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Abstra
tThe purpose of this thesis is to investigate the interplay of anomaly 
an
ellation andgeneralized Chern-Simons terms in four-dimensional 
hiral gauge theory. The in
lusionof generalized Chern-Simons terms and additional axioni
 
ouplings allows to relax the
onstraints whi
h are otherwise imposed by anomaly-freedom. There has been a lot of re
entinterest in the phenomenology of these additional 
ouplings. Possible models that makeuse of this are provided by interse
ting brane models in orientifold 
ompa
ti�
ations of thetype II string theories. If the mass of the anomalous U(1)-gauge boson is low enough, thesemodels predi
t small signals that might be dete
table in near-future 
ollider experiments.We start with a detailed dis
ussion of generalized Chern-Simons terms and establish the
onne
tion of generalized Chern-Simons terms with the 
an
ellation of anomalies via theGreen-S
hwarz me
hanism. With this at hand, we investigate the situation in general N = 1supersymmetri
 �eld theories with generalized Chern-Simons terms. Two simple 
onsisten
y
onditions are shown to en
ode strong 
onstraints on the allowed anomalies for di�erenttypes of gauge groups. The results even apply to N = 1 matter-
oupled supergravitygeneralizing previously known a
tions.In N = 1 supersymmetry or in theories without supersymmtry, the rigid symmtries ofthe ve
tor and s
alar se
tor are not dire
tly related. The rigid symmetry group is a subset ofthe produ
t of the symple
ti
 duality transformations that a
t on the ve
tor �elds and theisometry group of the s
alar manifold of the 
hiral multiplets. If nontrivial ele
ti
/magneti
duality transformations are involved, the �elds before and after su
h a symmetry operationare not related by a lo
al �eld transformation. In order to use the standard pro
edure forgauging a rigid symmetry, one therefore �rst has to swit
h to a symple
ti
 duality framein whi
h the relevant symmetries a
t by lo
al �eld transformations only. This obviouslybreaks the original duality 
ovarian
e. Re
ently an alternative method has been proposedthat allows one to formally maintain the full duality 
ovarian
e at ea
h step of the gaugingpro
edure. This method requires the extension of the usual gauge degrees of freedom andthe parti
le 
ontent, whi
h leads to a new formulation of four-dimensional gauge theories.i



In one major part of this thesis we are going to display to what extent one has to modifythe existing formalism in order to allow for the 
an
ellation of quantum gauge anomaliesvia the Green-S
hwarz me
hanism. The results might be relevant for 
ertain N = 1 
ux
ompa
ti�
ations with anomalous fermioni
 spe
trum.At the end of this thesis we 
omment on a puzzle in the literature on supersymmetri
 �eldtheories with massive tensor �elds. These o

ur naturally in the low-energy e�e
tive a
tion of
ertain IIB orientifold 
ompa
ti�
ations with 
uxes, where they give rise to s
alar potentialsthat are not of the standard supersymmetry form. The potential 
ontains a term that doesnot arise from eliminating an auxiliary �eld. We will 
larify the origin of this term and displaythe relation to a standard D-term potential. In an appendix it is expli
itly shown how theselow energy e�e
tive a
tions might be 
onne
ted to the formulation of four-didmensional gaugetheories dis
ussed at earlier stages of this thesis.

ii



InhaltsangabeIn dieser Dissertation untersu
hen wir die Rolle verallgemeinerte Chern-Simons Termein vierdimensionalen 
hiralen Ei
htheorien, genauer, wie Anomlien weggehoben werdenk�onnen. Unter Einbeziehung von verallgemeinerten Chern-Simons Termen und zus�atzli
henaxionis
hen Kopplungen ist man in der Lage die Bedingungen, die Abwesenheit vonAnomalien garantieren, zu ents
h�arfen. Ph�anomenologis
he Modelle, die gerade dieseArt von Kopplungen beinhalten, sind seit einiger Zeit Mittelpunkt reger Untersu
hungen.M�ogli
he Realisierungen f�ur entspre
hende Modelle sind zum Beispiel dur
h si
h s
hneidendeBranen-Modelle in Orientifoldkompakti�zierungen von Typ II Stringtheorien gegeben. DieVorhersagen der ph�anomenologis
hen Untersu
hungen dieser Modelle k�onnten sogar in naherZukunft in Kollisionsexperimenten na
hgepr�uft werden, falls nur die Masse des anomalenU(1)-Ei
hbosons klein genug ist.Na
h einer kurzen Einf�uhrung in Quantenanomalien diskutieren wir im Detail die verall-gemeinerten Chern-Simons Terme und erl�autern unter wel
hen Umst�anden sie mit Hilfe einesMe
hanismus na
h Green und S
hwarz zum Wegfall von Anomalien f�uhren k�onnen. Dieseersten Ergebnisse erlauben eine umfassende Untersu
hung der entspre
henden Situation inallgemeinen N = 1 supersymmetris
hen Feldtheorien mit verallgemeinerten Chern-SimonsTermen. Wie gezeigt wird, k�onnen die starken Anforderungen, die si
h aus der Abwesenheitvon Anomalien unters
hiedli
her Ei
hgruppen ergeben, dur
h zwei einfa
he Bedingungenzum Ausdru
k gebra
ht werden. Dies gilt ebenfalls in N = 1 Supergravitationstheorien mitKopplungen an massive Felder, bekannte Wirkungen verallgemeinernd.Globale Symmetrien jener Sektoren, die Vektorfelder und Skalarfelder enthalten, stehenin N = 1 Supersymmetrie oder in ni
ht supersymmetris
hen Theorien in keiner direktenVerbindung. Die globale Symmetriegruppe ist eine Untergruppe des Produkts der symplek-tis
hen Dualit�atstransformationen, die auf die Vektorfelder wirken und der Isometriegruppeder skalaren Mannigfaltigkeit der 
hiralen Multipletts dar. Ni
htriviale Transformationender elektis
h/magnetis
hen Dualit�at wirken derart auf Felder, dass diese ni
ht mehr ineiner lokalen Beziehung mit den transformierten Feldern stehen. Wenn man nun eineiii



globale Symmetrie standardgem�a� ei
hen will, dann mu� man erst in einen symplektis
henDualit�atsrahmen we
hseln, in dem die Felder �uber lokale Transformationen untereinanderin Beziehung stehen. Dies bri
ht o�ensi
htli
h die urspr�ungli
he Dualit�atskovarianz. Vorni
ht all zu langer Zeit wurde eine alternative Methode vorges
hlagen, die es erlaubt,bei jedem S
hritt des Ei
hprozesses die volle formale Dualit�atskovarianz zu bewahren.Diese Methode verlangt eine Erweiterung der gew�ohnli
hen Ei
hfreiheitsgrade und dieEinf�uhrung neuer Felder. Auf diese Art wird eine neue Formulierung der Ei
htheorien invier Dimensionen errei
ht. In einem der Hauptteile der Dissertation werden wir sehen, wiegenau nun dieser Formalismus modi�ziert werden muss, damit au
h Quantenanomalien mitHilfe des Me
hanismus na
h Green und S
hwarz entfernt werden k�onnen. Diese Resultatesind relevant f�ur gewisse N = 1 Flusskompakti�zierungen mit anomalem Fermionspektrum.Am Ende der Dissertation wenden wir uns einem Punkt zu, der in der Literatur zu super-symmetris
hen Feldtheorien mit massiven Tensorfeldern angemerkt wurde. Diese Theorieners
heinen f�ur gew�ohnli
h in den e�ektiven Niederenergie-Wirkungen gewisser IIB Orien-tifold
usskompati�zierungen und erzeugen Potentiale f�ur Skalarfelder von aussergew�ohnli
herForm. Diese Potentiale enthalten einen Term, der ni
ht aus der Elimination eines Hilfsfeldesresultiert. Wir werden diesen Punkt kl�aren und au
h die Beziehung dieser Potentiale zugew�ohnli
hen D-Term Potentialen aufzeigen. Im Anhang zu dieser Arbeit ist dargestellt, wiegenau diese e�ektiven Niederenergie-Wirkungen mit einigen der zuvor erw�ahnten vierdimen-sionalen Ei
htheorien in Zusammenhang stehen.
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1 Introdu
tionIn quantum physi
s an anomaly is the failure of a symmetry of the 
lassi
al theory to be asymmetry of the full quantum theory. In 
hiral gauge theories an anomaly of the gauge sym-metry may o

ur be
ause the 
hirality of the gauge intera
tions may 
ause loop 
ontributions(e.g. to n-point fun
tions) that violate the symmetries of the 
lassi
al a
tion. For quantumgauge theories this is fatal, as su
h a gauge anomaly leads to a loss of renormalizeability.To avoid this, one usually has to impose a number of nontrivial 
onstraints on the possible
harges of the 
hiral fermions in su
h a way that the anomaly is absent. Without introdu
ingany new parti
le or intera
tion, this amounts to demanding that the anomalous Feynman dia-grams 
an
el. The vanishing of all anomalous one-loop diagrams already provides a suÆ
ient
ondition for anomaly-freedom to all loop orders [1℄.It is possible to relax these 
onstraints if gauge variations of the 
lassi
al a
tion are ableto 
an
el some of the anomalous one-loop 
ontributions. In this 
ase the 
lassi
al a
tion itself
annot be gauge invariant, of 
ourse. In the simplest example, the a
tion 
ontains an axioni

oupling of a s
alar a(x) to the �eld strength of some ve
tor �eld of the form aF ^ F , wherea(x) transforms with a shift under some Abelian gauge symmetry with gauge parameter �(x),i.e. Æa(x) / �(x). An Abelian anomaly may be exa
tly 
an
elled by the gauge variation ofthis axioni
 
oupling, whi
h is proportional to �F ^ F . This is a simple four-dimensionalexample of the Green-S
hwarz me
hanism [2℄.The s
alar a(x) is usually 
alled \axion" and its kineti
 term has to be of St�u
kelberg-typein order to be gauge invariant, i.e. proportional to (��a�A�)2. The St�u
kelberg 
oupling im-plements the shift symmetry via an Abelian gauge boson that gains a mass due to its 
ouplingto the axion. If the mass of su
h a gauge boson is low enough and if it has suitable inter-a
tions with the Standard Model parti
les, it may lead to observable signals in near-future
ollider experiments. There has re
ently been quite some interest in the phenomenologi
alstudies of su
h anomalous Z 0-type bosons [3{16℄. A natural framework for su
h models isprovided by interse
ting brane models in type II orientifolds1 be
ause the four-dimensionalGreen-S
hwarz me
hanism is rather generi
 in these kind of models [23℄.Interestingly, the Green-S
hwarz me
hanism alone is often not enough to 
an
el all 
on-1More details on interse
ting brane models 
an be found in, e.g., [17{22℄ and referen
es therein.1



1 INTRODUCTIONtributions from gauge anomalies in these orientifold 
ompa
ti�
ations [12, 13℄2. Espe
iallythe 
an
ellation of mixed Abelian anomalies between anomalous and non-anomalous Abelianfa
tors is in general not a
hieved by the Green-S
hwarz me
hanism alone. Instead, one needsthe help of topologi
al terms, so-
alled generalized Chern-Simons terms, whi
h are not gaugeinvariant. In general, it is the 
ombination of the Green-S
hwarz me
hanism and the gen-eralized Chern-Simons terms whi
h possibly 
an
els the 
omplete gauge anomaly. In [12℄3the question was raised, how to generate the generalized Chern-Simons terms from 
ertainstring 
ompa
ti�
ations. It was shown that the generalized Chern-Simons terms are a generi
feature of the orientifold models we referred to above and may lead to new observable signalsof Z 0-bosons. Another possibility was mentioned in [26℄ where 
ertain 
ux and generalizedS
herk-S
hwarz 
ompa
ti�
ations [27,28℄ were used to explain possible origins. There is alsothe possibility to obtain N = 2 supergravity theories with generalized Chern-Simons termsfrom ordinary dimensional redu
tion of 
ertain �ve dimensional N = 2 supergravity theorieswith tensor multiplets4 [29℄.It should be emphasized that the generalized Chern-Simons terms need not ne
essarilyappear in 
ombination with the Green-S
hwarz me
hanism and anomalies. Originally, theseterms were �rst dis
overed in extended gauged supergravity theories [32℄ whi
h are manifestlyfree of anomalies due to the usual in
ompatibility of 
hiral gauge intera
tions with extendedsupersymmetry in four dimensions. This motivated the dis
ussions in [26{29, 33{39℄ whi
hdemonstrated how generalized Chern-Simons terms 
an
el axioni
 shifts in di�erent 
lassi
alsetups. In all these 
ases the absen
e of gauge anomalies imposes strong restri
tions on theform of possible gauged axioni
 shift symmetries.In light of the above mentioned possible phenomenologi
al appli
ations and given theirgeneri
 o

uren
e in various string theory 
ompa
ti�
ations, it is surprising that the generalinterplay between the Green-S
hwarz me
hanism, generalized Chern-Simons terms andN = 1supersymmetry was not very well understood until rather re
ently. It is the purpose of thisthesis to give a systemati
 a

ount of these issues as they were developed in [88℄ during thepast years.2For related phenomenologi
al work, see also [14{16,24, 25℄3The basi
 ideas are presented by means of a simple toy model in [13℄.4These �ve dimensional N = 2 supergravity theories are dis
ussed in [30, 31℄.2



The outline of this thesis is as follows. In se
tion 2, we review the most important fa
tsabout quantum anomalies in 
hiral gauge theories. We will illustrate how the triangle diagram
auses a violation of the 
onservation law of axial 
urrents. Then we will review how theanomaly 
an also be understood by the Ja
obian of the path integral measure under axialtransformations. With this at hand we will present the Wess-Zumino 
onsisten
y 
onditionand, at the end of se
tion 2, we will shortly 
omment on some general aspe
ts of anomaly
an
ellation.In se
tion 3, we 
onstru
t generalized Chern-Simons terms along the lines of [34℄. Wewill further show that there are no nontrivial generalized Chern-Simons terms for semisimplegauge groups. This motivates a short dis
ussion of the example of a gauge group withthe stru
ture Abelian�semisimple. The se
tion ends with a generalization of the methoddeveloped in [34℄ so as to be able to in
orporate anomalies into the formalism.Se
tion 4 summarizes the most important formulae 
on
erning the gauge se
tor of globaland lo
al N = 1 supersymmetry whi
h will be of major 
on
ern in the subsequent se
tion 5.After the introdu
tory se
tions 2 to 4, we will apply, in se
tion 5, the results of se
tion 3 togauged isometries on the target manifold of s
alar �elds in global and lo
al N = 1 supersym-metry and generalize previous work. Therefore, we begin by gauging an Abelian isometry inglobal N = 1 supersymmetry and show when it is ne
essary to add generalized Chern-Simonsterms to the gauge se
tor presented in se
tion 4 su
h that the resulting a
tion is invariantunder the gauged isometries. After having generalized the results to gauged nonabelianisometries, we will display under whi
h 
onditions gauge anomalies are possibly 
an
elled.Furthermore, we investigate the 
onservation of supersymmetry in presen
e of gauged isome-tries. After this is a

omplished, we will extend the results to N = 1 supergravity. We willillustrate the 
an
ellation pro
edure for a gauge group of the form Abelian�semisimple.In se
tion 6, we will show that four-dimensional gauge theories with Green-S
hwarzanomaly 
an
ellation and possible generalized Chern-Simons terms admit a formulation thatis manifestly 
ovariant with respe
t to ele
tri
/magneti
 duality transformations. This gen-eralizes previous work on the symple
ti
ally 
ovariant formulation of anomaly-free gaugetheories and may have interesting appli
ations, e.g., for 
ux 
ompa
ti�
ation with interse
t-ing branes.In se
tion 7 we dis
uss the a
tion for a massive tensor multiplet 
oupled to 
hiral and3



1 INTRODUCTIONve
tor multiplets in the N = 1 super�eld formalism. We 
ompute the D-term potential andshow that it is equivalent to a potential in standard form explaining an earlier result by [90℄.The a
tion 
an be regarded as the supersymmetrization of a spe
ial Abelian gauge of thetheory presented in se
tion 6. The pre
ise 
onne
tion is illustrated in appendix E.The 
on
lusion is found in se
tion 8, and notations and 
onventions, as well as te
hni
aldetails to several 
al
ulations, are summarized in the appendi
es.

4



2 Quantum anomaliesA quantum theory is 
alled anomalous if there is an exa
t symmetry of the 
lassi
al a
tionwhi
h is not preserved as a symmetry after quantization. When for gauge theories the quan-tum a
tion is not gauge invariant, then the quantum theory is not renormalizable. The reasonis that so-
alled Ward-identities, whi
h are absolutely ne
essary for the renormalization pro-
edure to be well-de�ned, do not hold.Anomalies are not only a possible feature of gauge symmetries, but may also arise forglobal symmetries of the 
lassi
al a
tion. Contrary to quantum gauge theories, in the 
aseof the global symmetry this is not ne
essarily a problem but may instead lead to interestingmeasurable physi
al e�e
ts as, for example, the de
ay of the pion into gamma rays shows.Histori
ally, the observed de
ay rates in experiments did not mat
h the theoreti
al predi
-tions. Only on
e the 
ontribution of the global anomaly was 
onsidered, very good agreementbetween experiment and theory 
ould be obtained. The anomaly does not spoil renormal-ization here be
ause no Ward-identity is violated. This example also shows that an anomalyis not simply a mathemati
al problem 
aused by the formalism but has a 
lear physi
al in-terpretation. In fa
t, an anomaly is a 
onsequen
e of the non-invarian
e of the quantummeasure in the path integral formulation as demonstrated by Fujikawa [41℄. Nevertheless,already triangle diagrams show whether a given theory is anomalous or free of anomalies,whi
h will be reviewed in the next se
tion. In se
tion 2.2, we illustrate how the anomalyappears in the path integral formalism. The 
onsistent anomaly is explained in se
tion 2.3and the Wess-Zumino 
onsisten
y 
ondition is presented. Finally, in se
tion 2.4, we 
ommentbrie
y on the 
an
ellation of anomalies.2.1 Triangle anomalyGauge symmetry and renormalization are 
losely related topi
s. In gauge theory, the renor-malization pro
edure makes use of identities that relate di�erent Green's fun
tions. Theseidentities were proven by Ward [42℄ and Takahashi [43℄ and are hen
e 
alled \Ward-Takahashiidentities". The validity of the Ward-Takahashi identities is not automati
 when 
hiralfermions are in the theory. More expli
itly, one has to 
he
k whether there are diagramsthat introdu
e anomalous terms, preventing the Ward-Takahashi identities from reprodu
-5



2 QUANTUM ANOMALIESing themselves re
ursively at higher orders in perturbation theory. In a theory with 
hiralfermions5 the three-point fun
tionsT���(q; k1; k2) � h0jT [J5� (q)J�(k1)J�(k2)℄j0i ; (2.1)T��(q; k1; k2) � h0jT [P (q)J�(k1)J�(k2)℄j0i (2.2)
ause su
h anomalous terms that violate the Ward-Takahashi identities. Here P (q) representsthe pseudos
alar 
urrent whi
h is expli
itly given by P = � 
5 . The Feynman graphs thatillustrate (2.1) and (2.2) are, to lowest order, triangle graphs with two external photons andone axial ve
tor in the �rst 
ase and a pseudos
alar (if present) for the se
ond 
ase.Applying the standard Feynman rules to the Feynman diagrams displayed in �gure 1 allows

Figure 1: These diagrams 
ause 
ontributions that violate expli
itly the Ward-Takahashiidentities. The graphi
 is taken from [1℄.5Consider a Lagrangian where the fermion is denoted by  and 
ouples to a ve
tor �eld A� and to an axialve
tor �eld A5�. The Lagrangian is given by L(A5�; A�) = � (��
�+A�
�+A5�
�
5) , for example. Note thatthe given Lagrangian des
ribes also the 
oupling of a ve
tor �eld to the ele
tromagneti
 
urrent representedby J� = � 
� and of an axial ve
tor �eld 
oupling to the axial ve
tor 
urrent J5� = � 
�
5 .6



2.1 Triangle anomalyone to write down the expli
it expressions for (2.1) and (2.2), whi
h are given byT���(q; k1; k2) = �iZ d4p(2�)4 �tr ip�
� �m
�
5 i(p� q)�
� �m
� i(p� k1)�
� �m
�++tr ip�
� �m
�
5 i(p� q)�
� �m
� i(p� k2)�
� �m
�� (2.3)T��(q; k1; k2) = �iZ d4p(2�)4 �tr ip�
� �m
5 i(p� q)�
� �m
� i(p� k1)�
� �m
�++tr ip�
� �m
5 i(p� q)�
� �m
� i(p� k2)�
� �m
�� (2.4)where q := k1 + k2. In order to �nd the Ward-Takahashi identity for the axial ve
tor, onehas to 
ompute q�T��� . A useful identity is1p�
� �mq�
�
5 1p�
� � q�
� �m = 1p�
� �m
5 + 
5 1p�
� � q�
� �m+2m 1p�
� �m
5 1p�
� � q�
� �m ; (2.5)whi
h 
an be easily proven by multiplying (2.5) from the left side by (p�
� �m) and fromthe right side by (p�
� � q�
� �m). With the help of the identity (2.5) one 
an repla
e the�rst two fra
tions in (2.3) by the right hand side of (2.5), and it is not diÆ
ult to see thatwe have q�T��� = R1�� +R2�� + 2mT�� ; (2.6)where R1�� and R2�� denote integrals that are 
aused by the �rst two terms on the right handside of (2.5). The axial Ward-Takahashi identity isq�T��� = 2mT�� ; (2.7)and we see that (2.6) violates (2.7) by the remaining terms R1�� and R2�� . These remainingterms do not vanish be
ause, when written out with the help of Feynman rules, they resultin linearly divergent integrals that lead to ambiguities in the momentum route of the trianglegraph.The amplitude T�� (2.2) is 
onvergent be
ause the apparent linear and logarithmi
 diver-gen
ies disappear in the a
tual 
omputation. The 
al
ulation is not repeated here but 
anbe found in the 
lassi
al le
tures on anomalies by Ja
kiw ( [44, 45℄) and in any textbook onquantum �eld theory, e.g. [46,47℄. An additional useful referen
e is the book of Bertlmann [1℄.7



2 QUANTUM ANOMALIESThe resulting anomalous Ward-Takahashi identity is equivalent to the modi�ed 
onservationlaw for the axial 
urrent ��J5� = 2mP (x) +A ; (2.8)where the anomaly, A, is given byA = e2(4�)2 "����F ��F �� : (2.9)This is the famous Adler-Bell-Ja
kiw anomaly [48,49℄, where F�� is the Abelian �eld strengthde�ned by F�� = 2�[�A�℄.6The anomaly (2.9) is independent of the fermion mass and therefore violates the 
urrent
onservation of the massless theory.The Ward-Takahashi identity of the ve
tor 
urrents is ful�lled whi
h is a 
onsequen
e of a
hosen momentum route.Observe that atta
hing new photon lines to one loop diagrams, whi
h is equivalent to turningthe triangle diagram into a quadrangle or in general n-angle diagram, generates an inte-gral that is at least logarithmi
ally divergent: T����::: for fermioni
 loops with more thanfour external photons atta
hed to it. This 
an be understood heuristi
ally by noting thatthe super�
ial degrees of divergen
e of the higher order diagrams are less than one and themomentum-routing ambiguity does not exist for those diagrams. This summarizes the theo-rem by Adler and Bardeen [50℄, that states that radiative 
orre
tions in higher orders do notalter (2.8) and, thus, the anomaly is already totally determined by the triangle diagram.2.2 Path integral and anomalyAdler and Bardeen proposed in their theorem that the full stru
ture of the 
hiral anomaly isgiven by the triangle anomaly [50℄ and does not re
eive 
ontributions from further radiative
orre
tions. This suggests that the anomaly should even exist beyond perturbation theory.Fujikawa was the �rst to re
ognize that in the path integral formalism the anomaly 
orre-sponds to the Ja
obian of a 
5-transformation of the quantum measure [41℄. One 
an see6Here and in the following, [ ℄ and ( ) denote, respe
tively, antisymmetrization and symmetrization with\strength one", i.e., [ab℄ = 12 (ab� ba) et
. 8



2.2 Path integral and anomalythis as follows: Let there be massless fermioni
 �elds in the theory transforming nontriviallyunder 
hiral gauge transformations as  ! ei�
5 ;� ! � ei�
5 : (2.10)The important steps in Fujikawa's method are �rst to de�ne the path integral measure morea

urately by de
omposing the spinors  and � into eigenfun
tions of the Dira
 operator andse
ond to determine the Ja
obian of the path integral measure under 
hirality transforma-tions. The Ja
obian of in�nitesimal transformations will be exa
tly the anomaly.The eigenve
tors jni of the operator D are given by:D�
�jni = �njni ; (2.11)and the spinors de
ompose a

ording to (x) = Xn anhxjni ; (2.12)� (x) = Xn hnjxi�bn ; (2.13)where the de
omposition 
oeÆ
ients an and �bn are independent Grassmann obje
ts. These
oeÆ
ients at hand, we are able to re-express the path integral measures D D � a

ordingto D D � = Yn DanD�bn ; (2.14)be
ause the set of eigenve
tors jni is 
omplete and orthonormal, i.e. hnjmi = Ænm. In orderto determine the behaviour of the obje
ts an and �bn under 
hiral transformations, we 
onsiderthe rotated spinor  0(x) = ei�
5 (x) : (2.15)After de
omposing both sides of (2.15) into the eigenve
tors jni, and using the orthonormalityof the eigenve
tors, one �nds thata0n = Xm Cnmam ;Cnm := Z dx hnjxiei�(x)
5 hxjmi : (2.16)9



2 QUANTUM ANOMALIESThe Grassmann measure transforms with the inverse determinant and, therefore, the pathintegral measure transforms with �det(Cnm)�1�2, whi
h has to be determined. Making useof detC = etr log(C) and 
onsidering in�nitesimally small transformations, one 
an de
om-pose the logarithm around the unity matrix. Then, the Ja
obian J of in�nitesimal 
hiralitytransformations is given by J = e�2i R dx � ~tr(
5) : (2.17)Observe, that the fun
tional tra
e ~tr(
5) is de�ned through the eigenve
tors ~tr(
5) :=Pnhnjxi
5hxjni.7 This tra
e is a
tually divergent, and we have to regulate the sum. Asthe regulator we use the 
onvergent fa
tor exp �� (�nM )2� and take the limit M !1. Then,we 
an manipulate the regulated exponent of (2.17) and after introdu
ing unity operators ofthe form R d4k jkihkj and by using 
ompleteness of the set fjnig, we �ndlimM!1 ~tr(
5e�(�nM )2) = limM!1Z d4k(2�)4 eik�x(
5e�(D�
�M )2)e�ik�x :We de
ompose the operator �D�
��2 into an odd pie
e proportional to [
�; 
� ℄ and an evenpie
e proportional to f
�; 
�g = 2g�� so that we have �D�
��2 = D�D� + 14 [
�; 
� ℄F �� .After res
aling the momentum and de
omposing the exponential, there is only one term thatsurvives in the limit M !1 (the term quadrati
 in the �eld strength), and we obtain:~tr(
5) = � 132�2 "����F ��F �� : (2.18)Inserting this ba
k into (2.17) we indeed �nd the anomaly (2.9), or in other words, the pathintegral measure transforms with the Ja
obianJ = e i16�2 R dx �(x)"����F��F�� : (2.19)However, as we did not expand the path integral, this result is valid beyond any perturbativeexpansion. In the path integral pi
ture the anomaly is explained by the non-invarian
e ofthe path integral measure under 
hirality transformations. The formal reason for the non-invarian
e 
an be tra
ed ba
k to the fun
tional tra
e ~tr
5, whi
h is singular.7Note, that ~tr(
5) is not equal to the 
-matrix tra
e tr(
5) = 0.10



2.3 Consistent anomaly2.3 Consistent anomalySo far we have only 
onsidered Abelian symmetries. If we want to generalize the above
on
epts to the nonabelian 
ase, then the expression (2.18) will of 
ourse no longer representthe full anomaly. The naive extension of (2.9), in whi
h the �eld strength is repla
ed by its
ovariant 
ounterpart, is not 
orre
t be
ause the 
ontribution of quadrangle diagrams andpentagon diagrams, though �nite, violates the nonabelian stru
ture. The a

ess throughdiagrams be
omes now more 
ompli
ated and so let us 
hoose the more 
onvenient way bymeans of the path integral. As a �rst step, we de�ne Green's fun
tions with the help of thegenerating fun
tional, whi
h is given byZ[A�℄ = Z D � D e� R d4x ( � 
��� +A� � 
� ) ; (2.20)where the gauge �elds are treated as external �elds and sour
es for the fermions are ig-nored. For the proof of renormalizeability it is suitable to use 
onne
ted Green fun
tions,but the generating fun
tional Z[A℄ 
ontains both 
onne
ted and dis
onne
ted diagrams. The
onne
ted Green fun
tions are generated by W [A℄ de�ned byZ[A�℄ = e�W [A�℄ : (2.21)For the anomaly we only need to 
onsider the fermioni
 part of the theory, so (2.21), given by(2.20), is really all we need from the full quantum a
tion. Let the gauge group be generatedby TA satisfying the algebra [TA; TB ℄ = fABCTC , where fABC are the stru
ture 
onstants.In�nitesimal gauge transformations that a
t on the a
tion (2.21) are de�ned by the operatorsXA(x) = DC�A ÆÆAC� (x):= ���ÆCA + fABCAB� (x)� ÆÆAC� (x) : (2.22)It 
an be shown that these operators ful�l the algebra given by[XA(x);XB(y)℄ = fABCXC(x)Æ(x � y) ; (2.23)and that the gauge variation of W [A℄ is given byÆW [�℄ := Z d4x�A(x)XA(x)W [A�℄= Z d4x�A(x)hDC�A j�C(x)i
on. (2.24)11



2 QUANTUM ANOMALIESwhere hj�Ci
on. = 1Z[A℄ R D � D ( � 
�TC )e� R d4xL( � ; ;A) is the expe
tation value of the 
on-ne
ted 
urrent. We 
an easily see that for an invariant quantum a
tion, ÆW [�℄ = 0, the
urrent is 
ovariantly 
onserved, hDC�Aj�Ci
on. = 0. However, if the theory is anomalous, thenthe generating fun
tional of 
onne
ted Green fun
tions satis�es ÆW [�℄ = �AAA, and in orderto be 
onsistent with the gauge algebra (2.23), the anomaly has to obey the 
onditionXA(x)AB �XB(y)AA = fABCAC Æ(x� y) ; (2.25)whi
h is the so-
alled \Wess-Zumino 
onsisten
y 
ondition" [51℄. We 
an also see that thenaive nonabelian extension of (2.9), where the Abelian �eld strengths are repla
ed by theirnonabelian 
ounterparts, is not 
orre
t be
ause it violates (2.25).An expli
it solution of (2.25) is given byAC = 124�2 "����tr[TC��(A���A� + 12A�A�A�)℄ ; (2.26)whi
h represents exa
tly Bardeen's result [52℄ found from fermion loop 
omputations. Thissolution is not unique be
ause one 
an add lo
al polynomials of the external gauge �elds f [A℄to (2.26) and obtain another solution. These lo
al polynomials 
an be indu
ed, e.g., when therenormalization pro
edure is 
hanged. The 2-point Green fun
tions of two ve
tor 
urrents, forexample, have a renormalization ambiguity be
ause their Lorentz invariant extensions to testfun
tions are not unique [53℄. For the quantum a
tion, this means that ~W [A℄ =W [A℄ + f [A℄and the generating fun
tional re
eives a phase fa
tor Z[A℄eif [A℄. A phase fa
tor, however,does not a�e
t the transition probability and is not observable. Consequently, we 
an also
all a theory anomalous, if there does not exist a lo
al polynomial of the external gauge�elds, su
h that (2.26) is e�e
tively 
an
elled. Possible lo
al polynomials are given by Chern-Simons terms or generalized Chern-Simons terms (depending on the dimension). In thefollowing se
tion we will dis
uss these topologi
al terms, espe
ially the generalized Chern-Simons terms be
ause these are of spe
ial interest in four dimensions.2.4 Can
ellation of anomaliesAlthough there are attempts to live with anomalous theories, see for example [54℄ and [55℄,in renormalizable theories, anomalies must not o

ur. This implies severe restri
tions onthe physi
al 
ontent of a theory. In ve
tor-like models all fermions 
ouple symmetri
ally in12



2.4 Can
ellation of anomaliesboth 
hiral se
tors and any potential gauge anomaly in the left-handed se
tor is 
an
elledby the anomaly of the right-handed fermions. In 
hiral gauge theories, by 
ontrast, anomaly
an
ellation is not automati
 and the 
an
ellation requires a 
areful balan
e of the fermioni
gauge quantum numbers, as, e.g., in the standard model.Another possibility to 
an
el anomalies is to introdu
e a 
ounterterm into the a
tion, withparti
les that transform appropriately under gauge transformations su
h that the anomalyis 
ompensated. As mentioned in the introdu
tion, a simple Abelian example is given by theintera
tion "���� ia(x)F��F�� ; (2.27)where the s
alar, a(x) varies under the gauge symmetry a

ording toÆa(x) = i�(x) : (2.28)Then the variation of the intera
tion (2.27) is able to 
an
el the Abelian anomaly (2.9).When the gauge theory is nonabelian then the full 
onsistent anomaly 
annot be 
an
elledby this me
hanism. The Green-S
hwarz anomaly 
an
ellation me
hanism in 10-dimensionalsupergravity and super Yang-Mills theory is a sophisti
ated generalization of this simpleexample, see for example [2℄ and [56℄.

