
gauge groups. This motivates a short discussion of the example of a gauge group with
the structure Abelianxsemisimple. The section ends with a generalization of the method
developed in [34] so as to be able to incorporate anomalies into the formalism.

Section 4 summarizes the most important formulae concerning the gauge sector of global
and local N' = 1 supersymmetry which will be of major concern in the subsequent section 5.

After the introductory sections 2 to 4, we will apply, in section 5, the results of section 3 to
gauged isometries on the target manifold of scalar fields in global and local N' = 1 supersym-
metry and generalize previous work. Therefore, we begin by gauging an Abelian isometry in
global N' = 1 supersymmetry and show when it is necessary to add generalized Chern-Simons
terms to the gauge sector presented in section 4 such that the resulting action is invariant
under the gauged isometries. After having generalized the results to gauged nonabelian
isometries, we will display under which conditions gauge anomalies are possibly cancelled.
Furthermore, we investigate the conservation of supersymmetry in presence of gauged isome-
tries. After this is accomplished, we will extend the results to N’ = 1 supergravity. We will
illustrate the cancellation procedure for a gauge group of the form Abelianxsemisimple.

In section 6, we will show that four-dimensional gauge theories with Green-Schwarz
anomaly cancellation and possible generalized Chern-Simons terms admit a formulation that
is manifestly covariant with respect to electric/magnetic duality transformations. This gen-
eralizes previous work on the symplectically covariant formulation of anomaly-free gauge
theories and may have interesting applications, e.g., for flux compactification with intersect-
ing branes.

In section 7 we discuss the action for a massive tensor multiplet coupled to chiral and
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vector multiplets in the A/ = 1 superfield formalism. We compute the D-term potential and
show that it is equivalent to a potential in standard form explaining an earlier result by [90].
The action can be regarded as the supersymmetrization of a special Abelian gauge of the
theory presented in section 6. The precise connection is illustrated in appendix E.

The conclusion is found in section 8, and notations and conventions, as well as technical

details to several calculations, are summarized in the appendices.



2 Quantum anomalies

A quantum theory is called anomalous if there is an exact symmetry of the classical action
which is not preserved as a symmetry after quantization. When for gauge theories the quan-
tum action is not gauge invariant, then the quantum theory is not renormalizable. The reason
is that so-called Ward-identities, which are absolutely necessary for the renormalization pro-
cedure to be well-defined, do not hold.

Anomalies are not only a possible feature of gauge symmetries, but may also arise for
global symmetries of the classical action. Contrary to quantum gauge theories, in the case
of the global symmetry this is not necessarily a problem but may instead lead to interesting
measurable physical effects as, for example, the decay of the pion into gamma rays shows.
Historically, the observed decay rates in experiments did not match the theoretical predic-
tions. Only once the contribution of the global anomaly was considered, very good agreement
between experiment and theory could be obtained. The anomaly does not spoil renormal-
ization here because no Ward-identity is violated. This example also shows that an anomaly
is not simply a mathematical problem caused by the formalism but has a clear physical in-
terpretation. In fact, an anomaly is a consequence of the non-invariance of the quantum
measure in the path integral formulation as demonstrated by Fujikawa [41]. Nevertheless,
already triangle diagrams show whether a given theory is anomalous or free of anomalies,
which will be reviewed in the next section. In section 2.2, we illustrate how the anomaly
appears in the path integral formalism. The consistent anomaly is explained in section 2.3
and the Wess-Zumino consistency condition is presented. Finally, in section 2.4, we comment

briefly on the cancellation of anomalies.

2.1 Triangle anomaly

Gauge symmetry and renormalization are closely related topics. In gauge theory, the renor-
malization procedure makes use of identities that relate different Green’s functions. These
identities were proven by Ward [42] and Takahashi [43] and are hence called “Ward-Takahashi
identities”. The validity of the Ward-Takahashi identities is not automatic when chiral
fermions are in the theory. More explicitly, one has to check whether there are diagrams

that introduce anomalous terms, preventing the Ward-Takahashi identities from reproduc-
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ing themselves recursively at higher orders in perturbation theory. In a theory with chiral

fermions® the three-point functions

Tou (¢, k1,k2) = (0T[5 (q) Ju(k1) o (k2)]]0) , (2.1)

Ty (g, k1, k2) = (0T [P(q) (k1) (K2)]]0) (2.2)

cause such anomalous terms that violate the Ward-Takahashi identities. Here P(q) represents
the pseudoscalar current which is explicitly given by P = ty5¢). The Feynman graphs that
illustrate (2.1) and (2.2) are, to lowest order, triangle graphs with two external photons and
one axial vector in the first case and a pseudoscalar (if present) for the second case.
Applying the standard Feynman rules to the Feynman diagrams displayed in figure 1 allows

q

é N
P-q A%
P
YV el Yu +
Pk,
ky ky
%
YV AYH +

Figure 1: These diagrams cause contributions that violate explicitly the Ward-Takahashi

X

identities. The graphic is taken from [1].

"Consider a Lagrangian where the fermion is denoted by 1 and couples to a vector field 4, and to an axial
vector field A},. The Lagrangian is given by £(A%, A,) = (97" + Auv" + Al yu75)9, for example. Note that
the given Lagrangian describes also the coupling of a vector field to the electromagnetic current represented

by J* = 1y*4) and of an axial vector field coupling to the axial vector current Jﬁ = Py y59.



2.1 'Triangle anomaly

one to write down the explicit expressions for (2.1) and (2.2), which are given by

d*p i i i
Topla, k1 ks) = —i/ [tr o5 y Yt
o ) @2m)4 | pry —m P (p — @)ty —m Y (p — Ky )Py, —m
+t : i i ] (2.3)
r VY5 v v :
Py —m " (p— @)ty —m " (p— ko)by, —m Y
d*p i i i
T, Q7klak2 = _1/ [tr Y5 v, Yut
2 ) @2m)d | pry —m " (p— @)ty —m " (p— ki) —m
i i i
+tr Y5 v v ] 2.4
Py —m " (p— @)ty —m " (p— ko)ty, —m 24

where ¢ := ki + k2. In order to find the Ward-Takahashi identity for the axial vector, one

has to compute ¢’T),,. A useful identity is

1 1 1 1
s = Y5+ s
Pl —m 7 phyy, — gy, —m Pl —m PPy = Py — m
1 1
+2m (2.5)

PPy —m PR — gy —m
which can be easily proven by multiplying (2.5) from the left side by (p*y, —m) and from
the right side by (p*vy, — ¢"v, —m). With the help of the identity (2.5) one can replace the
first two fractions in (2.3) by the right hand side of (2.5), and it is not difficult to see that

we have
Ty = Ry, +R., +2mT,,, (2.6)

where Rll“, and wa denote integrals that are caused by the first two terms on the right hand

side of (2.5). The axial Ward-Takahashi identity is

Ty = 2mTy,, (2.7)

1

and we see that (2.6) violates (2.7) by the remaining terms R,

and RIQW. These remaining
terms do not vanish because, when written out with the help of Feynman rules, they result
in linearly divergent integrals that lead to ambiguities in the momentum route of the triangle
graph.

The amplitude T}, (2.2) is convergent because the apparent linear and logarithmic diver-
gencies disappear in the actual computation. The calculation is not repeated here but can

be found in the classical lectures on anomalies by Jackiw ( [44,45]) and in any textbook on

quantum field theory, e.g. [46,47]. An additional useful reference is the book of Bertlmann [1].
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The resulting anomalous Ward-Takahashi identity is equivalent to the modified conservation

law for the axial current
5 _
oMJ, = 2mP(z)+ A, (2.8)

where the anomaly, A, is given by

2

A = (:T)QeWp(,F“”Fp” . (2.9)

This is the famous Adler-Bell-Jackiw anomaly [48,49], where F),, is the Abelian field strength
defined by F),, = QB[MA,,}.G

The anomaly (2.9) is independent of the fermion mass and therefore violates the current
conservation of the massless theory.
The Ward-Takahashi identity of the vector currents is fulfilled which is a consequence of a
chosen momentum route.
Observe that attaching new photon lines to one loop diagrams, which is equivalent to turning
the triangle diagram into a quadrangle or in general n-angle diagram, generates an inte-
gral that is at least logarithmically divergent: T),,,.... for fermionic loops with more than
four external photons attached to it. This can be understood heuristically by noting that
the superficial degrees of divergence of the higher order diagrams are less than one and the
momentum-routing ambiguity does not exist for those diagrams. This summarizes the theo-
rem by Adler and Bardeen [50], that states that radiative corrections in higher orders do not

alter (2.8) and, thus, the anomaly is already totally determined by the triangle diagram.

2.2 Path integral and anomaly

Adler and Bardeen proposed in their theorem that the full structure of the chiral anomaly is
given by the triangle anomaly [50] and does not receive contributions from further radiative
corrections. This suggests that the anomaly should even exist beyond perturbation theory.
Fujikawa was the first to recognize that in the path integral formalism the anomaly corre-

sponds to the Jacobian of a 7s-transformation of the quantum measure [41]. One can see

“Here and in the following, [] and () denote, respectively, antisymmetrization and symmetrization with

“strength one”, i.e., [ab] = 1(ab — ba) etc.



2.2 Path integral and anomaly

this as follows: Let there be massless fermionic fields in the theory transforming nontrivially

under chiral gauge transformations as

v - €y,

P = e’ (2.10)
The important steps in Fujikawa’s method are first to define the path integral measure more
accurately by decomposing the spinors ) and 1) into eigenfunctions of the Dirac operator and
second to determine the Jacobian of the path integral measure under chirality transforma-

tions. The Jacobian of infinitesimal transformations will be exactly the anomaly.

The eigenvectors |n) of the operator D are given by:
Dhyuln) = Aln). (2.11)

and the spinors decompose according to

P(x) > an(z|n), (2.12)

n

> (n|z)bn (2.13)

n

()

where the decomposition coefficients a,, and b, are independent Grassmann objects. These
coefficients at hand, we are able to re-express the path integral measures Dy D1 according

to
DyDy = [[DanDb,, (2.14)
n

because the set of eigenvectors |n) is complete and orthonormal, i.e. (n|m) = d,y,. In order
to determine the behaviour of the objects a, and b,, under chiral transformations, we consider

the rotated spinor

P(x) = M(). (2.15)

After decomposing both sides of (2.15) into the eigenvectors |n), and using the orthonormality

of the eigenvectors, one finds that

a;l = chmama
Com = /dw(n|x)ei0(z)75<xm>. (2.16)

9



2 QUANTUM ANOMALIES

The Grassmann measure transforms with the inverse determinant and, therefore, the path
integral measure transforms with [det(Cnm)_l]Q, which has to be determined. Making use
of detC = et"108(C) and considering infinitesimally small transformations, one can decom-
pose the logarithm around the unity matrix. Then, the Jacobian .J of infinitesimal chirality

transformations is given by
J = e M deotn) (2.17)

Observe, that the functional trace tr(7ys) is defined through the eigenvectors tr(ys) :=
S (nlz)ys(zn).” This trace is actually divergent, and we have to regulate the sum. As
the regulator we use the convergent factor exp | — (Aﬁ)?] and take the limit M — oco. Then,
we can manipulate the regulated exponent of (2.17) and after introducing unity operators of

the form [ d*k|k)(k| and by using completeness of the set {|n)}, we find

DH T

An eikm(,}%e—( T )2)€—ik~x .

lim tr( e_(V)Q) = lim A’k
M—00 ™ [ VS (271')4

We decompose the operator [D“*yu] % into an odd piece proportional to [y*,v"] and an even
piece proportional to {y#,y”} = 2¢"” so that we have [D“VM]Q = D'D, + i[’yu,’yy]F“”.
After rescaling the momentum and decomposing the exponential, there is only one term that

survives in the limit M — oo (the term quadratic in the field strength), and we obtain:

- 1
tr(’)’5) = _3278“,/ng“qu0 . (218)
Inserting this back into (2.17) we indeed find the anomaly (2.9), or in other words, the path

integral measure transforms with the Jacobian

J = eiez Jde0@e T B Foy (2.19)

However, as we did not expand the path integral, this result is valid beyond any perturbative
expansion. In the path integral picture the anomaly is explained by the non-invariance of
the path integral measure under chirality transformations. The formal reason for the non-

invariance can be traced back to the functional trace trys, which is singular.

"Note, that tr(vs) is not equal to the y-matrix trace tr(ys) = 0.

10



2.3 Consistent anomaly

2.3 Consistent anomaly

So far we have only considered Abelian symmetries. If we want to generalize the above
concepts to the nonabelian case, then the expression (2.18) will of course no longer represent
the full anomaly. The naive extension of (2.9), in which the field strength is replaced by its
covariant counterpart, is not correct because the contribution of quadrangle diagrams and
pentagon diagrams, though finite, violates the nonabelian structure. The access through
diagrams becomes now more complicated and so let us choose the more convenient way by
means of the path integral. As a first step, we define Green’s functions with the help of the

generating functional, which is given by
Z[A,)] = /Dz/)Dz/) e J 'z (D0 Y+ Audr ) (2.20)

where the gauge fields are treated as external fields and sources for the fermions are ig-
nored. For the proof of renormalizeability it is suitable to use connected Green functions,
but the generating functional Z[A] contains both connected and disconnected diagrams. The

connected Green functions are generated by W[A] defined by
ZIA,)) = e WA, (2.21)

For the anomaly we only need to consider the fermionic part of the theory, so (2.21), given by
(2.20), is really all we need from the full quantum action. Let the gauge group be generated
by T4 satisfying the algebra [T4,Tg] = fap®Tc, where f4g© are the structure constants.

Infinitesimal gauge transformations that act on the action (2.21) are defined by the operators

J
Xa(r) = DSAW
= (0,69 + fas“Af (z)] % . (2.22)
It can be shown that these operators fulfil the algebra given by
Xa(), X6()] = fanCXc(@)i—1y), (2.23)
and that the gauge variation of W[A] is given by
IWIA] = /d4ZEAA(ZE)XA($)W[AM]
— [ dta s @)(DF 4 Deon (2.24)
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2 QUANTUM ANOMALIES

where (j¢)con. = ﬁ [ DD (Ppy*Tep)e” Jd*zL($4.4) i5 the expectation value of the con-
nected current. We can easily see that for an invariant quantum action, dW[A] = 0, the
current is covariantly conserved, (DS AJf)con. = 0. However, if the theory is anomalous, then
the generating functional of connected Green functions satisfies W [A] = A4 A4, and in order

to be consistent with the gauge algebra (2.23), the anomaly has to obey the condition
Xa(®)Ap - Xp(y)As = fap“Acd(z—y), (2.25)

which is the so-called “Wess-Zumino consistency condition” [51]. We can also see that the
naive nonabelian extension of (2.9), where the Abelian field strengths are replaced by their
nonabelian counterparts, is not correct because it violates (2.25).

An explicit solution of (2.25) is given by

1 . 1
Ao = S5 e{Todu(Ad,As + 5 A0 ApAL) (2.26)

which represents exactly Bardeen’s result [52] found from fermion loop computations. This
solution is not unique because one can add local polynomials of the external gauge fields f[A]
to (2.26) and obtain another solution. These local polynomials can be induced, e.g., when the
renormalization procedure is changed. The 2-point Green functions of two vector currents, for
example, have a renormalization ambiguity because their Lorentz invariant extensions to test
functions are not unique [53]. For the quantum action, this means that W[A] = W[A] + f[A]
and the generating functional receives a phase factor Z [A]eif (Al A phase factor, however,
does not affect the transition probability and is not observable. Consequently, we can also
call a theory anomalous, if there does not exist a local polynomial of the external gauge
fields, such that (2.26) is effectively cancelled. Possible local polynomials are given by Chern-
Simons terms or generalized Chern-Simons terms (depending on the dimension). In the
following section we will discuss these topological terms, especially the generalized Chern-

Simons terms because these are of special interest in four dimensions.

2.4 Cancellation of anomalies

Although there are attempts to live with anomalous theories, see for example [54] and [55],
in renormalizable theories, anomalies must not occur. This implies severe restrictions on

the physical content of a theory. In vector-like models all fermions couple symmetrically in

12



2.4 Cancellation of anomalies

both chiral sectors and any potential gauge anomaly in the left-handed sector is cancelled
by the anomaly of the right-handed fermions. In chiral gauge theories, by contrast, anomaly
cancellation is not automatic and the cancellation requires a careful balance of the fermionic
gauge quantum numbers, as, e.g., in the standard model.

Another possibility to cancel anomalies is to introduce a counterterm into the action, with
particles that transform appropriately under gauge transformations such that the anomaly
is compensated. As mentioned in the introduction, a simple Abelian example is given by the

interaction
etP%ia(z) Fpyy Fpg (2.27)
where the scalar, a(x) varies under the gauge symmetry according to
da(z) = iA(x). (2.28)

Then the variation of the interaction (2.27) is able to cancel the Abelian anomaly (2.9).
When the gauge theory is nonabelian then the full consistent anomaly cannot be cancelled
by this mechanism. The Green-Schwarz anomaly cancellation mechanism in 10-dimensional
supergravity and super Yang-Mills theory is a sophisticated generalization of this simple

example, see for example [2] and [56].
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3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS

3 Lie algebra cohomology and generalized Chern-Simons

terms

In generic effective field theories one has scalar field dependent functions appearing in front
of the gauge kinetic terms, i.e. in front of 7#*F,, and 7 AF. Here in general, the nonabelian

field strength two form is defined as
1
FC = dAY - 5fABCAA AAB, (3.1)

Supersymmetric theories, for example, often generalize the gauge sector to incorporate a
nontrivial gauge kinetic function f4p5 that depends on a set of scalar fields, as is further
explained in section 4.1. Compatibility with supersymmetry constrains this function and so,
for instance, in N' = 1 supersymmetry it is required to be a holomorphic function of the
complex scalars of the chiral multiplets.

The Lagrangian will contain a nontrivial 7 A F term when the imaginary part of the
gauge kinetic function is nontrivial. In the literature this term is sometimes referred to as a

“Peccei-Quinn term” and reads
Lpq = ilmfip FAAFE. (3.2)

The interaction given in equation (2.27) actually represents a special case of (3.2) where we
just have a U(1) gauge symmetry (and hence only one index, which may be dropped), and
the gauge kinetic function is given by the axionic scalar a(z), i.e. f=4a(z).

In the remainder, the exterior product A is understood and will no longer be written out
explicitly.

Under the gauge transformation of the connection one-forms A¢ = Agdx”, which read

SA® = DAY :=dA° + fap“A1AE, (3.3)

the field strength two forms (3.1) transform covariantly, i.e. if

SFC = fap®ArFE. (3.4)

Clearly, the Lagrangian (3.2) is invariant under (3.3) if the gauge kinetic function transforms

in the symmetric product of two adjoint representations, i.e. if
otap = 2Mfcatpyp. (3.5)
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More generally, however, there is still the possibility to relax (3.5) according to
0tap = 2A°foatpyp +iCappA", (3.6)

so as to allow for constant shifts in the gauge kinetic function. Here C4p p is a real constant

tensor satisfying the constraints

Ciampp = 0, (3.7)

1
§CAB,DfEFD — Cppefra” = Cpapfrns” = 0. (3.8)

This more general transformation (3.6) can be induced if the scalar fields transform nontriv-
ially under the gauge group and appear in a certain way in f4p, but we will address this later
in more detail.

Obviously, once we allow for these shifts, the Lagrangian (3.2) is no longer invariant under

(3.3) and (3.6). Its variation is instead given by
0Lpq = iCappAPFAFE. (3.9)

If we only consider the classical action, the variation (3.9) can only be cancelled by new terms
added to Lpq, the so called generalized Chern-Simons terms [32,34]. In this section we will
show how a classically gauge invariant action generalizing (3.2) can be constructed by using
the techniques of [34]. In the following subsection we introduce Lie algebra valued forms
C(A, F) and analyze them by means of cohomological techniques. This method allows one
to understand the origin of the constraints (3.7) and (3.8). The constraint (3.7) demands the
forms C(A, F) to be homogeneous in the field strength and the gauge connection separately.
Then, for forms C(A, F) whose coefficients satisfy (3.7) we can identify the constraint (3.8)
as the constraint demanding C(A,F) to be closed with respect to the exterior derivative.
After specifying the transformation properties of the gauge kinetic function, we are able
to construct the gauge invariant extension of the Peccei-Quinn term, which is obtained by
including generalized Chern-Simons terms.

In subsection 3.2 we find that there are no non-trivial generalized Chern-Simons terms
for semisimple gauge groups and present the example of a gauge group that has the form
Abelian xsemisimple in section 3.3. The results of these subsections are discussed in more

detail in appendix A, where the results are proven by methods of Lie algebra cohomology.
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3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS

Finally, in subsection 3.4, we generalize the formalism developed in [34] in order to allow
for forms that do not need to satisfy the constraint (3.7). We will see that the Peccei-Quinn
term and the generalized Chern-Simons term are no longer gauge invariant once we give up
the constraint (3.7). The only possibility to cancel the gauge non-invariance in such a case
is to consider anomalies.

Before we construct the generalized Chern-Simons terms, I would like to give a few com-
ments on ‘ordinary’ Chern-Simons terms [57] that should illustrate the difference between
ordinary and generalized Chern-Simons terms. The construction of ‘ordinary’ Chern-Simons
forms is usually done by means of so called characteristic or invariant polynomials P,,. The
characteristic polynomials P, (F) are symmetric functions of degree m in the field strength
form F and invariant under the action of the gauge symmetry group. Therefore, the charac-
teristic polynomials satisfy P,(F9) = P,(F) where we denoted the gauge transformed field
strength by F9. With the help of the Bianci identity

DF :=dF +[A,F] = 0, (3.10)

it can be proven that the invariant polynomials are closed, i.e. dP,(F) = 0. A theorem by
Chern and Weil states that the cohomology classes of P,(F) do not depend on the choice
of the connection form A and characterize the de Rham cohomology group [58]. Then, the
cohomology classes of invariant polynomials P,(F) of degree n are further characterized by

the Chern-Simons terms Q_1(A, F) which are forms of degree (n — 1), i.e.
Py(F) = dQun-1(A.F) (3.11)

Integrals of characteristic polynomials are topological invariants. Let us consider, for exam-
ple, in four dimensions a characteristic polynomial of the form P,(F) = tr(FF) which is
invariant because of Py(F9) = tr(¢Fg~'gFg~") = tr(FF) = Py(F). Then this characteristic
polynomial leads to the three-dimensional Chern-Simons form Q3(A4,F) = tr[AdA + 3A43%].2
Observe, that Chern-Simons forms are in general odd dimensional while generalized Chern-

Simons forms live in even dimensions as we will see.

®Since the determinant is invariant under the adjoint of the gauge symmetry, i.e. det() = det [g7'()g]
if g represents an element of the gauge group, one can also obtain invariant polynomials with the help of
the determinant. However, the corresponding Chern-Simons forms are not related to the one obtained from

Py(F) = tr(FF) as considered in the example.
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3.1 Generalized Chern-Simons forms

3.1 Generalized Chern-Simons forms

Generalized Chern-Simons terms cannot be constructed from characteristic polynomials be-
cause there are no odd dimensional invariant polynomials in the field strength. To set the

stage we consider a five-form C(A, F) defined as
C(A,F) = CappA°F F", (3.12)

and do not limit ourselves to four spacetime dimensions.

Note the peculiar structure of the indices of the constant tensor C4p p: the index cor-
responding to that carried by the gauge connection is separated from the indices that are
carried by the field strengths by a comma. Therefore, the constant tensor is symmetric in
its first two indices which is also consistent with (3.6). Furthermore, observe that the form
C(A,F) does not represent an invariant or characteristic polynomial as mentioned in the
context of ordinary Chern-Simons terms because C(A,F) depends explicitly on the gauge
connection. There is no problem in generalizing (3.12) to forms of arbitrary degree in A and
F by introducing constant tensors of the form Cy, .. 4, p,..n,,- Nevertheless, here we focus on
the form (3.12), which leads to the gauge invariant generalization of (3.2) in four dimensions.

Using (3.1) and (3.10) we can compute the exterior derivative of (3.12), which leads to
1
dC(A,F) = CappFPF F’ +|Cappfip+ feCor + [EpCapr| APATFAFD .

Comparing this result with the constraints (3.7) and (3.8) shows that these correspond to
demanding that C'(A, F) is homogenous’ and closed, i.e. dC(A,F) = 0. On the other hand,

we can define an algebraic operator

1

(DC)aB,pr = ECAB,DfEDF ~ Corrfma—CaprfBp (3.13)

satisfying D? = 0 because of d?> = 0 (this can also be directly proven from (3.13) by using
the Jacobi identity on the structure constants). Hence, we can say that as d? leads to the
de Rham cohomology, D? = 0 leads to Lie algebra cohomology of forms C(A, F) satisfying
the constraints (3.7) and (3.8). For a closed form C, i.e. if Cyp,p fulfils the equations

?Observe that we call C'(A, F) a homogeneous form, following [34], if dC(A, F) is homogeneous in A and
F separately. The constraint (3.7) is satisfied by homogeneous forms. Homogeneity enables one to define

algebraic operators acting on the coefficients Cap,p of homogeneous forms.

17



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS

(3.7) and (3.8), the equivalence classes of all C' in the cohomology are, for some four-form
Z = ZapFAFPB, given by C' = C + dZ. So if the cohomology class is trivial, then we have
C = dZ and C is d-exact.'© We will see later when this is the case.

