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Summary 
 

 

 

 

 

 

This thesis investigates different aspects of protein sumoylation by qualitative and 

quantitative mass spectrometry. SUMO, a small ubiquitin-like modifier, is a highly 

versatile protein modifier involved in a number of biological pathways, but many aspects 

of sumoylation are currently unknown including most cellular substrates and its interplay 

with other post-translational modifications. Novel mass spectrometric methods are 

developed in this thesis to characterize the primary structure of the protein SUMO and 

direct evidence of sumoylation, ubiquitination and phosphorylation sites on SUMO are 

provided. The application of SILAC-based quantitative proteomics allows the 

identification of novel SUMO substrates and quantitative „systems-wide‟ profiling of the 

SUMO substrate proteome upon perturbation of cellular systems. 

 

The first project studies SUMO polymerization by a novel mass spectrometric strategy. 

Mapping sumoylation sites by mass spectrometry is technically challenging because the 

fragmentation of the long SUMO tryptic peptide conjugated to the target lysine produces 

complex overlapping MS/MS spectra. To overcome this problem we developed a mass 

spectrometric strategy based on the transfer of in vitro data to the more complex in vivo 

data and very high resolution mass spectrometry. In this way I provided the first direct 

evidence that SUMO-1,-2 and -3 form mixed polymers in cells. Importantly, SUMO-1 

modifies SUMO-2 and SUMO-3 and since it does not contain an internal sumoylation 

consensus site, it is a potential terminator of poly-SUMO-2/3 chains (Matic et al, 2008b).  

 

The second project investigates the cross-talk between sumoylation and ubiquitination. 

We found that a subset of SUMO-2 conjugates is subsequently ubiquitinated and 
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degraded. SILAC-based quantitative proteomics enabled the identification of 73 proteins 

modified by SUMO-2 that accumulate after treatment with proteasome inhibitor. In 

addition 40 proteins were desumoylated probably because of a lack of free SUMO-2 

recycled from ubiquitinated proteins (Schimmel et al, 2008).  

 

The third project raises the question if SUMO proteins can be targeted by post-

translational modifications (PTMs) other than SUMO or ubiquitin. We found that serine 

2, the N-terminal residue of SUMO-1 after the removal of the initiator methionine, is N-

acetylated and phosphorylated in vivo. The unambiguous identification of the 

phosphopeptide was achieved by measuring its precursor and fragment ions with very 

high accuracy and by using the recently introduced higher collision energy (HCD) 

fragmentation in addition to standard peptide fragmentation. This phosphoserine is 

conserved through evolution as we report the same residue to be phosphorylated in yeast 

and Drosophila SUMO. This study raises important biological questions. Could serine 2 

of SUMO-3 also be target of phosphorylation, thus constitute the first functional 

difference between SUMO-3 and SUMO-2, which contains an alanine in this position? Is 

the flexible SUMO N-terminal arm, target of sumoylation and phosphorylation, 

analogous to long unfolded histones tails, in which recruitment of proteins is regulated by 

PTMs? More generally, are SUMO proteins, as both “modified” and “modifying 

players”, central nodes in the PTMs-based signaling (Matic et al, 2008a)? 

 

In the forth project, I studied the global profile of the SUMO-2 substrate proteome during 

heat shock (HS) and heat shock recovery response by SILAC-based quantitative 

proteomics. Using tandem affinity purification, high accuracy mass spectrometry and 

novel quantitative proteomics algorithms collectively termed MaxQuant, we have 

detected more than 750 sumoylated proteins and quantified changes in the SUMO 

substrates proteome in response to HS. Notably, the patterns of sumoylation show clearly 

that proteins whose sumoylation is increased upon HS, lose the modification after HS 

recovery; conversely, the HS-induced desumoylation is not entirely recovered.  In 
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response to HS SUMO polymerized into polySUMO chains and redistributed between a 

wide variety of proteins. This first systems-wide analysis of a ubiquitin-like modifier 

substrate proteome shows that SUMO modification plays a larger role than previously 

considered in the regulation of stress response. Furthermore, the functions of the substrate 

proteins implicate sumoylation in the control of the cell cycle, RNA and DNA 

metabolism, transcription and apoptosis.  

 

Studies in this thesis have profound implications for different aspects of the emerging 

SUMO field and have established methods which will be useful for future directed as 

well as large-scale investigations of sumoylation. Direct identification of 

phosphorylation, ubiquitination and sumoylation sites on SUMO proteins extends the 

concept of modification of a protein modifier. The quantitative proteomics part of the 

thesis will be the basis for future studies quantitatively monitoring global changes in 

SUMO substrates proteomes in response to different cell stimuli.  
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1 Introduction: sumoylation in 
signaling pathways 

 
 
 
 

 

 

1.1 Posttranslational modifications as regulators of cellular pathways 
 

The complexity and diversity of a proteome are greatly increased by reversible covalent 

post-translational modifications (PTMs), which compensate for the surprisingly low 

number of genes in vertebrate genomes. Most proteins undergo some form of PTMs, 

which can alter their physicochemical properties and conformation. PTMs are 

particularly suitable for prompt cellular response to external and internal factors since 

their kinetics are much faster than the regulation of protein expression levels. An intricate 

interplay of these modifications regulates fundamental protein properties, such as 

stability, localization, activity and interaction with other proteins.  

Phosphorylation is one of the most common and well-studied reversible PTMs, and 

represents an important mechanism for the regulation of protein function (Johnson & 

Barford, 1993). It principally occurs on serine, threonine and tyrosine residues in 

eukaryotes, whereas it also targets histidine, arginine or lysine side-chains in prokaryotic 

proteins.  The importance of phosphorylation is highlighted by the fact that a significant 

part of the human proteome is involved in phosphorylation or dephosphorylation: there 

are more than 520 kinases and more than 120 phosphatases (Manning et al, 2002).  
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1.2  Ubiquitin and ubiquitin-like proteins 
 

PTMs include reversible covalent modifications not only by small chemical entities, such 

as phosphorylation, sulfation, acetylation and methylation, but also of entire small 

proteins. Ubiquitin (Ub) was described in 1975 as the first example of a protein that can 

be covalently attached to other proteins. It is a globular 76 amino acids long polypeptide 

that seems to be present in all eukaryotes and that is one of the most conserved proteins 

throughout the phylogenetic tree (Glickman & Ciechanover, 2002). It is perfectly 

identical in amino acid sequence from arthropods to mammals and only four amino acids 

are different among animals, plants and yeast (Catic & Ploegh, 2005). The presence of 

several Ub genes and of recycling mechanisms ensures that high levels of ubiquitin are 

always present, mostly in conjugated form. Its abundance and ubiquitous presence in 

cells give rise to its name. Ubiquitination is characterized by its diversity of conjugation 

products: Ub can be conjugated to target proteins as monoubiquitination (addition of a 

single ubiquitin residue to a single target lysine), multiubiquitination (attachment of 

several single Ub molecules to different lysines) or polyubiquitination (Ub polymers 

linked to a single lysine) (Haglund & Dikic, 2005). Polymerization on lysine 48 is the 

best studied one and represents a signal for proteasome-dependent protein degradation: a 

series of four ubiquitin molecules linked through lysine 48 is the minimal signal for 

proteasomal recognition (Voges et al, 1999). Chains formed via lysine 63 are involved in 

processes different from proteasomal degradation, such as cell signaling (Krappmann & 

Scheidereit, 2005), and DNA repair (Hoege et al, 2002). Lysine 48-Ub polymers and 

lysine 63-chains adopt two different conformations. Polyubiquitinations formed through 

lysine 48 have a compact conformation, whereas lysine 63-polymers are extended 

(Varadan et al, 2002). All the remaining lysine residues on Ub, which in total has 7 

lysines, are likewise used to form polymers, although their functional roles are less clear 

(Peng et al, 2003). Ub chains can also be formed by using different lysines for 

conjugation with the consequent creation of bifurcations of the polymer (Ikeda & Dikic, 

2008). 
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Figure 1.1: Conjugation/deconjugation of Ub/Ubls 
Ubiquitin and ubiquitin-like proteins are covalently attached to substrates via an 
isopeptide bond that forms between the C-terminus of SUMO and a lysine ε-
amino group on the target protein. Reproduced from Mark Hochstrasser, Nature 
Cell Biology 2000. 
 