13



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS3 Lie algebra 
ohomology and generalized Chern-SimonstermsIn generi
 e�e
tive �eld theories one has s
alar �eld dependent fun
tions appearing in frontof the gauge kineti
 terms, i.e. in front of F��F�� and F^F . Here in general, the nonabelian�eld strength two form is de�ned asFC := dAC � 12fABCAA ^AB : (3.1)Supersymmetri
 theories, for example, often generalize the gauge se
tor to in
orporate anontrivial gauge kineti
 fun
tion fAB that depends on a set of s
alar �elds, as is furtherexplained in se
tion 4.1. Compatibility with supersymmetry 
onstrains this fun
tion and so,for instan
e, in N = 1 supersymmetry it is required to be a holomorphi
 fun
tion of the
omplex s
alars of the 
hiral multiplets.The Lagrangian will 
ontain a nontrivial F ^ F term when the imaginary part of thegauge kineti
 fun
tion is nontrivial. In the literature this term is sometimes referred to as a\Pe

ei-Quinn term" and readsLPQ = i Im fAB FA ^ FB : (3.2)The intera
tion given in equation (2.27) a
tually represents a spe
ial 
ase of (3.2) where wejust have a U(1) gauge symmetry (and hen
e only one index, whi
h may be dropped), andthe gauge kineti
 fun
tion is given by the axioni
 s
alar a(x), i.e. f = 4 a(x).In the remainder, the exterior produ
t ^ is understood and will no longer be written outexpli
itly.Under the gauge transformation of the 
onne
tion one-forms AC = AC� dx�, whi
h readÆAC = D�C := d�C + fABC�AAB ; (3.3)the �eld strength two forms (3.1) transform 
ovariantly, i.e. ifÆFC = fABC�AFB : (3.4)Clearly, the Lagrangian (3.2) is invariant under (3.3) if the gauge kineti
 fun
tion transformsin the symmetri
 produ
t of two adjoint representations, i.e. ifÆfAB = 2�CfC(ADfB)D : (3.5)14



More generally, however, there is still the possibility to relax (3.5) a

ording toÆfAB = 2�CfC(ADfB)D + iCAB;D�D ; (3.6)so as to allow for 
onstant shifts in the gauge kineti
 fun
tion. Here CAB;D is a real 
onstanttensor satisfying the 
onstraints C(AB;D) = 0 ; (3.7)12CAB;DfEFD � CDB;[EfF ℄AD � CDA;[EfF ℄BD = 0 : (3.8)This more general transformation (3.6) 
an be indu
ed if the s
alar �elds transform nontriv-ially under the gauge group and appear in a 
ertain way in fAB, but we will address this laterin more detail.Obviously, on
e we allow for these shifts, the Lagrangian (3.2) is no longer invariant under(3.3) and (3.6). Its variation is instead given byÆLPQ = iCAB;D�DFAFB : (3.9)If we only 
onsider the 
lassi
al a
tion, the variation (3.9) 
an only be 
an
elled by new termsadded to LPQ, the so 
alled generalized Chern-Simons terms [32, 34℄. In this se
tion we willshow how a 
lassi
ally gauge invariant a
tion generalizing (3.2) 
an be 
onstru
ted by usingthe te
hniques of [34℄. In the following subse
tion we introdu
e Lie algebra valued formsC(A;F) and analyze them by means of 
ohomologi
al te
hniques. This method allows oneto understand the origin of the 
onstraints (3.7) and (3.8). The 
onstraint (3.7) demands theforms C(A;F) to be homogeneous in the �eld strength and the gauge 
onne
tion separately.Then, for forms C(A;F) whose 
oeÆ
ients satisfy (3.7) we 
an identify the 
onstraint (3.8)as the 
onstraint demanding C(A;F) to be 
losed with respe
t to the exterior derivative.After spe
ifying the transformation properties of the gauge kineti
 fun
tion, we are ableto 
onstru
t the gauge invariant extension of the Pe

ei-Quinn term, whi
h is obtained byin
luding generalized Chern-Simons terms.In subse
tion 3.2 we �nd that there are no non-trivial generalized Chern-Simons termsfor semisimple gauge groups and present the example of a gauge group that has the formAbelian�semisimple in se
tion 3.3. The results of these subse
tions are dis
ussed in moredetail in appendix A, where the results are proven by methods of Lie algebra 
ohomology.15



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSFinally, in subse
tion 3.4, we generalize the formalism developed in [34℄ in order to allowfor forms that do not need to satisfy the 
onstraint (3.7). We will see that the Pe

ei-Quinnterm and the generalized Chern-Simons term are no longer gauge invariant on
e we give upthe 
onstraint (3.7). The only possibility to 
an
el the gauge non-invarian
e in su
h a 
aseis to 
onsider anomalies.Before we 
onstru
t the generalized Chern-Simons terms, I would like to give a few 
om-ments on `ordinary' Chern-Simons terms [57℄ that should illustrate the di�eren
e betweenordinary and generalized Chern-Simons terms. The 
onstru
tion of `ordinary' Chern-Simonsforms is usually done by means of so 
alled 
hara
teristi
 or invariant polynomials Pn. The
hara
teristi
 polynomials Pn(F) are symmetri
 fun
tions of degree n in the �eld strengthform F and invariant under the a
tion of the gauge symmetry group. Therefore, the 
hara
-teristi
 polynomials satisfy Pn(Fg) = Pn(F) where we denoted the gauge transformed �eldstrength by Fg. With the help of the Bian
i identityDF := dF + [A;F ℄ = 0 ; (3.10)it 
an be proven that the invariant polynomials are 
losed, i.e. dPn(F) = 0. A theorem byChern and Weil states that the 
ohomology 
lasses of Pn(F) do not depend on the 
hoi
eof the 
onne
tion form A and 
hara
terize the de Rham 
ohomology group [58℄. Then, the
ohomology 
lasses of invariant polynomials Pn(F) of degree n are further 
hara
terized bythe Chern-Simons terms Qn�1(A;F) whi
h are forms of degree (n� 1), i.e.Pn(F) = dQn�1(A;F) (3.11)Integrals of 
hara
teristi
 polynomials are topologi
al invariants. Let us 
onsider, for exam-ple, in four dimensions a 
hara
teristi
 polynomial of the form P4(F) = tr(FF) whi
h isinvariant be
ause of P4(Fg) = tr(gFg�1gFg�1) = tr(FF) = P4(F). Then this 
hara
teristi
polynomial leads to the three-dimensional Chern-Simons form Q3(A;F) = tr[AdA + 32A3℄.8Observe, that Chern-Simons forms are in general odd dimensional while generalized Chern-Simons forms live in even dimensions as we will see.8Sin
e the determinant is invariant under the adjoint of the gauge symmetry, i.e. det( ) = det �g�1( )g�if g represents an element of the gauge group, one 
an also obtain invariant polynomials with the help ofthe determinant. However, the 
orresponding Chern-Simons forms are not related to the one obtained fromP4(F) = tr(FF) as 
onsidered in the example. 16



3.1 Generalized Chern-Simons forms3.1 Generalized Chern-Simons formsGeneralized Chern-Simons terms 
annot be 
onstru
ted from 
hara
teristi
 polynomials be-
ause there are no odd dimensional invariant polynomials in the �eld strength. To set thestage we 
onsider a �ve-form C(A;F) de�ned asC(A;F) := CAB;DADFAFB ; (3.12)and do not limit ourselves to four spa
etime dimensions.Note the pe
uliar stru
ture of the indi
es of the 
onstant tensor CAB;D: the index 
or-responding to that 
arried by the gauge 
onne
tion is separated from the indi
es that are
arried by the �eld strengths by a 
omma. Therefore, the 
onstant tensor is symmetri
 inits �rst two indi
es whi
h is also 
onsistent with (3.6). Furthermore, observe that the formC(A;F) does not represent an invariant or 
hara
teristi
 polynomial as mentioned in the
ontext of ordinary Chern-Simons terms be
ause C(A;F) depends expli
itly on the gauge
onne
tion. There is no problem in generalizing (3.12) to forms of arbitrary degree in A andF by introdu
ing 
onstant tensors of the form CA1:::An;D1:::Dm. Nevertheless, here we fo
us onthe form (3.12), whi
h leads to the gauge invariant generalization of (3.2) in four dimensions.Using (3.1) and (3.10) we 
an 
ompute the exterior derivative of (3.12), whi
h leads todC(A;F) = CAB;DFDFAFB + �12CAB;DfDEF + fDAECDB;F + fDBECAD;F�AEAFFAFB :Comparing this result with the 
onstraints (3.7) and (3.8) shows that these 
orrespond todemanding that C(A;F) is homogenous9 and 
losed, i.e. dC(A;F) = 0. On the other hand,we 
an de�ne an algebrai
 operator(DC)AB;EF := 12CAB;DfDEF � CDB;[FfDE℄A �CAD;[FfDE℄B ; (3.13)satisfying D2 = 0 be
ause of d2 = 0 (this 
an also be dire
tly proven from (3.13) by usingthe Ja
obi identity on the stru
ture 
onstants). Hen
e, we 
an say that as d2 leads to thede Rham 
ohomology, D2 = 0 leads to Lie algebra 
ohomology of forms C(A;F) satisfyingthe 
onstraints (3.7) and (3.8). For a 
losed form C, i.e. if CAB;D ful�ls the equations9Observe that we 
all C(A;F) a homogeneous form, following [34℄, if dC(A;F) is homogeneous in A andF separately. The 
onstraint (3.7) is satis�ed by homogeneous forms. Homogeneity enables one to de�nealgebrai
 operators a
ting on the 
oeÆ
ients CAB;D of homogeneous forms.17



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMS(3.7) and (3.8), the equivalen
e 
lasses of all C 0 in the 
ohomology are, for some four-formZ = ZABFAFB , given by C 0 = C + dZ. So if the 
ohomology 
lass is trivial, then we haveC = dZ and C is d-exa
t.10 We will see later when this is the 
ase.At this point it is suitable to dis
uss the transformation properties of the s
alars thatappear in the gauge kineti
 fun
tion fAB. We assume that the s
alar �elds zi transformunder gauge transformation as Æzi = �AkiA(z) ; (3.14)where the ve
tor �elds11 kA = kiA�i de�ne a (possibly nonlinear) realization of the gaugegroup and satisfy kjA�jkiB � kjB�jkiA = fABCkiC : (3.15)As transformations of the s
alars in general indu
e transformations of the gauge kineti
fun
tion, let us assume that (3.14) indu
es the transformation (3.6), i.e.,Æ(Im fAB) := kjD�j(Im fAB)�D= 2fD(AE� Im fB)E��D + CAB;D�D : (3.16)Then, in order to make use of the form C(A;F) as de�ned in (3.12), let us 
onsider thefollowing Lie algebra-valued formkjD�j(Im fAB)ADFAFB : (3.17)With the help of the Bian
hi identity (3.10) and the variation of the gauge kineti
 fun
tion(3.16), this 
an be written askjD�j(Im fAB)ADFAFB = � Im fABd(FAFB) + CAB;DADFAFB : (3.18)Due to the 
hain-rule, we furthermore haved(Im fAB)(z)FAFB = �j(Im fAB)dzjFAFB ; (3.19)10Note that from dZ we 
an de�ne the a
tion of an algebrai
 operator on ZAB in total analogy with equation(3.13) for CAB;D, su
h that CAB;D = (DZ)AB;D . The algebrai
 operator (DZ)AB;D is de�ned as in equation(A.5), whi
h for the 
ase at hand reads (DZ)AB;D = 2fD(AEZB)E .11These ve
tor �elds are not spa
etime ve
tor �elds, but are ve
tors on the s
alar manifold.18



3.1 Generalized Chern-Simons formsfrom whi
h we subtra
t (3.18) to �nally obtain�j(Im fAB)(dzj � kjDAD)FAFB = d �(Im fAB)FAFB�� CAB;DADFAFB : (3.20)Let us have a 
loser look at this result and �nd out about its impli
ations.Firstly, the left hand side of (3.20) is gauge invariant be
ause dzj � kjDAD is the gauge
ovariant derivative for the s
alar �elds zi, and from (3.16) we see that �j(Im fAB) transforms
ovariantly as CAB;D is a 
onstant. Consequently, the left hand side of (3.20) represents aninvariant Lagrangian in 5 dimensions.Se
ondly, let us 
onsider the right hand side of (3.20). We 
an see that any shift of CAB;Dby an exa
t (in the Lie algebra 
ohomology) pie
e (DZ)AB;D = 2fD(AEZB)E leads to a shiftof the �ve form C(A;F) by an exa
t form dZ, as was explained in footnote 10. A

ordingto (3.20), this exa
t form dZ 
an then be absorbed by a shift Im fAB ! Im fAB + ZAB , asis also suggested by (3.16). Therefore, we 
an say that any exa
t 
ontributions of C 
an beabsorbed by a rede�nition of the gauge kineti
 fun
tion by a 
onstant imaginary shift.Now, that we have an invariant a
tion in �ve dimensions, we want to pave the way toobtain invarian
e in four dimensions. If we demand that CAB;D satis�es the 
onstraints(3.7) and (3.8), we know that C(A;F) is 
losed. It then follows from Poin
ar�e's lemma thatlo
ally there exists a form !, su
h that C = d!. In order to �nd an expli
it expression for!, we single out one 
oordinate t and require AD(t) = tAD with AD depending only on theremaining 
oordinates. After introdu
ing dt = d+ �tdt and de�ningHA(t) := tdA� 12 t2fBCAABAC ; (3.21)we 
an verify the following formulaeFC(t) = HC(t) + dtAC ; (3.22)FA(t)FB(t) = HA(t)HB(t) + 2dtA(BHA)(t) : (3.23)As by assumption C(A;F) is a 
losed form, the parti
ular t-dependent form C(A(t);F(t)),
onstru
ted from the de�nitions made above, is 
losed, too �the reason is that the 
onstantsCAB;D satisfy the 
onstraints (3.7) and (3.8)�. Then it is not diÆ
ult to prove that0 = dtC(A(t);F(t)) = dt�tC(A(t);F(t)) + dC(A(t);F(t))= dt�tC(A(t);F(t)) + dC(A(t);H(t)) + 2t dt d(CAB;CACABHA) : (3.24)19



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSThe se
ond term in the last line vanishes, whi
h one sees very easily on
e the term is writtenin its 
omponent formdC(A(t);H(t)) = d[CAB;DAD(t)HA(t)HB(t)℄ : (3.25)If we now absorb the fa
tor t by res
aling, At! A, then it follows from the de�nition (3.21),that H(t) ! F , and (3.25) be
omes dC(A;F) whi
h vanishes be
ause C(A;F) is 
losed.Finally, integrating (3.24) over t leaves us withC(A;F) = d ��2CAB;D Z 10 dt tADABHA(t)� : (3.26)Inserting (3.21), the integral 
an be 
omputed, and we �nd! = �23CBC;DADAB(dAC � 38fEFCAEAF ) : (3.27)From the arguments below (3.20) we know that d[Im fABFAFB ℄�C(A;F) is a gauge invariantexpression in �ve dimensions and, 
onsequently, � Im fABFAFB � !� represents a gaugeinvariant Lagrangian in four dimensions. Con
retely, the gauge invariant extension of thePe

ei-Quinn Lagrangian readsLPQ + LGCS = i Im fABFAFB + 2i3 CBC;DADAB(dAC � 38fEFCAEAF ) ; (3.28)where the se
ond term is the so 
alled generalized Chern-Simons term.These 
onsiderations are quite general and allow the extension of the transformation lawfor the gauge kineti
 fun
tion by a 
onstant imaginary shift iCAB;D when at the same timethe Pe

ei-Quinn term is a

ompanied by the generalized Chern-Simons term. The pro
edureis not limited to four dimensions and 
an be easily generalized to arbitrary even dimensions.The generalized Pe

ei-Quinn term then be
omes the 2n form fA1A2:::An FA1FA2 :::FAn andstarting from the (2n+ 1) form C(A;F) = CA1:::An;DADFA1 : : :FAn the same pro
edure asoutlined above determines the 
orresponding generalized Chern-Simons form to be! = �Z 10 dt n tCA1A2:::An;D ADAA1HA2(t) : : : HAn(t) : (3.29)The Abelian 
ase is simply obtained by setting all stru
ture 
onstants to zero, and thegeneralized Chern-Simons term for an Abelian gauge theory is given byLGCS = 2i3 CBC;DADABdAC : (3.30)20



3.2 Generalized Chern-Simons terms and semisimple groups3.2 Generalized Chern-Simons terms and semisimple groupsAs we presented in the previous subse
tion, when CAB;D is D-exa
t it 
an be absorbed byrede�ning the gauge kineti
 fun
tion and, as a 
onsequen
e, the new Pe

ei-Quinn termbe
omes gauge invariant. Now, we will show this is the 
ase for semisimple algebras, whi
hmeans that the main appli
ation of generalized Chern-Simons terms is for non-semisimplegauge algebras.We start with the result that ifCAB;C = 2fC(ADZB)D ; (3.31)for a 
onstant real symmetri
 matrix ZAB , the Chern-Simons term 
an be reabsorbed intothe Pe

ei-Quinn term using f 0AB = fAB + iZAB : (3.32)In fa
t, one easily 
he
ks that with the substitution (3.31) in the transformation law of thegauge kineti
 fun
tion (3.6), the C-terms are absorbed by the rede�nition (3.32). Equation(3.31) 
an be written asCAB;C = TC;ABDEZDE ; TC;ABDE � 2fC(A(DÆE)B) : (3.33)In the 
ase that the algebra is semisimple, one 
an always 
onstru
t a ZAB su
h that thisequation is valid for any CAB;C :ZAB = C2(T )�1ABCDTE;CDGHgEFCGH;F ; (3.34)where gAB and C2(T )�1 are the inverses of the Cartan-Killing metri
gAB = fACDfBDC ; (3.35)and, respe
tively, the Casimir operator de�ned byC2(T )CDEF := gABTA;CDGHTB;GHEF : (3.36)These inverses exist for semisimple groups. To show that (3.34) leads to (3.33) one needs the
onstraint (3.8), whi
h 
an be brought to the following formgHDTH � �12CCfDEC + T[D � CE℄� = 0 : (3.37)21



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSWe have dropped doublet symmetri
 indi
es here, using the notation � for 
ontra
tions ofsu
h double indi
es. Furthermore, this impliesgABTE � TB � CA = C2(T ) � CE ; (3.38)with whi
h the mentioned 
on
lusions 
an easily be obtained.This result 
an be also obtained from a 
ohomologi
al analysis and we refer the interestedreader to appendix A.1.3.3 Appli
ation: Abelian�semisimpleThe simplest nontrivial appli
ation are gauge groups of the form Abelian�semisimple forwhi
h one obtains an interesting result. Abelian generalized Chern-Simons terms are nottrivial, but as we 
ould show, the purely semisimple terms are. However, the dire
t produ
tof an Abelian gauge group with a semisimple gauge group is not trivial again, espe
ially it hasa nontrivial mixed se
tor, whi
h is going to be investigated in greater detail in the following.To re
e
t the produ
t stru
ture, we split the adjoint indi
es A;B; ::: into indi
es a; b; 
; ::: forthe Abelian part and adjoint indi
es x; y; z; w; ::: for the semisimple part. Due to the groupstru
ture, only the stru
ture 
onstants of the type fxyz are nonzero. As before, we de�ne ahomogeneous �ve-form C(A;F), whi
h is given byC(A;F) = 2C(xb);aAaFxF b + Cxy;aAaFxFy + 2C(ax);yAyF aFx ; (3.39)with 
onstants Cxb;a, Cbx;a, Cxy;a, Cax;y and Cya;x. The 
losure relations 
an be dire
tlyobtained from (3.8) by simply inserting Abelian and semisimple indi
es12 and we are led tofvxuCvb;a = 0 (3.40)fvxyCbv;a = 0 (3.41)fu(yvCx)v;a = 0 (3.42)fuyvCax;v + fxyvCav;u � fxuvCav;y = 0 (3.43)fuyvCxa;v + fxyvCva;u � fxuvCva;y = 0 : (3.44)These relations already lead to various interesting results. By de�nition, a semisimple Liealgebra has no Abelian ideals. This implies, in parti
ular, that there 
annot be any non-trivial12In appendix A.2 we apply the developed formalism and demonstrate that it leads to the same result.22



3.4 Nonhomogeneous forms and anomaliesnull eigenve
tor of the stru
ture 
onstants, so that (3.40) and (3.41) implyCxb;a � 0 ; (3.45)Cbx;a � 0 : (3.46)Equation (3.42) means that Cxy;a is for ea
h a, a symmetri
 invariant tensor in the adjointrepresentation of the semisimple part of the gauge group. Cxy;a therefore has to be pro-portional to the Cartan-Killing metri
 gxy of the semisimple Lie algebra. Thus, we haveCxy;a = Bagxy where the Ba's are arbitrary but 
onstant. The only nontrivial part of (3.39)is C(A;F) = 2C(xy);aAaFxFy + (Cya;x + Cay;x)AxF aFy : (3.47)What we have done is to simply apply the formalism developed earlier in this se
tion to themixed part of a gauge group with the stru
ture Abelian�semisimple. The purely Abelianpart is not trivial and leads to the Chern-Simons term (3.30). After the 
ohomologi
alanalysis we found that the only nontrivial generalized Chern-Simons terms in the mixedse
tor of Abelian�semisimple are determined by the �ve form (3.47) and, 
onsequently, thegeneralized Chern-Simons terms of the mixed se
tor readLGCS = 4i3 C(xy);aAaAx(dAy � 38frsyArAs) + 2i3 Cya;xAxAydAa ++2i3 Cay;xAxAa(dAy � 38frsyArAs) : (3.48)be
ause all the other 
omponents of the 
onstant tensor C vanish due to 
ohomologi
alreasons. Observe, that if we do not allow for o�-diagonal elements of the gauge kineti
fun
tion, i.e. fax = fxa = 0, then the generalized Chern-Simons term in the mixed se
tor isgiven by LGCS = 4i3 C(xy);aAaAx(dAy � 38frsyArAs) : (3.49)The purely semisimple part of C 
an be absorbed into the gauge kineti
 fun
tion by rede�-nition. This mat
hes the situation en
ountered in [12℄ without anomalies.3.4 Nonhomogeneous forms and anomaliesIn terms of Lie algebra 
ohomology, the 
onstraints on C(A;F), the equations (3.7) and (3.8),have a 
lear meaning. The �rst equation 
onstrains C(A;F) to be a homogeneous form whi
h23



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSis 
losed under the algebrai
 operator D de�ned in (3.13) if it satis�es the 
onstraint (3.8).However, is the formalism still valid for nonhomogeneous forms or, in other words, 
an the
onstraint (3.7) be relaxed?In order to understand this, let C(A;F) be nonhomogeneous, i.e. C(AB;D) 6= 0. Conse-quently, C(A;F) 
annot be 
losed either, but is insteaddC(A;F) = C(AB;D)FDFAFB : (3.50)Clearly, the 
omputation that led to the generalized Chern-Simons term (3.27) 
annot bevalid anymore. More pre
isely, instead of (3.24) one now hasC(AB;D)FD(t)FA(t)FB(t) = dt�tC(A(t);F(t)) + dC(A(t);H(t)) ++2t dt d�CAB;DADABHA� : (3.51)By using (3.22) one 
an prove easily that the left hand side de
omposes a

ording toC(AB;D)FD(t)FA(t)FB(t) = C(AB;D)HD(t)HA(t)HB(t) ++3dtC(AB;D)AD(t)HA(t)HB(t) : (3.52)Of 
ourse the se
ond term on the right hand side of (3.51) no longer vanishes either but 
ausesthe 
ontribution C(AB;D)HD(t)HA(t)HB(t) that 
an
els the 
orresponding term in equation(3.52). Therefore, (3.26) re
eives an extra 
ontribution and is repla
ed byC(A;F) = 3C(D;AB) Z 10 dtAD(t)HA(t)HB(t)��2CAB;Dd �Z 10 dtAD(t)AB(t)HA(t)� : (3.53)We see, that the nonvanishing totally symmetri
 part of CAB;D introdu
es the �ve-dimensional form Q5(A;F) = 3C(D;AB) Z 10 dtAD(t)HA(t)HB(t) (3.54)This form is nothing else but the �ve-dimensional Chern-Simons term 
orresponding to theinvariant polynomial P6(F) = C(D;AB)FDFAFB . As the nonhomogeneous form C(A;F) isno longer 
losed, there does not exist a form !, su
h that C = d! or, equivalently, the Chern-Simons form Q5 is not representable by a 
oboundary, i.e. there is no !0 su
h that Q5 = d!0.24



3.4 Nonhomogeneous forms and anomaliesConsequently, the �ve-dimensional form d(Im fABFAFB) � C(A;F) 
annot be representedby the 
oboundary (3.28) of homogeneous forms. Furthermore, it is no longer gauge invariantbe
ause Q5 is not gauge invariant. However, this is only a problem in theories that are freeof quantum anomalies. The solution is given by the des
ent equations [59{62℄. By means ofthis set of equations, Stora and Zumino 
ould relate the Chern-Simons forms Q2n�1 to the
onsistent anomaly A2n�2(�; A) in 2n� 2 dimensions. The des
ent equation relevant for our
ase is Æ�Q5(A;F) = dA(�; A) ; (3.55)representing the gauge variation of the Chern-Simons form as the 
oboundary of the four-dimensional 
onsistent anomaly. Applying a gauge variation to d(Im fABFAFB)� C(A;F),we haved �Æ�(fABFAFB)�� d �2CAB;DÆ��Z 10 dtAD(t)AB(t)HA(t)��+ d [A(�; A)℄ ; (3.56)whi
h is equal to zero be
ause of (3.20) as the steps leading to (3.20) are quite general and donot depend on C(A;F) being homogeneous or not. The tensor CAB;D in (3.6), however, is nolonger restri
ted to its mixed symmetri
 part alone but now also 
ontains a totally symmetri
part. Therefore, it 
an be de
omposed into its totally symmetri
 part C(s)AB;D and a part ofmixed symmetry C(m)AB;D, i.e. CAB;D = C(s)AB;D +C(m)AB;D : (3.57)The generalized Chern-Simons term is still only proportional to the mixed symmetri
 part.The totally symmetri
 part is to be exa
tly 
an
elled by the anomaly as (3.56) shows. Notethat (3.54) 
an only be 
onsistent with (3.55) if the totally symmetri
 part of CAB;D, C(s)AB;D =C(AB;D) is related to the quantum anomaly (we will dis
uss this in greater detail in se
tion5.2).We see that the 
onstraint (3.7) 
an be relaxed to allow for nonhomogeneous formsC(A;F). As a 
onsequen
e, the four-dimensional a
tion (3.28) is no longer gauge invariantbe
ause the generalized Chern-Simons term is still only proportional to the mixed symmetri
part of the tensor CAB;D. The left over variation proportional to C(AB;D) may be 
an
elledby the anomaly if a suitable fermion spe
trum exists. Hen
e, nonhomogeneous forms C(A;F)25