At this point it is suitable to discuss the transformation properties of the scalars that
appear in the gauge kinetic function f45. We assume that the scalar fields 2’ transform

under gauge transformation as
520 = AEY(2), (3.14)

where the vector fields'! k4 = k% 0; define a (possibly nonlinear) realization of the gauge

group and satisfy
K0k — kposkly = fapCke. (3.15)

As transformations of the scalars in general induce transformations of the gauge kinetic

function, let us assume that (3.14) induces the transformation (3.6), i.e.,

S(Imfap) = kpd;(Imfap)AP”

= 2fp” [Imfp) | AP + CappA”. (3.16)

Then, in order to make use of the form C(A,F) as defined in (3.12), let us consider the

following Lie algebra-valued form
k3 0;(Tmfa5) AP FAFE. (3.17)

With the help of the Bianchi identity (3.10) and the variation of the gauge kinetic function

(3.16), this can be written as
kL9;(Imfap) APFAFP = —Tmfapd(FAFP) + CappAPFAFE (3.18)
Due to the chain-rule, we furthermore have

d(Imfap)(2)FAFB = 9;,(Imfap)dz? FAFP, (3.19)

10Note that from dZ we can define the action of an algebraic operator on Z4p in total analogy with equation

(3.13) for CaB,p, such that Cap,p = (DZ)ap,p. The algebraic operator (DZ)ap,p is defined as in equation

(A.5), which for the case at hand reads (DZ)ap,p = 2fpa” Zpp.
" These vector fields are not spacetime vector fields, but are vectors on the scalar manifold.
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3.1 Generalized Chern-Simons forms

from which we subtract (3.18) to finally obtain
9;(Imfap)(dz’ — kL AP)FAFE = d[(Imfap)FAFP] — CappAPFAFE . (3.20)

Let us have a closer look at this result and find out about its implications.

Firstly, the left hand side of (3.20) is gauge invariant because dz/ — ijAD is the gauge
covariant derivative for the scalar fields z¢, and from (3.16) we see that 9;(Imf4p) transforms
covariantly as Cap, p is a constant. Consequently, the left hand side of (3.20) represents an
invariant Lagrangian in 5 dimensions.

Secondly, let us consider the right hand side of (3.20). We can see that any shift of C4p p
by an exact (in the Lie algebra cohomology) piece (DZ)ap,p = 2fD(AEZB)E leads to a shift
of the five form C(A,F) by an exact form dZ, as was explained in footnote 10. According
to (3.20), this exact form dZ can then be absorbed by a shift Imfap — Imfap + Z4p, as
is also suggested by (3.16). Therefore, we can say that any exact contributions of C' can be
absorbed by a redefinition of the gauge kinetic function by a constant imaginary shift.

Now, that we have an invariant action in five dimensions, we want to pave the way to
obtain invariance in four dimensions. If we demand that Csp p satisfies the constraints
(3.7) and (3.8), we know that C (A, F) is closed. It then follows from Poincaré’s lemma that
locally there exists a form w, such that C' = dw. In order to find an explicit expression for
w, we single out one coordinate ¢ and require A”(t) = tA” with AP depending only on the

remaining coordinates. After introducing d* = d + 9;dt and defining
1
HA®M) = tdA— §t2 fectABAC (3.21)
we can verify the following formulae

FO@t) = HC(t)+dt A, (3.22)
FAOFP@) = HAOHP@) +2dtAPHY (1), (3.23)
As by assumption C(A,F) is a closed form, the particular t-dependent form C(A(t), F(t)),

constructed from the definitions made above, is closed, too (the reason is that the constants

Cap,p satisfy the constraints (3.7) and (3.8)). Then it is not difficult to prove that

0 = d'C(A(t), F(t)) = dto,C(A(t), F(t)) + dC(A(t), F(t))
= dtd,C(A(t), F(t)) + dC(A(t), H(t)) + 2t dt d(Cap,c A APH?). (3.24)
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3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS

The second term in the last line vanishes, which one sees very easily once the term is written

in its component form
dC(A(t),H(t)) = d[CappAPt)HA()HP(t)]. (3.25)

If we now absorb the factor ¢ by rescaling, At — A, then it follows from the definition (3.21),
that H(t) — F, and (3.25) becomes dC(A,F) which vanishes because C(A,F) is closed.

Finally, integrating (3.24) over ¢ leaves us with
1
CAF) = d [—2CAB,D / dt tAPAPHA(L)| . (3.26)
0

Inserting (3.21), the integral can be computed, and we find

3

2
w = —chC,DADAB(dAC—ngFCAEAF). (3.27)

From the arguments below (3.20) we know that d[Im 43 FAFP]—C(A, F) is a gauge invariant
expression in five dimensions and, consequently, (Im fApFAFB — w) represents a gauge
invariant Lagrangian in four dimensions. Concretely, the gauge invariant extension of the
Peccei-Quinn Lagrangian reads

2i
3

3

ﬁpQ +Lagog = ilm fABfA]:B + CBC’DADAB (dAC - ngFCAEAF) . (3.28)

where the second term is the so called generalized Chern-Simons term.

These considerations are quite general and allow the extension of the transformation law
for the gauge kinetic function by a constant imaginary shift iC'4p,p when at the same time
the Peccei-Quinn term is accompanied by the generalized Chern-Simons term. The procedure
is not limited to four dimensions and can be easily generalized to arbitrary even dimensions.
The generalized Peccei-Quinn term then becomes the 2n form f4, 4,..4, Fh A | FAn and
starting from the (2n + 1) form C (A, F) = Ca, ., pAPFA1 ... FAn the same procedure as

outlined above determines the corresponding generalized Chern-Simons form to be
1
b o= / dtntCanyn, p APAHA (1) HA(1). (3.29)
0

The Abelian case is simply obtained by setting all structure constants to zero, and the
generalized Chern-Simons term for an Abelian gauge theory is given by

”
Lcs = g‘oBC,DADABdAC. (3.30)
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3.2 Generalized Chern-Simons terms and semisimple groups

As we presented in the previous subsection, when Csp,p is D-exact it can be absorbed by
redefining the gauge kinetic function and, as a consequence, the new Peccei-Quinn term
becomes gauge invariant. Now, we will show this is the case for semisimple algebras, which
means that the main application of generalized Chern-Simons terms is for non-semisimple
gauge algebras.

We start with the result that if
Cap,c =2fca” Zpyp, (3.31)

for a constant real symmetric matrix Z4p, the Chern-Simons term can be reabsorbed into

the Peccei-Quinn term using
fap = fap +1Zap. (3.32)

In fact, one easily checks that with the substitution (3.31) in the transformation law of the
gauge kinetic function (3.6), the C-terms are absorbed by the redefinition (3.32). Equation

(3.31) can be written as

Capc=Teas"" Zpr, Teas”? = 2fC(A(D5§; : (3.33)

In the case that the algebra is semisimple, one can always construct a Z4p such that this

equation is valid for any Csp c:
Zap = Co(T) 1 5P Te cp" ¢"  Comr, (3.34)
where 4B and Cy(T) ! are the inverses of the Cartan-Killing metric
gap = fac"fBp", (3.35)
and, respectively, the Casimir operator defined by
Co(T)ep™ = ¢"PTacp"Tpan”" . (3.36)

These inverses exist for semisimple groups. To show that (3.34) leads to (3.33) one needs the

constraint (3.8), which can be brought to the following form

9"PTy - (3Ccfpe” + Tip - Cpy) = 0. (3.37)
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We have dropped doublet symmetric indices here, using the notation - for contractions of

such double indices. Furthermore, this implies
AB —
g TE -Tp-Ca = Co(T)-Cg, (3.38)

with which the mentioned conclusions can easily be obtained.
This result can be also obtained from a cohomological analysis and we refer the interested

reader to appendix A.1.

3.3 Application: Abelianxsemisimple

The simplest nontrivial application are gauge groups of the form Abelianxsemisimple for
which one obtains an interesting result. Abelian generalized Chern-Simons terms are not
trivial, but as we could show, the purely semisimple terms are. However, the direct product
of an Abelian gauge group with a semisimple gauge group is not trivial again, especially it has
a nontrivial mixed sector, which is going to be investigated in greater detail in the following.
To reflect the product structure, we split the adjoint indices A, B, ... into indices a, b, ¢, ... for
the Abelian part and adjoint indices z, y, z, w, ... for the semisimple part. Due to the group
structure, only the structure constants of the type f;,* are nonzero. As before, we define a

homogeneous five-form C(A, F), which is given by
C(A,F) = 20 oA"F FP + Cuy g A" FFY + 2C(4 y AV FO T (3.39)

with constants Cup o, Cheas Cryas Cazy and Cyg . The closure relations can be directly

obtained from (3.8) by simply inserting Abelian and semisimple indices'? and we are led to

fauCuba = 0 (3.40)

fayCva = 0 (3.41)

fu"Caypa = 0 (3.42)
fuy"Cazw + foy"Cavu = fou"Cavy = 0 (3.43)
fuy’ Craw + fay’ Coau — fou"Cray = 0. (3.44)

These relations already lead to various interesting results. By definition, a semisimple Lie

algebra has no Abelian ideals. This implies, in particular, that there cannot be any non-trivial

2In appendix A.2 we apply the developed formalism and demonstrate that it leads to the same result.
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null eigenvector of the structure constants, so that (3.40) and (3.41) imply

Cacb,a = 0, (345)
Choa = 0. (3.46)

Equation (3.42) means that Cy, , is for each a, a symmetric invariant tensor in the adjoint
representation of the semisimple part of the gauge group. Cj, . therefore has to be pro-
portional to the Cartan-Killing metric g;, of the semisimple Lie algebra. Thus, we have
Cry,a = Bagzy where the B,’s are arbitrary but constant. The only nontrivial part of (3.39)
is

C(A,F) = 204y, A" F*FY + (Cyap + Coya) A"FOFY (3.47)

What we have done is to simply apply the formalism developed earlier in this section to the
mixed part of a gauge group with the structure Abelianxsemisimple. The purely Abelian
part is not trivial and leads to the Chern-Simons term (3.30). After the cohomological
analysis we found that the only nontrivial generalized Chern-Simons terms in the mixed
sector of Abelianxsemisimple are determined by the five form (3.47) and, consequently, the

generalized Chern-Simons terms of the mixed sector read

4i 3 %
Locs = glC(Iy),aA“Al(dAy — S ATAY) £ glea,xAl’AydA“ n
N
2y AT A (dAY % frV AT A% (3.48)

because all the other components of the constant tensor C' vanish due to cohomological
reasons. Observe, that if we do not allow for off-diagonal elements of the gauge kinetic
function, i.e. f,; = f;, = 0, then the generalized Chern-Simons term in the mixed sector is
given by

4i 3
Locs = 50y aA"AT(AAY = Sf VAT AY). (3.49)

The purely semisimple part of C' can be absorbed into the gauge kinetic function by redefi-
nition. This matches the situation encountered in [12] without anomalies.

3.4 Nonhomogeneous forms and anomalies

In terms of Lie algebra cohomology, the constraints on C'(A, F), the equations (3.7) and (3.8),

have a clear meaning. The first equation constrains C(A, F) to be a homogeneous form which
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is closed under the algebraic operator D defined in (3.13) if it satisfies the constraint (3.8).
However, is the formalism still valid for nonhomogeneous forms or, in other words, can the
constraint (3.7) be relaxed?

In order to understand this, let C'(A, F) be nonhomogeneous, i.e. C(ap,p) # 0. Conse-
quently, C'(A, F) cannot be closed either, but is instead

dC(A,F) = CiappmFPFAFE. 3.50
(AB,D)

Clearly, the computation that led to the generalized Chern-Simons term (3.27) cannot be

valid anymore. More precisely, instead of (3.24) one now has

CiappyFP)FA)FE(t) = dto,C(A(t), F(t)) +dC(A(t), H(t)) +

+2tdt d(Cap,pAPAPHA). (3.51)
By using (3.22) one can prove easily that the left hand side decomposes according to

C(AB,D)j:D(t)fA(t)j:B(t) = C(AB,D)HD(t)HA(t)HB(t) +

+3dt Ciap,pyAP () HA () HB(t) . (3.52)

Of course the second term on the right hand side of (3.51) no longer vanishes either but causes
the contribution C(AB’D)HD(t)HA(t)HB(t) that cancels the corresponding term in equation
(3.52). Therefore, (3.26) receives an extra contribution and is replaced by
1
C(A,F) = 3Cp.ap /0 dt AP (t)HA (t)HP (t) —

1
_2Cappd [ /U dLAD (1) AP (1) HA®) | (3.53)

We see, that the nonvanishing totally symmetric part of Csp,p introduces the five-
dimensional form
1
Qs(A,F) = 3C(p,an /0 dt AP (t)HA (t)HP (t) (3.54)
This form is nothing else but the five-dimensional Chern-Simons term corresponding to the
invariant polynomial Ps(F) = C(D’AB)}'D}'A}'B. As the nonhomogeneous form C(A, F) is
no longer closed, there does not exist a form w, such that C' = dw or, equivalently, the Chern-

Simons form Q5 is not representable by a coboundary, i.e. there is no w’ such that Q5 = dw'.
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Consequently, the five-dimensional form d(Imf g FAFB) — C(A, F) cannot be represented
by the coboundary (3.28) of homogeneous forms. Furthermore, it is no longer gauge invariant
because 5 is not gauge invariant. However, this is only a problem in theories that are free
of quantum anomalies. The solution is given by the descent equations [59-62]. By means of
this set of equations, Stora and Zumino could relate the Chern-Simons forms ()9, 1 to the
consistent anomaly Asg,_2(A, A) in 2n — 2 dimensions. The descent equation relevant for our

case 1s

representing the gauge variation of the Chern-Simons form as the coboundary of the four-
dimensional consistent anomaly. Applying a gauge variation to d(Imf g FAFB) — C(A, F),

we have
1
d [oa(fapFAFB)] —d [20AB,D5A </ thD(t)AB(t)HA(t)>] +d[AAA)],  (3.56)
0

which is equal to zero because of (3.20) as the steps leading to (3.20) are quite general and do
not depend on C'(A4, F) being homogeneous or not. The tensor Cyp p in (3.6), however, is no
longer restricted to its mixed symmetric part alone but now also contains a totally symmetric
part. Therefore, it can be decomposed into its totally symmetric part 0533’ p and a part of

mixed symmetry CI(4B),D’ ie.
CuaBp = ) -I—C( ) 3.57
; AB,D AB,D - (3.57)

The generalized Chern-Simons term is still only proportional to the mixed symmetric part.
The totally symmetric part is to be exactly cancelled by the anomaly as (3.56) shows. Note
that (3.54) can only be consistent with (3.55) if the totally symmetric part of Cap,p. CI(E_;,’D =
C(aB,p) 1s related to the quantum anomaly (we will discuss this in greater detail in section
5.2).

We see that the constraint (3.7) can be relaxed to allow for nonhomogeneous forms
C(A,F). As a consequence, the four-dimensional action (3.28) is no longer gauge invariant
because the generalized Chern-Simons term is still only proportional to the mixed symmetric

part of the tensor C4p p. The left over variation proportional to C(4p, p) may be cancelled

by the anomaly if a suitable fermion spectrum exists. Hence, nonhomogeneous forms C'(A, F)
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are the appropriate forms necessary in applications to anomalous theories in order to absorb
the anomaly. The cohomological reason is that the nonhomogeneous forms introduce the
five-dimensional Chern-Simons form )5 into the cohomological discussion, which in turn is
related to the anomaly in four dimensions by the Stora-Zumino descent equation (3.55). Con-
sequently, the gauge variation of (3.28) does no longer vanish, but is given by the negative of

the gauge anomaly, i.e.
OA (EPQ + E(;cs) = —AAA). (3.58)

This result goes beyond the work of [34] and allows for nonhomogeneous forms.

At the end of this section, let us discuss again the example of a gauge group with the
structure Abelianxsemisimple. We set all off-diagonal elements of the gauge kinetic function
to zero, i.e. fz; = 0. The constraints (3.40) to (3.44) do not change for nonhomogeneous
forms (although they do not imply closure anymore), but are now valid for the full coefficient
CaB,p = CS)B,D + CS%)’D. Nevertheless, the implications drawn from (3.40) to (3.44) are still
valid and, consequently, the only nontrivial part of a five-dimensional nonhomogeneous form

C(A,F) is determined by Cyy 4, i.e. Cpyq # 0. Decomposing Cyy 4, We obtain

1

0=y = S a0
2

0:1(521,21 = goxy,aa (3.60)
1

Co(f;,g/ = _gcacy,a- (3.61)

Thus, we see that the generalized Chern-Simons term in the mixed sector is still given by
(3.49). However, there are new contributions due to the totally symmetric tensors Cg(gz),a
and C,Ss:};)y which cause nontrivial gauge variations of Lpq + Lgcs. Cancellation of these
remaining contributions can only be achieved with the help of mixed gauge anomalies, but
we will discuss this example in more detail in section 5.4, where we will explicitly clarify
the relation of the symmetric coefficients C®) to the quantum anomaly and show how mixed

quantum anomalies cancel the remaining gauge variations.
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4 N =1 Supersymmetry

In the early 1960s, Gell-Mann and Ne’eman, proposed a way to arrange the known hadrons
into a unified framework and, in this way, brought some order into a whole zoo of particles
that had been found until then [63]. The success of their model is based on a global SU(3)
symmetry which puts particles of the same spin into SU(3)-multiplets. This model caused
a lot of enthusiasm, and efforts were made to unite particles of different spin as well. In the
non-relativistic regime this could be achieved by an SU(6) model, which made predictions
that were quite well approximated by experimental data [64-66]. Unfortunately, further
attempts to construct the relativistic versions of such models, in which the internal symmetry
group is nontrivially entangled with the Poincaré group to form a so-called Master group,
failed. All these efforts to create a Master group did not succeed because the Master groups
always had nonphysical properties such as an infinite number of particles in each irreducible
representation or continuous mass spectra. After Coleman and Mandula proved a no-go
theorem, that stated that every nontrivial union of the Poincaré group with an internal
symmetry group within the framework of ordinary Lie algebras would yield an essentially
trivial S-matrix [67], all these efforts seemed to be leading nowhere.

In 1971, a new symmetry was found from the Neveu-Schwarz-Ramond superstring [68—72]
that Wess and Zumino extended to quantum field theories in four dimensions [73].}3 As a
novel feature, some of the generators of the symmetry algebra satisfy anticommuting rela-
tions instead of commutation relations. This, however, evaded the Coleman-Mandula theo-
rem because the assumptions made in its proof considered only symmetry generators with
commutation relations. This new symmetry, called supersymmetry, does not only represent a
mathematical oddity, but provided the grounds for nontrivially entangling the Poincaré group
with internal symmetry groups. To date, there is no direct experimental hint for supersym-
metry being realized in nature but it has many properties that justify further investigation.
It is for example the only known symmetry, that can protect fundamental scalars, such as

the Higgs field, from obtaining huge radiative corrections up to very high energy scales (this

13Unknown to Wess and Zumino at that time, this symmetry had already appeared in a pair of papers
published in the Soviet Union. In 1971, Gol'fand and Likhtman had extended the algebra of the Poincaré
group to a superalgebra and had even constructed supersymmetric field theories in four dimensions [74]. The

paper displayed few details and was generally ignored until much later.
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4 N =1 SUPERSYMMETRY

is the so-called “hierarchy problem”) where more fundamental theories like grand unifying
theories or superstring theory could supersede the standard model.

Another feature of supersymmetry is the improved renormalization evolution of the three
gauge coupling constants of the standard model. These coupling constants do not exactly
meet at a common energy scale if we use the renormalization group equations obtained from
the standard model. With the addition of supersymmetry, gauge coupling unification can be
achieved in consistency with phenomenological constraints.

There is extensive observational evidence for an additional component of the matter den-
sity in the universe that goes under the name dark matter. Dark matter particles must
be electrically neutral, otherwise they would scatter light and, thus, be directly observable.
The lightest of the additional hypothetical particles found in supersymmetric models (called
“lightest supersymmetric particle”) is a possible candidate for dark matter.

In section 4.1 we introduce global N' = 1 supersymmetry and discuss briefly supersymme-
try in the gauge sector. We will see that a nontrivial gauge kinetic function induces several
new interactions in the gauge sector. For future reference we quote the supersymmetric gauge
sector and the necessary supersymmetry transformations.

In section 4.2 we briefly motivate N’ = 1 supergravity and we present the gauge sector of

N =1 supergravity together with the supergravity transformations.

4.1 Global Supersymmetry

Supersymmetry is a symmetry relating bosons and fermions and, therefore, we can make an
ansatz for infinitesimal supersymmetry transformations with parameter ¢ to behave roughly

as

of = eb, (4.1)
b = ¢ef. (4.2)

These transformation laws are only schematic and bosons are represented by b, while f stands
for fermions. Although, equations (4.1) and (4.2) are of a rather symbolic nature, we can
already draw several important conclusions from them. The first is, that the transformation

parameter ¢ is anticommuting, instead of commuting as in usual symmetry transformations,
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4.1 Global Supersymmetry

because the left hand side of (4.1), and therefore also the right hand side, has to be fermionic,
i.e. anticommuting. The parameter € carries spin % in supersymmetry [75].

In natural units (A = ¢ = 1) the action becomes dimensionless and the dimension of
mass and length are inverse to one another. The derivative operator has then positive mass
dimension (inverse length), i.e. [0,] = 1. From the Dirac action for the fermion and the Klein-
Gordon action for the scalar we therefore obtain the canonical mass dimension for fermionic
and bosonic fields in four spacetime dimensions: [f] = 2 and [b] = 1. The transformation
law for bosons (4.2) would then lead us to [¢] = —3, which would be inconsistent with (4.1).

The simplest way to obtain an algebra linear in the elementary fields without introducing

new dimensionful parameters is to assume
d0f = ~tedud, (4.3)

%. Thus, already for dimensional reasons,

which together with (4.2) is consistent with [¢] = —
transformation laws for a symmetry relating fermions and bosons must have the form (4.1)
and (4.3), and the derivative in (4.3) can be understood as the mismatch in derivatives
between the Dirac and the Klein-Gordon equation. The last implication of this concerns the

commutator of two transformations, which we can expect to have the form
[0(e1),0(e2)]b o< (Eay*e1)0,b (4.4)

for bosons and equivalently for fermions. The commutator of two supersymmetry transforma-
tions causes a translation in spacetime and this result is found in any globally supersymmetric
model.

Now let us construct a globally supersymmetric model with gauge fields, as this plays an
important role in section 5. The Abelian case is convenient to begin with, and it leads to
results that are straightforwardly generalized to the nonabelian case.

Supersymmetry relates fermions and bosons, and, consequently, the gauge fields come

4

together with fermionic partners, so-called gaugini'?. A first ansatz for a supersymmetric

gauge kinetic action is

1 1.
Lo = =7 FuF" = 529 0, (4.5)

"“The gaugini are particles of spin %
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4 N =1 SUPERSYMMETRY

where we incorporated the gaugino, A, by means of a kinetic term. Notations and conventions
are summarized in appendix B. The first term represents the usual Maxwell Lagrangian. Let

us define the transformation laws of the fields in accordance with (4.1) and (4.3) by

1
oA = o"ed A, = §UW5FW (4.6)
- 1
(5)\ = —§€_O'MVFHV (47)
1
Here, ot¥ = %[’y”,*y”] are the generators of SO(1,3) in the spinor representation. The

transformation behaviour of the field strength can be read off from (4.24) to be
5Fl“’ = éy[u&,})\. (4.9)

Using this, the variation of the Maxwell term in (4.5) is then easily written down

1 1
O FwF"™) = —5F" ey, (4.10)

The variation of the second term of (4.5) is a little bit more involved, and relations such as
(B.4) and (B.5) are convenient for the relevant computations. The variation of the second

term of (4.5) is found to be
S L L s
(—5)\7 OuN) = EF EVuOLA — g€ Flueysvs0p . (4.11)
Altogether, the variation of (4.5) gives
i
Lo = g Fuers1ad,). (4.12)

Observe, that (4.12) actually vanishes, because after a partial integration the variation be-
comes proportional to eé#*?? 9, F),, which is identically zero due to the Bianchi-identity. Thus,
we have proven that (4.5) is invariant under the transformations (4.6) and (4.8). We are not
finished yet because counting the degrees of freedom, we find for the fermion 4 degrees of
freedom, while the vector field only provides 3 degrees of freedom off-shell. On-shell, however,
the number of degrees of freedom for the gaugino is 2, just as for the vector field. So on-shell
the degrees of freedom are equal for fermions and bosons. To balance the degrees of freedom,

we introduce another real scalar field D'® that has algebraic equations of motion and, thus,

'5The auxiliary field D is also needed for the supersymmetry algebra to close off-shell.
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4.1 Global Supersymmetry

can be eliminated on-shell. The additional term in the Lagrangian containing the auxiliary
field is %DQ. This auxiliary field has to transform into the gaugino, and the transformation
law for the fermion has to be extended by a term containing D. Note, that D is a real field.

The Lagrangian'6

1 1< 1
Lo = —7FuF"™ = 23"+ §D2 (4.13)

is indeed invariant under the variations

] :
N = io’wsFW—i—%%eD (4.14)

oD = %g%waux (4.15)

and (4.8) because the extra variation of the Dirac action proportional to D precisely cancels
against the variation of the auxiliary Lagrangian.