 

Since the discovery of Ub, several other protein modifiers have been defined. Due to their 

similarity to Ub, they were named ubiquitin-like proteins (Ubls). ISG15 (Interferon-

stimulated gene-15) was the first member of the Ubl family to be identified only 4 years 

after the discovery of Ub (Farrell et al, 1979). Successively, other Ubls were discovered: 

NEDD8 (neural-precursor-cell-expressed, developmentally downregulated protein 8), 

SUMO (small ubiquitin like modifier)-1,-2,-3, FAT10 , FUB1 (Fau ubiquitin-like protein 

1), UBL5, URM1 (ubiquitin related modifier 1), ATG8 (autophagy-related ubiquitin-like 

modifier) and ATG12 (Kerscher et al, 2006). Like ubiquitin, Ubls are small protein 

modifiers that covalently attach to other proteins through an isopeptide bond: the C-

terminal glycine of these modifiers is linked to the ε-amino group of lysine of a substrate 

protein (Fig.1.1) (Welchman et al, 2005). Although primary sequence similarity between 

them can be low, ubiquitin and Ubls share a similar conjugation mechanism (Fig. 1.1) 

and almost identical three-dimensional structure, the ubiquitin superfold, which is a β-

grasp fold: 5 β strands are folded around an α helix (Fig. 1.2) (Hochstrasser, 2000).  
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Ub and Ubl conjugation pathways are more complex than those of most other PTMs. 

Protein methylation, acetyation, glycosylation and phosphorylation require the action of 

single enzymes, such as kinases for phosphorylation. In contrast, attachment of Ub and 

Ubls requires several reactions and is usually catalyzed by at least three groups of 

enzymes, which are part of a common enzymatic cascade that works sequentially (Fig. 

1.1). First, the Ub/Ubls are activated by a specific activating enzyme (E1). The energy of 

the whole conjugation reaction is provided in this step by the E1-mediated hydrolysis of 

ATP to AMP and pyrophosphate. The activated Ub/Ubl is then transferred to a 

conjugating-enzyme (E2). Ub has several E2 enzymes whereas there is only one E2 in the 

SUMO cascade. In the last step, the Ub/Ubl is attached to its target with the aid of a 

ligase (E3) (Hershko & Ciechanover, 1998). This process is reversible and the removal of 

Ub/Ubl is mediated by specific deconjugating enzymes (Welchman et al, 2005). 

A recent study showed for the first time that bacteria have an ubiquitin-like pathway 

previously believed only to exist in eukaryotes. The protein modifier Pup is involved in 

proteasome degradation in Mycobacterium tubercolosis by conjugation to proteasome 

targets, a process called pupylation (Pearce et al, 2008). 

 

 

 

Figure 1.2: Conserved ubiquitin superfold 
Ubiquitin and its kin are related by a common conserved three-dimensional 
structure. The figure shows the superimposition of ubiquitin (blue), SUMO-1 
(green) and NEDD8 (red). Reproduced from Rebecca L. Welchman, Colin 
Gordon and R. John Mayer, Nature Reviews Molecular Cell Biology, 2005. 
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1.3 SUMO proteins 
 

The Small ubiquitin-like modifier (SUMO) is the Ubl that seems to modify the largest 

pool of proteins and it shares approximately 20% sequence identity with ubiquitin 

(Johnson, 2004). Despite the similarity in the three-dimensional structures between 

ubiquitin and SUMO, surface charges are very different. In contrast to ubiquitin, whose 

surface electrostatic potential is positive, the corresponding region of SUMO is 

negatively charged. Depending on which organism the protein comes from, most SUMOs 

are around 100 residues long. Similarly to ubiquitin, SUMO is present in all eukaryotes, 

but absent in prokaryotes and archaea. Contrary to ubiquitin, which is a single conserved 

protein modifier, in some eukaryotes SUMO represents a family of paralogous proteins. 

Lower eukaryotes, such as Saccharomyces cerevisiae and Drosophila melanogaster, have 

a single SUMO protein, called Smt3 in these organisms, whereas several SUMO 

paralogues are expressed in vertebrates and plants. In humans there are three SUMO 

isoforms (SUMO-1,-2 and -3). SUMO-2 and -3, which differ between them only by three 

amino acids in their conjugated forms, constitute a subfamily distinct from SUMO-1, and 

are only 50% identical in sequence to SUMO-1 (Hay, 2005). In addition SUMO-2 and 

SUMO-3 isoforms have different cellular localization from SUMO-1 (Zhang et al, 2008). 

Whereas there is a large reservoir of unconjugated SUMO-2/3, rapidly available for 

conjugation after stress conditions, such as heat shock and osmotic stress, almost all 

SUMO-1 is attached to target proteins and is generally much less responsive to stress 

(Saitoh & Hinchey, 2000). 

SUMO is synthesized as a precursor, whose C-terminal extension is not present in the 

mature form. SENP (sentrin/SUMO-specific) proteases process the newly synthesized 

SUMO into its conjugatable functional form by removing the additional amino acids and 

exposing its C-terminal diglycine motif. Mature SUMO is then activated in an ATP-

dependent reaction by formation of a thioester linkage between its last glycine and the 

SUMO-activating E1, consisting of the heterodimer Aos1-Uba2. The Aos1 subunit uses 

ATP to adenylate the SUMO C-terminus, which is then followed by release of AMP and 
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the parallel formation of a thioester bond between SUMO and the catalytic cysteine in the 

Uba2 subunit. In the second reaction SUMO is transesterified to cysteine 93 of the single 

conjugating enzyme Ubc9. In the final step, SUMO is covalently attached to a substrate 

protein through the formation of an isopeptide bond between a lysine on the target protein 

and the C-terminal glycine of SUMO (Johnson, 2004). Differently from the ubiquitin E2 

enzymes, Ubc9 interacts directly with substrates via their SUMO consensus motif, which 

usually resides in an unstructured part of the protein (Bernier-Villamor et al, 2002). 

Many, but not all, SUMO target lysines are within this Ubc9 binding motif, which has the 

consensus sequence ΨKX(E/D), where Ψ is a hydrophobic amino acid, K the acceptor 

lysine for conjugation and X is any amino acid (Rodriguez et al, 2001). In some 

substrates phosphorylation of a nearby serine (the extended motif is ΨKXEXXpSP) or 

the presence of negatively charged amino acids enhance this motif (Hietakangas et al, 

2006; Yang et al, 2006). Because of the direct interaction between Ubc9 and the 

consensus motif, E1 and E2 enzymes are sufficient for in vitro sumoylation of target 

proteins. However the low affinity of Ubc9 for the ΨKX(E/D) motif, with Kd in the mM 

range, accounts for slow reaction rates in in vitro conjugation assay in the absence of E3 

enzymes (Lin et al, 2002). Consequently Ubc9 alone might not be sufficient for efficient 

in vivo attachment, which would require the additional aid of an E3 ligase. Most SUMO 

E3 ligases belong to the PIAS (protein inhibitor of activated STAT) family of proteins 

(Johnson & Gupta, 2001; Sachdev et al, 2001; Takahashi et al, 2001). These proteins 

have a motif that is similar to the RING motif in one class of Ub E3 enzymes, called SP-

RING motif (Hochstrasser, 2001). They recognize Ubc9 and increase SUMO 

modification rates by stabilizing the binding of Ubc9 to the target protein. PIAS1, a 

member of the PIAS family, enhances the SUMO conjugation of the tumor suppressor 

p53 (Kahyo et al, 2001). RanBP2 is a SUMO E3 ligase different from any ubiquitin 

specific E3 enzyme (Pichler et al, 2004). A short flexible domain of RanBP2 promotes 

SUMO conjugation by positioning SUMO on the Ubc9 surface in a conformation that 

facilitates sumoylation of a target lysine (Reverter & Lima, 2005) . The polycomb protein 

Pc2 is another type of SUMO ligase (Wotton & Merrill, 2007). 
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Sumoylation is reversed by removal of SUMO from its substrates by a number of 

deconjugating enzymes (SENPs) (Fig. 1.3). SENPs are cysteine proteases able to process 

SUMO precursors by exposing the C-terminal diglycine as the first step in the 

conjugation cascade (see above) and to deconjugate SUMO from target lysines. SENPs 

catalyze the removal of SUMO both directly from its substrates and from other SUMO 

moieties in the depolymerization of SUMO chains (Hay, 2007).  