3 LIE ALGEBRA COHOMOLOGY AND GENERALIZED CHERN-SIMONS TERMSare the appropriate forms ne
essary in appli
ations to anomalous theories in order to absorbthe anomaly. The 
ohomologi
al reason is that the nonhomogeneous forms introdu
e the�ve-dimensional Chern-Simons form Q5 into the 
ohomologi
al dis
ussion, whi
h in turn isrelated to the anomaly in four dimensions by the Stora-Zumino des
ent equation (3.55). Con-sequently, the gauge variation of (3.28) does no longer vanish, but is given by the negative ofthe gauge anomaly, i.e. Æ��LPQ + LGCS� = �A(�; A) : (3.58)This result goes beyond the work of [34℄ and allows for nonhomogeneous forms.At the end of this se
tion, let us dis
uss again the example of a gauge group with thestru
ture Abelian�semisimple. We set all o�-diagonal elements of the gauge kineti
 fun
tionto zero, i.e. fax = 0. The 
onstraints (3.40) to (3.44) do not 
hange for nonhomogeneousforms (although they do not imply 
losure anymore), but are now valid for the full 
oeÆ
ientCAB;D = C(s)AB;D+C(m)AB;D. Nevertheless, the impli
ations drawn from (3.40) to (3.44) are stillvalid and, 
onsequently, the only nontrivial part of a �ve-dimensional nonhomogeneous formC(A;F) is determined by Cxy;a, i.e. Cxy;a 6= 0. De
omposing Cxy;a, we obtainC(s)xy;a = C(s)ax;y = 13Cxy;a ; (3.59)C(m)xy;a = 23Cxy;a ; (3.60)C(m)ax;y = �13Cxy;a : (3.61)Thus, we see that the generalized Chern-Simons term in the mixed se
tor is still given by(3.49). However, there are new 
ontributions due to the totally symmetri
 tensors C(s)xy;aand C(s)ax;y whi
h 
ause nontrivial gauge variations of LPQ + LGCS. Can
ellation of theseremaining 
ontributions 
an only be a
hieved with the help of mixed gauge anomalies, butwe will dis
uss this example in more detail in se
tion 5.4, where we will expli
itly 
larifythe relation of the symmetri
 
oeÆ
ients C(s) to the quantum anomaly and show how mixedquantum anomalies 
an
el the remaining gauge variations.
26



4 N = 1 SupersymmetryIn the early 1960s, Gell-Mann and Ne'eman, proposed a way to arrange the known hadronsinto a uni�ed framework and, in this way, brought some order into a whole zoo of parti
lesthat had been found until then [63℄. The su

ess of their model is based on a global SU(3)symmetry whi
h puts parti
les of the same spin into SU(3)-multiplets. This model 
auseda lot of enthusiasm, and e�orts were made to unite parti
les of di�erent spin as well. In thenon-relativisti
 regime this 
ould be a
hieved by an SU(6) model, whi
h made predi
tionsthat were quite well approximated by experimental data [64{66℄. Unfortunately, furtherattempts to 
onstru
t the relativisti
 versions of su
h models, in whi
h the internal symmetrygroup is nontrivially entangled with the Poin
ar�e group to form a so-
alled Master group,failed. All these e�orts to 
reate a Master group did not su

eed be
ause the Master groupsalways had nonphysi
al properties su
h as an in�nite number of parti
les in ea
h irredu
iblerepresentation or 
ontinuous mass spe
tra. After Coleman and Mandula proved a no-gotheorem, that stated that every nontrivial union of the Poin
ar�e group with an internalsymmetry group within the framework of ordinary Lie algebras would yield an essentiallytrivial S-matrix [67℄, all these e�orts seemed to be leading nowhere.In 1971, a new symmetry was found from the Neveu-S
hwarz-Ramond superstring [68{72℄that Wess and Zumino extended to quantum �eld theories in four dimensions [73℄.13 As anovel feature, some of the generators of the symmetry algebra satisfy anti
ommuting rela-tions instead of 
ommutation relations. This, however, evaded the Coleman-Mandula theo-rem be
ause the assumptions made in its proof 
onsidered only symmetry generators with
ommutation relations. This new symmetry, 
alled supersymmetry, does not only represent amathemati
al oddity, but provided the grounds for nontrivially entangling the Poin
ar�e groupwith internal symmetry groups. To date, there is no dire
t experimental hint for supersym-metry being realized in nature but it has many properties that justify further investigation.It is for example the only known symmetry, that 
an prote
t fundamental s
alars, su
h asthe Higgs �eld, from obtaining huge radiative 
orre
tions up to very high energy s
ales (this13Unknown to Wess and Zumino at that time, this symmetry had already appeared in a pair of paperspublished in the Soviet Union. In 1971, Gol'fand and Likhtman had extended the algebra of the Poin
ar�egroup to a superalgebra and had even 
onstru
ted supersymmetri
 �eld theories in four dimensions [74℄. Thepaper displayed few details and was generally ignored until mu
h later.27



4 N = 1 SUPERSYMMETRYis the so-
alled \hierar
hy problem") where more fundamental theories like grand unifyingtheories or superstring theory 
ould supersede the standard model.Another feature of supersymmetry is the improved renormalization evolution of the threegauge 
oupling 
onstants of the standard model. These 
oupling 
onstants do not exa
tlymeet at a 
ommon energy s
ale if we use the renormalization group equations obtained fromthe standard model. With the addition of supersymmetry, gauge 
oupling uni�
ation 
an bea
hieved in 
onsisten
y with phenomenologi
al 
onstraints.There is extensive observational eviden
e for an additional 
omponent of the matter den-sity in the universe that goes under the name dark matter. Dark matter parti
les mustbe ele
tri
ally neutral, otherwise they would s
atter light and, thus, be dire
tly observable.The lightest of the additional hypotheti
al parti
les found in supersymmetri
 models (
alled\lightest supersymmetri
 parti
le") is a possible 
andidate for dark matter.In se
tion 4.1 we introdu
e global N = 1 supersymmetry and dis
uss brie
y supersymme-try in the gauge se
tor. We will see that a nontrivial gauge kineti
 fun
tion indu
es severalnew intera
tions in the gauge se
tor. For future referen
e we quote the supersymmetri
 gaugese
tor and the ne
essary supersymmetry transformations.In se
tion 4.2 we brie
y motivate N = 1 supergravity and we present the gauge se
tor ofN = 1 supergravity together with the supergravity transformations.4.1 Global SupersymmetrySupersymmetry is a symmetry relating bosons and fermions and, therefore, we 
an make anansatz for in�nitesimal supersymmetry transformations with parameter " to behave roughlyas Æf = "b ; (4.1)Æb = �"f : (4.2)These transformation laws are only s
hemati
 and bosons are represented by b, while f standsfor fermions. Although, equations (4.1) and (4.2) are of a rather symboli
 nature, we 
analready draw several important 
on
lusions from them. The �rst is, that the transformationparameter " is anti
ommuting, instead of 
ommuting as in usual symmetry transformations,28



4.1 Global Supersymmetrybe
ause the left hand side of (4.1), and therefore also the right hand side, has to be fermioni
,i.e. anti
ommuting. The parameter " 
arries spin 12 in supersymmetry [75℄.In natural units (~ = 
 = 1) the a
tion be
omes dimensionless and the dimension ofmass and length are inverse to one another. The derivative operator has then positive massdimension (inverse length), i.e. [��℄ = 1. From the Dira
 a
tion for the fermion and the Klein-Gordon a
tion for the s
alar we therefore obtain the 
anoni
al mass dimension for fermioni
and bosoni
 �elds in four spa
etime dimensions: [f ℄ = 32 and [b℄ = 1. The transformationlaw for bosons (4.2) would then lead us to ["℄ = �12 , whi
h would be in
onsistent with (4.1).The simplest way to obtain an algebra linear in the elementary �elds without introdu
ingnew dimensionful parameters is to assumeÆf = 
�"��b ; (4.3)whi
h together with (4.2) is 
onsistent with ["℄ = �12 . Thus, already for dimensional reasons,transformation laws for a symmetry relating fermions and bosons must have the form (4.1)and (4.3), and the derivative in (4.3) 
an be understood as the mismat
h in derivativesbetween the Dira
 and the Klein-Gordon equation. The last impli
ation of this 
on
erns the
ommutator of two transformations, whi
h we 
an expe
t to have the form[Æ("1); Æ("2)℄b / (�"2
�"1)��b (4.4)for bosons and equivalently for fermions. The 
ommutator of two supersymmetry transforma-tions 
auses a translation in spa
etime and this result is found in any globally supersymmetri
model.Now let us 
onstru
t a globally supersymmetri
 model with gauge �elds, as this plays animportant role in se
tion 5. The Abelian 
ase is 
onvenient to begin with, and it leads toresults that are straightforwardly generalized to the nonabelian 
ase.Supersymmetry relates fermions and bosons, and, 
onsequently, the gauge �elds 
ometogether with fermioni
 partners, so-
alled gaugini14. A �rst ansatz for a supersymmetri
gauge kineti
 a
tion is Lgk = �14F��F �� � 12 ��
���� (4.5)14The gaugini are parti
les of spin 12 . 29



4 N = 1 SUPERSYMMETRYwhere we in
orporated the gaugino, �, by means of a kineti
 term. Notations and 
onventionsare summarized in appendix B. The �rst term represents the usual Maxwell Lagrangian. Letus de�ne the transformation laws of the �elds in a

ordan
e with (4.1) and (4.3) byÆ� = ���"��A� = 12���"F�� (4.6)Æ�� = �12 �"���F�� (4.7)ÆA� = �12 �"
�� : (4.8)Here, ��� := 14 [
�; 
� ℄ are the generators of SO(1,3) in the spinor representation. Thetransformation behaviour of the �eld strength 
an be read o� from (4.24) to beÆF�� = �"
[���℄� : (4.9)Using this, the variation of the Maxwell term in (4.5) is then easily written downÆ(�14F��F ��) = �12F �� �"
���� : (4.10)The variation of the se
ond term of (4.5) is a little bit more involved, and relations su
h as(B.4) and (B.5) are 
onvenient for the relevant 
omputations. The variation of the se
ondterm of (4.5) is found to beÆ(�12 ��
����) = 12F �� �"
����� i8"����F�� �"
5
���� : (4.11)Altogether, the variation of (4.5) givesÆLgk = � i8"����F�� �"
5
���� : (4.12)Observe, that (4.12) a
tually vanishes, be
ause after a partial integration the variation be-
omes proportional to "������F�� whi
h is identi
ally zero due to the Bian
hi-identity. Thus,we have proven that (4.5) is invariant under the transformations (4.6) and (4.8). We are not�nished yet be
ause 
ounting the degrees of freedom, we �nd for the fermion 4 degrees offreedom, while the ve
tor �eld only provides 3 degrees of freedom o�-shell. On-shell, however,the number of degrees of freedom for the gaugino is 2, just as for the ve
tor �eld. So on-shellthe degrees of freedom are equal for fermions and bosons. To balan
e the degrees of freedom,we introdu
e another real s
alar �eld D15 that has algebrai
 equations of motion and, thus,15The auxiliary �eld D is also needed for the supersymmetry algebra to 
lose o�-shell.30



4.1 Global Supersymmetry
an be eliminated on-shell. The additional term in the Lagrangian 
ontaining the auxiliary�eld is 12D2. This auxiliary �eld has to transform into the gaugino, and the transformationlaw for the fermion has to be extended by a term 
ontaining D. Note, that D is a real �eld.The Lagrangian16 Lgk = �14F��F �� � 12 ��
����+ 12D2 (4.13)is indeed invariant under the variationsÆ� = 12���"F�� + i2
5"D (4.14)ÆD = i2 �"
5
���� (4.15)and (4.8) be
ause the extra variation of the Dira
 a
tion proportional to D pre
isely 
an
elsagainst the variation of the auxiliary Lagrangian.The a
tion (4.5) 
an be generalized by means of a gauge kineti
 fun
tion f(z). Thegauge kineti
 fun
tion depends on a set of s
alar �elds and if then again supersymmetry isdemanded, the superpartners of these s
alars must be taken into a

ount, too. So let therebe s
alar �elds zi and their 
orresponding superpartners �i. In 
omplete analogy, one �ndsthat the Lagrangian Lmatter = Xi ���zi��zi + 2��iL
����i � F iF i� (4.16)whi
h 
onsists of 
omplex s
alar �elds zi and their 
orresponding fermioni
 superpartners �i.The matter Lagrangian is invariant under the following supersymmetry transformationsÆzi = �"L�iL ; (4.17)Æ�iL = 12
�"R��zi + 12F i"L : (4.18)ÆF i = �"R
����iL : (4.19)We used the 
hiral proje
tions �iL = 12(1 + 
5)�i and "R = 12(1 � 
5)". The supermultiplet
ontaining this s
alar and this fermion is a

ompanied by a 
omplex auxiliary �eld, F i, that16The Lagrangian (4.13) 
an be obtained by superspa
e methods, too. Superspa
e is introdu
ed in appendixC. 31



4 N = 1 SUPERSYMMETRYbalan
es the o�-shell degrees of freedom. It is important to note that, a

ording to (4.17)and the 
hain rule, the gauge kineti
 fun
tion will transform under supersymmetry, i.e.,Æf(z) = �if(z)�"�i : (4.20)Observe that the gauge kineti
 fun
tion is impli
itly spa
etime dependent through its depen-den
e on s
alar �elds. At several steps that led to (4.11) we used a partial integration, whi
hin presen
e of a nontrivial gauge kineti
 fun
tion will produ
e new terms in (4.12) propor-tional to ��f(z) = �if(z)��zi where �i = �=�zi. Observe that espe
ially the term (4.12) willnot vanish anymore, but will 
ontribute with i8"������Re f(z)�"
5
��F�� to the supersym-metry variation. In addition to these 
ontributions, one has to take Æ[Re f(z)℄F��F �� intoa

ount, whi
h has to be 
an
elled, too. Adding 
ounterterms that 
an
el these variationsand taking the variations of the 
ounterterms into a

ount, one is led indu
tively to an in-variant Lagrangian after a �nite number of steps.17 The 
omputation is standard and willnot be repeated here but instead let us give the �nal result as given in, e.g., [76, 77℄. Thesupersymmetri
 Lagrangian 
ontaining nV ve
tormultiplets (FA; �A;DA), A = 1 : : : nV , anda nontrivial gauge kineti
 fun
tion fAB is given byLgk = �14 Re f(z)ABFA��F�� B � 12 Re f(z)AB��A
�D��B + 12 Re f(z)ABDADB ++18 Im f(z)AB"����FA��FB�� + i4(D� Im f(z)AB)��A
5
��B ++� i2�if(z)AB ��iL�ALDB � 12�if(z)ABFA�� ��iL����BL�14F i�if(z)AB��AL�BL + 14 ��iL�jL�i�jf(z)AB��AL�BL + h.
.� (4.21)where we de�ned the 
ovariant derivativesD� Im fAB = �� Im fAB � 2AC� fC(ADfB)D ; (4.22)D��A = ���A �AB� �CfBCA : (4.23)The Lagrangian (4.21) is invariant under the supersymmetry transformations of the gauge17Note that the super�eld formalism as introdu
ed in the appendix C leads also to the result that will bepresented in equation (4.21). 32



4.2 The gauge se
tor of N = 1 supergravityse
tor ÆAC� = �12 �"
��C : (4.24)Æ�C = 12���"FC�� + i2
5"DC (4.25)ÆDC = i2 �"
5
���� (4.26)and (4.17), (4.18), (4.19) of the matter se
tor. Observe, that 
hiral proje
tions appear in theinvariant Lagrangian, where �L = 12 (1 + 
5)� and �R = 12 (1� 
5)�.Observe that a nontrivial gauge kineti
 fun
tion introdu
es a CP-violating 
oupling18 Im f(z)AB"����FA��FB�� whi
h is exa
tly of the form as the Pe

ei-Quinn term dis
ussedin the previous se
tion.Note that the nonabelian �eld strength F appears in equation (4.21). In order that theLagrangian be invariant under gauge and supersymmetry, the gauge kineti
 fun
tion musttransform in the symmetri
 produ
t of two adjoint representations. It is one of the maintopi
s of this thesis to generalize the transformation property of the gauge kineti
 fun
tionand to dis
uss the 
ompatibility with N = 1 supersymmetry.The dis
ussion of se
tion 3 showed, that a generalization of the gauge transformation off needs new terms in the bosoni
 part of the e�e
tive a
tion. Before we 
ome to a dis
us-sion of the their 
onsequen
es, let us �rst also brie
y introdu
e the salient features of lo
alsupersymmetry.4.2 The gauge se
tor of N = 1 supergravityWe 
onsidered global N = 1 supersymmetry in the previous subse
tion. The transformationparameter " was a 
onstant spinor. In lo
al supersymmetry, however, the transformationparameter " is no longer a 
onstant spinor but be
omes spa
etime dependent, i.e. " ="(x). Then it follows immediately from (4.4) that also the translations be
ome spa
etimedependent through "(x) and di�er from point to point as general 
oordinate transformations(the 
ommutator of two supersymmetry transformations 
auses translations over distan
esd� / �"2
�"1). Thus, a theory that is symmetri
 under lo
al supersymmetry needs gravityand for that reason is 
alled supergravity. The fermioni
 superpartner of the metri
 is 
alledgravitino,  �, and 
arries spin 32 . It is a ve
torial spinor (or a spinorial ve
tor). In supergravity33



4 N = 1 SUPERSYMMETRYthe transformation law relating the metri
 to its superpartner is given by18Æg�� = � � (�
�)" : (4.27)As gravity is present, the a
tion of supergravity must 
ontain the Einstein-Hilbert a
tionwhi
h represents the kineti
 term of the metri
 while the 
orresponding term for the grav-itino is given by the so 
alled Rarita-S
hwinger a
tion written down in 1941 by Rarita andS
hwinger [78℄. The Rarita-S
hwinger a
tion is quadrati
 in the gravitino and 
ontains onespa
etime derivative.In general, the a
tion of supergravity is a 
ompli
ated Lagrangian that is divided intodi�erent se
tors [76,77℄ su
h as, for instan
e, a se
tor 
ontaining the Einstein-Hilbert a
tionand the Rarita-S
hwinger a
tion together with four-fermion terms that are ne
essary to renderthis pure supergravity se
tor invariant under lo
al supersymmetry. The se
tor of main interestto us is the gauge se
tor with nontrivial gauge kineti
 fun
tion be
ause it is investigatedfurther in se
tion 5.3. This se
tor 
ontains the kineti
 terms of the gauge supermultiplet.The gauge se
tor of N = 1 supergravity is given in [77℄, for example, and here we repeat itfor future referen
e:Lgauge = Re fAB(z)[�e4FA��F �� A � e2 ��A
�D̂��B + 12DADB + e4 � ����
��B (FA�� + F 
ovA�� )℄��e4"���� Im fAB(z)FA��FB�� + ie4(D� Im fAB(z))��A
5
��B ++fe2�ifAB(z)[��i(���� F̂ 
ovA�� + iDA)�BL � 12(F i + � �R
��iL)��AL�BL ℄ ++e4�i�jfAB(z)��i�j��AL�BL + h.
.g : (4.28)18In this subse
tion, as well as in se
tion 5.3, we deal with 
urved spa
e and adopt a di�erent notationin these subse
tions. Greek indi
es �; �; �; : : : will represent 
urved spa
etime indi
es, while Latin indi
esa; b; 
; : : : denote 
at Lorentz-indi
es. Note that in this notation 
� = 
ae�a is spa
etime dependent via thevierbein e�a (see footnote 19 for further information on the vierbein), 
ontrary to 
a whi
h is a 
onstant Dira
matrix. Furthermore, note that the Plan
k mass is set to one.34



4.2 The gauge se
tor of N = 1 supergravityIn this expression, D� = �� �AC� ÆC + 12!�ab�ab (4.29)D̂� = �� �AC� ÆC + 12!�ab( )�ab (4.30)!�ab( ) = !�ab + 12 � �
[a b℄ + 14 � a
� b (4.31)F̂ 
ovA�� = F 
ovA�� � 12"����F 
ov �� A (4.32)F 
ov�� = 2�[�A�℄ + � [�
�℄� ; (4.33)and we have de�ned the determinant of the vierbein19 e := det(ea�) = pjdet(g��)j. Notethat the spin 
onne
tion !�ab( ) 
ontains  -torsion. ÆC denotes in�nitesimal transformationsof the Yang-Mills symmetry. The obje
t denoted by F 
ov is 
alled \super
ovariant �eldstrength" be
ause it transforms under supersymmetry in an expression that does not 
ontainany term proportional to ��". The transformation laws for lo
al supersymmetry on theindependent �elds (transformation laws for the auxiliary �elds are omitted) are given byÆea� = 12 �"
a � (4.34)Æ � = (�� + 12!�ab( )�ab)" (4.35)Æzi = �"L�i (4.36)Æ�i = 12
�(D�zi � � ��)"R + 12Fi"L (4.37)ÆAC� = �12 �"
��C (4.38)Æ�A = 12���F 
ovA�� "+ 12i
5"DA (4.39)The gauge se
tor (4.28) 
ontains besides four-fermion intera
tions an intera
tion of the form �F�� , whi
h is not renormalizable. In 
ontrast to global supersymmetry, where renormaliz-able models exist, in supergravity nonrenormalizable 
ouplings are always present, but these
ouplings are suppressed by powers of the Plan
k mass.19The vierbein de�nes lo
al orthonormal frames in whi
h g�� = �abea�eb� . From (4.27) one �nds Æea� =12 �"
a �. It is not diÆ
ult to prove that Æe = e2 �"
� � be
ause for a matrixM , the variation of the determinantis given by Æ det(M) = det(M)tr(M�1ÆM). If one takes the vierbein as a matrix, then the variation of itsdeterminant Æe is easily found. 35



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRY5 Generalized Chern-Simons terms and 
hiral anomalies inN = 1 SupersymmetryIn the previous se
tion we presented the supersymmetri
 gauge se
tor 
onsisting of the Yang-Mills a
tion together with kineti
 terms for the superpartners and displayed the supersymme-try transformation laws. We saw that with a nontrivial gauge kineti
 fun
tion that dependson a set of s
alars, several new 
ouplings of the gauge �elds and gaugini to these s
alar �eldsand their superpartners arise. Among those new terms in the Lagrangian is a CP-violatingterm of the form (Im fAB)FA ^ FB whi
h is often referred to as \Pe

ei-Quinn term". Ob-viously, the Lagrangian (4.21) is not only invariant under global supersymmetry but alsounder nonabelian gauge transformations, if only the gauge kineti
 fun
tion transforms ap-propriately [76℄. This 
orresponds to the transformation law (3.5) given in se
tion 3. In thatse
tion, however, we also presented a possible extension by means of a 
onstant shift (3.6), un-der whi
h the Pe

ei-Quinn term is no longer invariant,20 and the generalized Chern-Simonsterms had to be added to the Pe

ei-Quinn term in order to restore gauge-invarian
e. A su-per�eld expression 
orresponding to generalized Chern-Simons terms was introdu
ed in [26℄,but the authors restri
ted themselves to the spe
ial 
ase of a linear gauge kineti
 fun
tionand only 
onsidered Abelian gauge �elds and global supersymmetry.21 As we will see, thesuper�eld formalism is only appli
able for shift tensors CAB;C that are mixed symmetri
 inits indi
es while the dis
ussion of se
tion 3.4 proved that it is the symmetri
 part of CAB;Cthat 
an possibly 
an
el anomalies. A �rst 
omplete dis
ussion of generalized Chern-Simonsterms and 
hiral anomalies in N = 1 supersymmetry and supergravity was done in [88℄ (thesupersymmetrization of se
tion 3) and will be dis
ussed in this se
tion. This is a new resultand it is one of the major topi
s of this thesis.In subse
tion 5.1 we will 
onsider anomaly-free theories and we will allow for gaugedisometries on the s
alar manifold in global supersymmetry. It will be shown, that the presen
eof the gauged isometries violates the supersymmetry transformation laws as displayed inse
tion 4. The supersymmetry transformation laws will be 
ovariantized with respe
t to20The possible extension (3.6) was already mentioned for N = 2 supergravity in [32℄ and later in [77℄ forN = 1 supersymmetry, but the extra terms ne
essary for its 
onsisten
y were not 
onsidered.21A super�eld expression for the nonabelian generalized Chern-Simons term in Wess-Zumino gauge is givenin the end of [26℄. 36



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetrythe gauged isometries, whi
h is done a

ording to [84℄. As the Pe

ei-Quinn term has tobe a

ompanied by the generalized Chern-Simons term, we will add an N = 1 super�eldexpression of the generalized Chern-Simons term to the gauge se
tor ofN = 1 supersymmetry.The proof that this new a
tion is indeed invariant under supersymmetry (where some of thesupersymmetry transformations are 
ovariantized with respe
t to the gauged isometries) isdone in 
omputing the variations that appear due to the modi�
ations in the transformationlaws and in showing that these 
ontributions 
an
el.In subse
tion 5.2 we will allow for a symmetri
 part of the tensor CAB;C and show howthis 
an possibly 
an
el anomalies. To do so, we introdu
e a derivative that is 
ovariantwith respe
t to the gauged isometries and give up the N = 1 super�eld expression of thegeneralized Chern-Simons term.In subse
tion 5.3 we show how the results found forN = 1 supersymmetry 
an be extendedto N = 1 supergravity.In subse
tion 5.4 we will illustrate the results found in this se
tion by means of theexample of a gauge group of the form Abelian�semisimple. This 
ompletes earlier dis
ussionsof se
tion 3Finally, the results of this se
tion are summarized in subse
tion 5.5.5.1 Gauged isometries and generalized Chern-Simons terms in global su-persymmetryFor simpli
ity, let us 
onsider a U(1)n gauge theory, where the gauge �elds are labelled byindi
es A; B; : : : = 1; : : : ; n. Furthermore, let us assume that the s
alar �elds zi transformnontrivially under the gauge symmetry asÆ�zi = kiC(z)�C ; (5.1)where kiC(z) are the Killing-ve
tors of the isometry on the target spa
e of the s
alar �elds.A dire
t 
onsequen
e is that the gauge kineti
 fun
tion will in general no longer transformtrivially. Instead, by applying the 
hain rule, one obtainsÆ�fAB(z) = �ifABkiC�C : (5.2)Also the �elds �i transform under the isometry group be
ause they are the superpartnersof the s
alars zi. Let Æ" denote the supersymmetry transformations and let Æ� stand for37



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYtransformations with gauge parameter �. Then, on the one hand, we have from (3.14)Æ�Æ"zi = �"LÆ��iL ; (5.3)while, on the other hand, it isÆ"Æ�zi = �jkiC�CÆ"zj = �"L(�jkiC�C�j)L : (5.4)As supersymmetry transformations and gauge transformations 
ommute [75℄, we �nd from
omparing the above expressions that �i transforms under the isometry asÆ��iL = �jkiC�C�jL : (5.5)If the transformations (5.1) and (5.5) are present, then (4.21) is no longer invariant and newterms have to be introdu
ed in order to restore invarian
e under supersymmetry. We 
ouldalready see in se
tion 3 that on
e the gauge kineti
 fun
tion transforms with a 
onstant shift,new terms must be added in order to restore gauge invarian
e. These terms, the general-ized Chern-Simons terms, were at that point expli
itly 
al
ulated but not in the 
ontext ofsupersymmetry. The experien
e with supersymmetry suggests that the bosoni
 generalizedChern-Simons term will be a

ompanied with a term involving 
ouplings to gaugini. However,from the dis
ussion in se
tion 3 we know that the generalized Chern-Simons term alone 
annotbe gauge invariant (otherwise it 
ould not be used to 
an
el gauge variations) and, therefore,a manifest supersymmetri
 extension of the generalized Chern-Simons term by itself 
annotexist. This is a 
ru
ial point, so let us dis
uss it in more detail: If an a
tion is invariantunder supersymmetry, it should also be gauge invariant. So, for example, the supersymmetrytransformation Æ"�i as given in (4.18) does not 
ommute with the gauge transformation (5.5)anymore22. Starting from (4.18), we �nd for the 
ommutator [Æ"; Æ�℄�iL = 12
�"RkiC���C andin order that the 
ommutator vanishes, the partial derivative in (4.18) has to be repla
ed bya 
ovariant derivative. The a
tion of the generators of supersymmetry on �i in the presen
eof (5.1) is no longer given by (4.18) be
ause the 
ommutation relations of the supersymmetryalgebra are no longer satis�ed. In the presen
e of (5.1) the a
tion of the generator of super-symmetry on �i is obtained from [Æ"; Æ�℄�i = 0 instead. The same is found for the variation22Æ"zi is not altered, i.e., it is the same as in equation (4.17) be
ause [Æ"; Æ�℄zi = 0.38



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetryof the auxiliary �eld Æ"F i and in total the transformation laws 
onsistent with (5.1) and (5.5)are Æ"zi = �"L�iL (5.6)Æ"�iL = 12
�"RD�zi + 12F i"L (5.7)Æ" ��iL = �12 �"R
�D�zi + 12F i�"L (5.8)Æ"F i = �"R
�D��iL + �"R�ARkiA (5.9)where the 
ovariant derivatives are de�ned as followsD�zi = ��zi �AC� kiC ; (5.10)D��i = ���i �AC� �jkiC�j : (5.11)The new supersymmetry transformations (5.6), (5.7) and (5.9) take expli
itly the gaugetransformations into a

ount, as demonstrated by the gauge 
ovariant derivatives and thelast term in (5.9). It originates in the requirement that supersymmetry does not only respe
tthe gauge invarian
e of the auxiliary �eld, but both symmetries still 
ommute with ea
hother23. The Abelian generalized Chern-Simons terms of global N = 1 supersymmetry weregiven in [26℄24 and for future referen
e we quote the resultLN=1GCS = 16CAB;C"����AC�AB� FA�� � i4CAB;CAC� ��A
5
��B (5.12)where CAB;C is a real 
onstant tensor that has to satisfy the 
onstraintC(AB;C) = 0 (5.13)23The whole problemati
 is present in superspa
e formalism, too. There this subtlety arises be
ause after theWess-Zumino gauge is �xed, the original supersymmetry of superspa
e (transformations indu
ed by Q and Qya
ting on the super�elds) is broken and has to be repla
ed by a 
ombination of the superspa
e supersymmetryand the gauge symmetry. The Wess-Zumino gauge is violated by supersymmetry transformations indu
edby Q and Qy and only after applying a gauge transformation one is brought ba
k into Wess-Zumino gaugeagain. This 
an also be understood from the supersymmetry algebra. After the Wess-Zumino gauge is �xed,the anti
ommutation relation fQ�;Qy_�g = ��� _�(�� � AA� ÆA) [84℄ shows mixing between supersymmetry andgauge symmetries (ÆA denotes the gauge transformation). This implies that if an a
tion is invariant undersupersymmetry, it should also be gauge invariant.24The authors restri
ted themselves to linear gauge kineti
 fun
tions.39