The action (4.5) can be generalized by means of a gauge kinetic function f(z). The
gauge kinetic function depends on a set of scalar fields and if then again supersymmetry is
demanded, the superpartners of these scalars must be taken into account, too. So let there
be scalar fields z* and their corresponding superpartners x*. In complete analogy, one finds

that the Lagrangian
Lomatter = Y _ [0u2'0"2" + 2X7 4" 0ux' — F'F'] (4.16)
i
which consists of complex scalar fields z¢ and their corresponding fermionic superpartners x°*.

The matter Lagrangian is invariant under the following supersymmetry transformations

o2t = Epxt, (4.17)
: 1 1

(SXZL = E’)’”&Rauzz + §F26L . (418)

SF" = épy,dt'xh . (4.19)

We used the chiral projections x% = %(1 + 95)x* and e = %(1 — 75)e. The supermultiplet

containing this scalar and this fermion is accompanied by a complex auxiliary field, F*, that

16The Lagrangian (4.13) can be obtained by superspace methods, too. Superspace is introduced in appendix

C.
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4 N =1 SUPERSYMMETRY

balances the off-shell degrees of freedom. It is important to note that, according to (4.17)

and the chain rule, the gauge kinetic function will transform under supersymmetry, i.e.,
of(z) = 0if(2)ex’. (4.20)

Observe that the gauge kinetic function is implicitly spacetime dependent through its depen-
dence on scalar fields. At several steps that led to (4.11) we used a partial integration, which
in presence of a nontrivial gauge kinetic function will produce new terms in (4.12) propor-
tional to 9,f(2) = 9;f(2)0,2" where 9; = 9/9z'. Observe that especially the term (4.12) will
not vanish anymore, but will contribute with %5’“’”"8” Re f(2)&y5y,AF), to the supersym-
metry variation. In addition to these contributions, one has to take §[Ref(z)]F),, F"" into
account, which has to be cancelled, too. Adding counterterms that cancel these variations
and taking the variations of the counterterms into account, one is led inductively to an in-
variant Lagrangian after a finite number of steps.!” The computation is standard and will
not be repeated here but instead let us give the final result as given in, e.g., [76,77]. The
supersymmetric Lagrangian containing ny vectormultiplets (]:A, A, DA), A=1...ny, and

a nontrivial gauge kinetic function f4p is given by

Ly = —i Ref(2)apF, F* P — %Re f(2) A\ YD AP 4 % Ref(z) apDAD® +
+é Im f(2) Ape"? Fi\ FB + i(Du Imf(2) 4p) A\ y57" AP +
4 [%Bif(z) ABXLMADP — %&f(z) ABFL X0 AP
—iFiaif(Z)ABS\f)\f + i)’&xiaiajf(z)ABXfAf +h.c] (4.21)

where we defined the covariant derivatives

DyImfap = 9,Imfap — 24 foa"fa)p . (4.22)

DAY = 9t — APNC et (4.23)

The Lagrangian (4.21) is invariant under the supersymmetry transformations of the gauge

1"Note that the superfield formalism as introduced in the appendix C leads also to the result that will be

presented in equation (4.21).
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sector
1
C = C

6A, = _55’)’#)‘ . (4.24)
) :

S = Ea””s}fu-l-%%sDc (4.25)
i_

D¢ = 55157 O\ (4.26)

and (4.17), (4.18), (4.19) of the matter sector. Observe, that chiral projections appear in the
invariant Lagrangian, where A, = 3(1 +v5)X and Ag = (1 — v5) .

Observe that a nontrivial gauge kinetic function introduces a CP-violating coupling
& Im f(z)ABsu”f’”flf‘Vf,ﬁ which is exactly of the form as the Peccei-Quinn term discussed
in the previous section.

Note that the nonabelian field strength F appears in equation (4.21). In order that the
Lagrangian be invariant under gauge and supersymmetry, the gauge kinetic function must
transform in the symmetric product of two adjoint representations. It is one of the main
topics of this thesis to generalize the transformation property of the gauge kinetic function
and to discuss the compatibility with ' = 1 supersymmetry.

The discussion of section 3 showed, that a generalization of the gauge transformation of
f needs new terms in the bosonic part of the effective action. Before we come to a discus-
sion of the their consequences, let us first also briefly introduce the salient features of local

supersymmetry.

4.2 The gauge sector of N' =1 supergravity

We considered global A/ = 1 supersymmetry in the previous subsection. The transformation
parameter £ was a constant spinor. In local supersymmetry, however, the transformation
parameter ¢ is no longer a constant spinor but becomes spacetime dependent, i.e. ¢ =
e(x). Then it follows immediately from (4.4) that also the translations become spacetime
dependent through e(z) and differ from point to point as general coordinate transformations
(the commutator of two supersymmetry transformations causes translations over distances
d" o &99"e1). Thus, a theory that is symmetric under local supersymmetry needs gravity
and for that reason is called supergravity. The fermionic superpartner of the metric is called

gravitino, v, and carries spin % It is a vectorial spinor (or a spinorial vector). In supergravity
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4 N =1 SUPERSYMMETRY

the transformation law relating the metric to its superpartner is given by'®
S = —gpliale, (4.27)

As gravity is present, the action of supergravity must contain the Einstein-Hilbert action
which represents the kinetic term of the metric while the corresponding term for the grav-
itino is given by the so called Rarita-Schwinger action written down in 1941 by Rarita and
Schwinger [78]. The Rarita-Schwinger action is quadratic in the gravitino and contains one

spacetime derivative.

In general, the action of supergravity is a complicated Lagrangian that is divided into
different sectors [76,77] such as, for instance, a sector containing the Einstein-Hilbert action
and the Rarita-Schwinger action together with four-fermion terms that are necessary to render
this pure supergravity sector invariant under local supersymmetry. The sector of main interest
to us is the gauge sector with nontrivial gauge kinetic function because it is investigated
further in section 5.3. This sector contains the kinetic terms of the gauge supermultiplet.
The gauge sector of N' = 1 supergravity is given in [77], for example, and here we repeat it

for future reference:

_ R 1 _
Egauge = RefAB(Z)[_EFlﬁIFuVA o g)\A,yMDMAB + EDADB + Z,([)MO.VP,YN)\B (Flfi) + FIS/C))VA)] _
€

—Zs’“”m ImfAB(z)Fﬁﬁ,Ff, + iZ(D” Im fAB(z))j\Afyg)’y”)\B +

€ i v facov . Lo 7 iy
+{§<9¢fAB(Z)[X (—o" VA +iDMA] - §(F + Py X D) AEAE] +

+§aiaijB(z)xinXfoB +hel. (4.28)

'8In this subsection, as well as in section 5.3, we deal with curved space and adopt a different notation
in these subsections. Greek indices u,v,p,... will represent curved spacetime indices, while Latin indices
a,b,c,... denote flat Lorentz-indices. Note that in this notation v* = ~v%e¥ is spacetime dependent via the
vierbein e# (see footnote 19 for further information on the vierbein), contrary to v* which is a constant Dirac

matrix. Furthermore, note that the Planck mass is set to one.
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4.2 The gauge sector of N' = 1 supergravity

In this expression,

1

Dy = 0y— ATdc+ §wuaboab (4.29)

> C 1 ab
Dy = Oy = Afdc+ 5w, (W)ow (4.30)

1- 1-
wu® () = wu® + PP+ 79y’ (431)
. 1

F;SVA — F;SVA _ §5uupaFC0VpaA (4‘32)
Fﬁgv = QG[MAV} + @{MVU}A, (4.33)

and we have defined the determinant of the vierbein!? e := det(eZ) = \/W. Note
that the spin connection w,ﬂ”(w) contains -torsion. Jo denotes infinitesimal transformations
of the Yang-Mills symmetry. The object denoted by FV is called “supercovariant field
strength” because it transforms under supersymmetry in an expression that does not contain
any term proportional to d,e. The transformation laws for local supersymmetry on the

independent fields (transformation laws for the auxiliary fields are omitted) are given by

1_
oey, = 5570‘1/)” (4.34)
1
0Py = (au+§wuab(1/1)0ab)8 (4.35)
02 = & (4.36)
. 1 L 1
ox' = 7"(Du2’ —duxer + S Fier (4.37)
1
c _ = C
6A, = —587,)\ (4.38)
1 1
A = 50“”F§2VA5+§i755DA (4.39)

The gauge sector (4.28) contains besides four-fermion interactions an interaction of the form
1 AF,,,, which is not renormalizable. In contrast to global supersymmetry, where renormaliz-
able models exist, in supergravity nonrenormalizable couplings are always present, but these

couplings are suppressed by powers of the Planck mass.

19The vierbein defines local orthonormal frames in which Juv = abeae,b,. From (4.27) one finds de? =
0 Nab€y "

1 &y, It is not difficult to prove that e = £ £y*1), because for a matrix M, the variation of the determinant

is given by & det(M) = det(M)tr(M ~*M). If one takes the vierbein as a matrix, then the variation of its

determinant Je is easily found.
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5 Generalized Chern-Simons terms and chiral anomalies in

N =1 Supersymmetry

In the previous section we presented the supersymmetric gauge sector consisting of the Yang-
Mills action together with kinetic terms for the superpartners and displayed the supersymme-
try transformation laws. We saw that with a nontrivial gauge kinetic function that depends
on a set of scalars, several new couplings of the gauge fields and gaugini to these scalar fields
and their superpartners arise. Among those new terms in the Lagrangian is a CP-violating
term of the form (Imfyp)F” A FP which is often referred to as “Peccei-Quinn term”. Ob-
viously, the Lagrangian (4.21) is not only invariant under global supersymmetry but also
under nonabelian gauge transformations, if only the gauge kinetic function transforms ap-
propriately [76]. This corresponds to the transformation law (3.5) given in section 3. In that
section, however, we also presented a possible extension by means of a constant shift (3.6), un-
der which the Peccei-Quinn term is no longer invariant,?’ and the generalized Chern-Simons
terms had to be added to the Peccei-Quinn term in order to restore gauge-invariance. A su-
perfield expression corresponding to generalized Chern-Simons terms was introduced in [26],
but the authors restricted themselves to the special case of a linear gauge kinetic function
and only considered Abelian gauge fields and global supersymmetry.?! As we will see, the
superfield formalism is only applicable for shift tensors C4p  that are mixed symmetric in
its indices while the discussion of section 3.4 proved that it is the symmetric part of Cup ¢
that can possibly cancel anomalies. A first complete discussion of generalized Chern-Simons
terms and chiral anomalies in /' = 1 supersymmetry and supergravity was done in [88] (the
supersymmetrization of section 3) and will be discussed in this section. This is a new result
and it is one of the major topics of this thesis.

In subsection 5.1 we will consider anomaly-free theories and we will allow for gauged
isometries on the scalar manifold in global supersymmetry. It will be shown, that the presence
of the gauged isometries violates the supersymmetry transformation laws as displayed in

section 4. The supersymmetry transformation laws will be covariantized with respect to

20The possible extension (3.6) was already mentioned for ' = 2 supergravity in [32] and later in [77] for

N =1 supersymmetry, but the extra terms necessary for its consistency were not considered.
2L A superfield expression for the nonabelian generalized Chern-Simons term in Wess-Zumino gauge is given

in the end of [26].
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the gauged isometries, which is done according to [84]. As the Peccei-Quinn term has to
be accompanied by the generalized Chern-Simons term, we will add an N' = 1 superfield
expression of the generalized Chern-Simons term to the gauge sector of N' = 1 supersymmetry.
The proof that this new action is indeed invariant under supersymmetry (where some of the
supersymmetry transformations are covariantized with respect to the gauged isometries) is
done in computing the variations that appear due to the modifications in the transformation
laws and in showing that these contributions cancel.

In subsection 5.2 we will allow for a symmetric part of the tensor Csp c and show how
this can possibly cancel anomalies. To do so, we introduce a derivative that is covariant
with respect to the gauged isometries and give up the N/ = 1 superfield expression of the
generalized Chern-Simons term.

In subsection 5.3 we show how the results found for N' = 1 supersymmetry can be extended
to N' =1 supergravity.

In subsection 5.4 we will illustrate the results found in this section by means of the
example of a gauge group of the form Abelianxsemisimple. This completes earlier discussions
of section 3

Finally, the results of this section are summarized in subsection 5.5.

5.1 Gauged isometries and generalized Chern-Simons terms in global su-

persymmetry

For simplicity, let us consider a U(1)" gauge theory, where the gauge fields are labelled by
indices A, B,... = 1,... ,n. Furthermore, let us assume that the scalar fields 2z’ transform
nontrivially under the gauge symmetry as

Spzt = EL(2)AC, (5.1)

where k%, (2) are the Killing-vectors of the isometry on the target space of the scalar fields.
A direct consequence is that the gauge kinetic function will in general no longer transform

trivially. Instead, by applying the chain rule, one obtains
oafap(z) = OfapkiAC. (5.2)

Also the fields x* transform under the isometry group because they are the superpartners

of the scalars z'. Let 6. denote the supersymmetry transformations and let §, stand for
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transformations with gauge parameter A. Then, on the one hand, we have from (3.14)
oa0:2 = Epdaxt . (5.3)
while, on the other hand, it is
0.002" = 0jkLACS.2 = EL(9;EEACXT)y . (5.4)

As supersymmetry transformations and gauge transformations commute [75], we find from

comparing the above expressions that x* transforms under the isometry as
oaxp = kA X (5.5)

If the transformations (5.1) and (5.5) are present, then (4.21) is no longer invariant and new
terms have to be introduced in order to restore invariance under supersymmetry. We could
already see in section 3 that once the gauge kinetic function transforms with a constant shift,
new terms must be added in order to restore gauge invariance. These terms, the general-
ized Chern-Simons terms, were at that point explicitly calculated but not in the context of
supersymmetry. The experience with supersymmetry suggests that the bosonic generalized
Chern-Simons term will be accompanied with a term involving couplings to gaugini. However,
from the discussion in section 3 we know that the generalized Chern-Simons term alone cannot
be gauge invariant (otherwise it could not be used to cancel gauge variations) and, therefore,
a manifest supersymmetric extension of the generalized Chern-Simons term by itself cannot
exist. This is a crucial point, so let us discuss it in more detail: If an action is invariant
under supersymmetry, it should also be gauge invariant. So, for example, the supersymmetry
transformation J.x* as given in (4.18) does not commute with the gauge transformation (5.5)
anymore”?. Starting from (4.18), we find for the commutator [6., 5x]x% = $y*erkt0,AC and
in order that the commutator vanishes, the partial derivative in (4.18) has to be replaced by
a covariant derivative. The action of the generators of supersymmetry on x’ in the presence
of (5.1) is no longer given by (4.18) because the commutation relations of the supersymmetry
algebra are no longer satisfied. In the presence of (5.1) the action of the generator of super-

symmetry on x’ is obtained from [d,,,]x’ = 0 instead. The same is found for the variation

225. 2% is not altered, i.e., it is the same as in equation (4.17) because [d.,da]2" = 0.
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of the auxiliary field 6, F* and in total the transformation laws consistent with (5.1) and (5.5)

are

0.20 = Erxh (5.6)
ooxy = %7”83Duzi+%Fi6L (5.7)
oxy = —%Egquuzi—i—%FiéL (5.8)
0. F' = Epy'Dux} + ErRAAKY (5.9)

where the covariant derivatives are defined as follows

Dyt = 9,2 — Ak, (5.10)
DuxX' = Oux' — ASOikix . (5.11)
The new supersymmetry transformations (5.6), (5.7) and (5.9) take explicitly the gauge
transformations into account, as demonstrated by the gauge covariant derivatives and the
last term in (5.9). It originates in the requirement that supersymmetry does not only respect
the gauge invariance of the auxiliary field, but both symmetries still commute with each

other?®. The Abelian generalized Chern-Simons terms of global ' = 1 supersymmetry were

given in [26]2* and for future reference we quote the result
_ 1 i -
st = ECAB,(,’@”V"UAL(’:AEF,;A} - ZCAB,CAgAA757”AB (5.12)
where C4p,c is a real constant tensor that has to satisfy the constraint

Ciapcy = 0 (5.13)

23The whole problematic is present in superspace formalism, too. There this subtlety arises because after the
Wess-Zumino gauge is fixed, the original supersymmetry of superspace (transformations induced by Q and Q'
acting on the superfields) is broken and has to be replaced by a combination of the superspace supersymmetry
and the gauge symmetry. The Wess-Zumino gauge is violated by supersymmetry transformations induced
by Q and Q' and only after applying a gauge transformation one is brought back into Wess-Zumino gauge
again. This can also be understood from the supersymmetry algebra. After the Wess-Zumino gauge is fixed,
the anticommutation relation {Qa, QL} = 0, (0, — A2d4) [84] shows mixing between supersymmetry and
gauge symmetries (d4 denotes the gauge transformation). This implies that if an action is invariant under

supersymmetry, it should also be gauge invariant.
24The authors restricted themselves to linear gauge kinetic functions.
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in agreement with equation (3.7) found in section 3 in the context of Lie algebra cohomol-
ogy. The first term of (5.12) is the Abelian version of the generalized Chern-Simons term
encountered in section 3 as equation (3.30), while the other term represents the coupling of
the vector field to the pseudovector current of the gaugini. The possible coupling ASS\Aﬂy”)\B
vanishes identically because of C4p],c = 0. Note, that the tensor C4p ¢ is mixed symmetric
in the sense that its total symmetric part vanishes but it is symmetric in its first two indices.
Observe further that equation (5.12) is neither gauge invariant nor supersymmetric.?®

It remains to show that (4.21) together with (5.12) is invariant under (5.6), (5.7) and
(5.9). This is easily done by observing that if we replace the covariant derivatives in the
supersymmetry transformation laws (5.6), (5.7) and (5.9) by partial derivatives and remove
the last term in 6. F" then of course we obtain back the supersymmetry transformations
under which Ly, given by (4.21), is invariant. Therefore, we have to check whether the extra
terms that appear in the variation of Ly cancel against 6812/(\{551 when the scalars transform
nontrivially under gauged isometries (5.1).

There are the following three terms in (4.21) that cause new contributions to the variation

6E£gk:
e The term —%FiaifABS\f)\f and its hermitian conjugate —iF*iaifj‘Bj\g)\g causes an

extra variation of the form
1 ; < 1 , -
—ZaifABkgnggfo}f - Zaifngkgmf DYDY (5.14)
due to the last term in (5.9).

e Another new variation comes from d.x in %BifABXiL)\fDB and its hermitian conjugate
— 105 pXR AR D® which is
i , i 4
+ZaifABkch§DBgmmf - Zaif;Bkg’Anggm“Ag. (5.15)
e The term —%&fABF:L)’(iUW)\LB and its hermitian conjugate —%BifZBFﬁX’RaW)\g con-
tribute to d. Ly with
1 < _ i . _
—ZaifABleA“ CSR’YV)\EF;}/ + g@'uypakzcaifABFiﬁ,AggR’YE)’yo-)\E —

1 4 i 4
—OEA Bk A O e AR + égumk*claifj:,BF;‘,,A,?gm%Ag . (5.16)

5Tn [26] the authors give a superspace expression for (5.12) (in Wess-Zumino gauge) but we will see that it

is not manifestly supersymmetric.
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Now let us compute the variations of the Chern-Simons terms. For the bosonic term we have

3
Cap,co:-(e"" ATADF) = +§-CAB,CEWP“5WABA§F,;?, (5.17)

while the variation of the vector potential in the fermionic term gives

i — i _
—ZCAB,C((sEAE))‘A’%’YM)\B = —§CAB,C(5>\B)(>\A’Y5>\C)

1 - i _

= —ZCAB,CEABAC%AA-I—ZCAB,CE%ABAC)\A (5.18)

which is proven by help of the rearrangement formulae given in appendix B. The re-
maining contribution of the fermionic part of the generalized Chern-Simons term is caused
by the extra variation in the transformation law for the gaugini. We have to compute

—1CuB.cAS 5. (A 57" AB) which is found to be
i 1 1
—iCAB,CA"CFLﬁ,é’y”’yE))\B + g&“VpUCABycFLﬁ,Agé’ya)\B + ZCAB,CAE@)/”)\BDA. (5.19)

If the gauge sector together with the generalized Chern-Simons terms (5.12) is invariant under
supersymmetry, then the variations determined above have to cancel among themselves. Ob-
viously, the variations of the generalized Chern-Simons terms do not cancel among themselves
(the contribution (5.18) can only be cancelled by another three gaugini interaction which is
given by (5.14)). Thus, the generalized Chern-Simons term of global N' = 1 supersymmetry
given in equation (5.12) is not by itself invariant under supersymmetry and the superspace
expression from which it originates [26] is not manifestly supersymmetric.

In order that variations of the gauge sector cancel against variations from the generalized
Chern-Simons terms, the constants C'4p,c and aifABké have to be related. A closer look at

(5.14) and (5.18) shows, that if

Oifapklt, = iCapc (5.20)

Oifigkt! = —iCapc (5.21)
then both variations add up to zero. The reason is that (5.14) can be brought to the form
—icAB,C(nggﬂfxg‘ +ELAIAGAR) = —éoAB,CaBXC%AA + éCAB,CéAAXC%)\A
which taken together with (5.18) leads to the equation for the shift tensor
2CcaB+Capc = 3Cupc) =0 (5.22)
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where the constraint (5.13) is used in the last equality. Thus, the contribution of (5.14)
and (5.18) is proportional to the symmetric part of the shift tensor C(4p ) and vanishes.
Furthermore, it is not difficult to see that the last term of (5.19) cancels against (5.15).26
The first term of the first and the second line of (5.16) together with the first term of (5.19)

add up to zero.?” The remaining contributions from (5.16) and (5.19) add up to give?®

1
1" Cap o F Ageye A7 (5.23)

which cancels exactly the variation of the purely bosonic generalized Chern-Simons term
(5.17) given by —%8“”””C’A3,0FlﬁA§§%)\B.

This, however, does not yet complete the proof that (4.21) together with the generalized
Chern-Simons terms (5.12) is indeed invariant under supersymmetry. The supersymmetry

variation of the four-fermion interaction %Xixi@iajf A Bj\f)\f receives the contribution from

the covariant derivative in (5.7), too, and causes the variation

1 . ) _
ZéR’y“XZLASleaiaijBA£>\E . (5.24)

The same happens to the term —iFiaifABS\f)\f which causes the variation
1 : . _
LERY XL AL 0k DifABALAT (5.25)

due to the covariant derivative in (5.9). Note, that because Cyp ¢ is constant.taking a

derivative of (5.20) with respect to 0; yields
0;kL0ifap = —kn0;0ifap, (5.26)

and the two variations drop out without the need of extra terms. So, indeed, the gauge
sector (4.21) together with the generalized Chern-Simons terms (5.12) is invariant under the
supersymmetry transformations (5.6) to (5.9) in the presence of gauged isometries.

Now we are going to show that the fermionic term (5.12) can be used to define a new
derivative that is covariant with respect to gauged isometries. The isometries actually induce
shifts because from (5.2) and (5.20) we can see that the gauge kinetic function is shifted by
an imaginary constant:

oafap = iCapcA° (5.27)

26 A useful relation is ErY*AL + ELY AR = EYH .

2"This can be seen from —Ery* A1 + V" Ar = —E7* Y5\
28 This makes use of —ZrVsVs AL + ELV5Yo AR = Y0 .

42



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetry

The only terms of (4.21) that are affected by this shift are found in the second line. The first
term is the Peccei-Quinn term, that was treated in 3, and the second term is proportional
to the axial gaugino current. All the other terms are either proportional to Refsp or its
derivative and, thus, are not affected.

The term proportional to the axial gaugino current transforms under the gauged isometry

as
1 . i B}
707 (9Tm fap) sy AP = ZéAAf Cap.c N sy AP (5.28)

which is cancelled by the variation of the corresponding fermionic generalized Chern-Simons

term. If we now introduce the new derivative
Dufap = Oufap —iCap,cAY (5.29)

which transforms covariantly under the shift symmetry (5.27), then we have done nothing
else but absorbed the fermionic generalized Chern-Simons term of (5.12) into (5.29). From
this point of view, it does not surprise that [26] found (5.12), though it was obtained for
linear gauge kinetic functions and through superspace techniques.

Now let us turn to the nonabelian isometries. The Lagrangian corresponding to (4.21) but
invariant under local nonabelian gauge symmetries is obtained from (4.21) by substituting
partial derivatives by covariant derivatives and the Abelian field strengths by their covari-
ant counterparts Tl‘;‘y = 28[MA5} + chAAEAE. The same is valid for the supersymmetry
transformations. The fermionic part of the generalized Chern-Simons term (5.12) is made
invariant under nonabelian gauge transformations by introducing a covariant derivative. The

pure bosonic generalized Chern-Simons term was determined in section 3 and is given by
1 1
Loos = " CapcA AT Fpy + e Cap ofop A AJATAT (5.30)

where Flﬁ/ represents the Abelian part of the nonabelian field strength f;,‘}, = F;(‘, +
fDEAApDAJE. The constant tensors Cap,c have to fulfil two constraints, as given in (3.7)
and (3.8):

Capce) = 0, (5.31)

Cepafpe™ +2Cacmfoip” +2Capmfpc” = 0. (5.32)
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The supersymmetry variation of the first term of (5.30) was computed in (5.17) so it only
remains to vary the second term under supersymmetry. With the help of the constraints

(5.31) and (5.32) one can show that

CAB,chEAe“Wa(Af]AEAg’Af) = &P (2Cap,pfrc® — Cappfpc’—
~Cas,nfrc?) (5145)14514,?145

= QCAB’CfDEA 8”Vpaé’yu)\BA5A£Af . (533)

The variation (5.33) completes the Abelian field strength in (5.17) to form the nonabelian field
strength F ;},. Therefore we find for the variation of the nonabelian generalized Chern-Simons

term
1
0Lces = Ze“VpJC’AB,DE_W)\BAETFﬁ (5.34)

and we see that the results of the Abelian discussion can be straight-forwardly extended to

the nonabelian case.