 

 

 

 

 

Figure 1.3: Reversible attachment of SUMO to target proteins 
SUMO proteins are proteolytically processed by SUMO-specific isopeptidases, 
called SENPs (Sentrin-specific proteases) in mammals, which shorten SUMO C-
terminal tail and reveal the diglycines motif necessary for the conjugation to 
target lysines. Mature SUMO is activated by the E1 enzyme consisting of the 
Aos-Ubs2 heterodimer and is then transferred to the E2 enzyme Ubc9. Finally, 
SUMO is conjugated to a lysine in the substrate. Reproduced from Ruth Geiss-
Friedlander & Frauke Melchior, Nature Reviews Molecular Cell Biology 2007. 
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Intriguingly, all SUMO proteins have a long, charged and highly flexible N-terminal 

protrusion that is not present in ubiquitin and other Ubls (Fig. 1.4) (Bayer et al, 1998). 

The sequence of this extension is less conserved through evolution than the protein core. 

The three amino acid residues different between the otherwise identical SUMO-2 and 3 

are all located in this N-terminal arm. In addition the protrusions of SUMO-2 and 3 

contain the SUMO consensus motif around lysine 11, which is used for the formation of 

SUMO polymers (Tatham et al, 2001). Since there is no such consensus sequence on 

SUMO-1, it is thought not be able to be sumoylated in vivo, although SUMO-1 chains 

have been generated in vitro (Cooper et al, 2005; Pedrioli et al, 2006). 

 

 

 

 

 
 
 
Figure 1.4: Sequences of human SUMOs and ubiquitin  
Alignment of human SUMOs and ubiquitin. Sites of the C-terminal trypsin 
cleavage sites are indicated in orange. The SUMO conjugation consensus 
sequence on SUMO-2 and -3 is underlined and the target lysine is in red. The 
tryptic peptides that remain conjugated to the substrates are indicated in blue. 
Reproduced from Ivan Matic et al, Molecular and Cellular Proteomics, 2008.  
 
 
 
 
 

Ubiquitin                        MQIFVKTLTG-KTITLEVEPSDTIENVK

SUMO-1     MSDQEAKPSTEDLGDKKEG-EYIKLKVISQD-SSEIHFKVKMTTHLKKLK

SUMO-2     MAD-E-KPK-E--GVKTEN-DHINLKVAGQDGS-VVQFKIKRHTPLSKLM

SUMO-3     MSE-E-KPK-E--GVKTENNDHINLKVAGQDGS-VVQFKIKRHTPLSKLM

Ubiquitin  AKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG

SUMO-1     ESYCQRQGVPMNSLRFLFEGQRIADNHTPKELGMEEEDVIEVYQEQTGG

SUMO-2     KAYCERQGLMSRQIRFRFDGQPINETDTPAQLEMEDEDTIDVFQQQTGG

SUMO-3     KAYCERQGLMSRQIRFRFDGQPINETDTPAQLEMEDEDTIDVFQQQTGG
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One of the consequences of ubiquitin modification is the creation of an additional 

noncovalent interaction surface on the susbstrate protein. The newly attached ubiquitin is 

recognized by an interaction partner through its ubiquitin binding domain (Kirkin & 

Dikic, 2007). Similarly to ubiquitin, SUMO-recognizing proteins have a SUMO 

interaction motif (SIM), which however, is a short amino acidic stretch and not an entire 

domain, as is the case for ubiquitin. This motif is composed of a series of hydrophobic 

residues, namely (V/I) (V/I)X(V/I/L), surrounded by acidic and hydrophilic amino acids 

and generates low-affinity interactions between a SIM-containing protein and SUMO 

(Kerscher, 2007). SIM forms a β-strand that interacts in a parallel or anti-parallel 

orientation with the β2-strand of SUMO (Hecker et al, 2006; Song et al, 2004). SIMs are 

present not only in proteins that are recruited by a sumoylated target, but also in some 

SUMO E3 enzymes, where the motif is essential for their catalytic activity (Palvimo, 

2007).   

 

 

 
 

1.4 Functional consequences of SUMO modification 
 

With the identification of new SUMO targets, it is becoming increasingly clear that, 

similarly to other PTMs, virtually all fundamental cellular processes are regulated at 

some level by sumoylation. From a molecular perspective sumoylation acts by regulating 

the interactions of its substrates with other cellular components. SUMO can mask or 

create a binding site for protein-protein interaction or result in a conformational change 

of the modified substrate. Components of the SUMO system have been shown to play 

critical roles in regulation of gene expression (Girdwood et al, 2004), RNA metabolism, 

DNA replication and repair (Baek, 2006), nucleo-cytoplasmic transport, neuronal 

survival (Lieberman, 2004), cancer development and cell cycle regulation, including 

roles in division, mitotic chromosome structure, cell cycle progression, kinetochore 
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function and cytokinesis (Dasso, 2008; Geiss-Friedlander & Melchior, 2007; 

Meulmeester & Melchior, 2008). Cellular stresses, such as heat shock, hibernation and 

osmotic stress induce SUMO conjugation (Kurepa et al, 2003; Saitoh & Hinchey, 2000). 

In these cases sumoylation is induced globally with many target proteins being affected, 

although the cellular mechanisms responsible for this global change of the SUMO 

conjugation pattern remain to be discovered (Tempe et al, 2008).   

A puzzling aspect of sumoylation is that for most SUMO substrates only a small 

proportion of the cellular pool is modified by SUMO at any one time, even though the 

functional consequences of their sumoylation are dramatic. This enigma remains to be 

resolved, although some explanations have been suggested (Geiss-Friedlander & 

Melchior, 2007; Hay, 2007). SUMO attachment to a substrate may be responsible for its 

association to or dissociation from a protein complex. Once the targeted protein is 

included into or released from the complex, SUMO may not be necessary for the 

subsequent functions of the protein and it can be detached (Hay, 2005). In this view, a 

large percentage of SUMO substrates can be functionally active, even if, because of their 

rapid conjugation/deconjugation cycle, a small fraction of the protein is detectably 

modified.  

The first identified role of SUMO was the modification of GTP-activating protein 

RanGAP1 (Mahajan et al, 1997; Matunis et al, 1996), which stimulates the GTPase 

activity of Ran. RanGAP1 is the protein with the highest proportion of SUMO 

modification, and this is almost exclusively with SUMO-1 modification. Upon 

sumoylation, RanGAP1 binds to RanBP2, a component of the nuclear pore and a SUMO 

E3 as mentioned above, and consequently localize to the nuclear envelop. 