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYin agreement with equation (3.7) found in se
tion 3 in the 
ontext of Lie algebra 
ohomol-ogy. The �rst term of (5.12) is the Abelian version of the generalized Chern-Simons termen
ountered in se
tion 3 as equation (3.30), while the other term represents the 
oupling ofthe ve
tor �eld to the pseudove
tor 
urrent of the gaugini. The possible 
oupling AC� ��A
��Bvanishes identi
ally be
ause of C[AB℄;C = 0. Note, that the tensor CAB;C is mixed symmetri
in the sense that its total symmetri
 part vanishes but it is symmetri
 in its �rst two indi
es.Observe further that equation (5.12) is neither gauge invariant nor supersymmetri
.25It remains to show that (4.21) together with (5.12) is invariant under (5.6), (5.7) and(5.9). This is easily done by observing that if we repla
e the 
ovariant derivatives in thesupersymmetry transformation laws (5.6), (5.7) and (5.9) by partial derivatives and removethe last term in Æ"F i then of 
ourse we obtain ba
k the supersymmetry transformationsunder whi
h Lgk, given by (4.21), is invariant. Therefore, we have to 
he
k whether the extraterms that appear in the variation of Lgk 
an
el against Æ"LN=1GCS when the s
alars transformnontrivially under gauged isometries (5.1).There are the following three terms in (4.21) that 
ause new 
ontributions to the variationÆ"Lgk:� The term �14F i�ifAB��AL�BL and its hermitian 
onjugate �14F � i�if�AB��AR�BR 
auses anextra variation of the form�14�ifABkiC �"R�CR��AL�BL � 14�if�ABk� iC �"L�CL ��AR�BR (5.14)due to the last term in (5.9).� Another new variation 
omes from Æ"� in i2�ifAB ��iL�ALDB and its hermitian 
onjugate� i2�if�AB ��iR�ARDB whi
h is+ i4�ifABkiCAC�DB�"R
��AL � i4�if�ABk� iC AC�DB�"L
��AR : (5.15)� The term �12�ifABFA�� ��iL����BL and its hermitian 
onjugate �12�if�ABFA�� ��iR����BR 
on-tribute to Æ"Lgk with�14�ifABkiCA�C �"R
��BLFA�� + i8"����kiC�ifABFA��AC� �"R
5
��BL ��14�if�ABk� iC A�CFA�� �"L
��BR + i8"����k� iC �if�ABFA��AC� �"L
5
��BR : (5.16)25In [26℄ the authors give a superspa
e expression for (5.12) (in Wess-Zumino gauge) but we will see that itis not manifestly supersymmetri
. 40



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetryNow let us 
ompute the variations of the Chern-Simons terms. For the bosoni
 term we haveCAB;CÆ"("����AC�AB� FA��) = +32 � CAB;C"�����"
��BAC� FA�� (5.17)while the variation of the ve
tor potential in the fermioni
 term gives� i4CAB;C(Æ"AC� )��A
5
��B = � i2CAB;C(�"�B)(��A
5�C)= � i4CAB;C �"�B��C
5�A + i4CAB;C �"
5�B��C�A (5.18)whi
h is proven by help of the rearrangement formulae given in appendix B. The re-maining 
ontribution of the fermioni
 part of the generalized Chern-Simons term is 
ausedby the extra variation in the transformation law for the gaugini. We have to 
ompute� i4CAB;CAC� Æ"(��A
5
��B) whi
h is found to be� i4CAB;CA� CFA�� �"
�
5�B + 18"����CAB;CFA��AC� �"
��B + 14CAB;CAC� �"
��BDA : (5.19)If the gauge se
tor together with the generalized Chern-Simons terms (5.12) is invariant undersupersymmetry, then the variations determined above have to 
an
el among themselves. Ob-viously, the variations of the generalized Chern-Simons terms do not 
an
el among themselves�the 
ontribution (5.18) 
an only be 
an
elled by another three gaugini intera
tion whi
h isgiven by (5.14)�. Thus, the generalized Chern-Simons term of global N = 1 supersymmetrygiven in equation (5.12) is not by itself invariant under supersymmetry and the superspa
eexpression from whi
h it originates [26℄ is not manifestly supersymmetri
.In order that variations of the gauge se
tor 
an
el against variations from the generalizedChern-Simons terms, the 
onstants CAB;C and �ifABkiC have to be related. A 
loser look at(5.14) and (5.18) shows, that if �ifABkiC = iCAB;C (5.20)�if�ABk� iC = �iCAB;C (5.21)then both variations add up to zero. The reason is that (5.14) 
an be brought to the form� i4CAB;C(�"R�BR��CL�AL + �"L�BL ��CR�AR) = � i8CAB;C �"�B��C
5�A + i8CAB;C �"�A��C
5�Awhi
h taken together with (5.18) leads to the equation for the shift tensor2CCA;B + CAB;C = 3C(AB;C) = 0 (5.22)41



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYwhere the 
onstraint (5.13) is used in the last equality. Thus, the 
ontribution of (5.14)and (5.18) is proportional to the symmetri
 part of the shift tensor C(AB;C) and vanishes.Furthermore, it is not diÆ
ult to see that the last term of (5.19) 
an
els against (5.15).26The �rst term of the �rst and the se
ond line of (5.16) together with the �rst term of (5.19)add up to zero.27 The remaining 
ontributions from (5.16) and (5.19) add up to give2814"����CAB;CFA��AC� �"
��B ; (5.23)whi
h 
an
els exa
tly the variation of the purely bosoni
 generalized Chern-Simons term(5.17) given by �14"����CAB;CFA��AC� �"
��B .This, however, does not yet 
omplete the proof that (4.21) together with the generalizedChern-Simons terms (5.12) is indeed invariant under supersymmetry. The supersymmetryvariation of the four-fermion intera
tion 14 ��iL�jL�i�jfAB��AL�BL re
eives the 
ontribution fromthe 
ovariant derivative in (5.7), too, and 
auses the variation14 �"R
��iLAC� kiC�i�jfAB��AL�BL : (5.24)The same happens to the term �14F i�ifAB��AL�BL whi
h 
auses the variation14 �"R
��jLAC� �jkiC�ifAB��AL�BL (5.25)due to the 
ovariant derivative in (5.9). Note, that be
ause CAB;C is 
onstant,taking aderivative of (5.20) with respe
t to �j yields�jkiC�ifAB = �kiC�j�ifAB ; (5.26)and the two variations drop out without the need of extra terms. So, indeed, the gaugese
tor (4.21) together with the generalized Chern-Simons terms (5.12) is invariant under thesupersymmetry transformations (5.6) to (5.9) in the presen
e of gauged isometries.Now we are going to show that the fermioni
 term (5.12) 
an be used to de�ne a newderivative that is 
ovariant with respe
t to gauged isometries. The isometries a
tually indu
eshifts be
ause from (5.2) and (5.20) we 
an see that the gauge kineti
 fun
tion is shifted byan imaginary 
onstant: Æ�fAB = iCAB;C�C (5.27)26A useful relation is �"R
��L + �"L
��R = �"
��.27This 
an be seen from ��"R
��L + �"L
��R = ��"
�
5�.28This makes use of ��"R
5
��L + �"L
5
��R = �"
��.42



5.1 Gauged isometries and generalized Chern-Simons terms in global supersymmetryThe only terms of (4.21) that are a�e
ted by this shift are found in the se
ond line. The �rstterm is the Pe

ei-Quinn term, that was treated in 3, and the se
ond term is proportionalto the axial gaugino 
urrent. All the other terms are either proportional to Re fAB or itsderivative and, thus, are not a�e
ted.The term proportional to the axial gaugino 
urrent transforms under the gauged isometryas 14Æ�(�� Im fAB)��A
5
��B = i4Æ�AC�CAB;C��A
5
��B (5.28)whi
h is 
an
elled by the variation of the 
orresponding fermioni
 generalized Chern-Simonsterm. If we now introdu
e the new derivativeD�fAB := ��fAB � iCAB;CAC� (5.29)whi
h transforms 
ovariantly under the shift symmetry (5.27), then we have done nothingelse but absorbed the fermioni
 generalized Chern-Simons term of (5.12) into (5.29). Fromthis point of view, it does not surprise that [26℄ found (5.12), though it was obtained forlinear gauge kineti
 fun
tions and through superspa
e te
hniques.Now let us turn to the nonabelian isometries. The Lagrangian 
orresponding to (4.21) butinvariant under lo
al nonabelian gauge symmetries is obtained from (4.21) by substitutingpartial derivatives by 
ovariant derivatives and the Abelian �eld strengths by their 
ovari-ant 
ounterparts FA�� = 2�[�AA�℄ + fBCAAB�AC� . The same is valid for the supersymmetrytransformations. The fermioni
 part of the generalized Chern-Simons term (5.12) is madeinvariant under nonabelian gauge transformations by introdu
ing a 
ovariant derivative. Thepure bosoni
 generalized Chern-Simons term was determined in se
tion 3 and is given byLGCS = 16"����CAB;CAB�AC� FA�� + 18"����CAB;CfDEAAD� AE� AC� AB� (5.30)where FA�� represents the Abelian part of the nonabelian �eld strength FA�� = FA�� +fDEAAD� AE� . The 
onstant tensors CAB;C have to ful�l two 
onstraints, as given in (3.7)and (3.8): C(AB;C) = 0 ; (5.31)CCB;AfDEA + 2CAC;[EfD℄BA + 2CAB;[EfD℄CA = 0 : (5.32)43



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYThe supersymmetry variation of the �rst term of (5.30) was 
omputed in (5.17) so it onlyremains to vary the se
ond term under supersymmetry. With the help of the 
onstraints(5.31) and (5.32) one 
an show thatCAB;CfDEA"����Æ�AD� AE� AC� AB� � = "���� �2CAE;DfBCA �CAE;BfDCA��CAB;DfECA� (ÆAB� )AC� AD� AE�= 2CAB;CfDEA "���� �"
��BAC� AD� AE� : (5.33)The variation (5.33) 
ompletes the Abelian �eld strength in (5.17) to form the nonabelian �eldstrength FA��. Therefore we �nd for the variation of the nonabelian generalized Chern-Simonsterm ÆLGCS = 14"����CAB;D�"
��BAD� FA�� (5.34)and we see that the results of the Abelian dis
ussion 
an be straight-forwardly extended tothe nonabelian 
ase.5.2 Gauged isometries and anomalies in global N = 1 supersymmetryIn the previous subse
tion we found that on
e isometries on the target spa
e of the s
alar�elds are gauged, the original supersymmetry transformations no longer 
ommute with gaugesymmetries. The new supersymmetry transformations are obtained from the old ones by re-pla
ing partial derivatives by gauge 
ovariant derivatives. Furthermore, one has to introdu
ea new term into the transformation of the auxiliary �eld F i that 
ouples gaugini to Killingve
tors. After these extensions in the transformation laws we saw that the Lagrangian (4.21)is no longer invariant under supersymmetry. In order to restore supersymmetry we had to
ovariantize the derivative29 in the term (D0� Im fAB)��A
5
��B with respe
t to the gaugedisometries and we added generalized Chern-Simons terms (5.30) to the a
tion. We showedthat this new a
tion is indeed invariant under supersymmetry again. This is only a spe
ial
ase be
ause the in�nitesimal shift 
an in general have a nontrivial totally symmetri
 part,i.e., �if(ABkiC) 6= 0 : (5.35)29The derivative D0� is de�ned by D0� Im fAB := �� Im fAB � 2AC� fC(AD Im fB)D in a

ordan
e with (4.22).44



5.2 Gauged isometries and anomalies in global N = 1 supersymmetryThen, CAB;C as de�ned in (5.20) and the 
onstant tensor used for the generalized Chern-Simons terms (5.30) are no longer identi
al. As noted before, the 
onstant tensor of thegeneralized Chern-Simons terms, from now on denoted by CCSAB;C , is mixed symmetri
. Thatmeans that it is symmetri
 in its �rst two indi
es and its totally symmetri
 part vanishes.From the de
omposition of a tensor of degree three it follows that for vanishing totallysymmetri
 part it must be antisymmetri
 in its last two indi
es. This dis
ussion showsthat there is a di�eren
e between CCSAB;C from the generalized Chern-Simons terms and theshift CAB;C if that 
ontains in addition to a part of mixed symmetry a part that is totallysymmetri
 in all indi
es (this is 
onsistent with the dis
ussion in se
tion 3.4). Hen
e, thegeneralized Chern-Simons terms (5.30) 
an only possibly 
an
el 
ontributions from Æ"Lgk, ifthe mixed symmetri
 part of the shifts CAB;C is equal to CCSAB;C , i.e. ifCAB;C = C(AB;C) +CCSAB;C : (5.36)It is important to observe that the term� i4CAB;CAC� ��A
5
��B (5.37)is needed to render the derivative of the imaginary part of the gauge kineti
 fun
tion, i.e.of �D0� Im fAB��A
�
5��, 
ovariant with respe
t to the gauged isometry. This goes beyondthe treatment of [26℄, where the mixed symmetri
 part of the term (5.37) was found to bea member of the Chern-Simons super�eld in superspa
e. The part proportional to C(AB;C)
annot be obtained in a known way from a super�eld expression for the generalized Chern-Simons term as given in [26℄, due to the symmetry properties of CCSAB;C , i.e. the 
onstraint(5.13). As equation (5.12) is not supersymmetri
 in the Wess-Zumino gauge, it is better notto follow the lines of [26℄ and to still 
onsider (5.30) as the generalized Chern-Simons termfor supersymmetri
 theories. The fermioni
 term (5.37) is then used to gauge D0� Im fAB withrespe
t to the shift symmetry. Another important point to note is that now (5.22) does notvanish anymore and leaves an un
an
elled 
ontribution to the supersymmetry variation givenby �3i4 C(AB;C)[�"R�BR��CL�AL � �"L�BL ��CR�AR℄ : (5.38)45



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYIn the same way, the generalized Chern-Simons terms 
annot 
an
el the 
orresponding vari-ations in (5.16) and (5.19) but it leaves the 
ontribution to the supersymmetry variation�14C(AB;C)"���� �"
��BAC� FA�� + 18C(AB;C)fDEA"���� �"
��BAC� AD� AE� : (5.39)Hen
e, for general shifts, where C(AB;C) 6= 0, the a
tion Lgk + LGCS is no longer supersym-metri
. This tells us that we 
annot even expe
t the a
tion to be gauge invariant. In fa
t,the gauge variation leads to a non-invarian
e that is given byi8"���� �C(AB;C)FA��FB�� + (C(AB;D)fCEB + 32C(AB;C)fDEB)AD� AE� FA����C : (5.40)This expression is similar to the 
onsistent form of the anomaly. The total anomaly, however,is given by the supersymmetry anomaly and the gauge anomaly. A full 
ohomologi
al analysisof anomalies in supergravity was made by Brandt in [79℄ and [80℄. His result is that the totalanomaly 
onsisting of the gauge anomaly AC�C and the supersymmetry anomaly �"A" isgiven by AC = � i8"����[dABCFA��FB�� + (dABDfCEB + 32dABCfDEB)AD� AE� FA�� ℄ (5.41)�"A" = 3i4 dABC [�"R�BR��CL�AL � �"L�BL ��CR�AR℄ + 14dABC"���� �"
��BAC� FA�� ��18dABCfDEA"���� �"
��BAC� AD� AE� (5.42)where dABC denote total symmetri
 tensors that 
hara
terize the anomaly and are determinedby the Wess-Zumino 
onsisten
y 
ondition (2.25). The gauge anomaly given by (5.41) leadsto the 
onsistent anomaly (2.26), if one 
hooses the symmetri
 tensor to be of the formdABC = i24�2 tr�TAfTB ; TCg�. The anomaly originates from 
hiral fermions in the matterse
tor.In 
omparing the expressions (5.38) and (5.39) with the supersymmetry anomaly (5.42)and the gauge variation (5.40) with the 
onsistent gauge anomaly (5.41), we see that theanomalies 
an
el the left over 
ontributions in the supersymmetry and gauge variation pre-
isely if C(AB;C) = dABC .Hen
e, generalized Chern-Simons terms and gauged isometries that introdu
e shifts inthe gauge kineti
 fun
tion 
an
el 
hiral anomalies if the shifts satisfyCAB;C = dABC + CGCSAB;C : (5.43)46



5.3 Generalized Chern-Simons terms in SupergravityThis 
on�rms the dis
ussion in se
tion (3.4). There the totally symmetri
 part of C 
ausedthe Chern-Simons �ve-form that again is related to the anomaly by the des
ent equation(3.55), implying that the anomaly 
an be 
an
elled if dABC = C(AB;C).5.3 Generalized Chern-Simons terms in SupergravityIn going from global supersymmetry to supergravity, there appear terms in the gauge se
torof supergravity that were not there in global supersymmetry. As it was demonstrated in theprevious se
tion, the Lagrangian (4.28) is invariant under the lo
al supersymmetry transfor-mations (4.34) to (4.39). In total analogy to the rigid 
ase, when isometries on the targetspa
e are gauged, the derivatives in the transformation laws for the 
hiral fermions �i andthe auxiliary �elds F i have to be 
ovariantized with respe
t to the gauged isometries and thelast term of (5.9) is present, too. This in turn 
auses again new 
ontributions in the variationof (4.28) under lo
al supersymmetry. Also the term proportional to D� Im fAB has to beextended to transform 
ovariantly under gauged isometries by introdu
ing the new terme i4CAB;CAC� ��A
�
5�B : (5.44)This term 
auses new variations30 under supersymmetry due to Æ"e, Æ"
� and the termÆextra" �A = 12���"� � �
��� (5.45)that arises be
ause of F�� ! F
ov�� in supergravity (4.39). The 
ontributions due to Æ"e, Æ"
�and (5.45) are found to be equal toe i8CAB;CAC� [�"
� ���A
�
5�B � � �
��A�"
�
5�B � � �
��A�"
5
��B + ��A
�
5�B �"
� �℄ ++e18"����CAB;CAC� � �
��A�"
��B : (5.46)The 
ontribution from 
ovariantizing the derivative with respe
t to gauged isometries in thetransformation law of �i will 
ause extra variations in the variation of terms that 
ouple to�i. There are two relevant terms 
oupling to �i:� The �rst term is �12e�ifAB ��iL����LF̂A��+h.
. whi
h gives rise to the termi8eCAB;CAC� �"
�
5�A � � �
��B � � �
��B�� 18e"����CAB;CAC� �"
��B � �
��A : (5.47)30We re
all that the matri
es 
a represent the 
at spa
e Dira
 matri
es and are 
onstant, as opposed to 
�whi
h are dressed with a vierbein and, 
onsequently, it is Æ"
� = Æ"e�a
a.47



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYThese terms already 
an
el the se
ond, third and �fth term of (5.46).� Another 
ontribution is 
aused by the term whi
h is given by�14e�ifAB � �R
��iL��AL�BL+h.
. and 
ouples the gravitino to �i. It leaves the un-
an
elled variationi16eCAB;CAC� � � �
�
�"��A
5�B � � �
�
�
5"��A�B� (5.48)� The last 
ontribution that has to be 
onsidered originates from the variation of theauxiliary �eld F i in �14 e��ifAB�F i��AL�BL+h.
., i.e. through the 
ovariant derivative of� in ÆF i: Æ"F i = �"R
�D��i + : : : = �12 �"R
�
�D̂�zi �R + : : := 12kiCAC� �"R
�
� �R + : : : : (5.49)Therefore, the extra variation is given by+ i16eCAB;CAC� ��"
�
�
5 ���A�B � �"
�
� ���A
5�B� : (5.50)With help of the rearrangement formulae for spinor bilinears, one �nds that (5.48) and (5.50)
an
el the �rst and the fourth term of (5.46). Also in N = 1 supergravity all the extra 
ontri-butions to the supersymmetry variation that were not present in the supersymmetry variationof the supergravity a
tion (4.28) vanish without the need of extra terms (e.g. generalizationsof the generalized Chern-Simons terms due to supergravity). The variation of the generalizedChern-Simons terms themselves is not in
uen
ed by the transition from rigid supersymme-try to supergravity be
ause it depends only on the ve
tor �elds AC� , whose supersymmetrytransformations have no gravitino 
orre
tions in N = 1 supergravity.When 
he
king the gauge invarian
e of terms proportional to the gravitino, one �nds thatneither terms involving the real part of the gauge kineti
 fun
tion, Re fAB, nor its derivativesviolate the gauge invarian
e of (4.28). The only 
ontributions that violate gauge invarian
e
ome from the purely imaginary parts of the gauge kineti
 fun
tion Im fAB . On the otherhand, no extra terms proportional to Im fAB appear when one goes from rigid supersymmetryto supergravity. Hen
e, the gauge variation of (4.28) does not 
ontain any gravitino whi
h48



5.4 Redu
ing to Abelian�semisimpleis 
onsistent with the result that neither the supersymmetry variation of (4.28) nor thegeneralized Chern-Simons term (5.30) 
ontain gravitini.Consequently, the method of gauging isometries of the target spa
e as developed in theprevious subse
tion for rigid supersymmetry 
an be applied straightforwardly to N = 1supergravity, and anomalies are 
an
elled in a

ordan
e with rigid supersymmetry.5.4 Redu
ing to Abelian�semisimpleSemisimple groups do not lead to non-trivial generalized Chern-Simons terms as shown inse
tion 3.2. Furthermore, in se
tion 3.3 we dis
ussed the example of the dire
t produ
tof an Abelian gauge group with a semisimple gauge group. Now we want to further restri
tourselves to the produ
t of a one-dimensional Abelian fa
tor and a semisimple group, denotedby G: U(1)�G. This will allow us to 
larify the relation between the results developed hereand in previous work, in parti
ular [81,82℄. In these papers, the authors study the stru
tureof quantum 
onsisten
y 
onditions of N = 1 supergravity. More pre
isely, they 
larify theanomaly 
an
ellation 
onditions (required by the quantum 
onsisten
y) for a U(1)�G gaugegroup. We introdu
e the notations F�� and Gx�� for the Abelian and semisimple �eld strengths,respe
tively.In this 
ase, one 
an look at \mixed" anomalies, whi
h are the ones proportional toTr(QTxTy), where Q is the U(1) 
harge operator and Tx are the generators of the semisimplealgebra. Following [82, Se
t.2.2℄, one 
an add 
ounterterms represented by L
t su
h thatthe mixed anomalies proportional to �x 
an
el and one remains with those that are of theform �0"���� Tr (QG��G��), where �0 is the Abelian gauge parameter. S
hemati
ally, this
orresponds to Anomalies: �xAxmixed
on + �0A0mixed 
onÆ(�)L
t : ��xAxmixed 
on � �0A0mixed 
on+ �0A0mixed
ovsum: 0 + �0A0mixed
ov (5.51)where the subs
ripts \
on" and \
ov" denote the 
onsistent and 
ovariant anomalies, respe
-tively. The 
ounterterms L
t have the following form:L
t = 13Z"����C�Tr hQ �A���A� + 34A�A�A�� i ; Z = 14�2 ; (5.52)49



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYwhere C� and A� are the gauge �elds for the Abelian and semisimple gauge groups respe
-tively. The expressions for the anomalies are:Axmixed 
on = �13Z"���� Tr hT xQ�� �C���W� + 14C�W�W�� i ;A0mixed 
on = �16Z"���� Tr hQ�� �W���W� + 12W�W�W�� i ;A0mixed 
ov = �18"���� Tr hQG��G��i : (5.53)The remaining anomaly A0mixed
ov is typi
ally 
an
elled by the Green-S
hwarz me
hanism.This will be now 
ompared with the results of the 
urrent se
tion and se
tion 3 redu
edto the 
ase U(1) � G. The index A is split into 0 for the U(1) and x for the semisimplegroup generators. We expe
t the generalized Chern-Simons terms (5.30) to be equivalent tothe 
ounterterms in [82℄ and the role of the Green-S
hwarz me
hanism is played by a U(1)variation of the kineti
 terms fxy, hen
e by a C-tensor with non-trivial 
omponents Cxy;0.The dis
ussion that led to (3.45) and (3.46) 
an be transferred to the present 
ase and itfollows that C0x;0 = C00;x = 0 : (5.54)The Cxy;0's are proportional to the Cartan-Killing metri
 in ea
h simple fa
tor as explainedin se
tion 3.3 and we write here Cxy;0 = Z Tr(QTxTy) ; (5.55)where Z 
ould be arbitrary, but our results will mat
h the results of [82℄ for the value of Zin (5.52). Note that this is in total agreement with se
tion 3.3If we do not allow for o�-diagonal elements of the gauge kineti
 fun
tion fAB, we havef0x = 0 ) C0x;y = 0 : (5.56)The 
omponents C00;0 and Cxy;z may be nonzero, but here we shall be only 
on
erned withthe mixed 
omponents, i.e. we have only (5.55) di�erent from zero.If we redu
e the gauge variation Æ�� Im fABFA ^ FB� using (5.54) and (5.55), we obtainhÆ(�)Ŝf imixed = Z d4xh18Z�0"���� Tr (QG��G��) i : (5.57)50



5.4 Redu
ing to Abelian�semisimpleIt is suitable to split (5.55) into a totally symmetri
 and a part of mixed symmetry, whi
hleads to C(s)xy;0 = C(s)0x;y = 13Cxy;0 = 13Z Tr(QTxTy) ;C(m)xy;0 = 23Cxy;0 = 23Z Tr(QTxTy) ; C(m)0x;y = �13Cxy;0 = �13Z Tr(QTxTy) : (5.58)Note that this is 
onsistent with the dis
ussion in se
tion 3.4, i.e. with the equations (3.59)to (3.61). In the previous se
tions, it was shown that for a �nal gauge and supersymmetryinvariant theory the mixed symmetri
 part has to be identi�ed with the 
onstant tensor infront of the generalized Chern-Simons term, i.e. CCS = C(m). Therefore, the mixed part ofthe generalized Chern-Simons term, (5.30), be
omes in this 
ase:[SCS℄mixed = Z d4x h13ZC�"���� Tr �Q �A���A� + 34A�A�A��� i ; (5.59)whi
h mat
hes (5.52) and is 
onsistent with equation (3.49).Finally, from redu
ing the 
onsistent anomaly (5.41) we �nd, using dABC = C(s)ABC , thatthe mixed anomalies are given byA0 = �16Z"���� Tr �Q�� �A���A� + 12A�A�A��� ;Ax = �13Z"���� Tr �T xQ�� �C���A� + 14C�A�A��� ; (5.60)whi
h mat
h exa
tly (5.53).Let us summarize the results of our 
omparison with [82℄:(i) The mixed part of the GCS a
tion (5.59) is indeed equal to the 
ounterterms (5.52),introdu
ed in [82℄.(ii) The 
onsistent anomalies (5.60) mat
h those in the �rst two lines of (5.53). As wementioned above, the 
ounterterm has modi�ed the resulting anomaly to the 
ovariantform in the last line of (5.53).(iii) We see that the variation of the kineti
 term for the ve
tor �elds (5.57) may 
an
el thismixed 
ovariant anomaly (this is the Green-S
hwarz me
hanism).51



5 GENERALIZED CHERN-SIMONS TERMS AND CHIRAL ANOMALIES IN N = 1SUPERSYMMETRYTaking all together, we 
an summarize the 
an
ellation pro
edure s
hemati
ally as follows:Anomalies: �xAxmixed 
on + �0A0mixed 
onÆ(�)L(CS) : ��xAxmixed
on � �0A0mixed 
on+ �0A0mixed
ovÆ(�)Ŝf : � �0A0mixed
ovsum: 0 + 0 (5.61)
5.5 SummaryIn the beginning of this se
tion we showed that gauged isometries on the target spa
e ofs
alar �elds modi�ed the supersymmetry transformations of the gauge supermultiplet foundin se
tion 4.1. We had to extend the partial derivative in the supersymmetry transformationÆ�iL to a 
ovariant derivative (5.7) and to introdu
e the term �"R�ARkiA into the supersymmetrytransformation of F i a

ording to [84℄. We know from the dis
ussion in se
tion 3 that thegauge transformation Æ�zi (5.1) in general 
auses a gauge variation of the Pe

ei-Quinn-typeterm Im fABFAFB , whi
h may be 
an
elled in 
ertain 
ases by a generalized Chern-Simonsterm. This motivated to add a term to the gauge se
tor of global N = 1 supersymmetry,that is equal to the extension of the generalized Chern-Simons term to N = 1 supersymmetrypresented in [26℄. The new term 
onsists of the usual bosoni
 Chern-Simons term (5.30)together with the fermioni
 term i4CAB;CAC� ��A
5
��B ; (5.62)where CAB;C is mixed symmetri
 in its indi
es. We showed that if the gauged isometries in-du
e an imaginary shift in the gauge kineti
 fun
tion (5.27), then the variations of the gaugese
tor, the generalized Chern-Simons terms and the fermioni
 term (5.62) under supersym-metry 
an
el provided the 
onstraint C(AB;C) = 0 holds. If ont the other hand, C(AB;C) 6= 0,it is suitable to use the fermioni
 term in order to de�ne the gauge 
ovariant derivativeD� Im fAB = �� Im fAB � 2AC� fC(AD Im fB)D � iAC�CAB;C ; (5.63)and not to add it to the generalized Chern-Simons term (5.30). Note that now there is thefull tensor CAB;C in equation (5.63), i.e. CAB;C = C(s)AB;C + C(m)AB;C .52



5.5 SummaryNow that we have relaxed the 
onstraint C(AB;C) = 0 and allowed for a nontrivial totallysymmetri
 part C(AB;C), this 
auses new 
ontributions to the gauge and supersymmetryvariations that no longer vanish. The important observation is that the gauge and supersym-metry non-invarian
e indu
ed by C(AB;C) 6= 0 
an only be 
an
elled if there are gauge andsupersymmetry anomalies and we demandC(AB;C) = dABC ; (5.64)where the symmetri
 tensor dABC 
hara
terizes the anomaly.After performing the analysis in globalN = 1 supersymmetry, we 
ould extend our resultsto N = 1 supergravity. It turns out that the generalized Chern-Simons term (5.30) does notneed any gravitino 
orre
tion and 
an thus be added as su
h to matter-
oupled supergravitya
tions.Thus, the results of this se
tion provide an extension to the general framework of 
oupled
hiral and ve
tor multiplets in global and lo
al N = 1 supersymmetry to in
lude the generalform of gauged axioni
 shifts, generalized Chern-Simons terms and anomalies.31

31We should emphasize that we only 
onsidered anomalies of gauge symmetries that are gauged by el-ementary ve
tor �elds. The interplay with K�ahler anomalies in supergravity theories 
an be an involvedsubje
t [81, 82℄, whi
h was not studied. Also we did not 
onsider gravitational anomalies.53