5.2 Gauged isometries and anomalies in global /' = 1 supersymmetry

In the previous subsection we found that once isometries on the target space of the scalar
fields are gauged, the original supersymmetry transformations no longer commute with gauge
symmetries. The new supersymmetry transformations are obtained from the old ones by re-
placing partial derivatives by gauge covariant derivatives. Furthermore, one has to introduce
a new term into the transformation of the auxiliary field F* that couples gaugini to Killing
vectors. After these extensions in the transformation laws we saw that the Lagrangian (4.21)
is no longer invariant under supersymmetry. In order to restore supersymmetry we had to
covariantize the derivative?? in the term (DL Im f45) A y57#AB with respect to the gauged
isometries and we added generalized Chern-Simons terms (5.30) to the action. We showed
that this new action is indeed invariant under supersymmetry again. This is only a special
case because the infinitesimal shift can in general have a nontrivial totally symmetric part,

ie.,

Ok ABkic) £ 0. (5.35)

29The derivative D,, is defined by D) Imfap := 9, Imfap — 2AEfC(AD Imfp)p in accordance with (4.22).
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Then, Cap,c as defined in (5.20) and the constant tensor used for the generalized Chern-
Simons terms (5.30) are no longer identical. As noted before, the constant tensor of the
generalized Chern-Simons terms, from now on denoted by CS%’C, is mixed symmetric. That
means that it is symmetric in its first two indices and its totally symmetric part vanishes.
From the decomposition of a tensor of degree three it follows that for vanishing totally
symmetric part it must be antisymmetric in its last two indices. This discussion shows
that there is a difference between CS%’C from the generalized Chern-Simons terms and the
shift Csp,c if that contains in addition to a part of mixed symmetry a part that is totally
symmetric in all indices (this is consistent with the discussion in section 3.4). Hence, the
generalized Chern-Simons terms (5.30) can only possibly cancel contributions from . Ly, if

the mixed symmetric part of the shifts Cap ¢ is equal to CS%’C, ie. if
— CS
Capc = Cupc) +Cipc- (5.36)
It is important to observe that the term
i 1A
—ZCAB,CAL({)\ D (5.37)

is needed to render the derivative of the imaginary part of the gauge kinetic function, i.e.
of (DL Im fABj\Avufyg,)\), covariant with respect to the gauged isometry. This goes beyond
the treatment of [26], where the mixed symmetric part of the term (5.37) was found to be
a member of the Chern-Simons superfield in superspace. The part proportional to C(ap,c)
cannot be obtained in a known way from a superfield expression for the generalized Chern-
Simons term as given in [26], due to the symmetry properties of CS%’C, i.e. the constraint
(5.13). As equation (5.12) is not supersymmetric in the Wess-Zumino gauge, it is better not
to follow the lines of [26] and to still consider (5.30) as the generalized Chern-Simons term
for supersymmetric theories. The fermionic term (5.37) is then used to gauge D;L Imfsp with
respect to the shift symmetry. Another important point to note is that now (5.22) does not
vanish anymore and leaves an uncancelled contribution to the supersymmetry variation given

by

31

— 7 CuB.o)ERARALAL — eLAL AR AR (5.38)
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In the same way, the generalized Chern-Simons terms cannot cancel the corresponding vari-

ations in (5.16) and (5.19) but it leaves the contribution to the supersymmetry variation
1 _ 1 _
—ZC(AB,C)SMWM&}%)\BAE‘F;‘U + gC(AB’C)fDEAeuupUS’y#)\BAEApDAUE . (5.39)

Hence, for general shifts, where C(4p,c) # 0, the action Lgk + Lgcs is no longer supersym-
metric. This tells us that we cannot even expect the action to be gauge invariant. In fact,

the gauge variation leads to a non-invariance that is given by

P 3
~e"?7 | Cap,c Fib FB + (Coap,py for” + EC(AB,C)fDEB)Aﬁ)AfFﬁ AC. (5.40)

This expression is similar to the consistent form of the anomaly. The total anomaly, however,
is given by the supersymmetry anomaly and the gauge anomaly. A full cohomological analysis
of anomalies in supergravity was made by Brandt in [79] and [80]. His result is that the total

anomaly consisting of the gauge anomaly AcA® and the supersymmetry anomaly A, is

given by
i 3
Ac = —ge“”p”[dABcFﬁF,ﬁ + (dappfor” + §dABchEB)A5AfF,S?7] (5.41)
3i - _ 1
EA. = ZdABC[g-RAgAE A} — E A BAGAA] + ZdABchPUgWABASf,;‘; —~
1
—gdABchEAeuupaé’y#)\BAprDAf (5.42)

where d 4 pc denote total symmetric tensors that characterize the anomaly and are determined
by the Wess-Zumino consistency condition (2.25). The gauge anomaly given by (5.41) leads
to the consistent anomaly (2.26), if one chooses the symmetric tensor to be of the form
daBc = #tr [TA{TB,TC}]. The anomaly originates from chiral fermions in the matter
sector.

In comparing the expressions (5.38) and (5.39) with the supersymmetry anomaly (5.42)
and the gauge variation (5.40) with the consistent gauge anomaly (5.41), we see that the
anomalies cancel the left over contributions in the supersymmetry and gauge variation pre-
cisely if Cap o) = dapc.

Hence, generalized Chern-Simons terms and gauged isometries that introduce shifts in

the gauge kinetic function cancel chiral anomalies if the shifts satisfy
Capc = dapc+CS5e . (5.43)
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This confirms the discussion in section (3.4). There the totally symmetric part of C' caused
the Chern-Simons five-form that again is related to the anomaly by the descent equation

(3.55), implying that the anomaly can be cancelled if dapc = Cap,c)-

5.3 Generalized Chern-Simons terms in Supergravity

In going from global supersymmetry to supergravity, there appear terms in the gauge sector
of supergravity that were not there in global supersymmetry. As it was demonstrated in the
previous section, the Lagrangian (4.28) is invariant under the local supersymmetry transfor-
mations (4.34) to (4.39). In total analogy to the rigid case, when isometries on the target
space are gauged, the derivatives in the transformation laws for the chiral fermions x* and
the auxiliary fields F* have to be covariantized with respect to the gauged isometries and the
last term of (5.9) is present, too. This in turn causes again new contributions in the variation
of (4.28) under local supersymmetry. Also the term proportional to D, Imfsp has to be

extended to transform covariantly under gauged isometries by introducing the new term
eiCAB,cAgXA*y"%)\B. (5.44)

This term causes new variations®’ under supersymmetry due to §,e, 6.y and the term
gemtrayA — %aw’g(z/’wyx) (5.45)

that arises because of F,,, — F}V in supergravity (4.39). The contributions due to d.e, 6.y”
and (5.45) are found to be equal to

i B B B B
egCacATEY BNy 3 AT — hy! Mey ys 7 = iy Mensm A + My ys APy, h] +

1 _
+e§guw’f’CAB,CAgz/WVAAg%AB . (5.46)

The contribution from covariantizing the derivative with respect to gauged isometries in the
transformation law of x’ will cause extra variations in the variation of terms that couple to

x'. There are two relevant terms coupling to x*:

e The first term is —%eaifABxiol‘”)\Lﬁlfy—i—h.c. which gives rise to the term

i
8

30We recall that the matrices v represent the flat space Dirac matrices and are constant, as opposed to "

_ _ 1 B
eCapc ALy 1A [y AT = Pl 7] = 2eeP7 Cap o ATeve A hum A" . (5.47)

which are dressed with a vierbein and, consequently, it is d.v” = J-ef~°.
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These terms already cancel the second, third and fifth term of (5.46).

e Another contribution is caused by the term which is given by
—%e@ifABq/_J%’yuxiLS\f)\f—i—h.c. and couples the gravitino to x’. It leaves the un-
cancelled variation

i

1660AB,0A§ [Dur" " X ysAB — oty s e MANE] (5.48)

e The last contribution that has to be considered originates from the variation of the
auxiliary field F* in —% e(aifAB)FiS\f)\LB+h.c., i.e. through the covariant derivative of

x in 0F%:

) ) 1 N
0 F' = epy'Dux'+... = —§5R’Y“’)’UDUZZ1/’MR t...

1. . _
— ikchfgmwwu R4 ... (5.49)
Therefore, the extra variation is given by

+%ecAB,CA§ vy ysbu AINE — eyt ap A Ays AP (5.50)
With help of the rearrangement formulae for spinor bilinears, one finds that (5.48) and (5.50)
cancel the first and the fourth term of (5.46). Also in A/ = 1 supergravity all the extra contri-
butions to the supersymmetry variation that were not present in the supersymmetry variation
of the supergravity action (4.28) vanish without the need of extra terms (e.g. generalizations
of the generalized Chern-Simons terms due to supergravity). The variation of the generalized

Chern-Simons terms themselves is not influenced by the transition from rigid supersymme-

C

try to supergravity because it depends only on the vector fields A,

whose supersymmetry
transformations have no gravitino corrections in N’ = 1 supergravity.

When checking the gauge invariance of terms proportional to the gravitino, one finds that
neither terms involving the real part of the gauge kinetic function, Re f4p5, nor its derivatives
violate the gauge invariance of (4.28). The only contributions that violate gauge invariance
come from the purely imaginary parts of the gauge kinetic function Imfsp. On the other

hand, no extra terms proportional to Imf4p appear when one goes from rigid supersymmetry

to supergravity. Hence, the gauge variation of (4.28) does not contain any gravitino which
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is consistent with the result that neither the supersymmetry variation of (4.28) nor the
generalized Chern-Simons term (5.30) contain gravitini.

Consequently, the method of gauging isometries of the target space as developed in the
previous subsection for rigid supersymmetry can be applied straightforwardly to N' = 1

supergravity, and anomalies are cancelled in accordance with rigid supersymmetry.

5.4 Reducing to Abelianxsemisimple

Semisimple groups do not lead to non-trivial generalized Chern-Simons terms as shown in
section 3.2. Furthermore, in section 3.3 we discussed the example of the direct product
of an Abelian gauge group with a semisimple gauge group. Now we want to further restrict
ourselves to the product of a one-dimensional Abelian factor and a semisimple group, denoted
by G: U(1) x G. This will allow us to clarify the relation between the results developed here
and in previous work, in particular [81,82]. In these papers, the authors study the structure
of quantum consistency conditions of N' = 1 supergravity. More precisely, they clarify the
anomaly cancellation conditions (required by the quantum consistency) for a U(1) x G gauge
group. We introduce the notations F),, and G, for the Abelian and semisimple field strengths,
respectively.

In this case, one can look at “mixed” anomalies, which are the ones proportional to
Tr(QT,T,), where Q is the U(1) charge operator and T;, are the generators of the semisimple
algebra. Following [82, Sect.2.2], one can add counterterms represented by L. such that
the mixed anomalies proportional to A, cancel and one remains with those that are of the
form Age"*P? Tr (QGuuvGps), where Ag is the Abelian gauge parameter. Schematically, this

corresponds to

Anomalies: | AgA%. ieon + AoAY. ieon
(ALt t | =M Al iedcon = NoANixedcon (5.51)

+ AoAixed cov

sum: 0 + AoAicedcov

where the subscripts “con” and “cov” denote the consistent and covariant anomalies, respec-

tively. The counterterms L. have the following form:

Lo = 526770, e [Q (A0, 40 + 34,4,4,) |, Z =15 (5.52)
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where C), and A, are the gauge fields for the Abelian and semisimple gauge groups respec-

tively. The expressions for the anomalies are:

ﬁlixed con — _%ZSMUPU Tr [Tanu (CuapWa + %CquWa) i| 3
A?nixed con — _%ZSMUPU Tr [Qau (WuapWa + %WquWa) i| 3
A?nixedcov = _%8uupa Tr [quugpa} . (5.53)

0

mixed cov 18 typically cancelled by the Green-Schwarz mechanism.

The remaining anomaly A
This will be now compared with the results of the current section and section 3 reduced
to the case U(1) x G. The index A is split into 0 for the U(1) and z for the semisimple
group generators. We expect the generalized Chern-Simons terms (5.30) to be equivalent to
the counterterms in [82] and the role of the Green-Schwarz mechanism is played by a U(1)
variation of the kinetic terms f;,, hence by a C-tensor with non-trivial components Cyy 0.

The discussion that led to (3.45) and (3.46) can be transferred to the present case and it
follows that

Coz,0 = Cooz = 0. (5.54)

The Cyy0’s are proportional to the Cartan-Killing metric in each simple factor as explained

in section 3.3 and we write here
Coryo = Z Tr(QT,Ty) , (5.55)

where Z could be arbitrary, but our results will match the results of [82] for the value of Z
in (5.52). Note that this is in total agreement with section 3.3

If we do not allow for off-diagonal elements of the gauge kinetic function f4p, we have
Joz =0 = Cozy=0. (5.56)

The components Cyg,o and Cyy , may be nonzero, but here we shall be only concerned with
the mixed components, i.e. we have only (5.55) different from zero.
If we reduce the gauge variation d5 (Imf4pF* A FP) using (5.54) and (5.55), we obtain

[5(1\)5’} - / d%[%ZAUe“”””Tr(qu,,gpa) . (5.57)

mixed
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It is suitable to split (5.55) into a totally symmetric and a part of mixed symmetry, which

leads to

08y = 08, = 100 = L2 THQTT,),

CS;ZJ = 20,0 = 22 Tv(QT,T,) oéf,jj)y = —1C0 = L2 Te(QT,T,). (5.58)

Note that this is consistent with the discussion in section 3.4, i.e. with the equations (3.59)
to (3.61). In the previous sections, it was shown that for a final gauge and supersymmetry
invariant theory the mixed symmetric part has to be identified with the constant tensor in
front of the generalized Chern-Simons term, i.e. C¢5 = C™), Therefore, the mixed part of

the generalized Chern-Simons term, (5.30), becomes in this case:
[Scs] oy = / d'z [$7C,em7 Tr [Q (4,0,45 + 34, 4,4,)] |, (5.59)

which matches (5.52) and is consistent with equation (3.49).

Finally, from reducing the consistent anomaly (5.41) we find, using dapc = CS}BC, that

the mixed anomalies are given by

.AO — _%ZgﬂVp” Tr [Qaﬂ (A,,@,,Ag + %AyApAO')] 3
AT = —L1Zemr T [TQ0), (C,0,A, + 1C,A,4,)] (5.60)

which match exactly (5.53).

Let us summarize the results of our comparison with [82]:

(i) The mixed part of the GCS action (5.59) is indeed equal to the counterterms (5.52),
introduced in [82].

(ii) The consistent anomalies (5.60) match those in the first two lines of (5.53). As we
mentioned above, the counterterm has modified the resulting anomaly to the covariant

form in the last line of (5.53).

(iii) We see that the variation of the kinetic term for the vector fields (5.57) may cancel this

mixed covariant anomaly (this is the Green-Schwarz mechanism).
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5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIESINN =1
SUPERSYMMETRY

Taking all together, we can summarize the cancellation procedure schematically as follows:

Anomalies: | AgAfieqeon T AoANixed con
S(MLcs) | ~AeAlivedeon — MoAicedcon
+ AoADived cov (5.61)
5(A)§f : B AU‘A?nixedcov
sum: 0 + 0

5.5 Summary

In the beginning of this section we showed that gauged isometries on the target space of
scalar fields modified the supersymmetry transformations of the gauge supermultiplet found
in section 4.1. We had to extend the partial derivative in the supersymmetry transformation
5x% to a covariant derivative (5.7) and to introduce the term 5R>‘fzkf4 into the supersymmetry
transformation of F* according to [84]. We know from the discussion in section 3 that the
gauge transformation d,2’ (5.1) in general causes a gauge variation of the Peccei-Quinn-type
term ImfypFAFPB, which may be cancelled in certain cases by a generalized Chern-Simons
term. This motivated to add a term to the gauge sector of global N' = 1 supersymmetry,
that is equal to the extension of the generalized Chern-Simons term to A/ = 1 supersymmetry
presented in [26]. The new term consists of the usual bosonic Chern-Simons term (5.30)

together with the fermionic term
1 _
ZCAB,CASAA%WAB , (5.62)

where C4p,c is mixed symmetric in its indices. We showed that if the gauged isometries in-
duce an imaginary shift in the gauge kinetic function (5.27), then the variations of the gauge
sector, the generalized Chern-Simons terms and the fermionic term (5.62) under supersym-
metry cancel provided the constraint C4p,c) = 0 holds. If ont the other hand, Ciap,c) # 0,

it is suitable to use the fermionic term in order to define the gauge covariant derivative
— c D : AC
DyImfap = 0ylmfap —2A) foa” Imfpp —i4,Capc, (5.63)

and not to add it to the generalized Chern-Simons term (5.30). Note that now there is the

full tensor C4p ¢ in equation (5.63), i.e. Cap,c = 01(4%’0 + Cg"é)’c.
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5.5 Summary

Now that we have relaxed the constraint C4p,c) = 0 and allowed for a nontrivial totally
symmetric part Cap c), this causes new contributions to the gauge and supersymmetry
variations that no longer vanish. The important observation is that the gauge and supersym-
metry non-invariance induced by Cap,c) # 0 can only be cancelled if there are gauge and

supersymmetry anomalies and we demand

Ciapc) = dapc, (5.64)

where the symmetric tensor d4pc characterizes the anomaly.

After performing the analysis in global N' = 1 supersymmetry, we could extend our results
to N' =1 supergravity. It turns out that the generalized Chern-Simons term (5.30) does not
need any gravitino correction and can thus be added as such to matter-coupled supergravity
actions.

Thus, the results of this section provide an extension to the general framework of coupled
chiral and vector multiplets in global and local N' = 1 supersymmetry to include the general

form of gauged axionic shifts, generalized Chern-Simons terms and anomalies.?!

31We should emphasize that we only considered anomalies of gauge symmetries that are gauged by el-
ementary vector fields. The interplay with Kéhler anomalies in supergravity theories can be an involved

subject [81,82], which was not studied. Also we did not consider gravitational anomalies.
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6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRAL
GAUGE THEORIES

6 Symplectically covariant formalism and anomalies in chiral

gauge theories

In this section we introduce a formulation of chiral gauge theories which is manifestly covariant
with respect to electric/magnetic duality. For anomaly-free gauge theories as they occur in
extended supergravity, this formulation was first presented in [83]. Maintaining covariance
at each step is achieved by introducing the so-called embedding tensor. A set of constraints
on the embedding tensor and extra gauge invariances make sure that the degrees of freedom
remain unchanged. We will see that in addition to the usual gauge variations of gauge
theory extra gauge variations appear which cause violations of the Bianchi identity and the
Jacobi identity. Consequently, the field strength tensor corresponding to the vector fields
will no longer transform covariantly. Therefore, the authors of [83] introduce tensor fields
which transform under the gauge variation such that the combination of the field strength
tensor together with the tensor fields transforms covariantly again. For this to work, one has
to add two topological terms in order to obtain a gauge invariant action that is invariant
with respect to the gauge transformations. The gauge invariance relies heavily on the set of
constraints of the embedding tensor given in [83]. We will show that it is possible to relax
one of these constraints in order to a allow for a nontrivial totally symmetric tensor. We will
display how this totally symmetric tensor leads to a gauge non-invariance of the Lagrangian
given in [83]. We will further show how one can cancel this gauge non-invariance by gauge
anomalies, if the totally symmetric tensor describes anomalies in a symplectically covariant
way and give the necessary condition. In this sense we can say that the results of this section
generalize the Green-Schwarz mechanism [2] to become a “symplectically covariant Green-
Schwarz mechanism”. In making a special choice for the embedding tensor one recovers the
results of the previous chapter for the purely bosonic sector. In subsection 6.4 we give an
explicit example that goes beyond the discussion of [83] and show how the relaxation of one
constraint allows a possible cancellation by anomalies. This section represents another major

topic of this thesis and is based on the work [40].

The outline of this section is as follows. In subsection 6.1 we will give the symplectically
covariant framework of [83] in a more general treatment. Then in subsection 6.2 we show

how the formalism of [83] has to be modified in order to accommodate quantum anomalies.
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6.1 Electric/magnetic duality without anomalies

In subsection 6.3 we choose purely electric gaugings and obtain back earlier results.We flesh
out our results with a simple nontrivial example in subsection 6.4. The main results of this
section are summarized in subsection 6.5.

In this section the notation is changed to the one of [40] so as to make the generalization

of [83] more transparent.

6.1 Electric/magnetic duality without anomalies

In this subsection we will introduce electric/magnetic duality and display the main results

of [83].

6.1.1 Electric/magnetic duality and the conventional gauging

In the absence of charged fields, a gauge invariant four-dimensional Lagrangian of n Abelian
vector fields A,*(A = 1,... ,n) only depends on their curls F,,* = 28[#141,}’\. Defining the

dual magnetic field strengths

oL
GuuA = Suupama (61)

the Bianchi identities and field equations can be brought to the following form

A
a[uFup} = 0, (62)
0,Guyn = 0. (6.3)

This formulation allows to combine the electric Abelian field strengths, FWA, and their
magnetic duals, G, A, into a 2n-plet, F,,,™, such that FM = (FA,Gy). Therefore, (6.2) and

(6.3) can be written in the following compact way:
8[uFVp}M = 0. (6.4)

It is rather obvious that equation (6.4) is invariant under general linear transformations
FM 5 "M = SMyFN | where SMy = : (6.5)

but a relation of the type (6.1) is only possible for symplectic matrices SMy € Sp(2n, R).
Thus, the admissible rotations SM y form the group Sp(2n, R):

STas =, (6.6)
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with the symplectic metric, Qpsn, given by

0 Q= 0 oy
Oy = M= M (6.7)
0 0 - 0
We define QMY via QMNQyp = —6M p. Note that the components of @MV should not be

written as Q"y etc., as these differ from (6.7) by the factor of (—1).

Starting point is a kinetic Lagrangian of the form

1 1
Ly = +Z ImNAzFuuAFWE B gguupcf ReNAzFMVAFpUZa (6.8)

where Mjx denotes the gauge kinetic function®?. Applying an electric/magnetic duality

transformation to (6.8) leads to a new Lagrangian, Efgk(F’), which is of a similar form, but

with a new gauge kinetic function
Naz = Nis = (VN +W)a[(U+ 2N) 1%, (6.9)

The subset of Sp(2n, R) symmetries (of field equations and Bianchi identities) for which the
Lagrangian remains unchanged, in the sense that £'(F'(F)) = L(F), are invariances of the
action. In a different duality frame, the Lagrangian might have a different set of invariances.

From the spacetime point of view, these are all rigid (“global”) symmetries and sometimes
these global symmetries can be gauged. For the conventional gaugings [26] one has to restrict
to the transformations that leave the Lagrangian invariant, which implies that Z** in the
matrices SM x of (6.5) has to vanish. In the context of symplectically covariant gaugings [83],
however, this restriction can be relaxed. We will come back to these more general gaugings
in section 6.1.2.

When the symmetry is gauged, covariant derivatives and field strengths are introduced as
usual. In the standard way of gauging, this can be implemented solely with the electric vector
fields AMQ and the corresponding electric gauge parameters A*?. The gaugeable symplectic

transformation, S, must thus be of the infinitesimal form

SMy =My — ASM . (6.10)

32The gauge kinetic function f4p, as used so far, corresponds in this section to —iN}s:.
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6.1 Electric/magnetic duality without anomalies

According to our definition (6.5), these infinitesimal symplectic transformations act on the
field strengths by multiplication with the matrices S\™ x from the left. Following the con-
ventions of [83], however, we will use matrices Xqps™ to describe the infinitesimal symplectic

action via multiplication from the right:
5F,M = FLM-F,M=-A"F, Xon™,  ie.  Xon™ =Sy, (6.11)

Then, for standard electric gaugings we have the transformation

FA Xoz 0 F=
s "™ | = —A" ~ el (6.12)
Guv A Xaonz Xo~a Gu=
where Xon? = —Xqhy = szA must be the structure constants of the gauge algebra3?, and

Xszr = Xx(zr) would give rise to the axionic shifts3* mentioned in sections 3 and 5.

Then the gauging proceeds in the usual way by introducing covariant derivatives (J, —
AuAdA), where the dp are the gauge generators in a suitable representation of the matter
fields (see (5.1), for example). One also introduces covariant field strengths and possibly
GCS terms as described below. As we assume the absence of quantum anomalies in this
subsection, we have to require X(yyr) = 0 in accordance with the results found in sections 3

and 5.

6.1.2 The symplectically covariant gauging

We will now turn to the more general gauging of symmetries. The group that will be gauged
is a subgroup of the rigid symmetry group. What we mean by the rigid symmetry group
is a bit more subtle in A/ = 1 supersymmetry (or theories without supersymmetry) than
in extended supersymmetry. This is due to the fact that in extended supersymmetry the
vectors are supersymmetrically related to scalar fields, and therefore their rigid symmetries
are connected to the symmetries of scalar manifolds.