SUMO has an important role in the regulation of gene expression, by modifying 

transcription factors which constitute the largest functional category of SUMO targets 

(Girdwood et al, 2004). An example of SUMO-mediated activation of transcription is the 

sumoylation of heat shock transcription factors (HSF) 1 and 2, whose DNA binding and 

transcriptional activities are increased after sumoylation (Goodson et al., 2001; Hong et 

al., 2001). In the majority of cases SUMO inhibits transcription (Gill, 2005). Sumoylated 
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lysines can be localized in repression domains in transcription factors. For example 

glucocorticoid, progesterone, androgen and mineralcorticoid receptors have a 

„transcriptional synergy control domain‟, whose sumoylation reduces the transcriptional 

synergy of multiple transcription factors bound to the same promoter (Hay, 2005). 

Another mechanism by which sumoylation reduces transcription is the SUMO-dependent 

recruitment of proteins to particular nuclear multiprotein structures, such as PML 

(promyelocytic leukaemia) bodies, which make them unavailable for activation of 

transcription. PML is a tumor suppressor known for its association with acute 

promyelocytic leukemia when fused with the retinoic acid receptor (Salomoni & 

Pandolfi, 2002). Sumoylated PML is responsible for the formation of PML bodies by 

acting as a scaffold, which recruits other SUMO-modified proteins (Ishov et al, 1999; 

Lallemand-Breitenbach et al, 2001; Zhong et al, 2000). The transcriptional repression in 

PML bodies is achieved through the recruitment of proteins repressing transcription, such 

as the transcription factor Sp3 (Ross et al, 2002). In other cases, transcriptional repression 

results from SUMO-dependent recruitment of histone deacetylases with consequent 

chromatin inactivation at certain promoters (Gill, 2005).  

 

 

 

 

1.5 Interplay between different PTMs 
 

Protein functions are not regulated separately by different PTMs, but rather by an 

intricate crosstalk, in which PTMs may have an agonistic or antagonistic effect on each 

other (Hunter, 2007).  

A connection between the ubiquitin-proteasome pathway and sumoylation was recently 

uncovered by studying the substrate-specificity of RNF4, a ubiquitin E3 ligase. RNF4 

only conjugates ubiquitin onto PML when PML is conjugated to a SUMO polymer on 

lysine 160 (Lallemand-Breitenbach et al, 2008; Tatham et al, 2008). This interaction is 
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mediated by the four SIMs present on RNF4. PML is also an example for crosstalk 

between phosphorylation and sumoylation: it has been reported that arsenic-induced 

phosphorylation of PML facilitates its SUMO conjugation (Hayakawa & Privalsky, 

2004). 

Another mechanism in which phosphorylation regulates SUMO conjugation is by 

extending the conventional sumoylation consensus site. The phosphorylation-dependent 

sumoylation motif (PDSM), which is present in heat shock factor-1 among others, 

consists of the classical consensus motif followed by a phosphorylated serine and proline: 

ΨKXEXXpSP (Hietakangas et al, 2006).  By adding a negative charge in proximity to 

the acceptor lysine, phosphorylation facilitates SUMO conjugation. In contrast, for some 

other proteins, such as NF-κB, phosphorylation has a negative effect on sumoylation 

(Karin & Ben-Neriah, 2000).  

PTM crosstalk can also be achieved by competition of different PTMs for the same target 

residue: a lysine can be alternatively modified by methylation, acetylation, ubiquitination 

or sumoylation (Anckar & Sistonen, 2007; Ulrich, 2005). As an example the same lysine 

in PCNA (proliferating cell nuclear antigen) can be targeted by monoubiquitination, 

lysine 63-polyubiquitination or sumoylation.  PCNA is responsible for loading DNA 

polymerases on the DNA assuring its processivity. It regulates essential replication-

related functions, which include the response to DNA repair (Moldovan et al, 2007).  

PCNA becomes modified after DNA damage either by a single ubiquitin molecule or by 

a lysine 63 polyubiquitin chain (Hoege et al, 2002). Monoubiquitinated PCNA recruits 

translesion synthesis (TLS) polymerases, such as polymerases eta and iota, responsible 

for error-prone bypass of the DNA damage lesion. By incorporating correct or incorrect 

nucleotides at the lesion site, TLS polymerases assure the progression of the replication 

fork during DNA synthesis (Bienko et al, 2005).  Polyubiquitination of PCNA is 

responsible for the error-free bypass, although the mechanism is still unknown. 

Sumoylated PCNA is not involved in DNA damage response and it associates with the 

Srs2 helicase to supress recombination during normal replication (Pfander et al, 2005). 

Another example of a protein whose ubiquitination is opposed by sumoylation on the 
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same lysine is given by IκB. NF-κB is inactivated by IκB, which, by masking the nuclear 

localization signal of NF-κB, keeps it in the cytoplasm and thereby inactive form. NF-κB 

is activated by ubiquitination and proteasome-mediated degradation of IκB. SUMO 

competes with ubiquitin for the same lysine on IκB, thereby inhibiting IκB degradation.  

(Desterro et al, 1998; Perkins, 2007). 

In some cases, a combination of mechanisms is used to finely modulate the function of a 

protein by a dynamic interplay between different PTMs. For example, sumoylation of 

lysine 403 in the transcription factor MEF2A (myocyte-specific enhancer factor-2A) 

reduces its transcriptional activity, whereas acetylation of the same site results in a 

transcriptionally active form. In addition to the mutual action of these two PTMs, 

phosphorylation at serine 408 enhances SUMO modification of MEF2A, and therefore 

promotes its repressed state. In contrast, its dephosphorylation leads to a switch of lysine 

403 from sumoylation to acetylation (Shalizi et al, 2006). 

The interplay between ubiquitin and NEDD8 is exemplified by the Mdm2 E3 ligase, 

which is a central component of ubiquitin and NEDD8 conjugation. Mdm2 not only 

promotes the ubiquitination and degradation of p53 via the proteasome, but also inhibits 

its transcriptional activity by mediating NEDD8 modification (Xirodimas et al, 2004). 

A new concept of crosstalk between different PTMs, which is specific for protein 

modifiers, is recently emerging: the protein nature of Ub and Ubls makes them potential 

targets of different PTMs. So far, SUMO-1 has been shown to be directly targeted by two 

PTMs, namely removal of the initial methionine and N-terminal acetylation, which 

however are not considered to be regulatory PTMs (Lallemand-Breitenbach et al, 2008). 

The question if an Ubl can be modified by a PTM not belonging to the Ubl family, 

however, has remained open until now.  
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2 Introduction: mass spectrometry-
based proteomics 

 

 

 

 

 

 

 

2.1 Mass spectrometry 

 

Mass spectrometry is a technique used to measure mass-to-charge (m/z) ratios of 

electrically charged molecules. Generally, a mass spectrometer (MS) consists of an ion 

source for sample introduction, transfer to the gas phase and ionization, a mass analyzer 

to separate ions according to their mass to charge (m/z) ratios and a detector, which 

records a signal from the separated ions and produces a mass spectrum.  

 

 

 

 

 

 

Figure 2.1: Mass spectrometer 
The sample is injected through a column inlet into the mass spectrometer. At the 
end of the inlet the molecules of the sample are ionized by the ion source. The 
mass analyzer separates the ions by their m/z values by applying electric and/or 
magnetic fields. The ions abundance is quantified by a detector.  
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Historically, mass spectrometry was limited to the analysis of small molecules and 

therefore a tool for chemists but not biochemists. Macromolecules, such as peptides, are 

fragile and fragment when conventional ionization methods are used. In this perspective, 

the most important contribution to the establishment of mass spectrometry as a tool for 

biology was probably the development of soft ionization techniques, namely matrix 

assisted laser desorption/ionization (MALDI) (Karas & Hillenkamp, 1988) and 

electrospray ionization (ESI) (Fenn et al, 1989).  In the MALDI approach, peptides or 

proteins are homogeneously mixed with an organic matrix and the ionization is achieved 

by a laser pulse.  The laser energy is absorbed by the matrix, which ionizes and transfers 

charge to the biomolecules while protecting them from being destroyed by absorbing the 

laser irradiation. MALDI produces mainly singly-charged ions. 