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIES6 Symple
ti
ally 
ovariant formalism and anomalies in 
hiralgauge theoriesIn this se
tion we introdu
e a formulation of 
hiral gauge theories whi
h is manifestly 
ovariantwith respe
t to ele
tri
/magneti
 duality. For anomaly-free gauge theories as they o

ur inextended supergravity, this formulation was �rst presented in [83℄. Maintaining 
ovarian
eat ea
h step is a
hieved by introdu
ing the so-
alled embedding tensor. A set of 
onstraintson the embedding tensor and extra gauge invarian
es make sure that the degrees of freedomremain un
hanged. We will see that in addition to the usual gauge variations of gaugetheory extra gauge variations appear whi
h 
ause violations of the Bian
hi identity and theJa
obi identity. Consequently, the �eld strength tensor 
orresponding to the ve
tor �eldswill no longer transform 
ovariantly. Therefore, the authors of [83℄ introdu
e tensor �eldswhi
h transform under the gauge variation su
h that the 
ombination of the �eld strengthtensor together with the tensor �elds transforms 
ovariantly again. For this to work, one hasto add two topologi
al terms in order to obtain a gauge invariant a
tion that is invariantwith respe
t to the gauge transformations. The gauge invarian
e relies heavily on the set of
onstraints of the embedding tensor given in [83℄. We will show that it is possible to relaxone of these 
onstraints in order to a allow for a nontrivial totally symmetri
 tensor. We willdisplay how this totally symmetri
 tensor leads to a gauge non-invarian
e of the Lagrangiangiven in [83℄. We will further show how one 
an 
an
el this gauge non-invarian
e by gaugeanomalies, if the totally symmetri
 tensor des
ribes anomalies in a symple
ti
ally 
ovariantway and give the ne
essary 
ondition. In this sense we 
an say that the results of this se
tiongeneralize the Green-S
hwarz me
hanism [2℄ to be
ome a \symple
ti
ally 
ovariant Green-S
hwarz me
hanism". In making a spe
ial 
hoi
e for the embedding tensor one re
overs theresults of the previous 
hapter for the purely bosoni
 se
tor. In subse
tion 6.4 we give anexpli
it example that goes beyond the dis
ussion of [83℄ and show how the relaxation of one
onstraint allows a possible 
an
ellation by anomalies. This se
tion represents another majortopi
 of this thesis and is based on the work [40℄.The outline of this se
tion is as follows. In subse
tion 6.1 we will give the symple
ti
ally
ovariant framework of [83℄ in a more general treatment. Then in subse
tion 6.2 we showhow the formalism of [83℄ has to be modi�ed in order to a

ommodate quantum anomalies.54



6.1 Ele
tri
/magneti
 duality without anomaliesIn subse
tion 6.3 we 
hoose purely ele
tri
 gaugings and obtain ba
k earlier results.We 
eshout our results with a simple nontrivial example in subse
tion 6.4. The main results of thisse
tion are summarized in subse
tion 6.5.In this se
tion the notation is 
hanged to the one of [40℄ so as to make the generalizationof [83℄ more transparent.6.1 Ele
tri
/magneti
 duality without anomaliesIn this subse
tion we will introdu
e ele
tri
/magneti
 duality and display the main resultsof [83℄.6.1.1 Ele
tri
/magneti
 duality and the 
onventional gaugingIn the absen
e of 
harged �elds, a gauge invariant four-dimensional Lagrangian of n Abelianve
tor �elds A��(� = 1; : : : ; n) only depends on their 
urls F��� � 2�[�A�℄�. De�ning thedual magneti
 �eld strengths G�� � := "���� �L�F��� ; (6.1)the Bian
hi identities and �eld equations 
an be brought to the following form�[�F��℄� = 0 ; (6.2)�[�G��℄ � = 0 : (6.3)This formulation allows to 
ombine the ele
tri
 Abelian �eld strengths, F���, and theirmagneti
 duals, G�� �, into a 2n-plet, F��M , su
h that FM = (F�; G�). Therefore, (6.2) and(6.3) 
an be written in the following 
ompa
t way:�[�F��℄M = 0 : (6.4)It is rather obvious that equation (6.4) is invariant under general linear transformationsFM ! F 0M = SMNFN ; where SMN = 0�U�� Z��W�� V��1A ; (6.5)but a relation of the type (6.1) is only possible for symple
ti
 matri
es SMN 2 Sp(2n;R).Thus, the admissible rotations SMN form the group Sp(2n;R):ST
S = 
; (6.6)55



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESwith the symple
ti
 metri
, 
MN , given by
MN = 0� 0 
��
�� 0 1A = 0� 0 Æ���Æ�� 0 1A : (6.7)We de�ne 
MN via 
MN
NP = �ÆMP . Note that the 
omponents of 
MN should not bewritten as 
�� et
., as these di�er from (6.7) by the fa
tor of (�1).Starting point is a kineti
 Lagrangian of the formLgk = +14 ImN��F���F ��� � 18"���� ReN��F���F��� ; (6.8)where N�� denotes the gauge kineti
 fun
tion32. Applying an ele
tri
/magneti
 dualitytransformation to (6.8) leads to a new Lagrangian, L0gk(F 0), whi
h is of a similar form, butwith a new gauge kineti
 fun
tionN�� ! N 0�� = (VN +W )�
�(U + ZN )�1�
� : (6.9)The subset of Sp(2n;R) symmetries (of �eld equations and Bian
hi identities) for whi
h theLagrangian remains un
hanged, in the sense that L0(F 0(F )) = L(F ), are invarian
es of thea
tion. In a di�erent duality frame, the Lagrangian might have a di�erent set of invarian
es.From the spa
etime point of view, these are all rigid (\global") symmetries and sometimesthese global symmetries 
an be gauged. For the 
onventional gaugings [26℄ one has to restri
tto the transformations that leave the Lagrangian invariant, whi
h implies that Z�� in thematri
es SMN of (6.5) has to vanish. In the 
ontext of symple
ti
ally 
ovariant gaugings [83℄,however, this restri
tion 
an be relaxed. We will 
ome ba
k to these more general gaugingsin se
tion 6.1.2.When the symmetry is gauged, 
ovariant derivatives and �eld strengths are introdu
ed asusual. In the standard way of gauging, this 
an be implemented solely with the ele
tri
 ve
tor�elds A�
 and the 
orresponding ele
tri
 gauge parameters �
. The gaugeable symple
ti
transformation, S, must thus be of the in�nitesimal formSMN = ÆMN � �
S
MN : (6.10)32The gauge kineti
 fun
tion fAB , as used so far, 
orresponds in this se
tion to �iN ���.56



6.1 Ele
tri
/magneti
 duality without anomaliesA

ording to our de�nition (6.5), these in�nitesimal symple
ti
 transformations a
t on the�eld strengths by multipli
ation with the matri
es S�MN from the left. Following the 
on-ventions of [83℄, however, we will use matri
es X
MN to des
ribe the in�nitesimal symple
ti
a
tion via multipli
ation from the right:ÆF��M = F 0��M � F��M = ��
F��NX
NM ; i.e. X
NM = S
MN : (6.11)Then, for standard ele
tri
 gaugings we have the transformationÆ0� F���G�� �1A = ��
0�X
�� 0X
�� X
��1A0� F���G�� �1A ; (6.12)where X
�� = �X
�� = f
�� must be the stru
ture 
onstants of the gauge algebra33, andX��� = X�(��) would give rise to the axioni
 shifts34 mentioned in se
tions 3 and 5.Then the gauging pro
eeds in the usual way by introdu
ing 
ovariant derivatives (�� �A��Æ�), where the Æ� are the gauge generators in a suitable representation of the matter�elds (see (5.1), for example). One also introdu
es 
ovariant �eld strengths and possiblyGCS terms as des
ribed below. As we assume the absen
e of quantum anomalies in thissubse
tion, we have to require X(���) = 0 in a

ordan
e with the results found in se
tions 3and 5.6.1.2 The symple
ti
ally 
ovariant gaugingWe will now turn to the more general gauging of symmetries. The group that will be gaugedis a subgroup of the rigid symmetry group. What we mean by the rigid symmetry groupis a bit more subtle in N = 1 supersymmetry (or theories without supersymmetry) thanin extended supersymmetry. This is due to the fa
t that in extended supersymmetry theve
tors are supersymmetri
ally related to s
alar �elds, and therefore their rigid symmetriesare 
onne
ted to the symmetries of s
alar manifolds.In N = 1 supersymmetry or in theories without supersymmetry, the rigid symmetriesof the ve
tor and s
alar se
tor are not dire
tly related. Then the rigid symmetry group,Grigid, is a subset of the produ
t of the symple
ti
 duality transformations that a
t on theve
tor �elds and the isometry group of the s
alar manifold of the 
hiral multiplets: Grigid �33In previous se
tions denoted by fABC .34The shifts CAB;C are translated by X��
 = C�
;� for the 
hoi
e made in (6.10).57



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESSp(2n;R)�Iso(Ms
alar). In N = 1 supergravity, this means that the a
tion of the symmetriesis given by elements (g1; g2) of Sp(2n;R) � Iso(Ms
alar) that are 
ompatible with (6.9) inthe sense that the symple
ti
 a
tion (6.9) of g1 on the matrix N is indu
ed by the isometryg2 on the s
alar manifold. These are rigid (\global") symmetries provided they also leavethe rest of the theory (deriving from s
alar potentials, et
.) invariant [85℄. In this sense, therelevant isometries are those that respe
t the K�ahler stru
ture (i.e. the isometries have to begenerated by holomorphi
 Killing ve
tors) and that also leave the superpotential invariant (insupergravity, the superpotential should transform a

ording to the K�ahler transformations).35The generators of Grigid will be denoted by Æ�, � = 1; : : : ; dim(Grigid). These generatorsa
t on the di�erent �elds of the theory either via Killing ve
tors Æ� = K� = Ki� ���i de�ningin�nitesimal isometries on the s
alar manifold, or with 
ertain matrix representations36, e.g.Æ��i = ��j(t�)j i.On the �eld strengths F��M = (F���; G�� �), these rigid symmetries must a
t by multi-pli
ation with in�nitesimal symple
ti
 matri
es37 (t�)MP ; i.e., we have(t�)[MP
N ℄P = 0 : (6.13)In order to gauge a subgroup, Glo
al � Grigid, the 2n-dimensional ve
tor spa
e spanned bythe ve
tor �elds38 A�M has to be proje
ted onto the Lie algebra of Glo
al, whi
h is formallydone with the so-
alled embedding tensor �M� = (���;���). Equivalently, �M� 
ompletelydetermines the gauge group Glo
al via the de
omposition of the gauge group generators, whi
hwe will denote by ~XM , into the generators of the rigid invarian
e group Grigid:~XM := �M�Æ�: (6.14)35Note that this may in
lude 
ases where either the symple
ti
 transformation g1 or the isometry g2 istrivial. Another spe
ial 
ase is when the isometry g2 is non-trivial, but N does not transform under it, ashappens, e.g, when N = i is 
onstant. Grigid is in general a genuine subgroup of Sp(2n;R) � Iso(Ms
alar),even in the latter 
ase of 
onstant N .36The stru
ture 
onstants de�ned by [Æ�; Æ� ℄ = f��
Æ
 lead for the matri
es to [t�; t�℄ = �f��
t
 .37These matri
es might be trivial, e.g., for Abelian symmetry groups that only a
t on the s
alars (and/orthe fermions) and that do not give rise to axioni
 shifts of the kineti
 matrix N��.38The equations of motion (6.3) imply the existen
e of magneti
 gauge potentials, A��, via G�� � =2�[�A�℄�. The magneti
 gauge potentials obtained in this way are in turn related to the ele
tri
 ve
torpotentials, A��, by nonlo
al �eld rede�nitions. The ele
tri
 and magneti
 ve
tor �elds 
an be 
ombined intoa 2n-plet, AM� , su
h that AM = (A�; A�). 58



6.1 Ele
tri
/magneti
 duality without anomaliesThe gauge generators ~XM enter the gauge 
ovariant derivatives of matter �elds,D� = �� �A�M ~XM = �� �A�����Æ� �A�����Æ� ; (6.15)where the generators Æ� are meant to either a
t as representation matri
es on the fermionsor as Killing ve
tors on the s
alar �elds, as mentioned above. On the �eld strengths of theve
tor potentials, the generators Æ� a
t by multipli
ation with the matri
es (t�)NP , so that(6.14) is represented by matri
es (XM )NP whose elements we denote as XMNP and whoseantisymmetri
 part in the lower indi
es appears in the �eld strengthsF��M = 2�[�A�℄M +X[NP ℄MA�NA�P ; XNPM = �N�(t�)PM : (6.16)The symple
ti
 property (6.13) impliesXM [NQ
P ℄Q = 0 ; XMQ[N
P ℄Q = 0 : (6.17)In the remainder of this paper, the symmetrized 
ontra
tion X(MNQ
P )Q will play an im-portant rôle. We therefore give this tensor a spe
ial name and denote it by DMNP :DMNP = X(MNQ
P )Q : (6.18)Note that this is really just a de�nition and no new 
onstraint. Using the de�nition (6.18),one 
an 
he
k that 2X(MN)Q
RQ +XRMQ
NQ = 3DMNR ;i.e. X(MN)P = 12
PRXRMQ
NQ + 32DMNR
RP : (6.19)6.1.2.1 Constraints on the embedding tensor The embedding tensor �M� has tosatisfy a number of 
onsisten
y 
onditions. Closure of the gauge algebra and lo
ality require,respe
tively, the quadrati
 
onstraints
losure: f��
�M��N� = (t�)NP�M��P 
 ; (6.20)lo
ality: 
MN�M��N� = 0 , ��[����℄ = 0 ; (6.21)where f��
 are the stru
ture 
onstants of the rigid invarian
e group Grigid, see footnote 36.The 
onstraint (6.20) also expresses the invarian
e of the embedding tensor under Grigid.59



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESAnother 
onstraint, besides (6.20) and (6.21), was inferred in [83℄ from supersymmetry 
on-straints in N = 8 supergravityDMNR � X(MNQ
R)Q = 0 : (6.22)This 
onstraint eliminates some of the representations of the rigid symmetry group and istherefore sometimes 
alled the \representation 
onstraint". One 
an a
tually show that thelo
ality 
onstraint is not independent of (6.20) and (6.22), apart from spe
i�
 
ases where(t�)MN has a trivial a
tion on the ve
tor �elds.However, we will neither use the lo
ality 
onstraint (6.21) nor the representation 
on-straint (6.22). We will, instead, need another 
onstraint in se
tion 6.1.2.4, whose meaning wewill dis
uss in se
tion 6.2. Before 
oming to that new 
onstraint, we thus only use the 
losure
onstraint (6.20). This 
onstraint re
e
ts the invarian
e of the embedding tensor under Glo
aland it implies for the matri
es XM the relation[XM ;XN ℄ = �XMNP XP : (6.23)This 
learly shows that the gauge group generators 
ommute into ea
h other with `stru
ture
onstants' given by X[MN ℄P . In general, XMNP also 
ontains a non-trivial symmetri
 part,X(MN)P . The antisymmetry of the left hand side of (6.23) only requires that the 
ontra
tionX(MN)P�P� vanishes, as is also dire
tly visible from (6.20). Therefore one hasX(MN)P�P � = 0 ! X(MN)PXPQR = 0 : (6.24)Writing out (6.23) expli
itly givesXMQPXNPR �XNQPXMPR +XMNPXPQR = 0 : (6.25)Antisymmetrizing in [MNQ℄, we 
an split the se
ond fa
tor of ea
h term into the antisym-metri
 and symmetri
 part, XMNP = X[MN ℄P + X(MN)P , and this gives a violation of theJa
obi identity for X[MN ℄P asX[MN ℄PX[QP ℄R +X[QM ℄PX[NP ℄R +X[NQ℄PX[MP ℄R= �13 �X[MN ℄PX(QP )R +X[QM ℄PX(NP )R +X[NQ℄PX(MP )R� : (6.26)60



6.1 Ele
tri
/magneti
 duality without anomaliesOther relevant 
onsequen
es of (6.25) 
an be obtained by (anti)symmetrizing in MQ. Thisgives, using also (6.24), the two equationsX(MQ)PXNPR �XNQPX(MP )R �XNMPX(QP )R = 0 ;X[MQ℄PXNPR �XNQPX[MP ℄R +XNMPX[QP ℄R = 0 : (6.27)6.1.2.2 Gauge transformations An important 
onsequen
e of the nonvanishing sym-metri
 part X(MN)P is the violation of the Ja
obi identity (6.26). This is the prize one hasto pay for the symple
ti
ally 
ovariant treatment in whi
h both ele
tri
 and magneti
 ve
torpotentials appear at the same time. In order to 
ompensate for this violation and in orderto make sure that the number of propagating degrees of freedom is the same as before, oneimposes an additional gauge invarian
e in addition to the usual non-Abelian transformation���M +X[PQ℄MA�P�Q and extends the gauge transformation of the ve
tor potentials toÆA�M = D��M �X(NP )M��NP ; D��M = ���M +XPQMA�P�Q ; (6.28)where we introdu
ed the 
ovariant derivative D��M , and new ve
tor-like gauge parame-ters ��NP , symmetri
 in the upper indi
es. The extra terms X(PQ)MA�P�Q and the �-transformations 
ontained in (6.28) allow one to gauge away the ve
tor �elds that 
orrespondto the dire
tions in whi
h the Ja
obi identity is violated, i.e., dire
tions in the kernel of theembedding tensor (see (6.24)).It is important to noti
e that the modi�ed gauge transformations (6.28) still 
lose on thegauge �elds and thus form a Lie algebra. Indeed, if we split (6.28) into two parts,ÆA�M = Æ(�)A�M + Æ(�)A�M ; (6.29)the 
ommutation relations are[Æ(�1); Æ(�2)℄A�M = Æ(�3)A�M + Æ(�3)A�M ;[Æ(�); Æ(�)℄A�M = [Æ(�1); Æ(�2)℄A�M = 0 ; (6.30)with �M3 = X[NP ℄M�N1 �P2 ;�3�PN = �(P1 D��N)2 � �(P2 D��N)1 : (6.31)61



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESTo prove that the terms that are quadrati
 in the matri
es XM in the left-hand side of (6.30)follow this rule, one uses (6.27). Due to (6.24) and (6.28), however, the usual properties ofthe �eld strength F��M = 2�[�A�℄M + X[PQ℄MA�PA�Q (6.32)are 
hanged. In parti
ular, it will no longer ful�ll the Bian
hi identity, whi
h now must berepla
ed byD[�F��℄M = X(NP )MA[�NF��℄P � 13X(PN)MX[QR℄P A[�NA�QA�℄R : (6.33)Furthermore, F��M does not transform 
ovariantly under a gauge transformation (6.28).Instead, we haveÆF��M = 2D[�ÆA�℄M � 2X(PQ)MA[�P ÆA�℄Q= XNQM F��N�Q � 2X(NP )MD[���℄NP � 2X(PQ)MA[�P ÆA�℄Q ; (6.34)where the 
ovariant derivative is (both expressions are useful and related by (6.27))X(NP )MD���NP = �� �X(NP )M��NP �+A�RXRQMX(NP )Q��NP ;D���NP = ����NP +XQRPA�Q��NR +XQRNA�Q��PR : (6.35)Therefore, if we want to deform the gauge kineti
 Lagrangian Lgk and a

ommodate ele
tri
and magneti
 gauge �elds, F��M 
annot be used to 
onstru
t gauge-
ovariant kineti
 terms.For this reason, the authors of [83℄ introdu
ed tensor �elds B�� �, later in [86℄ to bedes
ribed by B��MN , symmetri
 in (MN), and with them modi�ed �eld strengthsH��M = F��M +X(NP )MB��NP : (6.36)We will 
onsider gauge transformations of the antisymmetri
 tensors of the formÆB��NP = 2D[���℄NP + 2A[�(N ÆA�℄P ) +�B��NP ; (6.37)where �B��NP depends on the gauge parameter �Q, but we do not �x it further at thispoint. Together with (6.34), this then implies39ÆH��M = XNQM�QH��N +X(NP )M�B��NP : (6.38)39Note that F��N in the se
ond line of (6.34) 
an be repla
ed by H��N due to (6.24).62



6.1 Ele
tri
/magneti
 duality without anomalies6.1.2.3 The kineti
 Lagrangian As the �eld strength does not transform 
ovariantlyanymore, the Lagrangian (6.8) 
annot be invariant. Invarian
e 
an be restored in extending(6.8) as we will show now. The �rst step towards a gauge invariant a
tion is to repla
e F���in Lg:k:, (6.8), by H��� be
ause if �B��NP = 0, then HM�� transforms 
ovariantly under(6.28). So in this 
ase the new kineti
 LagrangianLg:k: = 14eI��H���H��� � 18R��"����H���H��� ; (6.39)is indeed invariant. Here again I�� and R�� denote, respe
tively, ImN�� and ReN��. Thedual �eld strength to H��� is given byG�� � � "���� �L�H��� = R��H��� + 12e"���� I��H�� � ; (6.40)and, 
onsequently, the Lagrangian and its transformations 
an be written asLg:k: = �18"����H���G��� ;ÆLg:k: = �14"����G�� �ÆH���+18"�����Q �H���XQ��H��� � 2H���XQ��G��� � G�� �XQ��G���� ; (6.41)In the third line, we used the in�nitesimal form of (6.9):Æ(�)N�� = �Mh�XM�� + 2XM(��N�)� +N��XM��N��i : (6.42)The se
ond line of (6.41) 
an be rewritten as a 
ovariant expression whenG��M = �G��� ; G���� with G��� � H��� ; (6.43)is introdu
ed. In using (6.38), we obtain for the variation of the gauge kineti
 LagrangianÆLg:k: = "���� ��14G�� � ��QXPQ�H��P +X(NP )��B��NP �+18G��MG��N�QXQMR
NR� : (6.44)Even if �B��NP = 0, the newly proposed form for Lg:k: in (6.39) is still not gauge invariant.This should not 
ome as a surprise be
ause (6.42) 
ontains a 
onstant shift (i.e., the termproportional to XM��), whi
h requires the addition of extra terms to the Lagrangian (inse
tion 5 and 3 we had to add the generalized Chern-Simons terms to absorb 
onstant shifts63



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESin the gauge kineti
 fun
tion). Also the last term on the right hand side of (6.42) gives extra
ontributions that are quadrati
 in the kineti
 fun
tion. In the next steps we will see thatbesides GCS terms, also terms linear and quadrati
 in the tensor �eld are required to restoregauge invarian
e. We start with the dis
ussion of the latter terms.6.1.2.4 Topologi
al terms for the B-�eld and a new 
onstraint The se
ond steptowards gauge invarian
e is made by adding topologi
al terms linear and quadrati
 in thetensor �eld B��NP to the gauge kineti
 term (6.39), namelyLtop;B = 14"���� X(NP )�B��NP �F�� � + 12 X(RS)�B��RS� : (6.45)Note that this term vanishes for purely ele
tri
 gaugings be
ause there one has X(NP )� = 0�as 
an be seen from the dis
ussion around (6.12)�. Consequently, the tensor �elds de
ouplefrom the theory in ele
tri
 gaugings.We re
all that, up to now, only the 
losure 
onstraint (6.20) has been used. Now, however,one new but not independent 
onstraint is imposed:X(NP )M
MQX(RS)Q = 0 : (6.46)It will be shown later that this 
onstraint is a
tually implied by the lo
ality 
onstraint (6.21)and the original representation 
onstraint of [83℄, i.e. (6.22). As it turns out, even therelaxation of the 
onstraint (6.22) to allow for nontrivial DMNR 6= 0 will still imply (6.46).The 
onstraint (6.46) simply means thatX(NP )�X(RS)� = X(NP )�X(RS)� : (6.47)A 
onsequen
e of this 
onstraint that is quite useful for 
omputations follows from the �rstof (6.19) and (6.24): X(PQ)RDMNR = 0 : (6.48)The variation of Ltop;B isÆLtop;B = 14 "����X(NP )� �H��� ÆB��NP +B��NP ÆF���� (6.49)= 14 "����X(NP )� �H��� ÆB��NP + 2B��NP �D�ÆA�� �X(RS)�AR� ÆAS� �� :64



6.1 Ele
tri
/magneti
 duality without anomalies6.1.2.5 Generalized Chern-Simons terms If there is a 
onstant shift by XM�� in(6.42) we know from the arguments in se
tion 5 that generalized Chern-Simons terms arene
essary. In [83℄, the authors introdu
ed a generalized Chern-Simons term of the form(these are the last two lines in what they 
alled Ltop in their equation (4.3))LGCS = "����A�MA�N �13 XMN � ��A�� + 16XMN���A�� + 18XMN �XPQ�A�PA�Q� :(6.50)Using (6.25) antisymmetrized in [MNQ℄ and the de�nition of DMNP in (6.18), one 
an writeits variation asÆLGCS = "���� �12F���D�ÆA�� � 12F���X(NP )�A�NÆA�P�DMNPA�MÆA�N ���A�P + 38XRSPA�RA�S�� : (6.51)modulo total derivatives. Finally, 
ombining the variation of the generalized Chern-Simonsterm with (6.49) results inÆ (Ltop;B + LGCS) = "���� �12H���D�ÆA�� + 14H���X(NP )� �ÆB��NP � 2A�NÆA�P ��DMNPA�MÆA�N ���A�P + 38XRSPA�RA�S�� : (6.52)6.1.2.6 Variation of the total a
tion The results of the previous paragraphs allow usto dis
uss the symmetry variation of the total LagrangianLV T = Lg:k: + Ltop;B + LGCS ; (6.53)built from (6.39), (6.45) and (6.50). In agreement with [83℄ we will �nd that (6.53) is indeedinvariant under (6.28). In order to see this, we �rst 
he
k the invarian
e of (6.53) with respe
tto the �-transformations. One 
an see dire
tly from (6.44) that the gauge-kineti
 terms areinvariant as no �-term appears in their variation. The se
ond line of (6.52) also 
learlyvanishes be
ause any �-transformation is proportional to the symmetri
 part X(MN)P and isproje
ted to zero by DRSP due to (6.48). This leaves us with the �rst line of (6.52). If weuse (6.37) and (6.28), this 
an be written in a symple
ti
ally 
ovariant form:Æ�LV T = �12"����H��MX(NP )Q
MQD���NP : (6.54)65



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESThe B-terms in H, see (6.36), are proportional to X(RS)M and thus give a vanishing 
on-tribution due to our new 
onstraint (6.46). For the F terms we 
an perform an integrationby parts40 and then a

ording to (6.33) there are again only terms proportional to X(RS)Mleading to the same 
on
lusion. Therefore, the �-variation of the total a
tion vanishes.Thus, we only have to 
onsider the �M gauge transformations. In a

ordan
e with (6.34),the D�ÆA��-term in (6.52) 
an be repla
ed by 12�QXNQ�H��N (see again footnote 39). One
an then obtain a symple
ti
ally 
ovariant expression when this is 
ombined with the �rstterm of (6.44) (the �rst term on the right hand side of (6.55) below). Adding also theremaining terms of (6.52) and (6.44), one obtains, using (6.37),ÆLV T = "���� �14G��M�QXNQR
MRH��N + 18G��MG��N�QXQMR
NR+14(H� G)�� �X(NP )��B��NP�DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� : (6.55)We observe that if the H in the �rst line was a G, eqs. (6.17) and (6.19) would allow oneto write the �rst line as an expression proportional to DMNP . This leads to the �rst line in(6.56) below. The se
ond observation is that the identity (H�G)� = 0 allows one to rewritethe se
ond line of (6.55) in a symple
ti
ally 
ovariant way, so that, altogether, we haveÆLV T = "���� �14G��M�QXNQR
MR(H� G)��N + 38G��MG��N�QDQMN�14(H�G)��M
MRX(NP )R�B��NP�DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� : (6.56)By 
hoosing �B��NP = ��NG��P � �PG��N ; (6.57)the result (6.56) be
omesÆLV T = "���� �38�QDMNQ �2G��M (H� G)��N + G��MG��N��DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� ; (6.58)40Integration by parts with the 
ovariant derivatives is allowed be
ause (6.25) 
an be read as the invarian
eof the tensor X and (6.17) as the invarian
e of 
. 66



6.1 Ele
tri
/magneti
 duality without anomalieswhi
h is then proportional to DMNP , and hen
e zero when the original representation 
on-straint (6.22) is imposed.Our goal is to generalize this for theories with quantum anomalies. These anomaliesdepend only on the gauge ve
tors. However, the �eld strengths G, (6.40) also depends on thematrix N whi
h itself generi
ally depends on s
alar �elds. Therefore, we want to 
onsidermodi�ed transformations of the antisymmetri
 tensors su
h that G does not appear in the�nal result.To a
hieve this, we would like to repla
e (6.57) by a transformation su
h thatX(NP )R�B��NP = �2X(NP )R�NG��P + 32
RMDMNQ�Q(H� G)��N : (6.59)Indeed, inserting this in (6.56) would lead toÆLV T = "���� �38�QDMNQF��MF��N�DMNPA�MD��N ���A�P + 38XRSPA�RA�S�� ; (6.60)where we have used (6.48) to delete 
ontributions 
oming from the B��NP term in H��M (
f.(6.36)).The �rst term on the right hand side of (6.59) would follow from (6.57), but the se
ondterm 
annot in general be obtained from assigning transformations to B��NP (
ompare with(6.19)). Indeed, self-
onsisten
y of (6.59) requires that the se
ond term on the right hand sidebe proportional to X(NP )R, whi
h imposes a further 
onstraint on DMNP . We will see in se
-tion 6.2.3 how we 
an nevertheless justify the transformation law (6.59) by introdu
ing otherantisymmetri
 tensors. For the moment, we just a

ept (6.59) and explore its 
onsequen
es.Expanding (6.60) using (6.16) and (6.28) and using a partial integration, (6.60) 
an berewritten as ÆLV T = �A[�℄ ; (6.61)where A[�℄ = �12"�����PDMNP��A�M��A�N�14"�����P �DMNRX[PS℄N + 32DMNPX[RS℄N���A�MA�RA�S : (6.62)This expression formally looks like a symple
ti
ally 
ovariant generalization of the ele
tri

onsistent anomaly (5.41) whi
h we en
ountered in se
tion 5. Noti
e, however, that at this67



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESpoint this is really only a formal analogy, as the tensor DMNP has, a priori, no 
onne
tionwith quantum anomalies. We will study the meaning of this analogy in more detail in thenext se
tion. To prove (6.61), one uses (6.48) and the preservation of DMNP under gaugetransformations, whi
h follows from preservation of X, see (6.25), and of 
, see (6.17), andreads XM(NP DQR)P = 0 : (6.63)For the terms quarti
 in the gauge �elds, one needs the following 
onsequen
e of (6.63):(XRSM XPQN DLMN )[RSPL℄ = �(XRSM XPMN DLQN +XRSM XPLN DQMN )[RSPL℄= �(XRSM XPLN DQMN )[RSPL℄ ; (6.64)where the �nal line uses (6.26) and again (6.48).Let us summarize the result of our 
al
ulation up to the present point. We have used thea
tion (6.53) and 
onsidered its transformations under (6.28) and (6.37), where �B��NP wasundetermined. We used the 
losure 
onstraint (6.20) and one new 
onstraint (6.46). It wasshown that the 
hoi
e (6.57) leads to invarian
e ifDMNP vanishes, whi
h is the representation
onstraint (6.22) used in the anomaly-free 
ase studied in [83℄. However, when we use the moregeneral transformation (6.59) in the 
ase DMNP 6= 0 instead, we obtain the non-vanishing
lassi
al variation (6.61). The 
orresponding expression (6.62) formally looks very similar toa symple
ti
ally 
ovariant generalization of the ele
tri
 
onsistent quantum anomaly.In order to fully justify and understand this result, we are then left with the followingthree open issues, whi
h we will dis
uss in the following se
tion:(i) The expression (6.62) for the non-vanishing 
lassi
al variation of the a
tion has to berelated to quantum anomalies so that gauge invarian
e 
an be restored at the level ofthe quantum e�e
tive a
tion, in analogy to the ele
tri
 
ase des
ribed in se
tions 3 and5. This will be done in se
tion 6.2.1.(ii) The meaning of the new 
onstraint (6.46) that was used to obtain (6.61) has to be
lari�ed. This is subje
t of se
tion 6.2.2.(iii) We have to show how the transformation (6.59), whi
h also underlies the result (6.61),
an be realized. This will be done in se
tion 6.2.3.68