In N' = 1 supersymmetry or in theories without supersymmetry, the rigid symmetries
of the vector and scalar sector are not directly related. Then the rigid symmetry group,
Gligid, is a subset of the product of the symplectic duality transformations that act on the

vector fields and the isometry group of the scalar manifold of the chiral multiplets: Gyigiq C

33In previous sections denoted by fas®.
34The shifts Cap,c are translated by Xaszo = Cso,a for the choice made in (6.10).
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Sp(2n, R) xIso(Mscatar). In N = 1 supergravity, this means that the action of the symmetries
is given by elements (g1, g2) of Sp(2n,R) x Iso(Msgealar) that are compatible with (6.9) in
the sense that the symplectic action (6.9) of g; on the matrix A is induced by the isometry
g2 on the scalar manifold. These are rigid (“global”) symmetries provided they also leave
the rest of the theory (deriving from scalar potentials, etc.) invariant [85]. In this sense, the
relevant isometries are those that respect the Kéhler structure (i.e. the isometries have to be
generated by holomorphic Killing vectors) and that also leave the superpotential invariant (in
35

supergravity, the superpotential should transform according to the Kéhler transformations).

The generators of Gigiq will be denoted by 04, v =1,... , dim(Gigia). These generators

act on the different fields of the theory either via Killing vectors 6, = K, = K}, 6‘3)1- defining

infinitesimal isometries on the scalar manifold, or with certain matrix representations3®, e.g.
6a¢i = _¢j(ta)]'i'
On the field strengths F,," = (FM,,A, G A), these rigid symmetries must act by multi-

plication with infinitesimal symplectic matrices®” (t,)ar”, i.e., we have
(ta)” Qnip = 0. (6.13)

In order to gauge a subgroup, Giocal C Ghrigia, the 2n-dimensional vector space spanned by
the vector fields38 ANM has to be projected onto the Lie algebra of Gjocal, which is formally
done with the so-called embedding tensor © ;% = (0,, ©*®). Equivalently, ©,,% completely
determines the gauge group Gigcal via the decomposition of the gauge group generators, which

we will denote by X M, into the generators of the rigid invariance group Gigiq:

XM = @Mo‘éa. (614)

35Note that this may include cases where either the symplectic transformation g; or the isometry go is
trivial. Another special case is when the isometry g» is non-trivial, but A does not transform under it, as
happens, e.g, when N = i1l is constant. Giiga is in general a genuine subgroup of Sp(2n, R) x Iso(M catar),

even in the latter case of constant N.
36The structure constants defined by [0a, 3] = fas?d, lead for the matrices to [ta,ts] = — fas t,.
3TThese matrices might be trivial, e.g., for Abelian symmetry groups that only act on the scalars (and/or

the fermions) and that do not give rise to axionic shifts of the kinetic matrix Nas.
%8 The equations of motion (6.3) imply the existence of magnetic gauge potentials, A,a, via Gua =

20;,A,1a. The magnetic gauge potentials obtained in this way are in turn related to the electric vector
potentials, AMA, by nonlocal field redefinitions. The electric and magnetic vector fields can be combined into

a 2n-plet, Aﬁ/l, such that AM = (4%, A4).
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6.1 Electric/magnetic duality without anomalies

The gauge generators Xy enter the gauge covariant derivatives of matter fields,
Dy =0, — AMXy =9, — A2ON 0y — A 0196, (6.15)

where the generators d, are meant to either act as representation matrices on the fermions
or as Killing vectors on the scalar fields, as mentioned above. On the field strengths of the
vector potentials, the generators d, act by multiplication with the matrices (to)n", so that
(6.14) is represented by matrices (Xp7)n whose elements we denote as Xy/n” and whose

antisymmetric part in the lower indices appears in the field strengths
Fu =20, A0M + XinpM AN AT, XM =08 (ta) PV (6.16)
The symplectic property (6.13) implies
Xun“Qpo=0,  XyoN0"9=o0. (6.17)

In the remainder of this paper, the symmetrized contraction X(MNQQP)Q will play an im-

portant role. We therefore give this tensor a special name and denote it by Dysnp:
Dynp = X(MNQQP)Q : (6.18)

Note that this is really just a definition and no new constraint. Using the definition (6.18),

one can check that

2X N “Uro + Xrn9Qng = 3Dung,

i.e. X(MN)P = %QPRXRMQQNQ + %DMNRQRP. (619)

6.1.2.1 Constraints on the embedding tensor The embedding tensor ©3,* has to
satisfy a number of consistency conditions. Closure of the gauge algebra and locality require,
respectively, the quadratic constraints
closure:  fo370u*ON" = (ta)nT ©OM"OP7, (6.20)
locality: ~ QMVoy*0x' =0 o etee,fl=o, (6.21)

where f,37 are the structure constants of the rigid invariance group Gyisiq, see footnote 36.
B 8 8 g

The constraint (6.20) also expresses the invariance of the embedding tensor under Ghrigid-
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Another constraint, besides (6.20) and (6.21), was inferred in [83] from supersymmetry con-

straints in N = 8 supergravity
Dunr = Xun9Qprg=0. (6.22)

This constraint eliminates some of the representations of the rigid symmetry group and is
therefore sometimes called the “representation constraint”. One can actually show that the
locality constraint is not independent of (6.20) and (6.22), apart from specific cases where
(to) Y has a trivial action on the vector fields.

However, we will neither use the locality constraint (6.21) nor the representation con-
straint (6.22). We will, instead, need another constraint in section 6.1.2.4, whose meaning we
will discuss in section 6.2. Before coming to that new constraint, we thus only use the closure
constraint (6.20). This constraint reflects the invariance of the embedding tensor under Gjocal

and it implies for the matrices Xj; the relation
X, Xn] = —Xun" Xp. (6.23)

This clearly shows that the gauge group generators commute into each other with ‘structure
constants’ given by X [MN}P . In general, X ,n* also contains a non-trivial symmetric part,
X(MN)P. The antisymmetry of the left hand side of (6.23) only requires that the contraction

X(MN)P@pa vanishes, as is also directly visible from (6.20). Therefore one has

Xum Op*=0 = Xuwn Xpe"=0. (6.24)
Writing out (6.23) explicitly gives

X" Xnp® = Xng" Xup® 4+ Xun" Xpot = 0. (6.25)

Antisymmetrizing in [M N @], we can split the second factor of each term into the antisym-

metric and symmetric part, Xy n? = X[MN}P + X(MN)P, and this gives a violation of the

Jacobi identity for X[MN}P as

Xy Xior)™ + Xigu)" Xive)™ + Xivgy” X ™

= —3 (Xun " Xor) " + Xigan " Xve) ™ + Xivg) " Xr) ) - (6.26)
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6.1 Electric/magnetic duality without anomalies

Other relevant consequences of (6.25) can be obtained by (anti)symmetrizing in M Q. This

gives, using also (6.24), the two equations

X Xne® = Xno" Xupy® = XnuF Xgpy® =0,

Xinq " Xnp™ = Xno" Xpup)™ + Xvu" Xigp™ = 0. (6.27)

6.1.2.2 Gauge transformations An important consequence of the nonvanishing sym-
metric part X(MN)P is the violation of the Jacobi identity (6.26). This is the prize one has
to pay for the symplectically covariant treatment in which both electric and magnetic vector
potentials appear at the same time. In order to compensate for this violation and in order
to make sure that the number of propagating degrees of freedom is the same as before, one
imposes an additional gauge invariance in addition to the usual non-Abelian transformation

GMAM + X[pQ}MAuPAQ and extends the gauge transformation of the vector potentials to
0AM =D A — Xy MENT . DAY = 9, AM + XpoM AP A9, (6.28)

where we introduced the covariant derivative DMAM , and new vector-like gauge parame-

NP symmetric in the upper indices. The extra terms X(PQ)MAMPAQ and the Z=-

ters =
transformations contained in (6.28) allow one to gauge away the vector fields that correspond
to the directions in which the Jacobi identity is violated, i.e., directions in the kernel of the
embedding tensor (see (6.24)).

It is important to notice that the modified gauge transformations (6.28) still close on the

gauge fields and thus form a Lie algebra. Indeed, if we split (6.28) into two parts,
sAM =s(M)AM +6(E)A,M, (6.29)
the commutation relations are

[6(A1),0(A)] AM = 6(A3)AM + 6(E5) AN,

[B(A), 8] AM = [6(21),6(E2)] 4,M =0, (6.30)
with
Aéw = X[NP}MA{VAga
257N = APD,AY) — AFD, AN (6.31)
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To prove that the terms that are quadratic in the matrices X, in the left-hand side of (6.30)
follow this rule, one uses (6.27). Due to (6.24) and (6.28), however, the usual properties of
the field strength

quM = 28[#AV}M + X[PQ}MAMPAUQ (632)

are changed. In particular, it will no longer fulfill the Bianchi identity, which now must be

replaced by
1
M My N P M P N R
Dy Fop) = Xwvp) A Fug —gX(PN) Xior Al A,,QAp} . (6.33)

Furthermore, F,,™ does not transform covariantly under a gauge transformation (6.28).

Instead, we have

0Fuw™ = 2D,64,™ - 2X(pg)M A1," 64,9

= Xno" FuVA? = 2X(yp) M D ELN - 2X(pg) M A, "0A4,)2, (6.34)
where the covariant derivative is (both expressions are useful and related by (6.27))

X(NP)MDMEVNP _ 8” (X(NP)MEVNP)+A/JRXRQMX(NP)QEVNP7

DN = 9,58 + Xgr" 4,95, N + Xqr"VA,%5, R, (6.35)

Therefore, if we want to deform the gauge kinetic Lagrangian Ly and accommodate electric
and magnetic gauge fields, ]—'WM cannot be used to construct gauge-covariant kinetic terms.
For this reason, the authors of [83] introduced tensor fields B, o, later in [86] to be

described by B,,M", symmetric in (M N), and with them modified field strengths
Hu™ = Fu™ + Xvpy) M BN (6.36)
We will consider gauge transformations of the antisymmetric tensors of the form
0B,,"* = 2D, 5, N + 24, V54,7 + AB, T, (6.37)

where ABWNP depends on the gauge parameter A9, but we do not fix it further at this

point. Together with (6.34), this then implies’

Huw™ = Xno" AN + X vy ABNT (6.38)

39Note that F,," in the second line of (6.34) can be replaced by H,," due to (6.24).
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6.1 Electric/magnetic duality without anomalies

6.1.2.3 The kinetic Lagrangian As the field strength does not transform covariantly
anymore, the Lagrangian (6.8) cannot be invariant. Invariance can be restored in extending
(6.8) as we will show now. The first step towards a gauge invariant action is to replace ]—'u,,A
in Lyx., (6.8), by ’HWA because if ABWNP = 0, then H% transforms covariantly under

(6.28). So in this case the new kinetic Lagrangian
Lok = 2eInsHu " H™Y — ERAse" P Hy oo™ (6.39)

is indeed invariant. Here again Zy, and R,y denote, respectively, Im Ay and Re Npx. The

dual field strength to Hﬁy is given by

oL 1
g;wA = g;wpam = RAFHMVF + Eeguupa Iar Hpol" ) (640)

and, consequently, the Lagrangian and its transformations can be written as

1 A
‘Cg.k. = _ggﬂypg,lengAa
_ 1 _pvpo A
Ly, = —LeM07g,, oML,

+3emP N (1, XoasH, — 2H, Xon"Gpos — GuwnX@  Gpox) , (6.41)
In the third line, we used the infinitesimal form of (6.9):
J(MNyg = AM [ — Xaiaz + 2 Xpra "Ny + Nar X' NEZ} . (6.42)
The second line of (6.41) can be rewritten as a covariant expression when
Gu™ = (G, Gun)  with G, =", (6.43)
is introduced. In using (6.38), we obtain for the variation of the gauge kinetic Lagrangian

0Lgx. =etr? [_%guw\ (AQXPQAHMP + X(NP)AABMNP)

+%guuMgpaNAQXQMRQNR] . (644)

Even if AB,,N” = 0, the newly proposed form for Lg k. in (6.39) is still not gauge invariant.
This should not come as a surprise because (6.42) contains a constant shift (i.e., the term
proportional to Xp7ay), which requires the addition of extra terms to the Lagrangian (in

section 5 and 3 we had to add the generalized Chern-Simons terms to absorb constant shifts
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in the gauge kinetic function). Also the last term on the right hand side of (6.42) gives extra
contributions that are quadratic in the kinetic function. In the next steps we will see that
besides GCS terms, also terms linear and quadratic in the tensor field are required to restore

gauge invariance. We start with the discussion of the latter terms.

6.1.2.4 Topological terms for the B-field and a new constraint The second step
towards gauge invariance is made by adding topological terms linear and quadratic in the

tensor field B, VP to the gauge kinetic term (6.39), namely
['top,B = iguupa Xv(NP)A B;WNP (fpaA + %X(RS)A BpURS> . (6'45)

Note that this term vanishes for purely electric gaugings because there one has Xy p)A =0
(as can be seen from the discussion around (6.12)). Consequently, the tensor fields decouple
from the theory in electric gaugings.

We recall that, up to now, only the closure constraint (6.20) has been used. Now, however,

one new but not independent constraint is imposed:
XveyM X (rs)? =0. (6.46)

It will be shown later that this constraint is actually implied by the locality constraint (6.21)
and the original representation constraint of [83], i.e. (6.22). As it turns out, even the
relaxation of the constraint (6.22) to allow for nontrivial Dy;nr # 0 will still imply (6.46).

The constraint (6.46) simply means that

Xvpy Xrs)n = Xvpyn X (rs) - (6.47)

A consequence of this constraint that is quite useful for computations follows from the first

of (6.19) and (6.24):
Xpg)"Dunr =0. (6.48)
The variation of Ligp g is

5‘Ct0p,B = %ijpa)((NP)A [HMUA 6BpUNP + BpUNP(S]:;WA] (649)

= 2" X (npy" [Huwa 0Bpe ™" 4+ 2By ™" (DydAun — X(reyn AGAD)] .
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6.1.2.5 Generalized Chern-Simons terms If there is a constant shift by Xjsay in
(6.42) we know from the arguments in section 5 that generalized Chern-Simons terms are
necessary. In [83], the authors introduced a generalized Chern-Simons term of the form

(these are the last two lines in what they called Ly, in their equation (4.3))

1 1 1
Lacs = P A,MAN <§ X a 0,4, + 6XMNAapr, A+ gXMN AXPQAApPAJQ> .

(6.50)

Using (6.25) antisymmetrized in [M N Q] and the definition of Dj/nyp in (6.18), one can write

its variation as

0Laes =P L7, Do A0s — Y FunXvp) M A, 64,7

—DunpAMEAN (0,47 + 2Xps" 4,7 A,5)] . (6.51)

modulo total derivatives. Finally, combining the variation of the generalized Chern-Simons

term with (6.49) results in

d (['top,B + ['GCS) = gh¥p? [%HMUADpdAaA + %HMUAX(NP)A (5BpUNP - 2ApN5AUP)

—DunpAMEAN (0,47 + X st A, A% (6.52)

6.1.2.6 Variation of the total action The results of the previous paragraphs allow us

to discuss the symmetry variation of the total Lagrangian
Lyt = Lgx. + Liop,B + Lacs » (6.53)

built from (6.39), (6.45) and (6.50). In agreement with [83] we will find that (6.53) is indeed
invariant under (6.28). In order to see this, we first check the invariance of (6.53) with respect
to the E-transformations. One can see directly from (6.44) that the gauge-kinetic terms are
invariant as no Z-term appears in their variation. The second line of (6.52) also clearly
vanishes because any =-transformation is proportional to the symmetric part Xy N)P and is
projected to zero by Drsp due to (6.48). This leaves us with the first line of (6.52). If we

use (6.37) and (6.28), this can be written in a symplectically covariant form:
5E£VT == —%S”Vpg'Hw,MX(Np)QQMQDpEJNP . (6.54)
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The B-terms in H, see (6.36), are proportional to X(RS)M and thus give a vanishing con-

tribution due to our new constraint (6.46). For the F terms we can perform an integration
by parts*® and then according to (6.33) there are again only terms proportional to X(RS)M
leading to the same conclusion. Therefore, the Z-variation of the total action vanishes.

Thus, we only have to consider the AM gauge transformations. In accordance with (6.34),
the D,0A,A-term in (6.52) can be replaced by %AQXNQAHMN (see again footnote 39). One
can then obtain a symplectically covariant expression when this is combined with the first
term of (6.44) (the first term on the right hand side of (6.55) below). Adding also the
remaining terms of (6.52) and (6.44), one obtains, using (6.37),

6£VT = ghro [%QMVMAQXNQRQMRH;JUN + %gungpaNAQXQMRQNR
+%(H - g);w AX(NP)AABpaNP

—DunpAMD AN (0,47 + 2XRsTA,7A,%)] (6.55)

We observe that if the H in the first line was a G, eqs. (6.17) and (6.19) would allow one
to write the first line as an expression proportional to Dy;yp. This leads to the first line in
(6.56) below. The second observation is that the identity (H — G)* = 0 allows one to rewrite

the second line of (6.55) in a symplectically covariant way, so that, altogether, we have

0Lyt =P (16, A XN Qur(H — G)pe™ + 3G, GV A9 Do
_%(H - g)uuMQMRX(NP)RABpUNP

—DunpA LMD AN (0,A,7 + 3 X st A, A,%)] (6.56)
By choosing
AB,,NP = —ANG,." — APG," (6.57)
the result (6.56) becomes

0Lyr =ehP? [%AQDMNQ (2guuM(H - g)paN + guuMGpaN)

—DunpAMD AN (9,47 + X psT A, AL5)] (6.58)

40Tntegration by parts with the covariant derivatives is allowed because (6.25) can be read as the invariance

of the tensor X and (6.17) as the invariance of Q.
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which is then proportional to Dysnyp, and hence zero when the original representation con-
straint (6.22) is imposed.

Our goal is to generalize this for theories with quantum anomalies. These anomalies
depend only on the gauge vectors. However, the field strengths G, (6.40) also depends on the
matrix A which itself generically depends on scalar fields. Therefore, we want to consider
modified transformations of the antisymmetric tensors such that G does not appear in the
final result.

To achieve this, we would like to replace (6.57) by a transformation such that
XvpyFAB N = —2X np) AN G0 + 2QM Dy N A9 (H — G) o™ (6.59)
Indeed, inserting this in (6.56) would lead to

5['VT = ghvpo [%AQDMNQfMVprUN

—DunpAMD AN (9,4,7 + X psT A, AL5)] (6.60)

where we have used (6.48) to delete contributions coming from the B, VT term in H,, (cf.
(6.36)).

The first term on the right hand side of (6.59) would follow from (6.57), but the second
term cannot in general be obtained from assigning transformations to B,MN P (compare with
(6.19)). Indeed, self-consistency of (6.59) requires that the second term on the right hand side
be proportional to X(NP)R, which imposes a further constraint on Dj;nyp. We will see in sec-
tion 6.2.3 how we can nevertheless justify the transformation law (6.59) by introducing other
antisymmetric tensors. For the moment, we just accept (6.59) and explore its consequences.

Expanding (6.60) using (6.16) and (6.28) and using a partial integration, (6.60) can be

rewritten as

SCyr = —A[A], (6.61)
where
AN = e A" Darrd A 0,4,
—ie’“’p"AP(DMNRX[pS}N + gDMNpX[RS}N)auA,,MA,,RAJS. (6.62)

This expression formally looks like a symplectically covariant generalization of the electric

consistent anomaly (5.41) which we encountered in section 5. Notice, however, that at this
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point this is really only a formal analogy, as the tensor Dy;np has, a priori, no connection
with quantum anomalies. We will study the meaning of this analogy in more detail in the
next section. To prove (6.61), one uses (6.48) and the preservation of Dj;yp under gauge
transformations, which follows from preservation of X, see (6.25), and of Q, see (6.17), and

reads
For the terms quartic in the gauge fields, one needs the following consequence of (6.63):

(Xrs™ XpoN DrynN)rspr) = —(Xrs™ Xpu™ Dron + Xrs™ XprN Dqoumn)(rspL

= —(Xrs™ XpL" Doun)rsei) (6.64)

where the final line uses (6.26) and again (6.48).

Let us summarize the result of our calculation up to the present point. We have used the
action (6.53) and considered its transformations under (6.28) and (6.37), where AB,,, N was
undetermined. We used the closure constraint (6.20) and one new constraint (6.46). It was
shown that the choice (6.57) leads to invariance if Dsy p vanishes, which is the representation
constraint (6.22) used in the anomaly-free case studied in [83]. However, when we use the more
general transformation (6.59) in the case Dyyp # 0 instead, we obtain the non-vanishing
classical variation (6.61). The corresponding expression (6.62) formally looks very similar to
a symplectically covariant generalization of the electric consistent quantum anomaly.

In order to fully justify and understand this result, we are then left with the following

three open issues, which we will discuss in the following section:

(i) The expression (6.62) for the non-vanishing classical variation of the action has to be
related to quantum anomalies so that gauge invariance can be restored at the level of
the quantum effective action, in analogy to the electric case described in sections 3 and

5. This will be done in section 6.2.1.

(ii) The meaning of the new constraint (6.46) that was used to obtain (6.61) has to be

clarified. This is subject of section 6.2.2.

(iii) We have to show how the transformation (6.59), which also underlies the result (6.61),

can be realized. This will be done in section 6.2.3.
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6.2 Gauge invariance of the effective action with anomalies
6.2.1 Symplectically covariant anomalies

In section 6.1, we discussed the algebraic constraints that were imposed on the embedding
tensor in ref. [83] and that allowed the construction of a gauge invariant Lagrangian with
electric and magnetic gauge potentials as well as tensor fields. Two of these constraints,
(6.20) and (6.21), had a very clear physical motivation and ensured the closure of the gauge
algebra and the mutual locality of all interacting fields. The physical origin of the third
constraint, the representation constraint, (6.22), on the other hand, remained a bit obscure.

In order to understand its meaning, we specialize it to its purely electric components,
Xazo) =0. (6.65)

Given that the components X5 generate axionic shift symmetries (remember the first term
on the right hand side of (6.42)), we can identify them with the corresponding symbols C4p¢c
in section 5, and recognize (6.65) as the condition for the absence of quantum anomalies for
the electric gauge bosons (see (5.43)). It is therefore suggestive to interpret (6.22) as the
condition for the absence of quantum anomalies for all gauge fields (i.e. for the electric and
the magnetic gauge fields), and one expects that in the presence of quantum anomalies, this
constraint can be relaxed. We will show that the relaxation consists in assuming that the

symmetric tensor Dysnp defined by (6.18) is of the form*!

Dynp =dunp, (6.66)

for a symmetric tensor dysnyp which describes the quantum gauge anomalies due to an anoma-
lous spectrum of chiral fermions. In fact, one expects quantum anomalies from the loops of

these fermions, 1, which interact with the gauge fields via minimal couplings
Py (O — A OG0 — Aun O350 ) 9. (6.67)

Therefore, the anomalies contain — for each external gauge field (or gauge parameter) — an

embedding tensor, i.e. dysnyp has the following particular form:

dyunp = On"ON’Op dog, (6.68)

41The possibility to impose a relation such as (6.66) is by no means guaranteed for all types of gauge groups

(see e.g. [87] for a short discussion in the purely electric case studied in [88]).
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with d,g, being a constant symmetric tensor. In the familiar context of a theory with a
flat scalar manifold, constant fermionic transformation matrices, ¢,, and the corresponding

minimal couplings, the tensor dj;np is simply proportional to

dMNp X @Ma@N’BGP’YTI‘({ta,tB}t,Y}, (6.69)

where the trace is over the representation matrices of the fermions.*?

We showed that the generalization of the consistent anomaly (5.41) in a symplectically
covariant way leads to an expression of the form (6.62) with the Dj;yp-tensor replaced by
dyyp. Indeed, the constraint (6.66) implies the cancellation of this quantum gauge anomaly
by the classical gauge variation (6.61). Note that it is necessary for this cancellation that the
anomaly tensor dysnp is really constant (i.e., independent of the scalar fields). We expect
this constancy to be generally true for the same topological reasons that imply the constancy
of darq in the conventional electric gaugings. In this way we have already addressed the first
issue of the end of the previous section. We are now going to show how the constraint (6.66)

suffices also to address the other two issues, (ii) and (iii).

6.2.2 The new constraint

We now comment on the constraint (6.46):
XveyM o X(rs)? =0. (6.70)

We will show that this equation holds if the locality constraint is satisfied, and (6.66) is
imposed on Dy/np with dyyp of the particular form given in (6.68). To clarify this, we

introduce as in [83] the ‘zero mode tensor’*3

1 ZAa — l@Aa’
zMa — —QMNgye | e 2 (6.71)
2 ZAa = _%@Aa .

One then obtains, using (6.19), the definition of X in (6.16) and (6.68) that

XovpyM = ZMAunp, (6.72)

*20One might wonder how the magnetic vector fields A, can give rise to anomalous triangle diagrams, as
they have no propagator due to the lack of a kinetic term. However, it is the amputated diagram with internal

fermion lines that one has to consider.