In ESI, a liquid containing the biomolecules to be studied is pumped through a capillary 

column, which ends in an orifice of very small diameter. A high electric potential is 

applied to the liquid, which is thereby electrostatically dispersed into small, highly 

charged droplets containing the peptides. As the volatile solvent evaporates, the droplet 

size decreases and the charge concentration increases. When the coulombic repulsion is 

larger than the droplet‟s surface tension, the droplets explodes, producing smaller and 

less highly charged droplets. Eventually, ions are fully desolvated by repeated 

evaporation and disintegration cycles of droplets and/or desorption of ions out of the 

droplets due to the high electrical field on the droplet surface. In contrast to MALDI, this 

ionization technique typically produces ions in multiple charged states (Steen & Mann, 

2004).  

 

 



  

20 

 

 

 

 

Figure 2.2: Electrospray 
Desalted and concentrated peptides are injected into a capillary chromatographic 
column.  At the end of the column the peptides are ionized by electrospray and 
directly transferred into the mass spectrometer. Reproduced from Hanno Steen 
and Matthias Mann, Nature Reviews Molecular Cell Biology, 2004. 

 
 
 

2.2 Mass spectrometry-based proteomics 
 

 

Proteomics is defined as the large-scale study of proteins with the ultimate goal to 

identify and analyze all the proteins expressed by a cell or tissue (Aebersold & Mann, 

2003). Before the proteomics era the application of mass spectrometry was limited to the 

characterization of individual peptides or proteins. Due to a number of recent 

technological and methodological advances, MS-based proteomics has established itself 

as the leading high-throughput proteomics technology and become sufficiently mature to 

allow large-scale studies of proteomes and sub-proteomes (Cox & Mann, 2007). The 

sequencing of the human genome and of other genomes has also contributed to the 

success of MS-based proteomics by providing protein databases, against which the 

experimental spectra can be matched.  One of the most powerful and popular MS-based 

proteomics formats is the combination of liquid chromatography and tandem mass 
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spectrometry (LC-MS/MS), which now allows acquisition of thousands spectra in a few 

hours. The typical experiment starts with protein extract preparation from a biological 

source, such as cell culture. After one or more fractionation steps (i.e. SDS-PAGE) 

proteins are digested with a sequence-specific proteolytic enzyme, usually trypsin. The 

resulting peptide mixture is subjected to LC-MS/MS analysis. Peptides are separated by 

nano-flow high-performance liquid chromatography (HPLC), in which the small inner 

diameter of the column allows very low flow rates and high peptide concentrations and 

consequently a good MS signal even with few μg of total peptide. At the end of the 

column the solution containing the peptides flows through a needle and the peptides are 

sprayed and ionized into the mass analyzer. ESI has the great advantage over MALDI of 

allowing a direct on-line coupling of the MS to the HPLC (Fig. 2.2). As peptides elute 

from the chromatographic column, they are subjected to automated MS and MS/MS 

analysis: an MS spectrum is followed by a specified number of MS/MS spectra, in which 

fragment ions of the most abundant peptides determined in the MS scan are acquired. 

Then the cycle repeats with another measurement in the MS mode. The MS spectrum 

assigns each peptide ion an m/z value and intensity. Since this information is not 

sufficient by itself for a confident identification, each peptide is isolated and broken apart 

in the mass spectrometer to produce product ions, whose m/z values are then recorded in 

the MS/MS spectrum (Fig. 2.3). The peptide is identified by searching its fragmentation 

spectrum against an appropriate protein sequence database.  

 

 

 

Figure 2.3: typical LC-MS/MS workflow: from proteins to MS/MS spectra 
Proteins are digested and the generated peptides are separated by nano-flow 
HPLC. Eluting peptides are ionized by electrospray and analyzed by mass 
spectrometry. After the acquisition of precursor ions, the most intense ions are 
fragmented and recorded in the MS/MS mode. 
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The analyzer used for the studies presented in this thesis is the hybrid linear ion trap 

(LTQ)-Orbitrap mass spectrometer (Scigelova & Makarov, 2006). In the most commonly 

used mode, the precursor ions are measured in the orbitrap and fragmented in the LTQ by 

collision induced fragmentation (CID) whereas the resulting fragment ions are acquired 

in the LTQ analyzer (Olsen et al, 2005). This configuration takes full advantage of both 

mass spectrometric systems, by combining the high sensitivity and scanning speed of the 

LTQ with the very high resolution of the orbitrap, which together with its internal 

calibration option produces unprecedented mass accuracy. In addition specific 

application, such as unambiguous identification of particularly interesting peptides, 

greatly benefit from the high resolution and high accuracy measurement of MS/MS 

spectra in the orbitrap, albeit at the cost of a slower scanning rate, and from different 

complementary fragmentation techniques, such as HCD (Olsen et al, 2007) and ETD 

(Coon et al, 2005). Peptides ionized by ESI are entrained by the gas flow due to the 

vacuum in the instrument. They enter the MS through a transfer capillary and are guided 

by electric fields until they reach the ion trapping region of the LTQ, where they are 

stored. From here the ions can be axially transferred and trapped in the C-trap (Fig. 

2.4A), In the C-trap the ion population is compacted into a small cloud and injected onto 

the orbitrap, where it is electrostatically trapped and starts to orbit around the central 

electrode (Fig. 2.4B). The attraction to the central electrode is counterbalanced by 

centrifugal forces, which maintain the ions in orbit. The circular movement around the 

inner electrode is combined with harmonic oscillations along the central spindle at a 

frequency only dependent on the m/z value (Makarov, 2000). The motion along the axis 

of rotation is independent of rotational motion and can be used for calculation of m/z 

ratios: 

zm

k

/  

where ω is the axial oscillation frequency and k the instrumental constant.
 

The oscillating ions induce an image current between the two outer orbitrap electrodes, 

which is then converted into an m/z spectrum using a mathematical operation called 
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Fourier Transformation. The harmonic nature of the oscillations is responsible for the 

high performance of the Orbitrap mass spectrometer with respect to the resolution and 

mass accuracy. The Orbitrap has a high dynamic range partly because the ions are 

shielded from each other by the central electrode, minimizing space charge.  

 

 

 

 

 
 
Figure 2.4: LTQ-Orbitrap mass spectrometer 
(A) The LTQ-Orbitrap consists of the linear ion trap coupled to a C-trap for 
intermediate storage of ions. From the C-trap the ions enter the orbitrap. (B) The 
orbitrap cell consists of a coaxial central spindle-shaped electrode and an outer 
barrel-like electrode. The ions orbit around the inner electrode and oscillate along 
its long axis. Reproduced from Michaela Scigelova and Alexander Makarov, 
Proteomics, 2006. 
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2.3 Quantitative proteomics 
 

 

Mass spectrometry is not inherently quantitative, due to different digestion and mass 

spectrometric behaviors of different peptide ions, including solubility, accessibility to the 

protease, ionization efficiency and detector response. The most accurate way to obtain 

quantitative information with MS involves the use of stable, non-radioactive isotopes 

(Ong & Mann, 2005). Peptides that differ only in mass as a result of different isotopic 

composition will behave identically in a proteomics experiment apart from being 

distinguishably detectable by MS because of their different mass. Quantitation can be 

either absolute or relative. The popular AQUA (Absolute Quantitation) approach (Gerber 

et al, 2003) consists in adding to a sample a known amount of synthetically produced, 

isotopically labeled peptide that mimics a proteolytic peptide present in the peptide 

mixture. 