6.2 Gauge invarian
e of the e�e
tive a
tion with anomalies6.2 Gauge invarian
e of the e�e
tive a
tion with anomalies6.2.1 Symple
ti
ally 
ovariant anomaliesIn se
tion 6.1, we dis
ussed the algebrai
 
onstraints that were imposed on the embeddingtensor in ref. [83℄ and that allowed the 
onstru
tion of a gauge invariant Lagrangian withele
tri
 and magneti
 gauge potentials as well as tensor �elds. Two of these 
onstraints,(6.20) and (6.21), had a very 
lear physi
al motivation and ensured the 
losure of the gaugealgebra and the mutual lo
ality of all intera
ting �elds. The physi
al origin of the third
onstraint, the representation 
onstraint, (6.22), on the other hand, remained a bit obs
ure.In order to understand its meaning, we spe
ialize it to its purely ele
tri
 
omponents,X(��
) = 0 : (6.65)Given that the 
omponents X��
 generate axioni
 shift symmetries (remember the �rst termon the right hand side of (6.42)), we 
an identify them with the 
orresponding symbols CABCin se
tion 5, and re
ognize (6.65) as the 
ondition for the absen
e of quantum anomalies forthe ele
tri
 gauge bosons (see (5.43)). It is therefore suggestive to interpret (6.22) as the
ondition for the absen
e of quantum anomalies for all gauge �elds (i.e. for the ele
tri
 andthe magneti
 gauge �elds), and one expe
ts that in the presen
e of quantum anomalies, this
onstraint 
an be relaxed. We will show that the relaxation 
onsists in assuming that thesymmetri
 tensor DMNP de�ned by (6.18) is of the form41DMNP = dMNP ; (6.66)for a symmetri
 tensor dMNP whi
h des
ribes the quantum gauge anomalies due to an anoma-lous spe
trum of 
hiral fermions. In fa
t, one expe
ts quantum anomalies from the loops ofthese fermions,  , whi
h intera
t with the gauge �elds via minimal 
ouplings� 
�(�� �A�����Æ� �A�����Æ�) : (6.67)Therefore, the anomalies 
ontain { for ea
h external gauge �eld (or gauge parameter) { anembedding tensor, i.e. dMNP has the following parti
ular form:dMNP = �M��N��P 
d��
 ; (6.68)41The possibility to impose a relation su
h as (6.66) is by no means guaranteed for all types of gauge groups(see e.g. [87℄ for a short dis
ussion in the purely ele
tri
 
ase studied in [88℄).69



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESwith d��
 being a 
onstant symmetri
 tensor. In the familiar 
ontext of a theory with a
at s
alar manifold, 
onstant fermioni
 transformation matri
es, t�, and the 
orrespondingminimal 
ouplings, the tensor dMNP is simply proportional todMNP / �M��N��P 
Tr(ft�; t�gt
g; (6.69)where the tra
e is over the representation matri
es of the fermions.42We showed that the generalization of the 
onsistent anomaly (5.41) in a symple
ti
ally
ovariant way leads to an expression of the form (6.62) with the DMNP -tensor repla
ed bydMNP . Indeed, the 
onstraint (6.66) implies the 
an
ellation of this quantum gauge anomalyby the 
lassi
al gauge variation (6.61). Note that it is ne
essary for this 
an
ellation that theanomaly tensor dMNP is really 
onstant (i.e., independent of the s
alar �elds). We expe
tthis 
onstan
y to be generally true for the same topologi
al reasons that imply the 
onstan
yof d��
 in the 
onventional ele
tri
 gaugings. In this way we have already addressed the �rstissue of the end of the previous se
tion. We are now going to show how the 
onstraint (6.66)suÆ
es also to address the other two issues, (ii) and (iii).6.2.2 The new 
onstraintWe now 
omment on the 
onstraint (6.46):X(NP )M
MQX(RS)Q = 0 : (6.70)We will show that this equation holds if the lo
ality 
onstraint is satis�ed, and (6.66) isimposed on DMNP with dMNP of the parti
ular form given in (6.68). To 
larify this, weintrodu
e as in [83℄ the `zero mode tensor'43ZM� = 12
MN�N� ; i.e. 8<: Z�� = 12��� ;Z�� = �12��� : (6.71)One then obtains, using (6.19), the de�nition of X in (6.16) and (6.68) thatX(NP )M = ZM���NP ; (6.72)42One might wonder how the magneti
 ve
tor �elds A�� 
an give rise to anomalous triangle diagrams, asthey have no propagator due to the la
k of a kineti
 term. However, it is the amputated diagram with internalfermion lines that one has to 
onsider.43Note that the 
omponents of 
MN have signs opposite to those of 
MN as given in (6.7).70



6.2 Gauge invarian
e of the e�e
tive a
tion with anomaliesfor some tensor ��NP = ��PN . Due to the fa
t that we allow the symmetri
 tensor DMNP in(6.18) to be non-zero and impose the 
onstraint (6.66), this tensor ��NP is not the analogousquantity 
alled d�MN in [83℄44, but 
an be written as��NP = (t�)NQ
PQ � 3d��
�N��P 
 : (6.73)However, the expli
it form of this expression will not be relevant. We will only need thatX(NP )M is proportional to ZM�.Now we will �nally use the lo
ality 
onstraint (6.21), whi
h impliesZ�[�Z��℄ = 0 ; i.e. ZM�ZN�
MN = 0 : (6.74)and, thus, leads to the desired result (6.70).The tensor ZM� 
an be 
alled zero-mode tensor as e.g. the violation of the usual Ja
obiidentity (se
ond line of (6.26)) is proportional to it. We now show that it also de�nes zeromodes of DMNR. Indeed, another 
onsequen
e of the lo
ality 
onstraint isXMNP
MQ��Q = 0 ! XMNPZM� = 0 ; XQMP
QSXSNR = 0 : (6.75)With (6.19) and (6.24) this implies DMNRZR� = 0 : (6.76)Note that we did not need (6.66) to a
hieve this last result, but that the equation is 
onsistentwith it.6.2.3 New antisymmetri
 tensorsFinally, in this se
tion we will justify the transformation (6.59), without requiring further
onstraints on the D-tensor. That transformation gives an expression for X(NP )R�B��NPthat is not obviously a 
ontra
tion with the tensor X(NP )R (due to the se
ond term on theright hand side of (6.59)). We 
an therefore in general not assign a transformation of B��NPsu
h that its 
ontra
tion with X(NP )R gives (6.59). To over
ome this problem, we will have44We use ��MN in this work to denote the analogue (or better: generalization) of what was 
alled d�MNin [83℄, be
ause d�MN is reserved in the present paper to denote the quantity �M��N
d��
 (
f eq. (6.84))related to the quantum anomalies. 71



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESto 
hange the set of independent antisymmetri
 tensors. The B��MN 
annot be 
onsideredas independent �elds in order to realize (6.59). We will, as it was done along the lines of [83℄,introdu
e a new set of independent antisymmetri
 tensors, given by B�� � for any � denotinga rigid symmetry.The �elds B��NP and their asso
iated gauge parameters �NP appeared in the relevantformulae in the form X(NP )MB��NP or X(NP )M�NP , see e.g. in (6.28), (6.34), (6.36) and(6.45). Now, as we have the form (6.72), this 
an be written asX(NP )MB��NP = ZM���MNB��MN : (6.77)Therefore, we will repla
e ��MNB��MN ! B�� � : (6.78)and 
onsider the B�� � as the independent antisymmetri
 tensors. Thus, there is one tensorfor every generator of the rigid symmetry group and the repla
ement implies thatX(NP )MB��NP ! ZM�B�� � : (6.79)We also introdu
e a 
orresponding set of independent gauge parameters ��� through thesubstitution: ��MN��MN ! ��� : (6.80)This allows us to reformulate all the equations in the previous subse
tions in terms of B�� �and ���. It is now, for instan
e,:ÆA�M = D��M � ZM���� ; (6.81)H��M = F��M + ZM�B�� � ; (6.82)Ltop;B = 14"���� Z��B�� � �F�� � + 12 Z��B�� �� : (6.83)We will show that 
onsidering B�� � as the independent variables, we are ready to solve theremaining third issue mentioned at the end of se
tion 6.1. To this end, we �rst note that allthe 
al
ulations in se
tion 6.1 remain valid when (6.79) and (6.81)-(6.83) are used to expresseverything in terms of the new variables B�� � and ���. The equations (6.46) and (6.48) weused in se
tion 6.1 are now simply repla
ed by (6.74) and (6.76), respe
tively.72



6.2 Gauge invarian
e of the e�e
tive a
tion with anomaliesFollowing (6.68), we are able to setdMNP = �M�d�NP ; d�NP = d��
�N��P 
 ; (6.84)and, 
onsequently, 
an de�ne (bearing in mind (6.72))ÆB�� � = 2D[���℄� + 2��NPA[�NÆA�℄P +�B�� � ;�B�� � = �2��NP�NG��P + 3d�NP�N (H� G)��P ; (6.85)to reprodu
e (6.59). Here the left-hand side of (6.59) is repla
ed a

ording to (6.79) and the
ovariant derivative is de�ned asD[���℄� = �[���℄� + f��
�P �A[�P��℄ 
 : (6.86)Of 
ourse, (6.85) is only �xed modulo terms that vanish upon 
ontra
tion with the embeddingtensor.So let us summarize what we have found out. In this se
tion we have seen, so far, that itis possible to relax the representation 
onstraint (6.22) used in ref. [83℄ to the more general
ondition (6.66) if one allows for quantum anomalies. The physi
al interpretation of theoriginal representation 
onstraint (6.22) of [83℄ is thus the absen
e of quantum anomalies.Due to these 
onstraints we obtained the equation (6.72), whi
h allowed us to introdu
ethe B�� � as independent variables. All the 
al
ulations of se
tion 6.1.2 are then valid withthe substitutions given in (6.79) and (6.80). We did not impose (6.72) in se
tion 6.1.2, andtherefore we 
ould at that stage only work with B��NP . However, now we 
on
lude thatwe need the B�� � as independent �elds and will further only 
onsider these antisymmetri
tensors.The results of this se
tion 
an alternatively be viewed as a 
ovariantization of the results ofse
tion 5 and [12,88℄ with respe
t to ele
tri
/magneti
 duality transformations.45 To further
he
k the 
onsisten
y of our results, we will in the next se
tion redu
e our treatment to apurely ele
tri
 gauging and show that the results of se
tion 5 
an be reprodu
ed.45We have not dis
ussed the 
omplete embedding into N = 1 supersymmetry here, whi
h would in
lude allfermioni
 terms as well as the supersymmetry transformations of all the �elds. This is beyond the s
ope ofthis thesis. 73



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIES6.3 Purely ele
tri
 gaugingsLet us �rst expli
itly write down DMNP in its ele
tri
 and magneti
 
omponents:D��� = X(���) ;3D��� = X��� � 2X(��)� ;3D��� = �X��� + 2X(��)� ;D��� = �X(���) : (6.87)In the 
ase of a purely ele
tri
 gauging, the only non-vanishing 
omponents of the embeddingtensor are ele
tri
: �M� = (���; 0) : (6.88)Therefore also X�NP = 0 and (6.68) implies that the only non-zero 
omponents of DMNP =dMNP are D��
. Therefore, (6.87) redu
e toD��
 = X(��
) ; X(�
)� = 0 ; X
�� = 0 : (6.89)The non-vanishing entries of the gauge generators are X��� and X�
� = �X��
 = X[�
℄�,the latter satisfying the Ja
obi identities sin
e the right hand side of (6.26) for MNQR allele
tri
 indi
es vanishes. The X[�
℄� 
an be identi�ed with the stru
ture 
onstants of thegauge group that were 
alled fABC in se
tion 5. The X��
 
orrespond to the shifts in (5.20).The �rst relation in (6.89) then 
orresponds to C(AB;C) = dABC .The lo
ality 
onstraint is trivially satis�ed and the 
losure relation redu
es to (5.32) asexpe
ted.At the level of the a
tion LVT, all tensor �elds drop out sin
e, when we express everythingin terms of the new tensors B�� �, these tensors always appear 
ontra
ted with a fa
tor��� = 0. In parti
ular, the topologi
al terms Ltop;B vanish and the modi�ed �eld strengthsfor the ele
tri
 ve
tor �elds H��� redu
e to ordinary �eld strengths:H��� = 2�[�A�℄� +X[
�℄�A�
A�� : (6.90)Also the GCS terms (6.50) redu
e to the analogue form of (5.30) in purely ele
tri
 gaugings.Finally, the gauge variation of LVT redu
es to minus the ordinary 
onsistent gauge anomaly.74



6.4 A simple example of magneti
 gaugingThis 
on
ludes our reinvestigation of the ele
tri
 gauging with axioni
 shift symmetries,generalized Chern-Simons terms and quantum anomalies as it follows from our more gen-eral symple
ti
ally 
ovariant treatment. We showed that the more general theory redu
es
onsistently to the known 
ase of a purely ele
tri
 gauging.6.4 A simple example of magneti
 gaugingThe above results 
an be shown by means of a simple example that already provides anontrivial symmetri
 tensor DMNP . Let us now brie
y illustrate the above results by meansof a simple example. We 
onsider a theory with a rigid symmetry group embedded in theele
tri
/magneti
 duality group Sp(2;R). The embedding into the symple
ti
 transformationsis given byt1MN =0� 1 00 �1 1A ; t2MN = 0� 0 01 0 1A ; t3MN = 0� 0 10 0 1A ; (6.91)i.e. t211 = 1. Let us 
onsider the following subset of duality transformations:SMN = ÆMN � �PXPNM ; with generators XPMN = 0� 0 0XP 11 0 1A ; (6.92)where �P is the rigid transformation parameter. The tensor X is related to the embeddingof the symmetries in the symple
ti
 algebra using the embedding tensor,XPMN = 3X�=1�P�t�MN : (6.93)We have thus 
hosen the embedding tensor�P 1 = 0 ; �P 2 = XP 11 ; �P 3 = 0 : (6.94)The task is to promote SMN to a gauge transformation, i.e., to take �N = �N (x) spa
etimedependent and to identify the XPMN with the gauge generators. This obviously 
orrespondsto a magneti
 gauging, be
ause (6.89) is violated. However, the lo
ality 
onstraint (6.21)is automati
ally satis�ed, as only the index value � = 2 appears, and 
losure of the gaugealgebra spanned by the XPMN requires that (6.20) is imposed, where only the right-hand side75



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESis non-trivial. It is ne
essary that �12 = 0, and the only gauge generators that are 
onsistentwith this 
onstraint areXPMN = (X1MN ; X1MN ) ; with X1MN = 0 ; X1MN = 0� 0 0X111 0 1A : (6.95)Note that this 
hoi
e still violates the original linear representation 
onstraint (6.22) be
ause(6.87) leads to D111 = �X111 6= 0. However, this is not an obsta
le in performing the gaugingwith generators XPMN given in (6.95). In order to do so we introdu
e a symple
ti
 ve
tor�eld A�M whi
h 
ontains an ele
tri
 and a magneti
 part, A�1 and A�1. Only the magneti
ve
tor �eld 
ouples to matter via 
ovariant derivatives sin
e the embedding tensor proje
tsout the ele
tri
 part. In what follows, we also assume the presen
e of anomalous 
ouplingsbetween the magneti
 ve
tor �eld and 
hiral fermions whi
h justi�es the nonzero X111 6= 0be
ause it will give rise to anomaly 
an
ellation terms in the 
lassi
al gauge variation of thea
tion. More pre
isely, we will have to require that�12 = X111 ; �X111 = d111 = (X111)3 ~d222 ; (6.96)where we introdu
ed ~d222 as the 
omponent of d��
 .There is the kineti
 term for the ele
tri
 ve
tor �elds:Lg:k: = 14 e I H��1H�� 1 � 18 R "����H��1H��1; (6.97)where we introdu
ed the modi�ed �eld strength (6.82)H��1 = 2�[�A�℄1 + 12X111B��2 ; (6.98)and whose variation has to be 
omputed. Observe that it depends on a tensor �eld B��2be
ause in (6.94) it was 
hosen a magneti
 gauging. However, it transforms 
ovariantlyunder ÆA�1 = ���1 +X111A� 1�1 � 12X111��2 ;ÆB��2 = 2�[���℄2 + 4A[� 1��℄�1 � 6�1�[�A�℄ 1 � �1G�� 1 ;ÆA�1 = ���1 : (6.99)76



6.4 A simple example of magneti
 gaugingwhi
h follows from (6.85) sin
e the only nonzero 
omponent of �2MN is �211 = 2 and ford2MN we have only d211 = �1. One 
an 
he
k thatÆH��1 = �12X111�1(H+ G)�� 1 ; withH�� 1 = F�� 1 = 2�[�A�℄1 ; G�� 1 � RH��1 + 12eI"����H�� 1 : (6.100)Under gauge variations, the real and imaginary part of the kineti
 fun
tion transform asfollows (
f. (6.42)): ÆI = 2�1X111RI ; ÆR = �1X111 �R2 � I2� : (6.101)From this one obtains the gauge variation of the kineti
 term, given byÆLg:k: = 14"�����1X111G�� 1��A�1 : (6.102)whi
h 
orresponds to (6.44) in our present gauge (6.94).In a se
ond step, we add the topologi
al term (6.83)Ltop;B = 14"����X111B��2�[�A�℄ 1 : (6.103)The gauge variation of this term is equal to (up to a total derivative)ÆLtop;B = �14�1X111"���� (��A� 1) (2��A� 1 + G�� 1) : (6.104)Note that the generalized Chern-Simons term (6.50) vanishes in this 
ase. In 
ombining(6.102) and (6.104), one derivesÆ (Lg:k: + Ltop;B) = �12�1X111 (��A� 1) (��A� 1) "���� : (6.105)This 
an
els the magneti
 gauge anomaly whose form 
an be derived from (6.62),A[�℄ = �12"�����1d111 (��A� 1) (��A� 1) (6.106)if we remember that X111 = �D111 = �d111. Note that the ele
tri
 gauge �elds do notappear re
e
ting the fa
t that the ele
tri
 gauge �elds do not 
ouple to 
hiral fermions.A simple fermioni
 spe
trum that 
ould yield su
h an anomaly (6.106) is given by,e.g., three 
hiral fermions with 
anoni
al kineti
 terms and quantum numbers Q =(�1); (�1); (+2) under the U(1) gauged by A� 1. Indeed, with this spe
trum, we wouldhave Tr(Q) = 0, i.e., vanishing gravitational anomaly, but a 
ubi
 Abelian gauge anomalyd111 / Tr(Q3) = +6. 77



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIES6.5 SummaryIn se
tion 6.1.2 we argued that the rigid symmetry group Grigid is a subset of the produ
t ofthe symple
ti
 duality transformations that a
t on the ve
tor �elds and the isometry groupof the s
alar manifold of the 
hiral multiplets in N = 1 supersymmetry or in theories withoutsupersymmetry. The reason is that the rigid symmetries of the ve
tor and s
alar se
tor arenot dire
tly related in these theories. On the �elds strengths F��M = (F���; G�� �) these rigidsymmetries a
t by multipli
ation with in�nitesimal symple
ti
 matri
es (t�)MP for whi
h wehave (t�)[MP
N ℄P = 0 where 
NP is the symple
ti
 metri
 given by (6.7). The gauging of asubgroup, Glo
al � Grigid, is a
hieved by proje
ting the 2n-dimensional ve
tor spa
e spannedby the ve
tor �elds A�M onto the Lie algebra of Glo
al whi
h is done by the embeddingtensor �M�. The generators of Glo
al de
ompose a

ording to (XM )NP = �M�(t�)NPwhose 
omponents are denoted by XMNP . The embedding tensor has to satisfy a number of
onsisten
y 
onditions: f��
�M��N� = (t�)NP�M��P 
 ;
MN�M��N� = 0 , ��[����℄ = 0 : (6.107)Closure of the gauge algebra requires the �rst line of (6.107), while the 
onstraint displayed inthe se
ond line of (6.107) is required by lo
ality. The 
losure 
onstraint re
e
ts the invarian
eof the embedding tensor under Glo
al and it implies for the matri
es XM the relation[XM ;XN ℄ = �XMNPXP : (6.108)It is 
ru
ial to observe that the `stru
ture 
onstants' given by XMNP 
ontain also an ingeneral nontrivial symmetri
 part X(MN)P . The antisymmetry of the left hand side of (6.108)only requires that the 
ontra
tion X(MN)P�P � vanishes. This gives a violation of the Ja
obiidentity (6.26) whi
h 
an be 
ompensated in extending the gauge transformation of the ve
torpotentials toÆA�M = D��M �X(NP )M��NP ; D��M = ���M +XPQMA�P�Q ; (6.109)where we introdu
ed the 
ovariant derivative D��M , and new ve
tor-like gauge parameters��NP , symmetri
 in the upper indi
es. Consequently, the �eld strength F��M = 2�[�A�℄M +78



6.5 SummaryX[PQ℄MA�PA�Q does no longer transform 
ovariantly (6.34) and violates the Bian
hi-identity(6.33). As another 
onsequen
e we �nd that a gauge kineti
 Lagrangian of the formLgk = +14 ImN��F���F ��� � 18"���� ReN��F���F��� ; (6.110)
annot be gauge invariant under transformations (6.109) either. In [83℄ it was shown thatthe LagrangianLV T = 14eI��H���H��� � 18R��"����H���H��� ++14"���� X(NP )�B��NP �F�� � + 12 X(RS)�B��RS�++"����A�MA�N �13 XMN � ��A�� + 16XMN���A��++ 18XMN �XPQ�A�PA�Q� ; (6.111)with H as in (6.36), is indeed invariant under the gauge transformations (6.109) if the em-bedding tensor satis�es the additional 
onstraintDMNR := X(MNQ
R)Q = 0 (6.112)We 
ould show in this thesis that the gauge variation of (6.111) for nontrivial DMNR 6= 0does no longer vanish but is instead given byÆLV T = �12"�����PDMNP��A�M��A�N�14"�����P �DMNRX[PS℄N + 32DMNPX[RS℄N���A�MA�RA�S : (6.113)whi
h formally looks like the 
onsistent anomaly [40℄. Can
ellation of (6.113) is only possiblein presen
e of anomalies and if one relaxes the 
onstraint (6.112) a

ording toDMNR = dMNRwhere the symmetri
 tensor dMNR des
ribes gauge anomalies. In fa
t, one 
an expe
t gaugeanomalies due to an anomalous spe
trum of 
hiral fermions  whi
h intera
t with gauge �eldsvia minimal 
ouplings � 
�(���A�����Æ��A�����Æ�) . In the dis
ussion of se
tion 2 welearned that the 
oupling of gauge �elds to 
hiral fermions 
auses anomalous 
ontributions tothe 
onservation law of the axial 
urrents whi
h are to lowest order given by triangle diagrams.The ele
tri
 ve
tor �elds and the magneti
 ve
tor �elds generate su
h anomalous 
ontributionsdue to their 
oupling to 
hiral fermions in total analogy to the dis
ussion of se
tion 2.1. The
onstraint DMNR = dMNR implies the 
an
ellation of this quantum anomaly by the 
lassi
al79



6 SYMPLECTICALLY COVARIANT FORMALISM AND ANOMALIES IN CHIRALGAUGE THEORIESvariation of (6.111). In this sense we showed how the Green-S
hwarz me
hanism is appliedin a symple
ti
ally 
ovariant way (symple
ti
ally 
ovariant Green-S
hwarz me
hanism).In se
tion 6.4 we expli
itly displayed how an Abelian magneti
 gauge violates (6.112).Furthermore, we gave the example of an anomalous spe
trum of 
hiral fermions that possibly
an
els the 
lassi
al gauge variation in this example.The results of this se
tion are new and generalize the work [83℄, as presented in [40℄.
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7 Abelian gauging and D-term potential in N = 1 supersym-metryIn the previous se
tion, we dis
ussed the symple
ti
ally 
ovariant formulation of the gaugese
tor with a nontrivial gauge kineti
 fun
tion that transforms with a shift under gaugedisometry transformations of the target spa
e. The symple
ti
ally 
ovariant treatment requiredthe introdu
tion of magneti
 ve
tor �elds that are dual to the original ele
tri
 ve
tor �eldsand do not possess a kineti
 term. The additional degrees of freedom represented by themagneti
 ve
tor �elds are 
ompensated by additional gauge transformations. Invarian
e ofthe Lagrangian under the gauge transformations is restored by new 
ouplings. Among thesenew 
ouplings is a topologi
al term (6.45) that 
ouples an antisymmetri
 tensor �eld to themagneti
 ve
tor �elds. In appendix E we show that the a
tion (6.53) redu
es to (E.11) forAbelian gaugings if the gauge se
tor is 
oupled to a nonlinear sigma model with gauged shiftsymmetries and the magneti
 ve
tor �elds are eliminated by their equations of motion. Weobserve that in the Lagrangian (E.11) there are ele
tri
 ve
tors and tensor �elds left, i.e.(E.11) 
ontains a kineti
 term and a mass term for the tensor �eld, where the mass is givenby the embedding tensor. There is also a topologi
al 
oupling of the tensor �eld to the ele
tri
ve
tors among other 
ouplings whi
h are of minor interest. The topologi
al 
oupling of thetensor �eld to the ele
tri
 ve
tors is of similar type as (6.45). Interestingly, in [90℄ the authorsdis
uss theories with massive tensor multiplets in global N = 1 supersymmetry where thebosoni
 se
tor 
ontains exa
tly those 
ouplings en
ountered in (E.11). Partly motivated bythe results of orientifold 
ompa
ti�
ations [91, 92℄, the authors of [90℄ proposed an N = 1super�eld a
tion for a massive tensor multiplet 
oupled to several ve
tor 
hiral multiplets.Furthermore, the authors 
omputed the 
omponent form of that a
tion and dedu
ed thefollowing potentialV / ��e� + 2m�Imf��� [(Ref)�1℄�
 �e
 + 2Imf
�m�� ++4Ref��m�m�� ; (7.1)where f�� denotes the gauge kineti
 fun
tion. The potential (7.1) is not only determined byauxiliary �elds but 
ontains a dire
t mass term for the s
alar in the tensor multiplet (thelast term in �7.1)� whi
h does not arise from eliminating an auxiliary �eld. In this sense,81



7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N = 1 SUPERSYMMETRYthe dis
ussion that follows is 
onne
ted to the Abelian gauge of the symple
ti
ally 
ovariantformalism presented in the previous se
tion.In this se
tion we will show that the potential (7.1) is a
tually equivalent to a D-termpotential in its standard form as given in [93℄, for example. In order to do so, we will add atotal derivative to the a
tion used in [90℄. The advantage over the pro
edure used in [90℄ isthat we are now able to absorb the topologi
al 
ouplings of the tensor �elds to the ele
tri
ve
tors into the gauge kineti
 term by a suitable rede�ntion of the gauge kineti
 fun
tion.The gauge kineti
 Lagrangian has the advantage that it is easier dualized than the Lagrangianused in [90℄. It is suitable to rotate the �elds and 
ouplings to a spe
ial frame and then todetermine the D-term potential. In this frame the potential is given in its standard form anda 
omponent expression is obtained after eliminating the auxiliary �elds with help of theirequations of motion. The potential (7.1) is found on
e we rotate the spe
ial frame ba
k to itsoriginal form and, thus, the potential (7.1) is equivalent to a D-term potential in standardform.The authors of [90℄ start from the following Lagrangian2�K(L)�D + �f��(N)(W� � 2im��)T �(W� � 2im��) + 2e��T �(W� � im��) + h.
.�F (7.2)where the tensor �eld is 
ontained in the spinor super�eld46 � and the ele
tri
 �eld strengthis part of the super�eld W� where the index � 
ounts the number of U(1) ve
tor�elds,� = 1; : : : ; k (for notational issues 
onsult appendix C). The �eld strength of the tensor �eldis part of the linear multiplet L and the kineti
 term, whi
h in the simplest 
ase would be ofthe form L2, is generalized by the real fun
tion K(L). The gauge kineti
 
oupling fun
tionf��(N) represents now a fun
tion of 
hiral super�elds N and, thus, is itself a super�eld.Before dualizing the theory of the massive tensor multiplet we add to (7.2) a total derivativeterm 2i Im �W T �W �j��� = � i2F ^F whi
h, therefore, does not a�e
t the equations of motion.Thus, in simply adding �2 e�e�2e
m
 � Im �(W�)T �W��, we obtain the following Lagrangian2�K(L)�D + � ~f��(N)(W� � 2im��)T �(W� � 2im��) + h.
.�F (7.3)where the gauge kineti
 fun
tion is rede�ned a

ording to~f��(N) := f��(N) + i2 � e�e�e
m
 (7.4)46Consult appendix C for more details on the spinor super�eld and the linear multiplet.82



The Lagrangian (7.3) is more 
onvenient to dualize be
ause the last term in (7.2) is nowabsorbed into the rede�nition of the 
ouplings. We have to 
onstru
t a �rst order Lagrangianbefore we 
an dualize (7.3). In the �rst order Lagrangian one does not 
onsider L to bea linear multiplet, instead one imposes a 
onstraint on L by means of a real Lagrangianmultiplier 
 [89℄. Then, by eliminating the Lagrange multiplier, L is 
onstrained to be alinear super�eld. The �rst order Lagrangian reads2�K(L)�D + � ~f��(N)(WA � 2im��)T �(W� � 2im��) + h.
.�F ��2�e�m�
L� i4e�
DT �(W� � 2im��)�D (7.5)where L represents an arbitrary real super�eld. Elimination of �� from the a
tion is doneby varying L and �� in (7.5), leading to�LK = e�m�
 ; (7.6)0 = ~f��m�(W�� � 2im���)T �+ i8e�m�( �DT �D)D�
 : (7.7)For further 
omputation it is 
onvenient to rotate the k ve
tor �elds by an operator S su
hthat the \ve
tor" (Sm)� has only one 
omponent denoted by m, i.e. (Sm)� = (m; 0; :::; 0)T .Furthermore we make the de�nitions� e0� := (eS�1)�� W 0� := (SW )�� g�� := [(S�1)T ~fS�1℄�� .The purpose to introdu
e the new basis is to 
onsiderably simplify the dualization. Afterres
aling 
 a

ording to e01
 ! 
 we see that (7.5) and (7.6) imply a Legendre transfor-mation in the sense that U(
) := [�K(L) +m
L℄ (7.8)de�nes a real fun
tion of U(
). The Legendre transformed Lagrangian is then�2�U(
)℄D + �g11(N)(W 01 � 2im�)T �(W 01 � 2im�) ++2ga1(N)(W 0a)T �(W 01 � 2im�) + h.
.�F + �� i4
DT �(W 01 ��2im��)�D + �gab(W 0a)T �W 0b + h.
.�F ; (7.9)a; b = 2; : : : ; k 83