*3Note that the components of Q™" have signs opposite to those of Qusn as given in (6.7).
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for some tensor Aynyp = Agypn. Due to the fact that we allow the symmetric tensor Dysyp in
(6.18) to be non-zero and impose the constraint (6.66), this tensor A,y p is not the analogous

quantity called doasn in [83]*, but can be written as
Aanp = (ta)N9Qpg — 3dap,ON"OP7 . (6.73)

However, the explicit form of this expression will not be relevant. We will only need that

X(NP)M is proportional to ZM,

Now we will finally use the locality constraint (6.21), which implies
zMez Bl =0,  ie  ZMezNBQuN =0. (6.74)

and, thus, leads to the desired result (6.70).
The tensor ZM® can be called zero-mode tensor as e.g. the violation of the usual Jacobi
identity (second line of (6.26)) is proportional to it. We now show that it also defines zero

modes of Dysnyg. Indeed, another consequence of the locality constraint is
Xun"aVey =0 — XuntzZMe =0,  Xou"Q9¥Xsy®=0.  (6.75)
With (6.19) and (6.24) this implies
DunrZB =0. (6.76)

Note that we did not need (6.66) to achieve this last result, but that the equation is consistent

with it.

6.2.3 New antisymmetric tensors

Finally, in this section we will justify the transformation (6.59), without requiring further
constraints on the D-tensor. That transformation gives an expression for X(NP)RABMNP
that is not obviously a contraction with the tensor X(NP)R (due to the second term on the
right hand side of (6.59)). We can therefore in general not assign a transformation of B, V"

such that its contraction with X(NP)R gives (6.59). To overcome this problem, we will have

44We use Ao in this work to denote the analogue (or better: generalization) of what was called damn
in [83], because doarn is reserved in the present paper to denote the quantity ©x°On7dag, (cf eq. (6.84))

related to the quantum anomalies.
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to change the set of independent antisymmetric tensors. The BWM N cannot be considered
as independent fields in order to realize (6.59). We will, as it was done along the lines of [83],
introduce a new set of independent antisymmetric tensors, given by B, , for any o denoting
a rigid symmetry.

The fields Bu,,NP and their associated gauge parameters V" appeared in the relevant

formulae in the form X ypy" B, N" or X(ypyMENT, see e.g. in (6.28), (6.34), (6.36) and

(6.45). Now, as we have the form (6.72), this can be written as
XvpyV' BT = ZY*Aqyn B M (6.77)
Therefore, we will replace
AaunBuw™Y = Bua. (6.78)

and consider the B, , as the independent antisymmetric tensors. Thus, there is one tensor

for every generator of the rigid symmetry group and the replacement implies that
XwpMBuNt = ZMB,,. (6.79)

We also introduce a corresponding set of independent gauge parameters =, , through the

substitution:

AaunEMN = Bl (6.80)

This allows us to reformulate all the equations in the previous subsections in terms of B, o

and Z,,. It is now, for instance,:

sAM = DAY - ZMez, (6.81)
HMVM = ‘7:IWM + ZMaBuua 3 (682)
Liop,s = 1M Z%B,,, (]—",M At ZAO‘BMM) . (6.83)

We will show that considering B, o as the independent variables, we are ready to solve the
remaining third issue mentioned at the end of section 6.1. To this end, we first note that all
the calculations in section 6.1 remain valid when (6.79) and (6.81)-(6.83) are used to express
everything in terms of the new variables By, , and Z,,. The equations (6.46) and (6.48) we

used in section 6.1 are now simply replaced by (6.74) and (6.76), respectively.
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Following (6.68), we are able to set
dvnp = On“danp danp = dag,ON"Op7 (6.84)
and, consequently, can define (bearing in mind (6.72))

0Bua = 2DyEya+20anpAR"N 04" + ABuya,

ABuua = _2AaNPANguuP + 3daNPAN(H - g)uup ) (6'85)

to reproduce (6.59). Here the left-hand side of (6.59) is replaced according to (6.79) and the
covariant derivative is defined as

'D[#Ey}a = 8[#Ey}a + fag'y@p’gA[#PEl,h. (6.86)

Of course, (6.85) is only fixed modulo terms that vanish upon contraction with the embedding
tensor.

So let us summarize what we have found out. In this section we have seen, so far, that it
is possible to relax the representation constraint (6.22) used in ref. [83] to the more general
condition (6.66) if one allows for quantum anomalies. The physical interpretation of the
original representation constraint (6.22) of [83] is thus the absence of quantum anomalies.

Due to these constraints we obtained the equation (6.72), which allowed us to introduce
the B, as independent variables. All the calculations of section 6.1.2 are then valid with
the substitutions given in (6.79) and (6.80). We did not impose (6.72) in section 6.1.2, and
therefore we could at that stage only work with Bu,,N P However, now we conclude that
we need the B, , as independent fields and will further only consider these antisymmetric
tensors.

The results of this section can alternatively be viewed as a covariantization of the results of
section 5 and [12,88] with respect to electric/magnetic duality transformations.*> To further
check the consistency of our results, we will in the next section reduce our treatment to a

purely electric gauging and show that the results of section 5 can be reproduced.

45We have not discussed the complete embedding into N = 1 supersymmetry here, which would include all
fermionic terms as well as the supersymmetry transformations of all the fields. This is beyond the scope of

this thesis.
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6.3 Purely electric gaugings

Let us first explicitly write down Djsnyp in its electric and magnetic components:

Dasr = Xasrys
3D sr = X%gr—2Xsp)t,
SDAS. = X[ AT 4 ox(Am)
DA = _x (AR} (6.87)

In the case of a purely electric gauging, the only non-vanishing components of the embedding

tensor are electric:
Op = (0,4 0) . (6.88)

Therefore also XA y* = 0 and (6.68) implies that the only non-zero components of Dy yp =

dynp are Dayg. Therefore, (6.87) reduce to
Daza = X(asq),  Xie)t =0,  Xo* =0, (6.89)

The non-vanishing entries of the gauge generators are Xyr and Xsod = =Xyt = X[ZQ}A,
the latter satisfying the Jacobi identities since the right hand side of (6.26) for M NQR all
electric indices vanishes. The X[EQ}A can be identified with the structure constants of the
gauge group that were called fABC in section 5. The Xy correspond to the shifts in (5.20).
The first relation in (6.89) then corresponds to C(4p,c) = dac-

The locality constraint is trivially satisfied and the closure relation reduces to (5.32) as
expected.

At the level of the action Ly, all tensor fields drop out since, when we express everything
in terms of the new tensors B,,,, these tensors always appear contracted with a factor
©A® = (. In particular, the topological terms Liop,p vanish and the modified field strengths

for the electric vector fields HWA reduce to ordinary field strengths:
Hu™ = 20, A, + Xjon* 4,84,%. (6.90)

Also the GCS terms (6.50) reduce to the analogue form of (5.30) in purely electric gaugings.

Finally, the gauge variation of Ly reduces to minus the ordinary consistent gauge anomaly.
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This concludes our reinvestigation of the electric gauging with axionic shift symmetries,
generalized Chern-Simons terms and quantum anomalies as it follows from our more gen-
eral symplectically covariant treatment. We showed that the more general theory reduces

consistently to the known case of a purely electric gauging.

6.4 A simple example of magnetic gauging

The above results can be shown by means of a simple example that already provides a
nontrivial symmetric tensor Dysnyp. Let us now briefly illustrate the above results by means
of a simple example. We consider a theory with a rigid symmetry group embedded in the
electric/magnetic duality group Sp(2, R). The embedding into the symplectic transformations
is given by

0
tin? = , ton ™ = ; tan” = ; (6.91)

i.e. to!! = 1. Let us consider the following subset of duality transformations:

0 0
SMy =My - APXpyM,  with generators XpyV = 4 , (6.92)
Xp 0

where A" is the rigid transformation parameter. The tensor X is related to the embedding

of the symmetries in the symplectic algebra using the embedding tensor,
3
Xpu™ = 0ptan™ . (6.93)
a=1
We have thus chosen the embedding tensor
Opl=0, Op? = Xp't, 0p®=0. (6.94)

The task is to promote SM y to a gauge transformation, i.e., to take AN = AN (z) spacetime
dependent and to identify the Xpy;" with the gauge generators. This obviously corresponds
to a magnetic gauging, because (6.89) is violated. However, the locality constraint (6.21)
is automatically satisfied, as only the index value a = 2 appears, and closure of the gauge

algebra spanned by the Xpj," requires that (6.20) is imposed, where only the right-hand side
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is non-trivial. It is necessary that ©,2 = 0, and the only gauge generators that are consistent

with this constraint are

Xpu = (XN, X0/N), with XN =0, X'V = X?H g . (6.95)
Note that this choice still violates the original linear representation constraint (6.22) because
(6.87) leads to D''! = — X! =£ (). However, this is not an obstacle in performing the gauging
with generators Xpps™V given in (6.95). In order to do so we introduce a symplectic vector
field AMM which contains an electric and a magnetic part, 4,' and A,;. Only the magnetic
vector field couples to matter via covariant derivatives since the embedding tensor projects
out the electric part. In what follows, we also assume the presence of anomalous couplings
between the magnetic vector field and chiral fermions which justifies the nonzero X't #£ 0
because it will give rise to anomaly cancellation terms in the classical gauge variation of the

action. More precisely, we will have to require that
o2 = x!1 XML = gl = (X130, (6.96)

where we introduced dNQQQ as the component of d,g.,.

There is the kinetic term for the electric vector fields:
Lok =%eI Hp'H™ =L Re™P"H, Wy (6.97)
where we introduced the modified field strength (6.82)
Ho' = 20,A," + %XHIBWQ : (6.98)

and whose variation has to be computed. Observe that it depends on a tensor field B,
because in (6.94) it was chosen a magnetic gauging. However, it transforms covariantly

under

1
0A = O+ XA A - SXTE

53#,,2 = 26[ME,,}2 + 4A[M16V}A1 - 6A18[MA,,} 1= Algw,l ,
SAn = .M. (6.99)
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which follows from (6.85) since the only nonzero component of Agysy is Aot = 2 and for

dorry we have only do'' = —1. One can check that

Hu' = XA (HA+G)pr, with

1
Huw1t = Fur =20, A1, Gu1 = RHuw' + iezewgwﬂ . (6.100)

Under gauge variations, the real and imaginary part of the kinetic function transform as

follows (cf. (6.42)):
6T =20 X"MRT,  R=MX"(R?-T7). (6.101)
From this one obtains the gauge variation of the kinetic term, given by
0Lgx. = 1M N X" G 10, A0 . (6.102)

which corresponds to (6.44) in our present gauge (6.94).

In a second step, we add the topological term (6.83)
Liop, = ™77 X Bpuy20,An1 - (6.103)
The gauge variation of this term is equal to (up to a total derivative)
SLiopn = — LA XMeP7 (§,A,1) (20,401 + Gpo1) - (6.104)

Note that the generalized Chern-Simons term (6.50) vanishes in this case. In combining

(6.102) and (6.104), one derives
5 (Lgx. + Liop,s) = —s M X" (9, A1) (0,451) "P7 . (6.105)
This cancels the magnetic gauge anomaly whose form can be derived from (6.62),
AA] = —2emP7Nd"M (0,A401) (0,A01) (6.106)

if we remember that X''' = —D'"! = —d""'. Note that the electric gauge fields do not
appear reflecting the fact that the electric gauge fields do not couple to chiral fermions.

A simple fermionic spectrum that could yield such an anomaly (6.106) is given by,
e.g., three chiral fermions with canonical kinetic terms and quantum numbers @ =
(=1),(=1),(+2) under the U(1) gauged by A,;. Indeed, with this spectrum, we would
have Tr(Q) = 0, i.e., vanishing gravitational anomaly, but a cubic Abelian gauge anomaly

A" o Tr(Q%) = +6.
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6.5 Summary

In section 6.1.2 we argued that the rigid symmetry group Gyigiq is a subset of the product of
the symplectic duality transformations that act on the vector fields and the isometry group
of the scalar manifold of the chiral multiplets in N' = 1 supersymmetry or in theories without
supersymmetry. The reason is that the rigid symmetries of the vector and scalar sector are
not directly related in these theories. On the fields strengths FN,,M = (FM,,A, G A) these rigid
symmetries act by multiplication with infinitesimal symplectic matrices (t,)s" for which we
have (ta)[MPQN}p = 0 where Qxp is the symplectic metric given by (6.7). The gauging of a
subgroup, Giocal C Grigid, is achieved by projecting the 2n-dimensional vector space spanned
by the vector fields ANM onto the Lie algebra of Gjocar which is done by the embedding
tensor ©,,%. The generators of Gjycar decompose according to (X )nt = On*(ta)n’
whose components are denoted by X/n”. The embedding tensor has to satisfy a number of

consistency conditions:

fag"OMON = (ta)n"OM 0P,

QN¥g o’ =0 o  etrle,fl =0, (6.107)

Closure of the gauge algebra requires the first line of (6.107), while the constraint displayed in
the second line of (6.107) is required by locality. The closure constraint reflects the invariance

of the embedding tensor under Gjoc, and it implies for the matrices Xy, the relation
(X, Xy] = —Xun"Xp. (6.108)

It is crucial to observe that the ‘structure constants’ given by XuynF contain also an in
general nontrivial symmetric part X(MN)P. The antisymmetry of the left hand side of (6.108)
only requires that the contraction X, N)P Op® vanishes. This gives a violation of the Jacobi
identity (6.26) which can be compensated in extending the gauge transformation of the vector

potentials to
6AMM = DMAM - X(NP)MEMNP ) DMAM = auAM + XPQMAMPAQ ) (6.109)

where we introduced the covariant derivative DMAM , and new vector-like gauge parameters

E,NP, symmetric in the upper indices. Consequently, the field strength F,," = 28[MA,,}M +
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X[PQ}MAMPAUQ does no longer transform covariantly (6.34) and violates the Bianchi-identity
(6.33). As another consequence we find that a gauge kinetic Lagrangian of the form

1

1
T Im Npx F,, " FP> — ge ReNasF Fpo™ (6.110)

Egk:+

cannot be gauge invariant under transformations (6.109) either. In [83] it was shown that

the Lagrangian

Lyr = %EIAEHMVAH“VE - %RAzauypUHw,AHpgz +
_i_iguupa Xv(NP)A B;WNP (fpaA + %X(RS)A BpaRS> +

1 1
+€u”pUAMMAUN (g XMna apAaA + EXMNAapAO'A+

1
+ gXMNAXPQAApPAoQ> ) (6.111)

with # as in (6.36), is indeed invariant under the gauge transformations (6.109) if the em-

bedding tensor satisfies the additional constraint
Dunr = Xun“Qpq = 0 (6.112)

We could show in this thesis that the gauge variation of (6.111) for nontrivial Dy;ygr # 0

does no longer vanish but is instead given by

1
5£VT == —§€MUPUAPDMNPauA,,M8pAUN

1 3
—Ze””p"AP(DMNRX[pS}N + EDMNPX[RS}N)BHA,,MA,,RAJS. (6.113)

which formally looks like the consistent anomaly [40]. Cancellation of (6.113) is only possible
in presence of anomalies and if one relaxes the constraint (6.112) according to Dyyvg = dynNg
where the symmetric tensor dysnygr describes gauge anomalies. In fact, one can expect gauge
anomalies due to an anomalous spectrum of chiral fermions ¢ which interact with gauge fields
via minimal couplings 1/_17”(@ - AMAG)Ao‘da — AMAG)Ao‘da)i/J. In the discussion of section 2 we
learned that the coupling of gauge fields to chiral fermions causes anomalous contributions to
the conservation law of the axial currents which are to lowest order given by triangle diagrams.
The electric vector fields and the magnetic vector fields generate such anomalous contributions
due to their coupling to chiral fermions in total analogy to the discussion of section 2.1. The

constraint Dy;nyr = dyrvg implies the cancellation of this quantum anomaly by the classical
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6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRAL
GAUGE THEORIES

variation of (6.111). In this sense we showed how the Green-Schwarz mechanism is applied
in a symplectically covariant way (symplectically covariant Green-Schwarz mechanism).

In section 6.4 we explicitly displayed how an Abelian magnetic gauge violates (6.112).
Furthermore, we gave the example of an anomalous spectrum of chiral fermions that possibly
cancels the classical gauge variation in this example.

The results of this section are new and generalize the work [83], as presented in [40].
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7 Abelian gauging and D-term potential in N’ = 1 supersym-

metry

In the previous section, we discussed the symplectically covariant formulation of the gauge
sector with a nontrivial gauge kinetic function that transforms with a shift under gauged
isometry transformations of the target space. The symplectically covariant treatment required
the introduction of magnetic vector fields that are dual to the original electric vector fields
and do not possess a kinetic term. The additional degrees of freedom represented by the
magnetic vector fields are compensated by additional gauge transformations. Invariance of
the Lagrangian under the gauge transformations is restored by new couplings. Among these
new couplings is a topological term (6.45) that couples an antisymmetric tensor field to the
magnetic vector fields. In appendix E we show that the action (6.53) reduces to (E.11) for
Abelian gaugings if the gauge sector is coupled to a nonlinear sigma model with gauged shift
symmetries and the magnetic vector fields are eliminated by their equations of motion. We
observe that in the Lagrangian (E.11) there are electric vectors and tensor fields left, i.e.
(E.11) contains a kinetic term and a mass term for the tensor field, where the mass is given
by the embedding tensor. There is also a topological coupling of the tensor field to the electric
vectors among other couplings which are of minor interest. The topological coupling of the
tensor field to the electric vectors is of similar type as (6.45). Interestingly, in [90] the authors
discuss theories with massive tensor multiplets in global N’ = 1 supersymmetry where the
bosonic sector contains exactly those couplings encountered in (E.11). Partly motivated by
the results of orientifold compactifications [91,92], the authors of [90] proposed an N/ = 1
superfield action for a massive tensor multiplet coupled to several vector chiral multiplets.
Furthermore, the authors computed the component form of that action and deduced the

following potential

Voo [(es +2m mfas) [(Ref)™'1*? (eq + 2Imform") +
+4 RengmAmZ] , (7.1)
where fyx denotes the gauge kinetic function. The potential (7.1) is not only determined by

auxiliary fields but contains a direct mass term for the scalar in the tensor multiplet (the

last term in (7.1)) which does not arise from eliminating an auxiliary field. In this sense,
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7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N =1 SUPERSYMMETRY

the discussion that follows is connected to the Abelian gauge of the symplectically covariant
formalism presented in the previous section.

In this section we will show that the potential (7.1) is actually equivalent to a D-term
potential in its standard form as given in [93], for example. In order to do so, we will add a
total derivative to the action used in [90]. The advantage over the procedure used in [90] is
that we are now able to absorb the topological couplings of the tensor fields to the electric
vectors into the gauge kinetic term by a suitable redefintion of the gauge kinetic function.
The gauge kinetic Lagrangian has the advantage that it is easier dualized than the Lagrangian
used in [90]. It is suitable to rotate the fields and couplings to a special frame and then to
determine the D-term potential. In this frame the potential is given in its standard form and
a component expression is obtained after eliminating the auxiliary fields with help of their
equations of motion. The potential (7.1) is found once we rotate the special frame back to its
original form and, thus, the potential (7.1) is equivalent to a D-term potential in standard
form.

The authors of [90] start from the following Lagrangian
2[K(L)] , + [fas(N) (W = 2im @)Te(W™ — 2im™®) + 2ep @7 e(W" — im @) + h.c.] , (7.2)

where the tensor field is contained in the spinor superfield’® & and the electric field strength
is part of the superfield W» where the index A counts the number of U(1) vectorfields,
A =1,... ,k (for notational issues consult appendix C). The field strength of the tensor field
is part of the linear multiplet L and the kinetic term, which in the simplest case would be of
the form L2, is generalized by the real function K (L). The gauge kinetic coupling function
fas(N) represents now a function of chiral superfields N and, thus, is itself a superfield.
Before dualizing the theory of the massive tensor multiplet we add to (7.2) a total derivative
term 2iIm (WTeW) 00 = —%F A F which, therefore, does not affect the equations of motion.

Thus, in simply adding —2% Im [(W*)TeW?™], we obtain the following Lagrangian
2[K(L)] , + [fas(N)(WH = 2im™@)Te(W™ — 2im*®) + h.c.], (7.3)

where the gauge kinetic function is redefined according to

fas(N) = fAE(N)JF%':;\;EQ

46Consult appendix C for more details on the spinor superfield and the linear multiplet.
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The Lagrangian (7.3) is more convenient to dualize because the last term in (7.2) is now
absorbed into the redefinition of the couplings. We have to construct a first order Lagrangian
before we can dualize (7.3). In the first order Lagrangian one does not consider L to be
a linear multiplet, instead one imposes a constraint on L by means of a real Lagrangian
multiplier Q [89]. Then, by eliminating the Lagrange multiplier, L is constrained to be a
linear superfield. The first order Lagrangian reads
2[K(L)] , + [fas(N)(W* = 2im™ @) e(W> - 2im™®) + h.c.], —
i .

—2[eAmAQL — ZeAQDTe(WA — 21mA<I))]D (7.5)
where L represents an arbitrary real superfield. Elimination of ®, from the action is done
by varying L and ®, in (7.5), leading to

K = exmtQ, (7.6)

0 = fasmE(WA = 2im’®,)Te + %eAmA(DTeD)DaQ. (7.7)

For further computation it is convenient to rotate the k vector fields by an operator S such

that the “vector” (Sm)? has only one component denoted by m, i.e. (Sm)* = (m,0,...,0)T.

Furthermore we make the definitions
o ¢\ = (eS7Ha

o« WA = (SW)A

e gan = [(STHTFS s
The purpose to introduce the new basis is to considerably simplify the dualization. After
rescaling Q according to €/ — Q we see that (7.5) and (7.6) imply a Legendre transfor-
mation in the sense that
U(Q):=[-K(L) + mQL] (7.8)

defines a real function of U(2). The Legendre transformed Lagrangian is then

—2[U(D)]p + [g11 (N) (W' = 2im®)Te(W" — 2im®) +

+2ga1 (N)(W')Te(W' = 2im®) + h.c.], + [ - iQDTe(W’1 —~

—2im®,)] , + [gar(W' ) eW" + h.c.] (7.9)

a,b=2,... k
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7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N =1 SUPERSYMMETRY

With the help of the other equation of motion for the spinor superfield (7.7) one obtains as

a result the Lagangian of the dual theory given by

_ (64911)_1 —%M D?DQ
[ ( D*ba w ) i ga1 Zillgm Ia + h'c']F B
“sgn 9o Ty w

—2[U(Q)], (7.10)

In what follows, the matrix describing the couplings of © and W'® will be denoted by ng.