Relative quantification at the protein levels of two cell populations can also be achieved 

using stable isotopes. Stable isotope labeling by amino acids in cell culture, SILAC (Ong 

et al, 2002), uses the metabolic labeling of proteins with either normal or heavy isotope 

variants of amino acids. Generally, the method relies on growing two populations of 

cells; one in a medium containing the natural („light‟) form of a particular amino acid, 

and the other in a medium that contains the isotopically labeled („heavy‟) analogue of the 

same amino acid. When, in place of the natural form of an amino-acid, the „heavy‟ form 

is supplied to cells in culture, its incorporation into a peptide leads to a defined mass shift 

compared to the „light‟ peptide. This shift is easily detectable by modern MS analyzers. 

Typically, arginine and lysine are replaced by their 
13

C and/or 
15

N carbon labeled forms, 

leading to C-terminal labeling of tryptic peptides. Since the only difference between the 

labeled amino acid and its natural isotope counterpart is the mass, the cells grown in the 

heavy isotope behave exactly like the control cells cultivated in the presence of normal 

amino acid (Mann, 2006).  
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Figure 2.5: SILAC approach 
Two cell populations are grown in media containing respectively ‘light’ and 
‘heavy’ isotopes of particular amino acids (i.e. arginine and lysine). One cell 
population is perturbed (i.e. by stimulation with a growth factor such as EGF) 
when the other is the control. By measuring the relative intensities of the SILAC 
peaks by MS one obtains the ratio of peptides and consequently of the proteins 
from which they are derived. Three possible scenarios are illustrated: upon 
stimulation a peptide can be down regulated (left spectrum), unchanged (middle 
spectrum) or up regulated (right spectrum). 
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2.4 Computational MS-based proteomics 
 

 

Once the precursor and fragment ion spectra have been acquired, the next crucial step in 

the MS-based proteomics workflow is the identification of peptides and proteins from the 

raw spectra. The most commonly used approach to automatically assign peptide 

sequences to MS/MS spectra is through database searching (Colinge & Bennett, 2007). 

The masses from both MS and MS/MS scans are submitted to a database search engine, 

such as Mascot (Perkins et al, 1999) or SEQUEST  (Eng et al, 1994).  Measured spectra 

are compared against theoretical spectra from candidate sequences with matching mass 

obtained after in silico digestion of protein sequences using the enzymatic cleavage rules. 

For each theoretical peptide the mass of its precursor and fragment ions are calculated 

and a theoretical fragmentation spectrum is obtained. If the measured precursor mass is 

equal to its theoretical counterpart within the maximum allowed mass deviation, 

considering allowed types of PTMs and enzyme constraints, the acquired MS/MS 

spectrum is matched against the theoretical fragmentation patterns. This procedure is 

repeated for each peptide from the protein sequence database. 

For each experimental fragmentation spectrum, the software produces a list of peptide 

sequences and assigns to each peptide sequence a score according to the quality of the 

match with the observed fragmentation pattern. As it is a measure of similarity between 

the calculated spectrum and the observed spectrum, this probability score indicates the 

likelihood that the match is correct and, therefore, that the corresponding peptide was 

correctly identified. Since the peptide sequence with the best matching score has the 

highest probability to be assigned correctly to the MS/MS spectrum, usually only this 

match is used for successive statistical analyses. Due to non-ideal and random matching 

between theoretical and experimental spectra, database searching programs inevitably 

produce both correct and incorrect identifications. The score given by the search software 

is not a good indication of the confidence of identification (i.e. to distinguish true from 

false positives): it is a property of a single match between fragmentation spectrum and 

peptide sequence and therefore does not consider factors affecting the whole population, 
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which include the size of the searched database and performance of the instrument 

(Nesvizhskii et al, 2007). 

 

 

 

Figure 2.6: Workflow of a typical database search tool 
An experimental fragmentation spectrum is matched against theoretical spectra 
derived from a protein sequence database. The database searching engine 
scores the similarity between the spectra. In addition the score can be converted 
to an expectation value, which is defined as the expected number of peptides 
that match randomly to the observed spectrum and have scores equal or higher 
than the reported score. Reproduced from Alexey I Nesvizhskii, Olga Vitek and 
Ruedi Aebersold, Nature Methods, 2007. 
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Global strategies, which study the distribution of the whole population of peptide scores, 

have been recently introduced as a better way to estimate the ambiguity of peptide 

identification by calculating the rate of false positives. Among these the target-decoy 

search approach  is usually considered the best way to control false positives in large-

scale proteomics studies (Elias & Gygi, 2007). The first step in this strategy is the 

creation of a target-decoy database: the target database contains peptide sequences 

representative of the analyzed peptide mixture. The decoy database is obtained by 

reversing or randomizing the protein sequences of the original target database. By 

assuming that incorrect identification of peptides are equally likely in the target and 

decoy database, it is possible to obtain an estimate of the number of false positives by 

doubling the number of hits found in the decoy portion of the database, which are 

incorrect identifications by definition. In the second step, the list of identified peptides is 

filtered according to user-specified criteria and the False Discovery Rate (FDR) is 

estimated from the number of decoy hits. In contrast to the search engine score or 

expectation value, FDR, instead of controlling the probability that any peptide is a false 

positive, estimates the expected proportion of false positives in the whole population. 

 

 

 

 

Figure 2.7: Target-decoy search approach  
Experimental spectra are searched against a concatenated target/decoy 
database. The FDR of this list is estimated by counting the number of matches 
from the decoy database and confident identifications are separated by a user-
specified cut-off.  
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2.5 MaxQuant algorithms for high confidence identification and 
quantitation 

 

 

The introduction of high resolution, high performance mass spectrometers, such as the 

LTQ-Orbitrap (Scigelova & Makarov, 2006), has in principle allowed high mass 

accuracy of in the low or sub p.p.m. (parts per million) range to be used in peptide 

identification. Such a high mass accuracy restricts the searchable space of a database and 

thus decreases the false positive identification rate by rejecting many false positives and 

improves the confidence of peptide and protein identification (Zubarev & Mann, 2007). 

However, in practice the potential of the highly accurate masses was not fully realized in 

peptide identification. The novel data processing software MaxQuant (Cox & Mann, 

2008a) was specifically developed to take full advantage of high resolution MS 

analyzers. It further improves estimated peptide mass accuracy with linear and non-linear 

mass recalibration and integration of multiple mass measurements over a liquid 

chromatographic peak. Most importantly, it introduced the concept of individualized 

mass accuracy depending on the signal of each peptide. Furthermore, by specifying the 

number of arginine and lysine residues in a SILAC experiment, MaxQuant uses these 

additional criteria to restrict the database search space. The software has additional 

features, which make it an ideal solution for the quantitative analysis of a large number of 

raw data, such as a method for a three dimensional (time, m/z and abundance) 

identification of MS peaks, methods for computing statistics at peptide and protein levels 

and statistically robust method for quantifying proteins.  

To estimate the FDR, MaxQuant divides the forward peptide sequences from the reverse 

hits. A histogram of the distribution of hits is calculated separately for the two lists as a 

function of Mascot score and sequence length. From the separate Bayesian probability 

densities for true positives and false positives it is possible to determine the probability of 

being a false hit, given the Mascot score and the length of the peptide. This quantity, 

called posterior error probability (PEP), is a property of a single peptide and represents 

the probability that the individual peptide is incorrectly identified. Similarly to the 

approach described above, filtering by FDR is achieved by sorting all the identified 
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peptides according to their PEP, starting with the lowest. Peptides are accepted along the 

list until a certain FDR is reached. 