7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N = 1 SUPERSYMMETRYWith the help of the other equation of motion for the spinor super�eld (7.7) one obtains asa result the Lagangian of the dual theory given by� � �D2D
 W 0a �0� (64g11)�1 � i8 ga1g11� i8 ga1g11 gab � ga1gb1g11 1A0� �D2D
W 0a 1A+ h.
.�F ��2�U(
)�D (7.10)In what follows, the matrix des
ribing the 
ouplings of 
 and W 0a will be denoted by f̂��.In supersymmetri
 theories the D-term 
ontribution to the s
alar potential isV = 12Ref̂��D�D� (7.11)and the D-term is given byD� � (Ref̂��)�1( i2kj� �K��j + 
.
.) (7.12)Here K is the K�ahlerpotential and kj� denotes the Killing ve
tor of the gauged isometry. TheKilling ve
tor is 
onstant for the shift symmetry �! �+i. Furthermore, the K�ahlerpotential
an only depend on the real part of the s
alar �eld � be
ause otherwise the shift symmetry
ould not be an isometry of the s
alar manifold. Hen
e, K(�; ��) = K(Re�) and it followsdire
tly for the s
alar potential thatV � (Re f̂11)�1(K 0)2 (7.13)At this point it is suitable to res
ale again 
 in order to get rid of the fa
tor 18 . Furthermore,let us display (Ref̂)�1(Ref̂)�1 = 0� Reg11 + Img1�[(Reg)�1℄��Img�1 �Img1�[(Reg)�1℄�a�Img1�[(Reg)�1℄�b [(Reg)�1℄ab 1A (7.14)In order to �x s
aling fa
tors in front of terms involving 
, the kineti
 term U(
) has to beexpanded into its 
omponent �elds. The expansion is 
arried out in more detail in appendixF, and the result isU(
)jD = 12U 0(C) � [D(x) + 12�C(x)℄ + 14U 00(C) � [12(M2 +N2)� �!�� 12A�A���� + 14 �!
���!℄ ++ i16U 000(C) � [�M �!
5! +N �!! + �!
�
5!mA�℄ + 164U (4)(C) � �!!�!! (7.15)84



Here, U (n) denotes the nth derivative after C(x). At this point, it is 
onvenient to res
ale thereal super�eld 
 on
e again but this time we absorb the fa
tor m appearing in the Legendretransformation 
 ! 1m
 (7.16)This res
aling does not only bring the Legendre transformation into a normalized form, butwill also simplify the reverse transformation to the old basis system.Next, the auxiliary �eld D has to be eliminated. In order to a
hieve this, we introdu
e a new�eld strength super�eld, 
orresponding to 
, a

ording to:W (
)� := �14( �D
5D)D�
: (7.17)If we want to still keep the normalization of the F -term in formula (7.10) then anotherres
aling is ne
essary. Now, in 
onsidering all the s
alings, done so far, then altogether thesuper�eld 
 must be res
aled after (7.10) as follows
 ! � 2m
 : (7.18)Having a look at the de
omposition into 
omponent �elds, we 
an read o� the D-terms ofthe Lagrangian where the tensor �elds are eliminated by their equations of motion. The Ddependent terms are found in (7.15) and a

ording to (7.11) in the potential. Colle
ting allthese terms leaves us with12U 0D
 + 12 � 4m2 � (Ref̂)11(D
)2 + 2m � (Ref̂)1aD
Da ++12 � (Ref̂)abDaDb (7.19)The equations of motion for the auxiliary �eld are obtained from the variation after D
 andDa, respe
tively, and are given by12U 0 + 4m2 � (Ref̂)11D
 + 2m � (Ref̂)1aDa = 0 (7.20)(Ref̂)abDb + 2m � (Ref̂)1aD
 = 0 (7.21)These equations are equivalent to the following equations at the 
omponent level of the85



7 ABELIAN GAUGING AND D-TERM POTENTIAL IN N = 1 SUPERSYMMETRY
oupling matrix f̂ (see appendix F for more details)0 = 12U 0 + 4m2 � Reg11jg11j2 �D
 � 2m � Img1aReg11 �Reg1aImg11jg11j2 �Da (7.22)0 = [Regab + 1jg11j2 � (Reg11Img1aImg1b �Reg11Reg1aReg1b ��Img1aReg1bImg11 �Reg1aImg1bImg11)℄Db � 2m � 1jg11j2 ��(Img1aReg11 �Reg1aImg11) �D
 (7.23)After some 
al
ulation (given in appendix F), one �nds that the auxiliary �elds are given byDb = �m4 U 0 � [(Reg)�1℄bAImgA1 (7.24)D
 = �m28 U 0 � (Img1A[(Reg)�1℄ABImgB1 +Reg11) (7.25)These expressions 
an be 
ompared with the expression for the inverse of the 
oupling matrix�Re f̂� (7.14) and the 
omponents of the inverse matrix 
an be identi�ed in the followingway [(Ref̂)�1℄11 = � 8m2U 0 �D
 (7.26)[(Ref̂)�1℄1a = 4mU 0 �Da (7.27)Reintrodu
ing these identi�
ations into the D-terms (7.19) of the 
omponent de
ompositionand 
arrying out the 
al
ulation leads to the following result for the potentialV = 4(U 0)2m232 � [Reg11 + Img1�[(Reg)�1℄��Img�1℄ : (7.28)At this point we make the rotation S�1(m; 0; :::; 0)T = mA that brings us ba
k to the originalbasis for the ele
tri
 and magneti
 
oupling, and we obtainV = 4(U 0)232 � [Re ~f�� m�m� +m� Im ~f��[(Re ~f)�1℄�
Im ~f
� m�℄ : (7.29)After expanding ~f a

ording to (7.4) we �nd that this is nothing else butV = 132(U 0)2 ��e� + 2m�Imf��� [(Ref)�1℄�
 �e
 + 2Imf
�m��++4Ref��m�m�� (7.30)whi
h is in total agreement with the expression that was obtained for the potential in [90℄.The dis
ussion shows that a
tually the potential (7.30) is symple
ti
ally equivalent to a D-term potential in its standard form (7.11). In [90℄ the authors 
ould not 
onne
t this potential86



with a potential of standard form. However, we demonstrated that the expli
it mass termfor the s
alar in the tensor multiplet is absorbed by the rede�nition of the gauge kineti
fun
tion (7.4) due to the possibility to add total derivatives to the a
tion. This 
on�rms thatneither generalized Chern-Simons terms nor the topologi
al B-term 
ause any new nontrivial
ontribution to the standard D-term potential in N = 1 supersymmetry.

87



8 CONCLUSION8 Con
lusionIn this thesis we studied quantum anomalies and generalized Chern-Simons terms in 
hiralgauge theory. We dis
ussed this topi
 in global and lo
al N = 1 supersymmetry and ingeneral gauge theories that are 
ovariant with respe
t to ele
tri
/magneti
 duality. Thisgeneralized previous works [26,34,83℄, in whi
h only 
lassi
ally gauge invariant theories withanomaly-free fermioni
 spe
tra were 
onsidered.We began our dis
ussion with generalized Chern-Simons terms along the lines of [34℄. Theauthors of that paper showed how generalized Chern-Simons terms 
an 
an
el 
ertain 
onstantshifts of the gauge kineti
 fun
tion in the 
ontext of Lie algebra 
ohomology. The generalizedChern-Simons terms originate from Lie algebra valued forms C(A;F) that are de�ned by
onstant tensors CAB;C whi
h have to satisfy the 
onstraint C(AB;C) = 0 inter alia. It ispossible to show that the 
onstraints 
orrespond to the requirement of C(A;F) being 
losedwith respe
t to the exterior derivative. The 
ompli
ated formalism leads then dire
tly to theresult that in semisimple gauge theories one 
an always absorb the generalized Chern-Simonsterms by a rede�nition of the gauge kineti
 fun
tion. We generalized the forms C(A;F) byrelaxing the 
losure 
ondition su
h that we allowed for forms with nontrivial symmetri
 partC(AB;C). Consequently, these more general forms were no longer 
losed, whi
h apparentlyviolated the pro
edure to 
onstru
t generalized Chern-Simons terms. However, with the helpof the Stora-Zumino des
ent equations we were able to show that only the generalized Chern-Simons terms together with suitable gauge anomalies 
ould 
an
el the 
onstant shifts of thegauge kineti
 fun
tion. This generalizes the results of [34℄ and 
on
ludes se
tion 3.In se
tion 5, we studied the 
onsisten
y 
onditions that ensure the gauge and supersym-metry invarian
e of global and lo
al matter 
oupled N = 1 supersymmetry theories withPe

ei-Quinn terms, generalized Chern-Simons terms and quantum anomalies. Ea
h of thesethree ingredients de�nes a 
onstant three index tensor:(i) The gauge non-invarian
e of the Pe

ei-Quinn terms is proportional to a 
onstant imag-inary shift of the gauge kineti
 fun
tion parameterized by a tensor CAB;C . This tensorin general splits into a 
ompletely symmetri
 part and a part of mixed symmetry,C(s)AB;C +C(m)AB;C .(ii) Generalized Chern-Simons terms are de�ned by a tensor, C(CS)AB;C , of mixed symmetry.88



(iii) Quantum gauge anomalies of 
hiral fermions are proportional to a 
ompletely symmetri
tensor dABC .We found that the full quantum e�e
tive a
tion is only gauge invariant and supersymmetri
if CAB;C = C(CS)AB;C + dABC : (8.1)The in
lusion of the quantum anomalies en
oded in a non-trivial tensor dABC is the keyfeature that distinguishes N = 1 theories from theories with extended supersymmetry as thelatter theories 
annot have 
hiral gauge intera
tions and hen
e no quantum anomalies.First we performed our analysis in global N = 1 supersymmetry and later also in N = 1 su-pergravity. The interesting result is that the Chern-Simons term does not need any gravitino
orre
tions when added as su
h to the matter-
oupled supergravity a
tions. This 
ompletesthe 
omprehension of N = 1 supersymmetry, generalizing earlier work of [26℄ on Abelian gen-eralized Chern-Simons terms in global N = 1 supersymmetry without quantum anomalies.In [12℄, orientifold 
ompa
ti�
ations with anomalous fermion spe
tra were studied, in whi
hthe 
hiral anomalies are 
an
elled by a mixture of the Green-S
hwarz me
hanism and gen-eralized Chern-Simons terms. The analysis in [12℄ was mainly 
on
erned with the gaugeinvarian
e of the bosoni
 part of the a
tion and revealed the generi
 presen
e of a 
ompletelysymmetri
 and a mixed part in CAB;C and the generi
 ne
essity of generalized Chern-Simonsterms. Our results show how su
h theories 
an be embedded into the framework of N = 1supergravity and supplements the phenomenologi
al dis
ussions of [12℄ by the fermioni
 
ou-plings in a supersymmetri
 setting. The fermioni
 
ouplings were used in the presentationof [96℄ where the dis
ussion of [12℄ was lifted to an extension of the MSSM based on ourresults.In se
tion 6 we have shown how general gauge theories with axioni
 shift symmetries,generalized Chern-Simons terms and quantum anomalies [88℄ 
an be formulated in a waythat is 
ovariant with respe
t to ele
tri
/magneti
 duality transformations. This generalizesprevious work of [83℄, in whi
h only 
lassi
ally gauge invariant theories with anomaly-freefermioni
 spe
tra were 
onsidered. Whereas the work [83℄ was modelling extended (and hen
eautomati
ally anomaly-free) gauged supergravity theories, our results here 
an be applied togeneral N = 1 gauged supergravity theories with possibly anomalous fermioni
 spe
tra. Su
h89



8 CONCLUSIONanomalous fermioni
 spe
tra are a natural feature of many string 
ompa
ti�
ations, notablyof interse
ting brane models in type II orientifold 
ompa
ti�
ations [16{22℄, where also GCSterms frequently o

ur [12℄. Espe
ially in 
ombination with ba
kground 
uxes, su
h 
ompa
t-i�
ations may naturally lead to four-dimensional a
tions with tensor �elds and gaugings inunusual duality frames. Our formulation a

ommodates all these non-standard formulations,just as ref. [83℄ does in the anomaly-free 
ase.At a te
hni
al level, our results were obtained by relaxing the so-
alled representation 
on-straint to allow for a symmetri
 three-tensor dMNP that parameterizes the quantum anomaly.In 
ontrast to the other 
onstraints for the embedding tensor, this modi�ed representation
onstraint is not homogeneous in the embedding tensor, whi
h is a novel feature in thisformalism. Also our treatment gave an interpretation for the physi
al meaning of the \repre-sentation" 
onstraint: In its original form used in [83℄, it simply states the absen
e of quantumanomalies. It is interesting, but in retrospe
t not surprising, that the extended supergravitytheories from whi
h the original 
onstraint has been derived in [83℄, need this 
onstraint fortheir internal 
lassi
al 
onsisten
y.In se
tion 7 we reinvestigated the result of [90℄ who proposed an N = 1 super�eld a
tionfor one massive tensor multiplet 
oupled to ve
tor and 
hiral multiplets. The potential 
or-responding to this theory displayed a dire
t mass term for the s
alar in the tensor multipletwhi
h apparently violated the form of the D-term potential. We demonstrated that this`unusual' form of the potential is a
tually equivalent to a standard form. The reason is thatthe dire
t mass term for the s
alar in the tensor multiplet 
an be absorbed by a suitablerede�nition of the gauge kineti
 fun
tion by means of a total derivative.The theory of massive tensor multiplets represents the supersymmetrization of a spe
ialAbelian gauging of the manifestly symple
ti
ally 
ovariant framework proposed in [83℄ andpresented in appendix E.We are led to the 
on
lusion that neither the generalized Chern-Simons terms nor the topo-logi
al 
ouplings to the tensor �elds 
ause 
ontributions that violate the standard form of theD-term potential.In this thesis we have neither tou
hed the topi
 of gravitational anomalies nor of K�ahleranomalies [81, 82, 97{105℄ in N = 1 supergravity.The results of this thesis 
an be taken as the starting point for phenomenologi
al models90



su
h as [96℄. We 
ould show that in the framework N = 1 supersymmetry, as dis
ussedin [81, 82, 96℄, one has to take additional fermioni
 
ouplingsC(AB;D)AD� ��A
5
��B (8.2)into a

ount. These new fermioni
 
ouplings had not been 
onsidered before (probably be-
ause to date it is not 
lear how they 
ould originate from a super�eld expression) and itwould be interesting to study expli
it N = 1 string 
ompa
ti�
ations within the frameworkused in this thesis.
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A APPENDIXA Te
hni
al details on Lie algebra 
ohomologyA.1 The Lapla
e equation of Lie algebra 
ohomologyIn se
tion 3.2 we found that generalized Chern-Simons terms are trivial for semisimple al-gebras. In this appendix we want to demonstrate how 
ohomologi
al arguments lead to thesame result.The Cartan-Killing metri
 is de�ned as gAB := �fALKfBKL and assumed to exist aswell as to be invertible. This will allow us to 
onstru
t another operator I besides thealgebrai
 operator D. We still introdu
e some notational issues, that will simplify someof the up
oming 
omputations and allow easily for generalizations. It is again suitable tointrodu
e the operator (TA)EFCD := fACE ÆFD + fADF ÆEC : (A.1)Note, that with this generator at hand, we 
an bring (3.5) into the form ÆfAB =�C(TC)DFAB fDF . In order to redu
e 
lutter, we further introdu
e a single Greek multi-index� := AB, representing the two indi
es A and B that it is now (TA)EFCD ! (TA)��. Thisis equivalent to the � notation for 
ontra
tions of su
h double indi
es introdu
ed in se
tion3.2. Observe that with this multi-index at hand we 
an write C�;D instead of CAB;D and,furthermore, FAFB ! F�. When we 
ompute the Bian
hi identity for F�, starting fromd(FAFB), we �nd dF� = �(TD)��ADF� : (A.2)With help of the Cartan-Killing metri
 we 
an introdu
e a new operator, 
alled I, whi
h isde�ned as (IC)�;D1:::Dn := (n+ 1)C�;ED1:::DngEF (TF )�� : (A.3)Note that this operator lowers the amount of indi
es after the 
omma by one, as opposedto D, whi
h in
reases the amount of indi
es after the 
omma by one. There is still anotherpossibility to generate this operator, by introdu
ing a new operation � whi
h a
ts triviallyon the gauge 
onne
tion, �AD = 0, while on the multilinear �eld strength form it a
ts as�F� = [(TA)F ℄�gAB ��AB . This form will be 
onvenient to use in appli
ations su
h as the92



A.1 The Lapla
e equation of Lie algebra 
ohomologyexample of an Abelian�semisimple gauge group. Therefore, the operator that is not 
hangingthe amount of indi
es is given as DI + ID, that is formally similar to the Lapla
e operatorin Cartan 
al
ulus. Let us try to evaluate this Lapla
e operator a
ting on C�;D. Followingthe de�nitions (3.13) and (A.3), we �nd the following relevant relations(DC)�;AB = 12 fABDC�;D + C�;[B(TA℄)�� ; (A.4)(DC)�;A = (TA)�� C� ; (A.5)(IC)� = (TA)�� C�;B gAB ; (A.6)(IC)�;A = 2 (TC)�� C�;BA gBC : (A.7)The equation (A.5) is proven by a
ting on C�F� with the exterior derivative and making useof (A.2). From (A.5) and (A.6) we 
an read o�[D(IC)℄�;A = (TA)�� C
;D (TB)
� gBD ; (A.8)while (A.4) and (A.7) give[I(DC)℄�;A = C�;E gBD fDAE (TB)�� + 2 (TB)�� gBDC
;[A(TD℄)
� : (A.9)The �rst term in (A.9) 
an be manipulated as followsgBD fADE (TB)�� = gAG fEGD (TD)��= gAG [TE;TG℄��= �gEB [TA;TB ℄�� ;where in the �rst line we used the Cartan-Killing metri
 to pull indi
es up and down. In these
ond line we made use of [TA;TB℄ = fABCTC whi
h is true when the metri
 is invertible.Inserting this result ba
k into (A.9), we obtain[I(DC)℄�;A = C
;AgBD(TB)��(TD)
� � C
;D (TB)
� (TA)�� gBD : (A.10)Adding (A.10) and (A.8) together, we �nd the Lapla
e equation[(DI + ID)C℄�;D = C�;D C2(T )�� ; (A.11)where we had de�ned the Casimir operatorC2(T )
� := gAB (TA)
� (TB)�� (A.12)93



A APPENDIXof the gauge group. We see, that the a
tion of the Lapla
ian on the forms C is proportionalto the Casimir operator. From (A.11) we 
an read of a very important result. For gaugegroups that possess a nonsingular Cartan-Killing metri
, i.e. semisimple gauge groups, every
losed form C is exa
t. The Lapla
e equation does not only tell us that the 
ohomology 
lassis trivial but provides us with an expli
it expression for C, namely,C�;D = [D(IC)℄�;D C�12 (T )�� (A.13)whi
h is equivalent to (3.34). There are no generalized Chern-Simons terms for semisimplegroups ne
essary be
ause they 
an be always absorbed into a rede�nition of the gauge kineti
fun
tion itself.A.2 Appli
ation: Abelian�semisimpleThe results of se
tion 3.3 
an be obtained with help of Lie algebra 
ohomology as well. Itmight not be too instru
tive to do so, but it is a 
onsisten
y 
he
k for the developed formalismand shows, how the formalism is applied.The produ
t stru
ture is again re
e
ted by splitting the adjoint indi
es A;B; ::: intoindi
es a; b; 
; ::: for the Abelian part and adjoint indi
es x; y; z; w; ::: for the semisimple part.Due to the group stru
ture, only the stru
ture 
onstants of the type fxyz are nonzero. The�ve-form C(A;F) 
orresponding to the mixed group stru
ture is de�ned byC(A;F) = 2C(xb);aAaFxF b + Cxy;aAaFxFy + 2C(ax);yAyF aFx ; (A.14)with 
onstants Cxb;a, Cbx;a, Cxy;a, Cax;y and Cya;x. In order to be able to de�ne the operatorD, we have to evaluate the exterior derivative a
ting on C. The 
omputation whi
h makesuse of the stru
ture equations and the Bian
hi identities of Abelian�semisimple leads todC(A;F) = (Cxy;a + Cax;y + Cya;x)FxFyF a ++(Cvb;afxyv + Cbv;afxyv)AaAxFyF b ++(fu(yvCx)v;a + fu(yvCx)v;a)AuAaFxFy ++(fuyvCv;(xa) + 2C(va);[yfu℄xv)AuAyFxF a (A.15)Observe that for C(A;F) to be homogenous in the �eld strength forms, the �rst line has to94



A.2 Appli
ation: Abelian�semisimplevanish, whi
h requires the 
omponents of C(A;F) to satisfyC(ya;x) = 0 : (A.16)Now we 
an write down the a
tion of an algebrai
 operator on the 
oeÆ
ients of C(A;F)dC(A;F) = 2(DC)(yb);axAaAxFyF b + (DC)xy;uaAuAaFxFy ++2(DC)(xa);uyAuAyFxF a ; (A.17)where we de�ne (DC)ax;(yb) := C(vb);afxyv (A.18)(DC)xy;ua := 2fvu(yCx)v;a (A.19)(DC)(xa);uy := 12C(xa);vfuyv + C(va);[yfu℄xv : (A.20)Hen
e, the algebrai
 
ondition for C(A;F) being 
losed are obtained in setting above relationsto zero and we obtain fvxuCvb;a = 0 (A.21)fvxyCbv;a = 0 (A.22)fu(yvCx)v;a = 0 (A.23)fuyvCax;v + fxyvCav;u � fxuvCav;y = 0 (A.24)fuyvCxa;v + fxyvCva;u � fxuvCva;y = 0 ; (A.25)whi
h are exa
tly equal to the relations (3.40) to (3.44).As before, we have to de�ne the operator I whi
h allows us to 
ompute the Lapla
eequation for this 
ase. It is 
onvenient to do this by means of � whi
h is de�ned by thefollowing relations � [F 
Fx℄ := (fvyxÆ
b)F bFygzv ��Az ; (A.26)� [FxFy℄ := (fuvxÆyz + fuzyÆxv )FvFzguw ��Aw ; (A.27)while �A = 0 for Abelian or semisimple gauge 
onne
tions. It is not a diÆ
ult but a littlelengthy 
omputation to verify that the a
tion of the operators ID and DI on the di�erent95



B APPENDIX
omponents of C(A;F) and the only nonvanishing 
ontributions areI(DC)xy;a = 2Csv;afuyvfrxsgru + 2Cxv;aC2(f)vy (A.28)I(DC)(ax);y = C(av);yC2(f)vx � C(as);vfuksfyxkgru (A.29)D(IC)(ax);y = C(av);ufrsvfyxsgru : (A.30)These relations lead dire
tly to the Lapla
e equation for the example of anAbelian�semisimple gauge group(�d+ d�)C(A;F) = 2Csv;afvuyf srxgru + 2Cxv;aC2(f)vy + C(av);yC2(f)vx (A.31)Observe that the �rst term represents an inhomogenous term. This means that a possiblegeneralized Chern-Simons term proportional to Cxy;a 
annot be trivial, i.e., it 
annot beabsorbed into a rede�nition of the gauge kineti
 fun
tion, even if C is a 
losed form. In se
tion3.3 we 
ould show from the 
losure 
onstraint that it is a
tually of the form Cxy;a = Bagxywith the Ba's being arbitrary but 
onstant.B Notation and 
onventionsNotations and 
onventions are 
hosen in agreement with [106℄. We use the Minkowski metri
� = diag(�1;+1;+1;+1) and the epsilon tensor "0123 = +1. The Dira
 matri
es satisfyf
�; 
�g = 2��� and 
5 := i
0
1
2
3. The generators of the spinor representation of SO(1,3)are de�ned as ��� := 14 [
�; 
� ℄. Obviously, the gamma matri
es ful�l
[�
�
�
�℄ = �i"����
5 (B.1)be
ause both sides are 
ompletely antisymmetri
. The fa
tor �i appears due to our de�nitionof 
5. Contra
ting both sides with 
� from the right, one 
an derive
[�
�
�℄ = �i"����
5
� : (B.2)Another useful relation is 2���
� = 
[�
�
�℄ + ���
� � ���
� (B.3)96



whi
h is almost trivial if one 
onsiders the three nontrivial 
ases � 6= � 6= �, � = � 6= � and� 6= � = � separately. Then, it is not diÆ
ult to derive the following two relations���
� = 12(g��
� � g��
� � i"����
5
�) ; (B.4)
���� = 12(g��
� � g��
� � i"����
5
�) ; (B.5)that are quite useful for a
tual 
omputations.The Dira
 matri
es are given in a spe
ial representation by
0 = �i0� 0 11 0 1A ; 
i = �i0� 0 �i��i 0 1A ; 
5 = 0� 1 00 �1 1A (B.6)with the usual Pauli-matri
es�1 = 0� 0 11 0 1A ; �2 = 0� 0 �ii 0 1A ; �3 = 0� 1 00 �1 1A : (B.7)The Dira
 
onjugated spinor is de�ned by �u = uy� where� := i
0 =0� 0 11 0 1A (B.8)and uy = u�T. We use Majorana spinors u = 0� e��� 1A where e is the antisymmetri
 matrixe = 0� 0 1�1 0 1A : (B.9)Majorana spinors are required to ful�lu� = ��
5�u (B.10)and the matrix � is de�ned a

ording to � = diag(e; e). The 
harge 
onjugation matrix isde�ned by C = 
2� = ��
5 (B.11)97



B APPENDIXand, then, for a Majorana spinor one has �u = uTC. The gamma matri
es obeyC
�C�1 = �
T� ; (B.12)C
5C�1 = 
T5 ; (B.13)C���C�1 = ��T�� ; (B.14)C
�
5C�1 = (
5
�)T : (B.15)This allows one to prove easily ��
�� = ���
�� and similar relations be
ause C is antisym-metri
 CT = �C and C2 = �1. In total we have for anti
ommuting Majorana spinors��� = ��� (B.16)��
�� = ���
�� (B.17)������ = ������� (B.18)��
5� = ��
5� (B.19)��
5
�� = ��
5
�� (B.20)(B.21)A very useful tool in order to manipulate bilinear of spinors are rearrangement formulas.For spinors �, they are obtained from ��� and the fa
t that the set of 16 
ovariant matri
esf1; 
�; ��� ; 
5; 
5
�g is 
omplete and 1 represents the unity. This means that any 4 � 4matrix 
an be de
omposed into a superposition of these, espe
ially ���. Taking Lorentzinvarian
e into a

ount, an expansion is given by��� = a � (���) + b � 
�(��
��) + 
 � ���(������) + d � 
5(��
5�) ++e � 
5
�(��
5
��) (B.22)where a; b; 
; d; e are 
onstants that have to be determined. It is immediately obvious thatb = 
 = 0 be
ause of (B.17) and (B.18). The remaining 
onstants are found in multiplyingfrom the right with f1; 
5; 
5
�g and taking the tra
e, one obtains��� = 14(���) + 14
5
�(��
5
��)� 14
5(��
5�) : (B.23)98



A lot of useful relations 
an be obtained from (B.23) in multiplying on the right with C orde
omposing � into its left- and right-handed parts. In this way one �nds(�"�)(���) = �(�"
5�)(��
5�) (B.24)(�"
5
��)(��
5
��) = ����(�"
5�)(��
5�) (B.25)(�"
��)(��
5
��) = �4(�"�)(��
5�) (B.26)(�"
5�)(���) = �(�"�)(��
5�) (B.27)(���)2 = �(��
5�)2 (B.28)(��
5
��)(��
5
��) = ����(��
5�)2 (B.29)�R��L�L = �R��
5� (B.30)2��L
��R = ���
5
�� (B.31)Note that be
ause spinors are anti
ommuting obje
ts, produ
ts of more than two spinorsvanish, i.e. �L��L�L = 0 and �R��R�R = 0.Any produ
t of �ve and more 
omponents of � vanishes, so that the list of nontrivial produ
tsof spinor 
omponents is given by���� = 14(�
5)��(���) + 14(
��)��(��
5
��) + 14���(��
5�) (B.32)�����
 = �14(��
5�)[����
 � (�
5)��(
5�)
 � ��
�� ++(�
5)�
(
5�)� + ��
�� � (�
5)�
(
5�)�℄ (B.33)�����
�Æ = 116(���)2[����
Æ � (�
5)��(�
5)
Æ � ��
��Æ ++(�
5)�
(�
5)�Æ + ��
��Æ � (�
5)�
(�
5)�Æ℄ (B.34)From the relation (B.34) it follows that(���)(��
5�) = 0 (B.35)whi
h is a useful relation on
e 
omputations in superspa
e are performed.The Lagrangian is real but some �elds are des
ribed by 
omplex valued obje
ts. Termsinvolving these 
omplex �elds 
ome always together with their hermitian 
onjugates so thate�e
tively the real part of these terms appear. For bilinears of Majorana spinors one �nds(��1M�2) = (��1��
5M���
5�2) (B.36)99