In supersymmetric theories the D-term contribution to the scalar potential is

1. .
V= §RengDADZ (7.11)
and the D-term is given by
A mafoy-1(i i OK
D (Refax) (2k2 907 +c.c.) (7.12)

Here K is the Kahlerpotential and k]E denotes the Killing vector of the gauged isometry. The
Killing vector is constant for the shift symmetry ¢ — ¢+i. Furthermore, the Kdhlerpotential
can only depend on the real part of the scalar field ¢ because otherwise the shift symmetry
could not be an isometry of the scalar manifold. Hence, K (¢, $) = K(Re¢) and it follows

directly for the scalar potential that
V ~ (Re fiy) L (K')? (7.13)

At this point it is suitable to rescale again € in order to get rid of the factor %. Furthermore,
let us display (Ref)_1
(Ref) 1 = [ Roon + Imgia[(Reg) ™" Imgs;  —Tmgia[(Reg) '] (7.14)
~Imgi[(Reg)~']" [(Reg)~']*
In order to fix scaling factors in front of terms involving €, the kinetic term U(2) has to be
expanded into its component fields. The expansion is carried out in more detail in appendix

F. and the result is

1 1 1 1 1 1
U)p = §U’(0) - [D(z) + §D0(x)] + ZU”(C) : [E(MQ +N?) — @) — §AMA,,n’“’ + Zm”aﬂw] +

i 1
-I-1—16U'"(C) [=Mwysw + Now + oy ysw™A,] + 6—4U(4)(C) C WWWW
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Here, U(™) denotes the nth derivative after C'(z). At this point, it is convenient to rescale the
real superfield €2 once again but this time we absorb the factor m appearing in the Legendre
transformation

1
Q - —Q (7.16)
m

This rescaling does not only bring the Legendre transformation into a normalized form, but
will also simplify the reverse transformation to the old basis system.
Next, the auxiliary field D has to be eliminated. In order to achieve this, we introduce a new

field strength superfield, corresponding to €2, according to:

1

Wi = (Dy5D) Do 2. (7.17)

e~

If we want to still keep the normalization of the F-term in formula (7.10) then another
rescaling is necessary. Now, in considering all the scalings, done so far, then altogether the

superfield 2 must be rescaled after (7.10) as follows
2
0O 5 —2Q. (7.18)
m

Having a look at the decomposition into component fields, we can read off the D-terms of
the Lagrangian where the tensor fields are eliminated by their equations of motion. The D
dependent terms are found in (7.15) and according to (7.11) in the potential. Collecting all

these terms leaves us with

1 Q 1 4 2 QN2 2 p Q
§UID + 5 . W . (Ref)ll(D ) + E . (Ref)laD Da +
1 ~
+5 - (Ref)u, DD’ (7.19)

The equations of motion for the auxiliary field are obtained from the variation after D and

D, respectively, and are given by

1 4 . 2 A

§U' t3 (Ref)u D" + — (Ref)D" = 0 (7.20)
~ 2 n

(Ref)apD" + = - (Ref)1aD" = 0 (7.21)

These equations are equivalent to the following equations at the component level of the
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7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N =1 SUPERSYMMETRY

coupling matrix f (see appendix F for more details)

1 4 R 2 1 R — R I
0 = -U + — 69121 .po_ £ MYt 2691a MI1L | pa (7.22)
2 m?  |g11] m 911
1
0 = [Regaq + PR (Reg11Imgi,Img1y — RegiiRegiaRegry —
, 21
—Imgi,Reg1pImgi1 — RegioImgiplmg)]D” — — » —— -
m |911\
-(Imgy1,Reg11 — RegiqImgiy) - D (7.23)

After some calculation (given in appendix F), one finds that the auxiliary fields are given by
b mon —~17bA
D' = ~ZU" [(Reg) ' Tmg.y (7.24)
Q m® —11AB
DY = —?U - (Imgy 4[(Reg) ™ ]""Imgp1 + Regi1) (7.25)

These expressions can be compared with the expression for the inverse of the coupling matrix

(Re f) (7.14) and the components of the inverse matrix can be identified in the following

way
(Ref) " =~ DO (7.26)
A—11la _ 4 a
[(Ref) ']'* = m—U"D (7.27)

Reintroducing these identifications into the D-terms (7.19) of the component decomposition
and carrying out the calculation leads to the following result for the potential
4(U")*m? _
V = % - [Regi1 + Imgia[(Reg) I]AEImggl] . (7.28)
At this point we make the rotation S~*(m, 0, ...,0)T = m4 that brings us back to the original
basis for the electric and magnetic coupling, and we obtain
4(UI)2

V = TR [RefAZ mAm®E + mA ImfAz[(Ref)fl]EQImep mF]_ (7.29)

After expanding f according to (7.4) we find that this is nothing else but

V = ?)%(U’)2 [(es + 2m mfas) [(Ref) '] (eq + 2Imform") +

+4Refasm m®] (7.30)

which is in total agreement with the expression that was obtained for the potential in [90].
The discussion shows that actually the potential (7.30) is symplectically equivalent to a D-

term potential in its standard form (7.11). In [90] the authors could not connect this potential
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with a potential of standard form. However, we demonstrated that the explicit mass term
for the scalar in the tensor multiplet is absorbed by the redefinition of the gauge kinetic
function (7.4) due to the possibility to add total derivatives to the action. This confirms that
neither generalized Chern-Simons terms nor the topological B-term cause any new nontrivial

contribution to the standard D-term potential in A/ = 1 supersymmetry.
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8 CONCLUSION

8 Conclusion

In this thesis we studied quantum anomalies and generalized Chern-Simons terms in chiral
gauge theory. We discussed this topic in global and local N' = 1 supersymmetry and in
general gauge theories that are covariant with respect to electric/magnetic duality. This
generalized previous works [26,34,83], in which only classically gauge invariant theories with
anomaly-free fermionic spectra were considered.

We began our discussion with generalized Chern-Simons terms along the lines of [34]. The
authors of that paper showed how generalized Chern-Simons terms can cancel certain constant
shifts of the gauge kinetic function in the context of Lie algebra cohomology. The generalized
Chern-Simons terms originate from Lie algebra valued forms C(A,F) that are defined by
constant tensors Cap ¢ which have to satisfy the constraint C(4p,c) = 0 infer alia. It is
possible to show that the constraints correspond to the requirement of C'(A, F) being closed
with respect to the exterior derivative. The complicated formalism leads then directly to the
result that in semisimple gauge theories one can always absorb the generalized Chern-Simons
terms by a redefinition of the gauge kinetic function. We generalized the forms C(A, F) by
relaxing the closure condition such that we allowed for forms with nontrivial symmetric part
C(aB,c)- Consequently, these more general forms were no longer closed, which apparently
violated the procedure to construct generalized Chern-Simons terms. However, with the help
of the Stora-Zumino descent equations we were able to show that only the generalized Chern-
Simons terms together with suitable gauge anomalies could cancel the constant shifts of the
gauge kinetic function. This generalizes the results of [34] and concludes section 3.

In section 5, we studied the consistency conditions that ensure the gauge and supersym-
metry invariance of global and local matter coupled N' = 1 supersymmetry theories with
Peccei-Quinn terms, generalized Chern-Simons terms and quantum anomalies. Each of these

three ingredients defines a constant three index tensor:

(i) The gauge non-invariance of the Peccei-Quinn terms is proportional to a constant imag-
inary shift of the gauge kinetic function parameterized by a tensor C4p . This tensor
in general splits into a completely symmetric part and a part of mixed symmetry,
0,251)3,0 + 01(41%),0'

ii) Generalized Chern-Simons terms are defined by a tensor, C (CS) , of mixed symmetry.
AB,C
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(iii) Quantum gauge anomalies of chiral fermions are proportional to a completely symmetric

tensor dapc.-

We found that the full quantum effective action is only gauge invariant and supersymmetric
if

Cap,c = Cchs’)C +dapc . (8.1)

The inclusion of the quantum anomalies encoded in a non-trivial tensor dspc is the key
feature that distinguishes N' = 1 theories from theories with extended supersymmetry as the
latter theories cannot have chiral gauge interactions and hence no quantum anomalies.
First we performed our analysis in global N' = 1 supersymmetry and later also in A’ = 1 su-
pergravity. The interesting result is that the Chern-Simons term does not need any gravitino
corrections when added as such to the matter-coupled supergravity actions. This completes
the comprehension of N' = 1 supersymmetry, generalizing earlier work of [26] on Abelian gen-
eralized Chern-Simons terms in global N’ = 1 supersymmetry without quantum anomalies.
In [12], orientifold compactifications with anomalous fermion spectra were studied, in which
the chiral anomalies are cancelled by a mixture of the Green-Schwarz mechanism and gen-
eralized Chern-Simons terms. The analysis in [12] was mainly concerned with the gauge
invariance of the bosonic part of the action and revealed the generic presence of a completely
symmetric and a mixed part in C4p,c and the generic necessity of generalized Chern-Simons
terms. Our results show how such theories can be embedded into the framework of N’ =1
supergravity and supplements the phenomenological discussions of [12] by the fermionic cou-
plings in a supersymmetric setting. The fermionic couplings were used in the presentation
of [96] where the discussion of [12] was lifted to an extension of the MSSM based on our
results.

In section 6 we have shown how general gauge theories with axionic shift symmetries,
generalized Chern-Simons terms and quantum anomalies [88] can be formulated in a way
that is covariant with respect to electric/magnetic duality transformations. This generalizes
previous work of [83], in which only classically gauge invariant theories with anomaly-free
fermionic spectra were considered. Whereas the work [83] was modelling extended (and hence
automatically anomaly-free) gauged supergravity theories, our results here can be applied to

general N/ = 1 gauged supergravity theories with possibly anomalous fermionic spectra. Such
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8 CONCLUSION

anomalous fermionic spectra are a natural feature of many string compactifications, notably
of intersecting brane models in type II orientifold compactifications [16-22], where also GCS
terms frequently occur [12]. Especially in combination with background fluxes, such compact-
ifications may naturally lead to four-dimensional actions with tensor fields and gaugings in
unusual duality frames. Our formulation accommodates all these non-standard formulations,
just as ref. [83] does in the anomaly-free case.

At a technical level, our results were obtained by relaxing the so-called representation con-
straint to allow for a symmetric three-tensor dy;yp that parameterizes the quantum anomaly.
In contrast to the other constraints for the embedding tensor, this modified representation
constraint is not homogeneous in the embedding tensor, which is a novel feature in this
formalism. Also our treatment gave an interpretation for the physical meaning of the “repre-
sentation” constraint: In its original form used in [83], it simply states the absence of quantum
anomalies. It is interesting, but in retrospect not surprising, that the extended supergravity
theories from which the original constraint has been derived in [83], need this constraint for
their internal classical consistency.

In section 7 we reinvestigated the result of [90] who proposed an N’ = 1 superfield action
for one massive tensor multiplet coupled to vector and chiral multiplets. The potential cor-
responding to this theory displayed a direct mass term for the scalar in the tensor multiplet
which apparently violated the form of the D-term potential. We demonstrated that this
‘unusual’ form of the potential is actually equivalent to a standard form. The reason is that
the direct mass term for the scalar in the tensor multiplet can be absorbed by a suitable
redefinition of the gauge kinetic function by means of a total derivative.

The theory of massive tensor multiplets represents the supersymmetrization of a special
Abelian gauging of the manifestly symplectically covariant framework proposed in [83] and
presented in appendix E.

We are led to the conclusion that neither the generalized Chern-Simons terms nor the topo-
logical couplings to the tensor fields cause contributions that violate the standard form of the
D-term potential.

In this thesis we have neither touched the topic of gravitational anomalies nor of Kahler
anomalies [81,82,97-105] in N’ = 1 supergravity.

The results of this thesis can be taken as the starting point for phenomenological models
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such as [96]. We could show that in the framework N/ = 1 supersymmetry, as discussed

in [81,82,96], one has to take additional fermionic couplings
C(AB,D)ASS\A’}%’Y”)\B (8.2)

into account. These new fermionic couplings had not been considered before (probably be-
cause to date it is not clear how they could originate from a superfield expression) and it
would be interesting to study explicit N' = 1 string compactifications within the framework

used in this thesis.
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A APPENDIX

A Technical details on Lie algebra cohomology

A.1 The Laplace equation of Lie algebra cohomology

In section 3.2 we found that generalized Chern-Simons terms are trivial for semisimple al-
gebras. In this appendix we want to demonstrate how cohomological arguments lead to the
same result.

The Cartan-Killing metric is defined as gap = —fALKfBKL and assumed to exist as
well as to be invertible. This will allow us to construct another operator 7 besides the
algebraic operator D. We still introduce some notational issues, that will simplify some
of the upcoming computations and allow easily for generalizations. It is again suitable to

introduce the operator
(Ta)ED = fac®oh+ fap™ o5 (A1)

Note, that with this generator at hand, we can bring (3.5) into the form d0fsp =
AC(Tc)gngF. In order to reduce clutter, we further introduce a single Greek multi-index
« := AB, representing the two indices A and B that it is now (T4)EE — (T4)5. This
is equivalent to the - notation for contractions of such double indices introduced in section
3.2. Observe that with this multi-index at hand we can write C, p instead of Csp p and,
furthermore, FAFB — F* When we compute the Bianchi identity for F®, starting from

d(FAFPB), we find
dF® = —(Tp)§APF". (A.2)

With help of the Cartan-Killing metric we can introduce a new operator, called Z, which is

defined as

(ZC)apr..0, = (n+1)Csep,..0,9" (TF). (A.3)

Note that this operator lowers the amount of indices after the comma by one, as opposed

to D, which increases the amount of indices after the comma by one. There is still another

possibility to generate this operator, by introducing a new operation 7 which acts trivially

on the gauge connection, 7A” = 0, while on the multilinear field strength form it acts as
0

TF® = [(TA)}']O‘gABW. This form will be convenient to use in applications such as the
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A.1 The Laplace equation of Lie algebra cohomology

example of an Abelian xsemisimple gauge group. Therefore, the operator that is not changing
the amount of indices is given as DZ + ZD, that is formally similar to the Laplace operator
in Cartan calculus. Let us try to evaluate this Laplace operator acting on C, p. Following

the definitions (3.13) and (A.3), we find the following relevant relations

(DO)ain = 5 Fan”Con +Cas(Ta)l (A4)
(DC)a,a = (Ta)l Cs, (A.5)

(IC)o = (Ta)2 Csp 9", (A.6)
(ZC)aa = 2 (Te)? Cspa g5¢. (A.7)

The equation (A.5) is proven by acting on C, F* with the exterior derivative and making use

of (A.2). From (A.5) and (A.6) we can read off
[D(ZC)a,a = (Ta)d Cyp (Tr)} ¢"7, (A.8)
while (A.4) and (A.7) give
Z(DC)aa = Cpr 9”” fpa” (T)5+2 (T} 9°PCa(Tr)}. (A.9)
The first term in (A.9) can be manipulated as follows

952 fap® (Tp)s = gac %% (TP)S
= JAG [TE,TG]g

—gPB [Ta, T,

where in the first line we used the Cartan-Killing metric to pull indices up and down. In the
second line we made use of [T, TP] = fAB-T¢ which is true when the metric is invertible.

Inserting this result back into (A.9), we obtain
LD e = Cong®™ (Ta)i(To)y— Cop (Tw)} (T0E g™, (A.10)
Adding (A.10) and (A.8) together, we find the Laplace equation
(DI +ID)Clap = Cop Ca(T)E. (A1)
where we had defined the Casimir operator
Co(T), = ¢*" (Ta)} (T)j (A.12)
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of the gauge group. We see, that the action of the Laplacian on the forms C' is proportional
to the Casimir operator. From (A.11) we can read of a very important result. For gauge
groups that possess a nonsingular Cartan-Killing metric, i.e. semisimple gauge groups, every
closed form C' is exact. The Laplace equation does not only tell us that the cohomology class

is trivial but provides us with an explicit expression for C', namely,
Cap = [DIC)s,0Cy ' (T)3 (A.13)

which is equivalent to (3.34). There are no generalized Chern-Simons terms for semisimple
groups necessary because they can be always absorbed into a redefinition of the gauge kinetic

function itself.

A.2 Application: Abelianxsemisimple

The results of section 3.3 can be obtained with help of Lie algebra cohomology as well. It
might not be too instructive to do so, but it is a consistency check for the developed formalism
and shows, how the formalism is applied.

The product structure is again reflected by splitting the adjoint indices A, B, ... into
indices a, b, ¢, ... for the Abelian part and adjoint indices z, y, z, w, ... for the semisimple part.
Due to the group structure, only the structure constants of the type f;,* are nonzero. The

five-form C(A, F) corresponding to the mixed group structure is defined by
C(A,F) = 20 oA F'F" + Coy o A"F*FY 4+ 2C 4 , AVF* " | (A.14)

with constants Cup 4, Chz,ay Cry,as Caz,y and Cye . In order to be able to define the operator
D, we have to evaluate the exterior derivative acting on C. The computation which makes

use of the structure equations and the Bianchi identities of Abelianxsemisimple leads to

dC(A,F) = (Cauya+ Cozy~+ Cyaz)F*FIF* +
+(Cubafoy’ + Chvafuy’)A A" FUF +
+(futy” Cayosa + fu(y! Coyoa) A" A®FTFY +
+(fuy" Co(wa) + 2C(0a) [y fula" ) A" AV FTF" (A.15)

Observe that for C(A, F) to be homogenous in the field strength forms, the first line has to
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vanish, which requires the components of C'(A, F) to satisfy
Cyaz) = 0. (A.16)
Now we can write down the action of an algebraic operator on the coefficients of C(A, F)

dO(A,F) = 2(DO)(yp)ar A" A" FIF + (DC)gyua A" A" F* F +

+2(DC) (gay uy A" AVFT F7 (A.17)
where we define
(Dc)ax,(yb) = C(vb),afxyv (A.18)
(Dc)xy,ua = 2f5(yox)v,a (Alg)
1 v v
(DC)(Ia),uy = EC(za),vfuy +C(va),[yfu}x- (A20)

Hence, the algebraic condition for C'(A, F) being closed are obtained in setting above relations

to zero and we obtain

fouCuba = 0 (A.21)

foyCrwa = 0 (A.22)

fu"Caywa = 0 (A.23)

fuy" Cazp + fry" Cavu — fau"Cavy = 0 (A.24)
fuy"Crap + fry" Coau — fau'"Coay = 0, (A.25)

which are exactly equal to the relations (3.40) to (3.44).
As before, we have to define the operator Z which allows us to compute the Laplace
equation for this case. It is convenient to do this by means of 7 which is defined by the

following relations

crT T sc 2v 0
rFF = (o ) F P (4.26)
%,
T[FEFY] = (fuuz5§+fuzy5$).7:”.7:zg“wm, (A.27)

while 7A = 0 for Abelian or semisimple gauge connections. It is not a difficult but a little

lengthy computation to verify that the action of the operators ZD and DZ on the different
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components of C(A, F) and the only nonvanishing contributions are

I(Do)xy,a = 205v,afuyvfmsgm + 2013U,ac?(f); (A'28)
I(Do)(m),y = C(av),yCQ(f)z - C(as),vfuksfyxkgm (A.29)
D(IC)(ax),y = C(av),ufrsvfyzsgru . (A.30)

These relations lead directly to the Laplace equation for the example of an

Abelian xsemisimple gauge group
(rd+dr)C(A,F) = 2Cs.afuyfreg"™ + 2Ca0.aCo(f)y + Clan 4 Ca(f)z (A1)

Observe that the first term represents an inhomogenous term. This means that a possible
generalized Chern-Simons term proportional to Cyy , cannot be trivial, i.e., it cannot be
absorbed into a redefinition of the gauge kinetic function, even if C' is a closed form. In section
3.3 we could show from the closure constraint that it is actually of the form Cjy , = Bagay

with the B,’s being arbitrary but constant.

B Notation and conventions

Notations and conventions are chosen in agreement with [106]. We use the Minkowski metric
n = diag(—1,+1,+1,+1) and the epsilon tensor £°'23 = +1. The Dirac matrices satisfy

{y", 4"} = 20" and 75 := i7%y'y2y>. The generators of the spinor representation of SO(1,3)

are defined as o#” := 1[y#,4”]. Obviously, the gamma matrices fulfil

Yy Py = i (B.1)

because both sides are completely antisymmetric. The factor —i appears due to our definition

of v5. Contracting both sides with v, from the right, one can derive
Yyl = ety (B.2)
Another useful relation is
201y0 = ot — (B.3)
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which is almost trivial if one considers the three nontrivial cases u # v # p, v = p # p and

v # p = u separately. Then, it is not difficult to derive the following two relations

1 .
o_;w,yp — 5(91//),),# _ g#ﬂ,y'/ _ 18#'/’)0’}/5’)’0), (B.4)

1
Pt = 59y = gy =i se) (B.5)

that are quite useful for actual computations.

The Dirac matrices are given in a special representation by

The Dirac conjugated spinor is defined by @ = uff where

. 0 01
B =iy = (B.8)
10
e
and uf = 4*T. We use Majorana spinors u = : where e is the antisymmetric matrix
é‘*

e= ) (B.9)
-1 0

Majorana spinors are required to fulfil
u* = —fyseu (B.10)

and the matrix € is defined according to ¢ = diag(e,e). The charge conjugation matrix is

defined by

C = mf=—ey (B.11)
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and, then, for a Majorana spinor one has @ = uTC. The gamma matrices obey

C’yMC_1 = —*yg, (B.12)

CysC™' = g, (B.13)

CowC ' = —afy, (B.14)

CruvsC = ()" (B.15)

This allows one to prove easily S\’yux = —XvYuA and similar relations because C is antisym-
metric CT = —C and C? = —1. In total we have for anticommuting Majorana spinors

A = XA (B.16)

MuX = =X (B.17)

AouwX = —XOuwA (B.18)

X = XA (B.19)

M TuX = XV5TuA (B.20)

(B.21)

A very useful tool in order to manipulate bilinear of spinors are rearrangement formulas.
For spinors 6, they are obtained from 00 and the fact that the set of 16 covariant matrices
{1, y*, o, 5, 57"} is complete and 1 represents the unity. This means that any 4 x 4
matrix can be decomposed into a superposition of these, especially 6. Taking Lorentz

invariance into account, an expansion is given by

00 = a-(09)+b- vu(évlﬁ) +c- 0’“’(90,“,9) +d - v5(0750) +

+e - 7" (0v57,9) (B.22)

where a, b, ¢, d, e are constants that have to be determined. It is immediately obvious that
b = ¢ = 0 because of (B.17) and (B.18). The remaining constants are found in multiplying

from the right with {1, s, 75,} and taking the trace, one obtains

1 i 1
00 = 2000)+ 777" (09571:0) — 775(0759) (B.23)
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A lot of useful relations can be obtained from (B.23) in multiplying on the right with C or

decomposing € into its left- and right-handed parts. In this way one finds

(€0)(00) = —(e750)(0750) (B.24)
Ev7u0) (01570) =~ (E750) (0756) (B.25)
(EY"0)(0rs740) = —4(e0)(0750) (B.26)
(Ev50)(00) = —(20)(Bs0) (B.27)
(60> = —(Bys50) (B.28)

(0757.0) (Ov5m0) = —nuw(Bys50)? (B.29)
0rOL0r, = OrOys0 (B.30)
20,70 = —0Ovys7"0 (B.31)

Note that because spinors are anticommuting objects, products of more than two spinors
vanish, i.e. GLG_LHL =0 and GRG_RHR = 0.
Any product of five and more components of # vanishes, so that the list of nontrivial products

of spinor components is given by

0abp = %(675)043(59) + %(’)’ue)a,@(é’}%’)’”g) + ieag(évw) (B.32)
0abs0y = —3(5759)[6(1597 — (€75)ap(750)y — €arbp +
+(€Y5)ay (150) 5 + €700 — (€75) 8y (7150) ] (B.33)
030,05 = 2 (00)?lcaners — (€15)aa(€5)s — o +
+(€75) oy (€75) 85 + €8v€as — (€75) 3y (€75)as) (B.34)

From the relation (B.34) it follows that
(60)(9vs0) = 0 (B.35)

which is a useful relation once computations in superspace are performed.
The Lagrangian is real but some fields are described by complex valued objects. Terms
involving these complex fields come always together with their hermitian conjugates so that

effectively the real part of these terms appear. For bilinears of Majorana spinors one finds
(j\lM}\Q) = (5\1,66’)’5M*56’75>\2) (B36)
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where we made use of (B.10) and the fact that complex conjugation interchanges the spinors.
In the representation for the gamma matrices given in (B.6) it is Bey5v,, 875 = 7, and, thus,
BCM*C'B = +M for M =1,v,,0. (B.37)
BCM*C'S

—M for M =5, 7,7, (B.38)
from which one finds the properties of bilinears under complex conjugation

(MMX2)* = +(MMXg) for M =1,v,,0., (B.39)

(MMX)* = —(MMMXg) for M = 5,757, (B.40)

C Swuperspace

A convenient tool to treat computations in global A/ = 1 supersymmetry is given by su-
perspace. For supergravity it is not so helpful anymore, because before one can enjoy the
convenience of superspace, one has to introduce differential geometry in curved superspace
and one has to impose constraints which is a lot of work. However, for global supersymmetry
there are not so many new concepts necessary before one is able to use the advantages of
superspace. Hereby, the spacetime coordinates z* are extended by fermionic coordinates that
are represented by a four-component Majorana spinor 6,. Due to the symmetry properties
of bilinears of spinors (B.17) and (B.18) it is immediately clear that 07,0 = 60,0 = 0.
Furthermore, as 6 has only four components, any power series in 8 terminates after quartic
order. The formulas (B.32), (B.33) and (B.34) suggest, that any product of two spinors is
proportional to a linear combination of (6), (6,7vs0) and (6y50), while a product of three
spinors only is proportional to (fy560) and a product of four s is proportional to (60)2. With

this at hand, we can express the most general function of z# and 6, called a superfield, as

S(a,0) = Ola) ~ ibysile) — L (0 M(x) ~ S(EO)N(x) +
+%(§*y5*yu9)A“(x) —i(0v50)0\(z) — %(é’m@)é’y”@ﬂﬁ(m) +
7 (00)(D(a) + 50,0°C(x) (C.1)

It is convenient to separate 0,0"C(z) and Y#0,9(z) from D and A, respectively, as will

become clear in a moment. The component fields A and 4 are fermionic while A, is a vector
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field. The remaining fields are scalar or pseudoscalar fields, depending also on whether S(z, )
is a scalar field.

Supersymmetry transformations are generated by the infinitesimal operators

9 9
== _ H _—
Q = megy t105 0, (C.2)
- 9 9
== _— H _—
Q 50~ V<Y 083:” . (C.3)

The transformation laws of the fields contained in S(x,6) are found from

iS = (¢Q)S (C.4)

and in using the rearrangement formulas from the previous section to put each term into its
corresponding form proportional to a standard bilinear in . The advantage of superfields
is that if S; and Sy are superfields, then S = 5155 is again a superfield. Also superfields
automatically provide representations of the supersymmetry algebra on fields. Note that the

superpartners are also characterized by the expansion in 6.