 

 

2.6 Analysis of PTMs by mass spectrometry 
 

 

One of the main applications of mass spectrometry is the direct mapping and quantitation 

of PTMs of proteins. These modifications result in mass changes that can be detected 

during MS analysis (Witze et al, 2007). Although all kinds of PTMs can potentially be 

studied by MS, phosphoproteomics has been particularly successful due both to the 

functional importance of phosphorylation and the availability of powerful methods for 

detecting protein phosphorylation. Phosphopeptides are detected by the increase in the 

peptide mass of 80 Da, which corresponds to the addition of a phospho group, and the 

precise modification sites are mapped from mass shifts of the fragments in the MS/MS 

spectra. Large-scale in vivo identification of phosphorylation sites is possible mainly 

because of the development of methods for enrichment of phosphopeptides. The simplest 

and most powerful methods to enrich phosphopeptides, including titanium dioxide 

chromatography (Larsen et al, 2005; Pinkse et al, 2004), strong cation exchange 

chromatography (SCX) and immobilized metal affinity chromatography (IMAC) 

(Andersson & Porath, 1986), are based on the electrostatic interactions between a 

positively charged matrix and the negatively charged phosphate group. Building on these 

methods and employing triple encoding SILAC, more than 6,000 phosphopeptides were 

identified and quantified in a time dependent manner in HeLa cells after stimulation with 

EGF (Olsen et al, 2006).  
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2.6.1 Identification of sumoylation sites by mass spectrometry 
 

 

More recently, similar proteomic approaches have been applied to identify peptides 

modified by ubiquitin and Ubls. During tryptic digestion of the ubiquitinated protein, 

there is no cleavage at the modified lysine and the mass of the ubiquitinated peptide is 

increased by the two glycines, which remain of the cleaved ubiquitin (Kirkpatrick et al, 

2005). This predictable mass shift of the precursor ion, combined with the fact that the 

diglycine remains attached to the lysine during fragmentation, allows an easy detection of 

ubiquitinated peptides. However, the diglycine signature tag is not unique for ubiquitin: 

the ubiquitin-like proteins NEDD8 and ISG15 share the same Gly-Gly mass shift. In 

addition, iodoacetamide, the standard alkylating agent used in proteomics to block 

cysteins, can form a 2-acetamideacetamide adduct to lysines with the same atomic 

composition of two glycines (Nielsen et al, 2008).  

Mapping of sumoylation sites poses additional challenges for detection with mass 

spectrometry due to the sequence of SUMO. Trypsin-digested SUMOs release larger 

signature tags, such as 19 and 32 amino acids respectively for mammalian SUMO-1 and 

SUMO-2/3, which produce many fragment ions during MS/MS fragmentation (Fig. 1.4). 

Therefore, although it makes the SUMO-cross-linked peptides unambiguous as compared 

to ubiquitin, it also makes identification challenging because the long modifying SUMO 

peptide leads to complex MS/MS fragmentation patterns, which are not interpretable by 

conventional automated database searching engines. SUMmOn (Pedrioli et al, 2006), a 

pattern recognition tool, in combination with low resolution mass spectrometry, has been 

successful in detecting peptide modified by SUMO in vitro, although its utility has not 

been tested with in vivo samples, which represents further challenges due to the much 

higher complexity of the peptide mixture and very low abundance of SUMO conjugates. 

As discussed above, the success of phosphoproteomics is due to the intrinsic chemical 

nature of phosphopeptides, namely their strong negative charge derived from the acidic 

phosphate group. A similarly powerful enrichment strategy as is routinely used for 

phosphorylation is not currently available for peptides modified by ubiquitin, SUMO or 
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other Ubls. Thus large-scale application of mass spectrometry-based proteomics to the 

Ub/Ubl field currently relies on purification at the protein level, not the peptide level, of 

Ub/Ubl covalent conjugates. This is limiting for two reasons: first, it is necessary to use 

cell line expressing a non-endogenous tagged, often overexpressed, Ub/Ubl; secondly no 

information can be obtained about the modification site, which is especially critical when 

a protein is modified on multiple sites.    

Therefore, although mass spectrometry is well suited to the analysis of sumoylation, 

further methodological advances would improve its applicability to the SUMO field. 
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3 Evidence for SUMO polymerization in 
vivo 

 

 

 

 

 

 

PAPER: In vivo identification of human small ubiquitin-like modifier 

polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo 

strategy. 

 

 

The following article was published in the January 2008 issue of Molecular & Cellular 

Proteomics, pages 132-44.  

It provides the first direct evidence that SUMO polymers can be formed in vivo. Of 

particular interest to the SUMO field is the evidence of the formation of mixed chains 

formed by SUMO-1 and SUMO-2/3. From a methodological perspective, the article 

introduces a novel mass spectrometric approach for the in vivo identification of 

particularly interesting peptides by transferring information obtained more easily in vitro.  
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4 Phosphorylation of SUMO-1  
 

 

 

 

 

 

PAPER: Phosphorylation of SUMO-1 occurs in vivo and is conserved through 

evolution. 

 

The following article was published in the September 2008 issue of Journal of Proteome 

Research, pages 4050-4057.  

It shows for the first time that a protein modifier can be targeted by a regulatory post-

translational modification not-belonging to the ubiquitin-like protein family, raising the 

concept of a „modified modifier‟. 
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5 Cross-talk between SUMO-2/3 and 
the ubiquitin-proteasome system 

 

 

 

 

 

 

PAPER: The ubiquitin-proteasome system is a key component of the SUMO-2/3 

cycle. 

 

The following article was published in the November issue of Molecular & Cellular 

Proteomics, pages 2107-2122.  

This study identifies proteins that are targeted by SUMO-2 and consequently 

ubiquitinated for proteasomal degradation. 
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6 Profiling of the SUMO substrates 
proteome after heat shock 

 

 

 

 

 

 

MANUSCRIPT: System-wide changes in SUMO modification in response to heat 

shock 

 

The following pages contain the submitted version of the manuscript.  

It presents the most in-depth characterization of the SUMO substrates proteome and its 

large scale systems-wide profiling after heat shock and heat shock recovery.  

  



  

74 

 

 

System-wide changes in SUMO modification 

in response to heat shock  

Filip Golebiowski*
1
, Ivan Matic*

2
, Michael H. Tatham*

1
, Christian Cole

3
, Jurgen Cox

2
, 

Akihiro Nakamura
4
, Geoffrey J. Barton

3
, Matthias Mann

2
, Ronald T. Hay

1
  

 

1 – Wellcome Trust Centre for Gene Regulation and Expression, College of Life 

Sciences, University of Dundee, DD1 5EH. Scotland.  UK 

2 - Proteomics and Signal transduction, Max-Planck-Institute for Biochemistry, Am 

Klopferspitz, D-82152 Martinsried, Germany 

3 – School of Life Sciences Research, University of Dundee, Dow Street, Dundee, DD1 

5EH, UK. 

4- Department of Molecular and Cellular Pharmacology, Faculty of Medicine, Gunma 

University, Graduate School of Medicine, 3-39-22 Showa-Machi, Maebashi, Gunma 371-

8511, Japan 

*Authors contributed equally. 

Word count; Introductory paragraph -  227  

Main body text -  1697  



  

75 

 

All forms of cellular life need to sense and respond to extreme environmental and 

pathological conditions. In the absence of an appropriate reaction such stresses can lead 

to cell damage or death. The heat shock (HS) response is one of the most evolutionarily 

conserved of such defensive mechanisms, and is characterized by massive induction of 

HS genes, producing HS proteins (HSPs) which act to protect the cell from the cytotoxic 

stress(Lindquist, 1986). However, while the role of HSPs has been well documented, 

early signaling mechanisms have yet to be fully investigated. Post-translational 

modifications (PTMs) are commonly involved in rapid signal transduction, and 

conjugation of one such PTM, the small ubiquitin-like modifier 2 (SUMO-2), to an 

unknown set of cellular substrates is induced by HS(Saitoh & Hinchey, 2000). Here we 

employ stable isotope labeling of amino acids in cell culture (SILAC)(Mann, 2006), a 

stringent SUMO purification protocol and advanced mass spectrometric technology to 

identify over 750 SUMO-2 substrates and quantify changes in their sumoylation after HS. 