C APPENDIXwhere we made use of (B.10) and the fa
t that 
omplex 
onjugation inter
hanges the spinors.In the representation for the gamma matri
es given in (B.6) it is ��
5
����
5 = 
� and, thus,�CM�C1� = +M for M = 1; 
�; ��� (B.37)�CM�C1� = �M for M = 
5; 
�
� (B.38)from whi
h one �nds the properties of bilinears under 
omplex 
onjugation(��1M�2)� = +(��1M�2) for M = 1; 
�; ��� (B.39)(��1M�2)� = �(��1M�2) for M = 
5; 
5
� (B.40)C Superspa
eA 
onvenient tool to treat 
omputations in global N = 1 supersymmetry is given by su-perspa
e. For supergravity it is not so helpful anymore, be
ause before one 
an enjoy the
onvenien
e of superspa
e, one has to introdu
e di�erential geometry in 
urved superspa
eand one has to impose 
onstraints whi
h is a lot of work. However, for global supersymmetrythere are not so many new 
on
epts ne
essary before one is able to use the advantages ofsuperspa
e. Hereby, the spa
etime 
oordinates x� are extended by fermioni
 
oordinates thatare represented by a four-
omponent Majorana spinor ��. Due to the symmetry propertiesof bilinears of spinors (B.17) and (B.18) it is immediately 
lear that ��
�� = ������ = 0.Furthermore, as � has only four 
omponents, any power series in � terminates after quarti
order. The formulas (B.32), (B.33) and (B.34) suggest, that any produ
t of two spinors isproportional to a linear 
ombination of (���), (��
�
5�) and (�
5�), while a produ
t of threespinors only is proportional to (��
5�) and a produ
t of four �s is proportional to (���)2. Withthis at hand, we 
an express the most general fun
tion of x� and �, 
alled a super�eld, asS(x; �) = C(x)� i��
5 (x) � i2(��
5�)M(x)� 12(���)N(x) ++ i2(��
5
��)A�(x)� i(��
5�)���(x)� i2(��
5�)��
��� (x) ++14(���)2(D(x) + 12����C(x)) : (C.1)It is 
onvenient to separate ����C(x) and 
��� (x) from D and �, respe
tively, as willbe
ome 
lear in a moment. The 
omponent �elds � and  are fermioni
 while A� is a ve
tor100



�eld. The remaining �elds are s
alar or pseudos
alar �elds, depending also on whether S(x; �)is a s
alar �eld.Supersymmetry transformations are generated by the in�nitesimal operatorsQ = 
5� ��� + 
�� ��x� ; (C.2)�Q = ��� � 
5�
�� ��x� : (C.3)The transformation laws of the �elds 
ontained in S(x; �) are found fromÆS = (�"Q)S (C.4)and in using the rearrangement formulas from the previous se
tion to put ea
h term into its
orresponding form proportional to a standard bilinear in �. The advantage of super�eldsis that if S1 and S2 are super�elds, then S = S1S2 is again a super�eld. Also super�eldsautomati
ally provide representations of the supersymmetry algebra on �elds. Note that thesuperpartners are also 
hara
terized by the expansion in �.Besides (C.2) and (C.3), one 
an de�ne another di�erential operators in superspa
e byD = 
5� ��� � 
�� ��x� (C.5)�D = ��� + 
5�
�� ��x� (C.6)where the only di�eren
e to (C.2) and (C.3) is a 
hange in sign. This 
hange, however, isresponsible that the anti
ommuter fD;Qg = 0 (C.7)between the generator of supersymmetry and the di�erential operator D vanishes. In turn,(�"Q) 
ommutes with D and besides the arbitrary polynomial fun
tion of S(x; �) being asuper�eld, their superderivatives DS, DDS, et
. are super�elds as well. In other words, thesuperderivatives are used in order to impose 
onstraints on the general super�eld S(x; �).Requiring that the super�eld is real, i.e. S(x; �) = S�(x; �), one obtains the so-
alled realsuper�eld. Usually it is denoted by V (x; �) and formally given by the same expression (C.1),but with only real 
omponent �elds. There is a 
ertain arbitrariness in the expansion of the101



C APPENDIXmost general super�eld and we 
an 
hose as well
(x; �) = B(x)� 12 ��(1 + 
5)! � 12(��(1 + 
5)�)P (x) ++12(��
5
��)��W (x)� 12(��
5�)��(1 + 
5)
���!(x) ++18(���)2����B(x)) (C.8)where B(x), P (x) and W (x) are arbitrary 
omplex fun
tions of spa
etime and the spinoris an arbitrary Majorana spinor. With help of the 
omplex 
onjugation formulas for spinorbilinears, (B.39) and (B.40), one 
an determine the 
omplex 
onjugated super�eld to (C.8).It is not diÆ
ult to see that V (x; �)+Im
(x; �) allow to gauge away the nonphysi
al degreesof freedom in the real super�eld a

ording toC(x) ! C(x)� ImB(x) (C.9) (x) !  (x) + !(x) (C.10)M(x) ! M(x)�ReP (x) (C.11)N(x) ! N + ImP (x) (C.12)A� ! A� + ��W (x) (C.13)while the transformation of the ve
tor �eld a
ts like a gauge transformation. Thus, we seethat the arbitrariness in the general super�eld allows one to put the real super�eld into theform V (x; �) = i2(��
5
��)A� � i(��
5�)���+ 14(���)2D(x) (C.14)whi
h is the so 
alled \Wess-Zumino gauge". So far we have treated Abelian gauge theories.The nonabelian generalization is not as easy, but in Wess-Zumino gauge, the 
orrespondingreal super�eld is obtained from (C.14) by repla
ing the Abelian obje
ts with the 
orrespondingnonabelian 
ounterparts.The supersymmetry transformations, obtained from applying the operator �"Q to the realsuper�eld, are the same transformations as found in the text by the Noether method, i.e.(4.24), (4.25) and (4.26). We observe that the transformation of the auxiliary �eld, (4.26), isproportional to a derivative and on the other side, the auxiliary �eld is given by the highest
omponent in the de
omposition after �, the so 
alled D-term.102



The 
hiral multiplet is given by the 
hiral super�eld B whi
h is determined by0 = �DB : (C.15)In its de
omposition we �nd the s
alar �eld z, the fermioni
 superpartner � and the auxiliary�eld F whi
h is as in the gauge se
tor, the highest 
omponent proportional to (���)2.In
hiral multiplets, the term proportional to (���) is 
alled the F -term. The transformationsunder supersymmetry are the same as given in (4.17) to (6.34) in the 
ontext of the Noethermethod. We will not go into too mu
h detail, but fo
us on the super�eld, that 
ontains the�eld strength. The 
url multiplet, as it is o

asionally 
alled, is de�ned through the relationW� := �14(DT �D)D�V (x; �) : (C.16)A rather simple form of this super�eld is found, when one uses 
oordinates x�+ := x� +1=2(��
5
��). Then the left 
hiral super�eld, 
ontaining the �eld srength, readsWL(x; �) = i�L(x+) + 2i����LF��(x+) + i(�TL��L)
����R(x+) + �LD(x+) : (C.17)With help of the formulae given in appendix B, one �nds for the proje
tion to the F -term12 Re[WL����WL�℄F = �12 ��
����� 14F ��F�� + 12D2 (C.18)whi
h is the same as (4.13). Note, that the imaginary part Im �WL
5WL 
ontains the totalderivative 14"����F��F�� .Another super�eld whi
h is used in se
tion 7 
ontains the antisymmetri
 tensor �eld. Asthe 
url super�eld, it is a 
hiral super�eld and in a

ordan
e with (C.15) it is de�ned viaDTR� = 0 : (C.19)The tensor �eld provides o� shell 6 degrees of freedom of whi
h 2 are rendered unphysi
albe
ause B�� there is the freedom to add 2�[���℄ for suitable ��. One four 
omponentMajorana spinor is not enough to balan
e the degrees of freedom o�-shell but two Majoranaspinors are. The two bosoni
 degrees of freedom that are still missing are provided by a
omplex s
alar. From this one 
an write down the �-expansion of the spinor super�eld as� = �� �12C + ���B���� + ���(� + 
�
5���) : (C.20)103



D APPENDIXThe �eld strength of B�� is 
ontained in the linear super�eld L whi
h is obtained from thespinor super�eld by L := 12DT� ����� (C.21)The expli
it expansion of L is not of immediate importan
e and that is why it is not quotedhere. An expansion 
an be found in [90℄, for example.D Some dire
t 
al
ulations of se
tion 6In this appendix we prove some formulas used in se
tion 6 by dire
t 
al
ulations. We willtry to keep this appendix as self-
ontained as possible that the reader is not for
ed to thumbtoo mu
h ba
k and forth.D.1 The Bian
hi identityIn this appendix we want to prove the Bian
hi identity (6.33).In order to do so we have to 
ompute the a
tion of the 
ovariant derivative on the �eldstrength (6.32): D[�F��℄M = �[�F��℄M +XNPMA[�NF��℄P (D.1)The two terms of (D.1) are 
al
ulated separately:� The 
omputation of the �rst term in (D.1) gives�[�F��℄M = 2�[���A�℄M +X[NP ℄M�[�(A�NA�℄P )= �2X[NP ℄MA[�N��A�℄P : (D.2)� The se
ond term is found to be given byXNPMA[�NF��℄P = XNPMA[�N��A�℄P +X[QR℄PXNPMA[�NA�QA�℄R (D.3)where we used the result of the auxiliary 
al
ulation (D.4).Putting (D.2) and (D.3) together we obtain the Bian
hi identity:D[�F��℄M = 2X(NP )MA[�N��A�℄P +X[QR℄PXNPMA[�NA�QA�℄R104



D.2 Gauge variation of F��MAuxiliary 
al
ulation:X[QR℄PXNPMA[�NA�QA�℄R = X[QR℄PXNPM � 16 � (A�NA�QA�R +A�NA�QA�℄R ++A�NA�QA�℄R �A�NA�QA�R �A�NA�QA�℄R �A�NA�QA�R)= 13A�NA�QA�R (X[QR℄PXNPM +X[NQ℄PXRPM +X[RN ℄PXQPM )= 13A�NA�QA�R �X[QR℄PX(NP )M +X[NQ℄PX(RP )M++X[RN ℄PX(QP )M �X(P [N)MXQR℄P �= 23X(PN)MX[QR℄PA[�NA�QA�℄R (D.4)We made use of the Ja
obi identity (6.26) in order to obtain (D.4).D.2 Gauge variation of F��MIn this appendix we will 
ompute the gauge variation of the �eld strength with respe
t to(6.28). The relevant formulae are:F��M = 2�[�A�℄M +X[PQ℄M A�PA�Q ; (D.5)ÆA�M = D��M � ZM���� ; (D.6)D��M = ���M +XPQM A�P�Q ; (D.7)[XM ;XN ℄ = �X[MN ℄PXP : (D.8)Furthermore, we make use of the auxiliary 
al
ulation:� Let us determine the gauge variation of the �rst term in (D.5). In order to do so we
omputeÆ(��A�M ) = ��(ÆA�M )= ��D��M � ZM������= �����M +XPQM ��A�P�Q +XPQM A�P���Q � ZM������(D.9)105



D APPENDIXand in using (D.5), we obtain from (D.9):
Æ(2�[�A�℄M ) = XPQM [��A�P � ��A�P ℄�Q +XPQM [A�P���Q �A�P���Q℄��ZM�[����� � �����℄= XPQM F��P�Q �2 XPQMX[RS℄PA�RA�S�Q � 2XPQM A[�P��℄�Q ��2ZM��[���℄� : (D.10)

� Next we 
al
ulate the variation of the se
ond term of (D.5):
Æ(X[PQ℄M A�PA�Q) = X[PQ℄M (ÆA�PA�Q +A�P ÆA�Q)= X[PQ℄M (D��PA�Q � ZP����A�Q +A�PD��Q �A�P���ZQ�)= X[PQ℄M (A�Q���P +XRSPA�RA�Q�S +A�P���Q ++XRSQA�PA�R�S � ZP����A�Q �A�P���ZQ�)= X[PQ℄M (A�Q���P +A�P���Q) ++X[PQ℄M (XRSPA�RA�Q�S +XRSQA�PA�R�S)��X[PQ℄M (ZP����A�Q +A�P���ZQ�)= X[PQ℄M (A�P���Q �A�P���Q) ++X[QR℄MXPSQA�PA�R�S +X[PQ℄MXRSQA�PA�R�S ��X[PQ℄M (�ZQ����A�P +A�P���ZQ�)= 2X[PQ℄M A[�P��℄�Q ++(�XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S ��X[PQ℄MZQ� A[�P��℄� (D.11)106



D.2 Gauge variation of F��MThe variation of the �eld strength (D.5) under (D.6) is given by (D.10) and (D.11), whi
h isadded up and simpli�ed a

ording to:ÆF��M = XPQM F��P�Q �XPQMX[RS℄PA�RA�S�Q � 2XPQM A[�P��℄�Q ��2ZM��[���℄� + 2X[PQ℄M A[�P��℄�Q ++(�XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S � 2X[PQ℄MZQ� A[�P��℄�= XPQM F��P�Q � 2X(PQ)M A[�P��℄�Q ++(�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S ��2ZM��[���℄� � 2X[PQ℄MZQ� A[�P��℄� (D.12)Now, let us have a 
loser look at the last line of (D.12) but before let us remember the 
losure
onstraint (6.20) whi
h is displayed again:f
�� �P 
�S� +�Q��P 
(t
)SQ = 0 : (D.13)With help of (D.13), we 
an manipulate the last term of the last line of (D.12) as follows:�2X[PQ℄MZQ�A[�P��℄� = �XPQMZQ�A[�P��℄�= �[12XPQM
QR�R�℄A[�P��℄�= �[12�Q�(�XPRL
MS
LS
QR)℄A[�P��℄�= �[12�Q�(�XPSL
MS
LR
QR)℄A[�P��℄�= �[�12�Q�XPSQ
MS ℄A[�P��℄�= �[12f
���P 
�S�
MS ℄A[�P��℄�= �ZM�f
���P 
A[�P��℄�= �2ZM�f
���P 
A[�P��℄� + ZQ�XPQMA[�P��℄�= �2ZM�f
���P 
A[�P��℄� + ZQ�XPQMA[�P��℄�= �2ZM�f
���P 
A[�P��℄� + 2X(PQ)MZQ�A[�P��℄�(D.14)where we made use of XP [RL
S℄L = 0 and of lo
ality in the form XQPMZQ� = 0. Notethat we have just proven the relation2X[PQ℄MZQ� = ZM�f
���P 
 (D.15)107



D APPENDIXIf we de�ne the 
ovariant derivative of a tensor �eld a

ording toD���� := ��X� + f
���P 
A�P��� ; (D.16)then we obtain for (D.12) the following expression:ÆF��M = XPQM F��P�Q � 2ZM�D[���℄� ++(�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S ��2X(PQ)MA[�P ���℄�Q � ZQ���℄�� : (D.17)Now, let us have a 
loser look at the terms in (D.17) proportional to A�PA�R�S :�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M == �X[PR℄QX[QS℄M �X[PS℄QX[RQ℄M +X[RS℄QX[PQ℄M ��X[PR℄QX(QS)M �X(PS)QX[RQ℄M +X(RS)QX[PQ℄M == X[PR℄QX[SQ℄M +X[SP ℄QX[RQ℄M +X[RS℄QX[PQ℄M ��X[PR℄QX(QS)M �X(PS)QX[RQ℄M +X(RS)QX[PQ℄M (D.18)The �rst line of (D.18) satis�es the modi�ed Ja
obi identity (6.26) �repeated down in equation(D.19)� due to (D.6)X[MN ℄PX[QP ℄R +X[QM ℄PX[NP ℄R +X[NQ℄PX[MP ℄R = �X(P [Q)RXMN ℄P: (D.19)Then we 
an manipulate the �rst line of (D.18) as follows:X[PR℄QX[SQ℄M +X[SP ℄QX[RQ℄M +X[RS℄QX[PQ℄M = �X(Q[S)MXPR℄Q= �13 � [X(QS)MX[PR℄Q +X(QR)MX[SP ℄Q +X(QP )MX[RS℄Q℄= �13 � [X[PR℄QX(QS)M +X[SP ℄QX(QR)M +X[RS℄QX(QP )M ℄108



D.3 Gauge variation of the generalized Chern-Simons termLet us 
ontinue with the se
ond line in (D.18)�X[PR℄QX(QS)M �X(PS)QX[RQ℄M +X(RS)QX[PQ℄M == 14 � [�XPRQXQSM �XPRQXSQM +XRPQXQSM +XRPQXSQM �XPSQXRQM �XSPQXRQM+XPSQXQRM +XSPQXQRM +XRSQXPQM +XSRQXPQM �XRSQXQPM �XSRQXQPM ℄= 14 � [XRPQXSQM �XSPQXRQM +XSRQXPQM �XPRQXSQM +XRSQXPQM �XPSQXRQM+XPSQXQRM +XSPQXQRM �XRSQXQPM �XSRQXQPM +XRPQXQSM �XPRQXQSM ℄= 14 � [�X[RS℄QXQPM �X[SP ℄QXQRM �X[RP ℄QXQSM ++XPSQXQRM +XSPQXQRM �XRSQXQPM �XSRQXQPM +XRPQXQSM �XPRQXQSM ℄= 14 � [�X[RS℄QXQPM �X[SP ℄QXQRM +X[RP ℄QXQSM ℄= 14 � [X[RS℄QX[PQ℄M +X[SP ℄QX[RQ℄M +X[PR℄QX[SQ℄M �X[RS℄QX(PQ)M �X[SP ℄QX(RQ)M ��X[PR℄QX(SQ)M ℄= 14 � [�X[PRQX(S℄Q)M � 3 �X[PRQX(S℄Q)M ℄= �X[PRQX(S℄Q)M (D.20)where we made use of (D.8), (D.19) and lo
ality in form of XQPRZQ�. If we add the �rstline in (D.18) to (D.20), we obtain(�X[PR℄QXQSM �XPSQX[RQ℄M +XRSQX[PQ℄M )A�PA�R�S = �2X[RSQX(P ℄Q)MA�PA�R�S ;whi
h 
ompletes the partial derivative in the last line of (D.17) to form a 
ovariant deriva-tive. From (D.6) we �nally see, how the �eld strength F��M transforms under the gaugetransformation (6.99), i.e., we haveÆF��M = XPQMF��P�Q � 2ZM�D[���℄� � 2X(PQ)MA[�P ÆA�℄Q : (D.21)D.3 Gauge variation of the generalized Chern-Simons termWe want to show that the gauge variation of the generalized Chern-Simons term (6.50) isgiven by (6.51), i.e.,ÆLGCS = 12 ����� �F���D�ÆA�� �F���X(PQ)�AP� ÆAQ� ��������DMNP AM� ÆAN� ���AP� + 38 XRSP AR� AS�� : (D.22)109



D APPENDIXFor future referen
e we want to denote the �rst line of (D.22) by � and expand � in termsof the ve
tor �elds. Consequently, we have� := 12 ����� �F���D�ÆA�� �F���X(PQ)�AP� ÆAQ� � == ����� ���A�� ��ÆA�� + 12 XPQ�AP� AQ� ��ÆA�� + ��A�� AP� ÆAQ� X[PQ℄��X(PQ)M 
MN ��AN� AP� ÆAQ� + 12 XPQ�XRS�AP� AQ� AR� ÆAS��12 XPQ�X(RS)�AP� AQ� AR� ÆAS�� : (D.23)Let us prove the equation (D.22) �rst for the A3 (e.g. AA�ÆA) and then for the A4 terms(i.e. AAAÆA).The A3-terms. ÆLGCSjA3 = (a) + (b) + (
) + (d) ;(a) = 23 ����� X[MN ℄�AM� ÆAN� ��A�� ;(b) = 13 ����� XMN�AM� AN� ��ÆA�� ;(
) = 13 ����� X[MN ℄�AM� ÆAN� ��A�� ;(d) = 16 ����� XMN�AM� AN� ��ÆA�� : (D.24)We 
an group some of those terms in symple
ti
 invariant expressions:(b) + (d) = ����� ��13 XMNP 
PQAM� AN� ��ÆAQ� + 12 XMN�AM� AN� ��ÆA��� ;(a) + (
) = ����� �13 X[MN ℄P 
PQAM� ÆAN� ��AQ� +X[MN ℄�AM� ÆAN� ��A��� : (D.25)We 
an now 
ompute the sum(a) + (b) + (
) + (d) = ����� �12 XMN�AM� AN� ��ÆA�� +X[MN ℄�AM� ÆAN� ��A��+13 X[MN ℄P 
PQAM� ÆAN� ��AQ� � 13 XMNP 
PQAM� AN� ��ÆAQ� � :(D.26)110



D.3 Gauge variation of the generalized Chern-Simons termModulo total derivatives we 
an rewrite the last two terms of (D.26) in the following way:����� �13 X[MN ℄P 
PQAM� ÆAN� ��AQ� � 13 XMNP 
PQAM� AN� ��ÆAQ� � == 13 ����� �X[MN ℄P 
PQ � 2X[MQ℄P 
PN� AM� ÆAN� ��AQ� == 16 ����� �XMNP 
PQ �XNMP 
PQ � 2XMQP 
PN+2 (�3DMNQ �XMNP 
PQ �XNMP 
PQ)� AM� ÆAN� ��AQ� == ������ (X(MN)P 
PQ +DMNQ)AM� ÆAN� ��AQ� : (D.27)Where we have used the de�nition of DMNQ (6.18). From this we 
on
lude thatÆLGCSjA3 = (a) + (b) + (
) + (d) = ����� �12 XMN�AM� AN� ��ÆA�� +X[MN ℄�AM� ÆAN� ��A���X(MN)P 
PQAM� ÆAN� ��AQ� �� �����DMNQAM� ÆAN� ��AQ� == �jA3 � �����DMNQAM� ÆAN� ��AQ� : (D.28)The A4 terms in ÆLGCS are readily 
omputed by noting thatLGCSjA4 = 18 ����� XMN�XPQ�AM� AN� AP� AQ� : (D.29)We 
an then writeÆLGCSjA4 = 14 ����� �XMN�X[PQ℄� +XMN�X[PQ℄�� AM� AN� AP� ÆAQ� : (D.30)Now let us 
ompare the above expression with the A4 terms in (D.23):�jA4 = 12 ����� �XMN�XPQ� �XMN�X(PQ)�� AM� AN� AP� ÆAQ� == 14 ����� �XMNRXPQS 
RS +XMN�XPQ� �XMN�XQP�� AM� AN� AP� ÆAQ� == 14 ����� �XMNRXPQS 
RS +XMNRX(PQ)S 
RS +XMN�X[PQ℄�+ XMN�X[PQ℄�� AM� AN� AP� ÆAQ� == ÆLGCSjA4 ++14 
RS ����� �XMNRXPQS +XMNRX(PQ)S� AM� AN� AP� ÆAQ� : (D.31)111



E APPENDIXNow let us 
onsider the last term of (D.31) and show that it is proportional to the DMNP .We use the following properties�XMNRXPQS 
RS +XMNRX(PQ)S 
RS�[MNP ℄ == 12 �3XMNRXPQS 
RS +XMNRXQPS 
RS�[MNP ℄ == 12 �3XMNRXPQS 
RS + 3XMNR dQPR �XMNRXRP S 
QS �XMNRXPQS 
RS�[MNP ℄ == 32 X[MNRDP ℄QR + 12 �2XMNRXPRS 
QS �XMNRXRP S 
QS�[MNP ℄ == 32 X[MNR dP ℄QR ; (D.32)where we have used the 
onstraint (6.20) in the form:�2XMNRXPRS 
QS �XMNRXRP S 
QS�[MNP ℄ = 0 : (D.33)From the above result and equation (D.31) we 
on
lude that�jA4 = ÆLGCSjA4 + 38 �����XMNR dPQRAM� AN� AP� ÆAQ� : (D.34)Equations (D.28) and (D.34) imply together (D.22) whi
h 
on
ludes the proof.E Abelian GaugingIn this appendix we are going to show how the Abelian gauging of the symple
ti
ally 
ovariantformalism of se
tion 6 leads to models with massive tensor �elds as dis
ussed in [29, 89, 90,107{110℄. The dis
ussion is along the lines of [83℄ but presented in more detail be
ause thenthe 
onne
tion to [90℄ be
omes more 
lear.The Abelian gauging is obtained from the ungauged rigid symmetry group Grigid byde
omposing it into GV �GM where GV and GM a
t ex
lusively on ve
tor and matter �elds,respe
tively. Therefore, the generators de
ompose into mutually 
ommuting sets ft�g =ftAg � ftag where only tA a
ts nontrivially on ve
tor �elds and the generators ta a
t merelyin the matter se
tor. Also the embedding tensor �M� de
omposes de�ning the generators ofthe gauge group, XM = �MAtA + �Mata. The 
losure 
onstraint (6.20) splits up into twoseparate equations fABC�MA�NB � (tA)NP�MA�PC = 0 (E.1)fab
�Ma�Nb � (ta)NP�Ma�P 
 = 0 (E.2)112



and the se
ond equation leads to an additional and independent 
onstraint��[a��b℄ = 0 : (E.3)It is �MA = 0 for Abelian gaugings without axioni
 shifts. Consequently, the generalizedChern-Simons terms vanish and the Lagrangian takes the simple formLV T = 14I�� H���H�� � + 18R��"����H���H��� ��18"������a B�� aF�� � + 132"������a��b B�� aB�� b (E.4)where H��� := F��� + 12��aB�� a (E.5)The magneti
 ve
tor �elds 
an be eliminated from (E.4) by their equations of motionÆLÆA� = d ÆLÆdA� (E.6)whi
h are algebrai
 and not dynami
al be
ause the magneti
 ve
tor �elds do not possessany kineti
 terms. Before we 
an do so, let us spe
ify the 
oupling to the matter se
tor. Inthe 
ase that we 
onsider we will assume that the matter 
ouplings are given by a nonlinearsigma model with gauged isometries of its target spa
e. The 
oordinates of the target spa
eare represented by f�x; qig and its metri
 Gnm only depends on the subset f�xg. In otherwords, the sigma model is invariant under 
onstant shifts of fqig. Then the gauging of theisometries leads to the 
ovariant derivativesD�qi := ��qi ���iA�� ��� i A�� (E.7)and, hen
e, the nonlinear sigma model is given byLmatter = 12Gxy(�)���x���y + 12Gxi(�)���xD�qi + 12Gix(�)D�qi���x ++12Gij(�)D�qiD�qj (E.8)Now we are able to use (E.6) and determine the equations of motion for the magneti
 ve
tor�elds: Gxi(�)��i���x +Gij(�)��jD�qi = 12��i"������B�� i: (E.9)113



F APPENDIXSolving this equation for the magneti
 ve
tor �eld��iA�� = (��qi ��� i A��)� 12(G�1)ji(�) � "������B�� j (E.10)it is possible to eliminate the magneti
 ve
tor �eld from the Lagrangian and we obtainL = 14I�� H���H�� � + 18R��"����H���H��� + 18�� i "���� B�� i F�� � ++18(G�1)ji(�) � "������B�� i � "���� ��B�� j ++ 132��i �� j "���� B�� i B�� j + : : : (E.11)where ellipsis denote the rest of the 
oupling terms that are not of 
on
ern for us. We seethat for the Abelian gauging after eliminating the magneti
 ve
tor �elds by its equations ofmotion one ends up with a Lagrangian that, in addition to ele
tri
 �elds, 
onsists of a kineti
term for the tensor �elds and the topologi
al 
oupling of B�� a to the ele
tri
 �eld strength.The Lagrangian (E.11) reprodu
es the results of [94℄ and [95℄. In [90℄ the authors dis
ussedthe supersymmetrization of (E.11) whi
h will be reinvestigated in se
tion 7.F Details on the 
al
ulations of se
tion 7In agreement with (C.1), let the expansion of a real super�eld be given as
(x; �; ��) = C(x)� i��
5!(x)� i2 ��
5�M(x)� 12 ���N(x)+ i2 ��
�
5�A�(x)� i(��
5�)���(x)� i2(��
5�)��
���!(x) + (F.1)+14 ������(D(x) + 12�C(x)): (F.2)In order to evaluate the D-term of U(
) we Taylor expand U(
) around 
j�=��=0 and proje
tout the ������ 
omponent. In order to do so, it is 
onvenient to introdu
e X := 
�
j and we
an see that X5 = 0. Hen
e,U(
) = U(
j+X) = U(
)j+ �U�CX + 12! �2U�C2X2 + : : :+ 14! �4U�C4X4: (F.3)114



As we are interested in the D-term of this expression, we need the following resultsXj������ = 14(D + 12�C) (F.4)X2j������ = 18(M2 +N2)� 14 �!�� 18A�A���� + 116 �!
���! (F.5)X3j������ = � 3i16M �!
5! + 3i16N �!! + 3i16 �!
�
5!mA� (F.6)X4j������ = 316 �!!�!! (F.7)where we made use of the rearrangement formulae presented in appendix B. Inserting thisba
k into the Taylor expansion leaves us withU(
)j������ = 14U 0(C) �D(x) + 12�C(x)�+ 18U 00(C) �12(M2 +N2)� �!�� 12A�A����++14 �!
���!�+ i32U 000(C) [�M �!
5! +N �!! + �!
�
5!mA�℄ ++ 1128U (4)(C)�!!�!! (F.8)Other important relations for evaluating the gauge 
oupling matrix are(Re f̂)11 = Re g11jg11j2 (F.9)(Re f̂)1a = Re(ig1ag�11)jg11j2 = � Im g1a Re g11 �Re g1a Im g11jg11j2 (F.10)(Re f̂)ab = Re(gab � g1ag1bg�11jg11j2 ) == Re gab + 1jg11j2 � (Re g11 Im g1a Im g1b �Re g11Re g1aRe g1b �� Im g1aRe g1b Im g11 �Re g1a Im g1b Im g11) (F.11)With the help of the above given relations, we get from (7.20), (7.21) to (7.22), (7.23). Nowif we solve (7.22) in terms of D
D
 = Dbm2 (Im g1b � Re g1b Im g11Re g11 )� m28 jg11j2Re g11U 0 (F.12)and insert it into (7.23), we �nd thatDb[Re gab � Re g1aRe gb1Re g11 ℄ = �m4 U 0(Im g1a � Re g1a Im g11Re g11 ) (F.13)115



F APPENDIXThe equation 
an be further modi�ed in a
ting with [(Re g)�1℄�a from the left. The left handside therefore gives[(Re g)�1℄�a(Re ga
 � Re g1a Re g
1Re g11 )D
 = [(Re g)�1℄�aRe ga
D
 � [(Re g)�1℄�aRe g1a Re g
1Re g11 D
= (Æ�
 � [(Re g)�1℄�1Re g1
)D
 � (Æ�1 � [(Re g)�1℄�1Re g11)Re g1
D
Re g11 = (Æ�
 � Æ�1 Re g1
Re g11 )D
(F.14)while on the other hand we have for the right hand side�(Re g)�1��a�Im g1a � Re g1a Im g11Re g11 � = � �Æ�1 � [(Re g)�1℄�1Re g11� Im g11Re g11 ++ �(Re g)�1��a Im ga1= [(Re g)�1℄�� Im g�1 � Æ�1 (F.15)and, thus, we have(Æ�
 � Æ�1 Re g1
Re g11 )D
 = �m4 U 0 � ��(Re g)�1��� Im g�1 � Æ�1 � (F.16)Now we see that if � = b, then we haveDb = �m4 U 0 � [(Re g)�1℄b� Im g�1 (F.17)
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