Besides (C.2) and (C.3), one can define another differential operators in superspace by

0 9,
= — A —
D V5€5g ~ aazl‘ (C.5)
- 0 9,
= — + ey — (C.6)

oo Ozt

where the only difference to (C.2) and (C.3) is a change in sign. This change, however, is

responsible that the anticommuter

{D,Q} = 0 (C.7)

between the generator of supersymmetry and the differential operator D vanishes. In turn,
(€Q) commutes with D and besides the arbitrary polynomial function of S(z,6) being a
superfield, their superderivatives DS, DDS, etc. are superfields as well. In other words, the
superderivatives are used in order to impose constraints on the general superfield S(z,0).
Requiring that the superfield is real, i.e. S(z,0) = S*(z,0), one obtains the so-called real
superfield. Usually it is denoted by V' (z,6) and formally given by the same expression (C.1),

but with only real component fields. There is a certain arbitrariness in the expansion of the
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most general superfield and we can chose as well

r.0) = B@) 200+ 1) — 5 (01 +3)0)P(a) +
5 @D W () — S @001 + 35" w) +
+5(00)0,0" B()) (©8)

where B(z), P(z) and W(z) are arbitrary complex functions of spacetime and the spinor
is an arbitrary Majorana spinor. With help of the complex conjugation formulas for spinor
bilinears, (B.39) and (B.40), one can determine the complex conjugated superfield to (C.8).
It is not difficult to see that V (z,6) 4+ Im Q(x, #) allow to gauge away the nonphysical degrees

of freedom in the real superfield according to

C(z) — C(z)—ImB(z) (C.9)
P(x) = P(z) +w(z) (C.10)
M(z) — M(z)—ReP() (C.11)
N(z) — N +ImP(xz) (C.12)
Ay = Ay +0,W(z) (C.13)

while the transformation of the vector field acts like a gauge transformation. Thus, we see
that the arbitrariness in the general superfield allows one to put the real superfield into the

form
V(z,0) = (9757”6‘)A —i(0y50)0\ + (96‘) D(z) (C.14)

which is the so called “Wess-Zumino gauge”. So far we have treated Abelian gauge theories.
The nonabelian generalization is not as easy, but in Wess-Zumino gauge, the corresponding
real superfield is obtained from (C.14) by replacing the Abelian objects with the corresponding
nonabelian counterparts.

The supersymmetry transformations, obtained from applying the operator £Q to the real
superfield, are the same transformations as found in the text by the Noether method, i.e.
(4.24), (4.25) and (4.26). We observe that the transformation of the auxiliary field, (4.26), is
proportional to a derivative and on the other side, the auxiliary field is given by the highest

component in the decomposition after 6, the so called D-term.
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The chiral multiplet is given by the chiral superfield B which is determined by
0 = DB. (C.15)

In its decomposition we find the scalar field z, the fermionic superpartner y and the auxiliary
field F' which is as in the gauge sector, the highest component proportional to (A6)2.In
chiral multiplets, the term proportional to (#6) is called the F-term. The transformations
under supersymmetry are the same as given in (4.17) to (6.34) in the context of the Noether
method. We will not go into too much detail, but focus on the superfield, that contains the

field strength. The curl multiplet, as it is occasionally called, is defined through the relation
1
W, = —Z(DTED)DQV(x, 9). (C.16)

A rather simple form of this superfield is found, when one uses coordinates xi =zt +

1/2(0ys5"6). Then the left chiral superfield, containing the field srength, reads
WL(x, 9) = i)\L($+) + 2iU“V0LFIW($+) + i(eraL)*y”@L)\R(er) + HLD($+) . (Cl?)

With help of the formulae given in appendix B, one finds for the projection to the F-term

1 1. 1 1
5 ReWracasWislp = —5M"0u\ = L F" Fu + §D2 (C.18)

which is the same as (4.13). Note, that the imaginary part Im Wy ysWy, contains the total
. . 1

derivative 3PP F,, F),;.
Another superfield which is used in section 7 contains the antisymmetric tensor field. As

the curl superfield, it is a chiral superfield and in accordance with (C.15) it is defined via
DEd = 0. (C.19)

The tensor field provides off shell 6 degrees of freedom of which 2 are rendered unphysical
because By, there is the freedom to add 20;,A,; for suitable A,. One four component
Majorana spinor is not enough to balance the degrees of freedom off-shell but two Majorana
spinors are. The two bosonic degrees of freedom that are still missing are provided by a

complex scalar. From this one can write down the #-expansion of the spinor superfield as
1 _
d = y-— (EC-I-J“”BW)H-I-GH(H+7“758Mx). (C.20)
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The field strength of B, is contained in the linear superfield L which is obtained from the

spinor superfield by
17
L = EDaean)B (C.21)

The explicit expansion of L is not of immediate importance and that is why it is not quoted

here. An expansion can be found in [90], for example.

D Some direct calculations of section 6

In this appendix we prove some formulas used in section 6 by direct calculations. We will
try to keep this appendix as self-contained as possible that the reader is not forced to thumb

too much back and forth.

D.1 The Bianchi identity

In this appendix we want to prove the Bianchi identity (6.33).
In order to do so we have to compute the action of the covariant derivative on the field

strength (6.32):
D[#]:Vp}M = 8[u]:Vp}M + XNPMA[uN]:Vp}P (D.1)
The two terms of (D.1) are calculated separately:
e The computation of the first term in (D.1) gives
a[uj:vp}M = 28[M8VA0}M + X[NP}MG[M(AVNAMP)

= —2X;ypM4,N0,4," . (D.2)

e The second term is found to be given by
v AN Ty " = XneM A0, A" + Xigr " Xnp M AN A A, (D.3)
where we used the result of the auxiliary calculation (D.4).
Putting (D.2) and (D.3) together we obtain the Bianchi identity:
DuFup™ = 2Xivp) M AN 0 A"+ Xigm " Xnp M AN AL AT
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D.2 Gauge variation of]-'u,,M

Auxiliary calculation:

1

P M N R P M N R N R
Xior" XnpMALNACAR = X Xnp 5 (A ACAR + ANASRAL +

+ANACA - ANAA,F - ANA94, 7 - AN ACAT

1

= -ANA,°4,"% (Xor" Xne™ + Xingl" XM + Xira" Xop™)

3
1

= 3ANACA (Xion" Xve)™ + Xivg)" Xrp)" +
+ X" X@r) M = XM Xon ")

2 M P N R
= 3Xoew " Xor Ay A4,

We made use of the Jacobi identity (6.26) in order to obtain (D.4).

D.2 Gauge variation of 7,

In this appendix we will compute the gauge variation of the field strength with respect to

(6.28). The relevant formulae are:

Fu™ = 20,A," + Xpg A,7A°, (D.5)
sAM = DAY - ZMeE,,, (D.6)
DAY = g AM + XpoM A,TAC, (D.7)
[Xar, Xn] = —Xum" Xp. (D.8)

Furthermore, we make use of the auxiliary calculation:

e Let us determine the gauge variation of the first term in (D.5). In order to do so we

compute

50, A,M) =

Ou(6A,M)
0, D, AM — zMeg, 5,
0,0, AM + Xpo™ 9,A,7 A9 + Xpo™M A,P0,A — ZM°9,5,,

(D.9)
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and in using (D.5), we obtain from (D.9):

020, A,M) = Xpe™ [0,4.7 — 0,A,"1A° + Xpo (A7 0,09 — A,70,A%] -
—ZM®0,E )0 — 0,5 4]
= Xpo" Fu"A? =? XpoM X(pe)" A AN — 2Xp™ A0, A9 —

—22M°0,5 0 - (D.10)

e Next we calculate the variation of the second term of (D.5):

I Xipg™ ALAQ) = Xpg™M (604,74,9 +4,754,9)

= Xipg" (DuATAR — ZPE A% + A,"DAC — A,7E,,29%)

= Xipg" (A90,A" + Xps" AR AN + A,70,A9 +
+Xps?A,"ARNS — ZP0=,,A,9 — A,P5,,29%)

= XpgM (4,90,A7 + 4,70,A°) +
+XpoM (XpsTARACNY + Xpg©A, AN -
—XipoM (2720 A9 + AT E 0 Z9%)

= Xipg™ (A,70,A% — A,70,A°9) +
+X(or M Xps@ A" AN + Xipg) M Xrs@A,N AN —
—XipgiM (29240 + A VEL0Z9%)

= 2X(pq)" A9 AC +
+(=XpsX(rg" + Xrs9X1pg M) A" AN —

—Xipg)M 729" AL,TE,, (D.11)
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D.2 Gauge variation of]-'u,,M

The variation of the field strength (D.5) under (D.6) is given by (D.10) and (D.11), which is

added up and simplified according to:

SF ™

Xp" Fu"A? — XpoM Xipg)" AR AP A — 2Xpo™M A)L,P0,)A9 -
—2ZM%0, 5,10 + 2X pg) Ay "0, A% +

+H(=XpsX o™ + Xrs®Xpg™) A" AN — 2X(pgM 29 A1,"E,
XpQ™ Fu"A? = 2X(pg)™ A" 0,A% +

+(=Xipr?Xqs™ — Xps®Xpg)™ + Xrs? X pg)™) AT AN -

Mag = M 7Qa P=
—2ZM°0, 2,10 — 2Xpo M Z9* AL E (D.12)

Now, let us have a closer look at the last line of (D.12) but before let us remember the closure

constraint (6.20) which is displayed again:

ffy/ga ®p7®sﬁ+®Qa®p7(t7)sQ = 0. (D.13)

With help of (D.13), we can manipulate the last term of the last line of (D.12) as follows:

“2X(p 29 AL Bue = —XpgM 2O A E

= _[%XPQMQQRG)RQ]A[MPEUM

= —[%@Q‘“(—XPRLQMSQLSQQR)]A[MPEU]Q

= _[%@Qa(_XPSLQMSQLRQQR)]A[;LPEV}Q

= —[—%G)QQXPSQQMS]A[MPEVM

= —[%fw“(aP”@sBQMS]A[uPEVJa

= —ZMPf 520p7ALTE,,

= —22MPf 5°0p AL E, 0 + Z9Xpo™ AL E 0

= —2Z2MPf 5°0p AL E 0 + Z9Xpo™ AL E 0

= —2ZMPf5°0p AL E e + 2X (po) M Z9° A1 B

(D.14)

where we made use of XP[RLQS}L = 0 and of locality in the form XQPMZQQ = 0. Note

that we have just proven the relation

2X(pgV 29 = ZMPfs0p" (D.15)
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If we define the covariant derivative of a tensor field according to
DuEva = X, + f,5°0p7 A, Epa, (D.16)
then we obtain for (D.12) the following expression:

§Fuw™ = XpoM Fu A — 22Dy E,, +
+H(=Xpr?Xos" — Xps X o™ + XrsXpgM) A" AN —

—2Xpg)™M AT (0,0 - Z9°E,),) . (D.17)
Now, let us have a closer look at the terms in (D.17) proportional to A,FA,®AS:

~Xipr“Xqs™ — Xps®Xipg™ + Xrs ¥ X pg™ =
M M M
= —Xipr %X Qs — Xips®Xirg)" + Xirs? Xipey" -
M M M
~Xipr X (@s)" = X(ps)* Xire)" + X(rs)* Xipg)V =
= Xipr9Xisq" + X9 Xirg)" + Xirs) 9 Xper™ -

~Xipr®X(9)" = X(ps)? X(rq)" + X(r)? X(pg ™ (D.18)

The first line of (D.18) satisfies the modified Jacobi identity (6.26) (repeated down in equation
(D.19)) due to (D.6)

P R P R P R R P
Xiun) Xigr™ + Xigm” Xive)™ + Xivg)” Xivp)w = = X(pio)” Xmn
(D.19)
Then we can manipulate the first line of (D.18) as follows:
Xipr * Xisgn + Xisp*Xirg" + X1 Xipg)V = —Xqi)" Xpr©

1
T3 (X9 Xipr? + Xiom™ Xisp? + Xom) " Xrs)]

1
=73 [Xipr?X o)™ + Xisp X (or) + Xirs)? X (p) "]
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D.3 Gauge variation of the generalized Chern-Simons term

Let us continue with the second line in (D.18)

~Xipr“Xie9)" = X(ps)? Xin)"' + X(rs)? Xipg)™" =

= i (=Xpr9XosM — Xpr9Xs™ + Xrp?Xos" + Xrp9Xs0" — Xps9Xpo" — Xsp®Xpro"
+Xps9Xqr™ + XspXqr™ + Xrs?Xpo™M + Xsr®Xpo™ — Xrs®Xor™ — Xsr%Xqp"]

= i [XrpOXsoM — Xsp9Xpo" + Xsr®Xpo™ = Xpr9XsoM + Xrs®Xpo" - Xps®Xpo™
+Xps?XorM + Xsp9XorM — Xrs9XopM — Xsr%XopM + Xrp9Xos™ — Xpr9XgsM]
1

= 1 [~ X(rs1“Xor" = Xisp“Xqr" - Xirp“Xos™ +

+Xps9Xor™ + Xep9Xqr" — Xps?Xop" — Xsr®Xop™ + Xrp9Xqs" — Xpr9Xqs"]

1

= 7 [~ X(rs1“Xop" = X(sp“Xqr" + X(rr®Xos"]
1

= 7 Xrs " Xp" + Xisp “Xrg) ™ + Xpr @ X s — Xirs) "X (po)" — Xism“X(ro)"' -
~Xipr ¥ X(sg)"]

1
= 1 [ XrrX(59" -3 Xipr¥X(s19)"]

= —X[PRQX(S}Q)M (D.20)

where we made use of (D.8), (D.19) and locality in form of Xgp®Z?*. If we add the first
line in (D.18) to (D.20), we obtain

(—Xpr“Xgs™ = Xps®Xpo™ + Xrs®XpoM) AT AN = —2Xps9X(p1g)M 4,7 A A7,

which completes the partial derivative in the last line of (D.17) to form a covariant deriva-
tive. From (D.6) we finally see, how the field strength .7-"WM transforms under the gauge

transformation (6.99), i.e., we have

0Fuw™ = XpoMFuTA? - 2Z2MODLE ., - 2X(po) M A, T54,9.  (D.21)

D.3 Gauge variation of the generalized Chern-Simons term

We want to show that the gauge variation of the generalized Chern-Simons term (6.50) is

given by (6.51), i.e.,
1
0Lacs = 9 ehre []:uuA DydAsn — Fuva X(PQ)AAE 514?] -

—e"?" Dayp AN 6AY (a,,Af + %XRSP AF Ai) : (D.22)
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For future reference we want to denote the first line of (D.22) by A and expand A in terms

of the vector fields. Consequently, we have

1
A = et [Fun™ DypbAsn — Fuua X(pg)™ AL 6AZ] =

1
= 7 |0y A) p0Agh + 9 Xpoh Al AD0,0Asn + Oy Ay Ay 0AG Xipga

1

~X(po)" Quin 0, A) AT S + 5 Xpo™ Xpsn A A7 A 647

1
—5 Xpaa X(rs)" Ay AT AJ0AT (D.23)
Let us prove the equation (D.22) first for the A3 (e.g. A AOJA) and then for the A* terms

(iie. AAAGA).
The A?-terms.

6Lgesj a2 = (a) +(b) + () + (d),
% we Xarna Ay 0AY 9,A%
(b)) = ; P Xpna Ayl A 9,0A%

% e Xny Ay 0AY 0pAga |

é wer Xnt AN AN 0,644 . (D.24)

We can group some of those terms in symplectic invariant expressions:

1 1
(b) + (d) = &P [—g Xun® Qpq A} AY 9,643 + 3 Xynt AN AY apaAgA] ,

1
(a) + (¢) = P [g Xoun” Qpg AY ALY 0,AZ + Xpwpp Ay 6AY apAg] . (D.25)
We can now compute the sum

1
(a) + (b) + (c) + (d) = €*r° [5 Xunh AV AN 0,0 Agn + Xpinpa A)) 6A) 9,A%

+§ X' Qpo A)' 6A) 9,AF — % Xun" Qpq A A)9,0A%

(D.26)
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D.3 Gauge variation of the generalized Chern-Simons term

Modulo total derivatives we can rewrite the last two terms of (D.26) in the following way:

1 1
7 |2 Xpuw " Qpq Ay 6AY 9,49 — 2 X" Qpg A} A) 9,049 | =

3
1 vpo
=3¢ (Xpuw" 2pq =2 Xuq)” Qpn) Ay 047 0,47 =
1

= — tP? [XMNP QPQ - XNMP QPQ - 2)(MQPQPN
+2(=3Dung — Xun" Qpg — Xnu" Qpg)] A) 6A) 0,49 =

= —e"" (Xun " Qpg + Dung) Ay 6A) 9,A8 . (D.27)
Where we have used the definition of Dysyg (6.18). From this we conclude that

1
6Lges|az = (a) 4 (b) + (¢) + (d) = €77 3 Xun™ AY Al 0,6Asn + Xpnin A) 640 0,42
— X" Qpg A) 6AY 0,AQ] — €77 Drng A} 5A) 9,AG =

= A — € Dyng A 5A) 0,A9. (D.28)

The A* terms in §Lgcs are readily computed by noting that

1
Lies|as = gﬁuup” Xuna Xpoh A)f A AT A9 (D.29)
We can then write
1 vpo
0Lges|at = 1 eP? (Xpna X[PQ}A + Xt Xpgia) Af\f AY Af:(SA? . (D.30)

Now let us compare the above expression with the A% terms in (D.23):

1
A\A‘l = E Euupa (XMNAXPQA - XMNA X(PQ)A) Aﬁ/[ Al],v AE (514? =
1
= 1 P (Xun® Xpg® Qrs + Xun™ Xpoa — Xunva Xop?) Aﬁ/[ AN Af,D §AQ =
1
= 3 e (Xun" Xpg® Qrs + Xun" X(pg)® Qrs + Xun™ Xipgia

+ Xuna Xipg)) Al AY A7 0AZ =
= 5[’GCS\A4 +

1
+5 Qs 77 (Xun"Xpo® + Xun" X(pg)®) AN AY AD5AQ . (D.31)
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Now let us consider the last term of (D.31) and show that it is proportional to the Dy/np.

We use the following properties

—~

Xun®Xp® Qrs + Xun™ X(pg)® Qrs) MNP

= % (3 Xun" Xpg® Qrs + Xun" Xop® QRS)[MNP] =
= % (3 Xun" Xpo® Qrs +3Xun"dorr — Xun®™ Xrp® Qos — Xun® Xpo® QRS)[MNP} =
= % X[MNR Dpigr + % 2Xun"Xpr® Qs — Xun™ Xrp® QQS)[MNP} =
= %X[MNR dpiQR (D.32)
where we have used the constraint (6.20) in the form:
(2 Xun" Xpr® Qs — Xun™ Xrp® Qqs) yynp = 0. (D.33)
From the above result and equation (D.31) we conclude that
Ajgs = 0Lges a1+ g 7 Xyn"dpor Al A AL SAG . (D.34)

Equations (D.28) and (D.34) imply together (D.22) which concludes the proof.

E Abelian Gauging

In this appendix we are going to show how the Abelian gauging of the symplectically covariant
formalism of section 6 leads to models with massive tensor fields as discussed in [29, 89, 90,
107-110]. The discussion is along the lines of [83] but presented in more detail because then
the connection to [90] becomes more clear.

The Abelian gauging is obtained from the ungauged rigid symmetry group G, giq by
decomposing it into Gy X Gy where Gy and Gy act exclusively on vector and matter fields,
respectively. Therefore, the generators decompose into mutually commuting sets {t,} =
{ta} ® {t,} where only ¢4 acts nontrivially on vector fields and the generators ¢, act merely
in the matter sector. Also the embedding tensor ©,,4 decomposes defining the generators of
the gauge group, Xy = O34 + Oa%,. The closure constraint (6.20) splits up into two

separate equations

fapOrtON" — (ta)v"ON"OPY = 0 (E.1)

far O ON" = (ta)n"ON"OP = 0 (E.2)
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and the second equation leads to an additional and independent constraint
oM, = 0. (E.3)

Tt is O34 = 0 for Abelian gaugings without axionic shifts. Consequently, the generalized

Chern-Simons terms vanish and the Lagrangian takes the simple form

1 1
Lvr = ZIAE H M HA S gRAzs“”””HWAHpUE -

1 1
—gs“”””@’\“ BuyaFpop + 3—25“Vﬂ“@Aa@Ab BuvaBpot (E.4)

where
1
HuuA = F[JVA + §®AaBuua (E5)

The magnetic vector fields can be eliminated from (E.4) by their equations of motion

oL oL
A dédAA (E.6)

which are algebraic and not dynamical because the magnetic vector fields do not possess
any kinetic terms. Before we can do so, let us specify the coupling to the matter sector. In
the case that we consider we will assume that the matter couplings are given by a nonlinear
sigma model with gauged isometries of its target space. The coordinates of the target space
are represented by {#%,q'} and its metric Gy, only depends on the subset {¢*}. In other
words, the sigma model is invariant under constant shifts of {¢’}. Then the gauging of the

isometries leads to the covariant derivatives
Digt = Mgt —OMAK — @, b At (E.7)
and, hence, the nonlinear sigma model is given by

1 1 -1 )
['matter = iGacy((ﬁ)au(ﬁmauqsy + iGm((ﬁ)a“(ﬁxDuqz + EGim((ﬁ)Duqlauqsx +
1 . .
+5Gij(4) D" Dyug’ (E.8)

Now we are able to use (E.6) and determine the equations of motion for the magnetic vector

fields:
, , . 1 .
Gri(9)ON"¢" + Gij(9)OVDMg' = SOV, B,y ;. (E.9)
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Solving this equation for the magnetic vector field
. . . 1 y
GZZA‘EL = (0M¢' — Oy ' AME) — E(G*I)ﬂ(qﬁ) -e"P70,B )y (E.10)

it is possible to eliminate the magnetic vector field from the Lagrangian and we obtain

1 1 1 ;
L= JTan Hp H S + SRASe P Hy g™ + 2O 7 By i By +

1 g
+5(GTVHG) - 70, By i epnap 9B+

1 ) .
+3—2®AZ QA7 e"™P” By i By j+ ... (E.11)

where ellipsis denote the rest of the coupling terms that are not of concern for us. We see
that for the Abelian gauging after eliminating the magnetic vector fields by its equations of
motion one ends up with a Lagrangian that, in addition to electric fields, consists of a kinetic
term for the tensor fields and the topological coupling of B, , to the electric field strength.
The Lagrangian (E.11) reproduces the results of [94] and [95]. In [90] the authors discussed

the supersymmetrization of (E.11) which will be reinvestigated in section 7.

F Details on the calculations of section 7

In agreement with (C.1), let the expansion of a real superfield be given as

Q(r,0,0) = C(x)—ifysw(z) — %é’)/E,eM(ZE) - %éﬁN(az)
507" 750 Au(2) — i(B50)IM =) — 5 (Bys0) 0 D)+ (F.1)

+iéaé9(D(m) + %DC(:E))- (F.2)

In order to evaluate the D-term of U(£2) we Taylor expand U(2) around Q|,_;_, and project
out the 000 component. In order to do so, it is convenient to introduce X := Q — Q| and we

can see that X° = 0. Hence,

ou ..  10°U 10'U
UQ)=UQI+X)=U(Q) +-5X + 575X +.

4
ac™ T aac? SR TETTR (F.3)
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As we are interested in the D-term of this expression, we need the following results

1 1

Xlgogo = (P +35080) (F.4)

) 1, 5 o 1_ 1 w1,
Xgogo = (M +N7) = 70X = A A" + o0y 0w (F.5)
3 3 3i_

Xl5059 = —EMW%W + ENww + Ew’Y”%wmAu (F.6)
3

XY 5050 = 1ePWEw (F.7)

where we made use of the rearrangement formulae presented in appendix B. Inserting this

back into the Taylor expansion leaves us with

1 1 1 1 1
UQ)|ggas = ZUI(C) [D(:E) + EDC(:E)] + gU"(C) [§(M2 + N?) — @) — §AMAV7)“”+
| .
-I-Zwv”aﬂw] + 3i2U"'(C) [—Mwysw + Nww + wy'ysw™A,] +
1
— UYD(Oow
+ 128U (C)wwww (F.8)

Other important relations for evaluating the gauge coupling matrix are

N Re
Ref)n = — (F.9)
\911\
: Re(ig14971) Imgi, Regir —Regig Imgy
(Re flia = PR P (F.10)
*
(Re flas = Re(gap — Lg”g“ =
|911\
1
= Re Gab + W : (Re g11 Im J1a Im g1y — Re g11 Re J1q Re g1y —
—Imgi, Regip Imgiy — Regia Im gy Imgyy) (F.11)

With the help of the above given relations, we get from (7.20), (7.21) to (7.22), (7.23). Now

if we solve (7.22) in terms of D%

I 2 2
D2 = D! (I gy — REIW MOy 7 lgul” (F.12)
2 R6911 8 Re911
and insert it into (7.23), we find that
Re g1a Re gy mo RegiaImgy
D[R -—|=—=U'(1 - F.13
[Re gat Regi1 4 (Im g0 Regn (.13)

115



F APPENDIX

The equation can be further modified in acting with [(Re g) '] from the left. The left hand

side therefore gives

_ Re g1, Re _ _ Re g1, Re
[(Reg)™' ™ (Re gac — —2291) D — [(Re g)~' " Re go D° — [(Re g)~' |70 =029l pe
g1 egn
_ — Re gchc Reglc
:62_ 1731 CDC_ 62_ 11¥1 — 2_62 D¢
(0c — [(Reg)™ "] Regic) (07 — [(Reg)™"]"" Regu) Regn, (0 — 0 Regn)
(F.14)
while on the other hand we have for the right hand side
_ Re g1, Im g14 - Im gy
R 171%a I _ ~WwWHla 511 - _ (52 — (R 1121 R
(Reg) 1™ (g, — LML) (57 - [(Reg) T Regy)
+ [(Reg)_l]za Im gq1
= [(Reg)™'T" Imgys — o (F.15)
and, thus, we have
Re . m _11ZA
(OF = 0 o)D" = =70 ([(Reg) ™1™ 1mga; - 6F) (F.16)
Now we see that if ¥ = b, then we have
m
D' = —U"[(Reg) "  mgy (F.17)
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