As a response to HS SUMO is polymerized into polySUMO chains and redistributed 

between a wide variety of proteins involved in cell cycle regulation, apoptosis, protein 

trafficking, folding and degradation, mRNA transcription and translation, and DNA 

replication, recombination and repair. This is the most comprehensive substrate 

proteomic analysis of a ubiquitin-like modifier (Ubl) and identifies a pervasive role for 

SUMO in the biologic response to hyperthermic stress.   
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 Owing to their dynamic nature, reversible PTMs involving the addition and 

removal of molecular adducts are capable of rapid transduction of cellular signals. Mass 

spectrometry is well-suited to the analysis of PTMs in general(Witze et al, 2007) and 

sumoylation in particular(Matic et al, 2008b; Tatham et al, 2008; Tatham et al, 2001). To 

better understand the role of SUMO-2 in the HS response we undertook a systems-wide 

and quantitative proteomic analysis of SUMO-2 targets both during and after HS.  

We generated HeLa cells stably expressing SUMO-2 fused to a tandem affinity 

protein (TAP) tag(Rigaut et al, 1999) (Fig. 1a), that is expressed at similar levels to 

endogenous SUMO-2, and responds to HS in a similar manner to the endogenous protein 

(Fig. 1b). Comparisons between TAP only and TAP-SUMO-2 purifications under 

initially denaturing conditions confirm the high stringency of this method (Fig. 1c). For 

proteome quantitation, we employed SILAC labeling(Mann, 2006) using arginine and 

lysine to compare purifications from HeLa cells expressing TAP alone with two pools of 

TAP-SUMO-2 HeLa cells; either unstressed or subjected to HS (Fig. 1d). This allowed 

1159 proteins to be quantified. Among them, the heat-shock transcription factor 1 (HSF1) 

displays dramatically increased SUMO modification after HS (Fig. 1d), which is 

consistent with previous studies(Hietakangas et al, 2003). The changes to all proteins 

were visualized on a triple-SILAC map (tsMap) (Fig. 1e), in which each protein is 

located by coordinates derived from the TAP-SUMO-2/TAP and TAP-SUMO-2 

HS/TAP-SUMO-2 ratios. Although contaminants were almost invisible by silver-staining 

(Fig. 1c), they were still detected by this approach and separated in the tsMap from 

SUMO substrates (Supp. Fig. 1a). This analysis allowed the unambiguous identification 
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of 660 SUMO-2 targets (Supp. File 1). Although the in vivo identification of SUMO 

branched peptides is technically challenging, the known (RanGAP1, SUMO-2 and 

SUMO-3 Supp. Fig. 2) and novel (Antigen KI-67, SAF-B1 – Supp. Fig. 3) modification 

sites were identified, by manual screening and interpretation of spectra(Matic et al, 

2008b). 

During HS, SUMO-2 modification increases and free SUMO-2 is depleted(Saitoh 

& Hinchey, 2000) (Fig. 1b). Although analysis of the tsMap indicates that HS-induces the 

sumoylation of a significant number of proteins, unexpectedly this occurs concomitantly 

to the desumoylation of a different subset, which is detectably modified under basal 

conditions. This is apparent as a close correlation between TAP-SUMO-2/TAP and TAP-

SUMO-2-HS/TAP-SUMO-2 ratios (Suppl. Fig. 1b), and suggests not simply an increase 

in global sumoylation, but a dynamic exchange of SUMO between substrates upon HS.  

 To better understand the temporal dynamics of the sumoylation response to HS 

we applied this robust and sensitive protocol to monitor the system-wide changes in 

sumoylation of proteins both upon HS and after a two-hour recovery (HSR) period (Supp. 

Fig. 4, Fig. 2a). This experiment quantified 1255 proteins (Fig. 2c), which, after tsMap 

filtering, yielded 628 SUMO-2 target proteins (Supp. Fig. 5a, Supp. File 1). There was 

excellent agreement between the two experiments for the HS response (Supp. Fig. 5c&d), 

and together a total of 765 SUMO-2 substrates were identified. Currently single protein 

studies have documented 265 SUMO targets, of which this study identified a greater 

proportion than all eleven previous SUMO substrate proteomics studies taken together 

(Fig 2 and Supp. Fig. 6). Furthermore, our SUMO-2 substrate proteome contains a 
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comparable number of KxE SUMO conjugation consensus motifs(Rodriguez et al, 

2001) per protein to the 265 independently verified substrates (Table 1). Significantly, the 

TAP-SUMO-2 internal contaminants list contains almost 3 fold fewer and is comparable 

to a human proteome „background‟ set (Table 1). This strongly suggests that the approach 

used here was successful in identifying SUMO substrates. 

Although the SUMO-2 substrate proteome contains proteins from a broad range 

of molecular weights, HS induces the accumulation of very high molecular-weight 

SUMO conjugates (Figs. 1b&2a). Analysis of substrate distribution throughout the gel in 

the second SILAC experiment shows that HS-induced changes are most prominent in the 

upper regions (Fig. 3a left), with slices over 100kDa being predominantly populated with 

proteins of lower predicted molecular weight (Fig. 3a right). Also, individual proteins 

whose conjugation increases with HS, are generally present in broader molecular weight 

ranges than would be expected for conjugation to one or two SUMO adducts (Fig. 3b). 

As SUMO-2 and SUMO-3 share with ubiquitin the ability to form polymers(Matic et al, 

2008b; Tatham et al, 2001), a potential explanation for this unexpectedly exaggerated 

protein migration is the formation of polySUMO-2/-3 adducts on target proteins. This is 

confirmed by quantitation of SUMO-2/SUMO-2 branched peptides which indicate a 

strong induction of SUMO polymerization via lysine 11 upon HS, that returns to basal 

levels after recovery (Fig. 3c). Whether in some cases these signal for degradation via the 

ubiquitin-proteasome pathway(Tatham et al, 2008), remains to be investigated.  

 Many proteins known to be directly involved in the cellular HS response such as 

heat shock transcription factors 1 and 2(Lindquist, 1986), members of the HSP 40kDa, 
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60kDa and 70kDa families(Lindquist, 1986), the co-chaperonins Sti1, RUVBL1 and 

RUVBL2(Pearl et al, 2008), the HS signal transduction kinase p38-MAPK14(Dorion & 

Landry, 2002) and the translocated promoter region (TPR) protein(Skaggs et al, 2007), 

are SUMO-2 targets (Supp. File 1). More generally, the HS response triggers changes in 

transcription, translation, apoptosis, cell cycle control, protein folding and protein 

degradation, that coordinately determine whether a cell exposed to hyperthermia will die 

or survive and become stress tolerant(Beere, 2005; Bond, 2006; Lindquist, 1986). 

Proteins involved in all of these processes are significantly over-represented in the 

SUMO-2 modified proteome, in addition to proteins involved in DNA replication, 

recombination and repair (Fig. 4a, Supp. Figs. 7a and 8). This latter observation is likely 

to be a consequence of HS-induced DNA double-strand breaks(Kaneko et al, 2005; 

Takahashi et al, 2004), and there is significant overlap with the phosphoproteome of the 

DNA damage responsive kinases ATM/ATR(Matsuoka et al, 2007) (Supp. Figs. 9 b&c) 

with notable exception of proteins involved in ubiquitin-dependent protein turnover 

(Supp. Fig. 10). 

While the global increase in SUMO conjugation observed by Western-blotting in 

response to HS is rapid, with all free SUMO being conjugated into high molecular weight 

adducts after 5 minutes, the deconjugation of SUMO during the recovery period is much 

slower (Supp. Fig. 4). Systems-wide analysis of individual proteins by tsMap reveals a 

general trend (Supp. Fig. 5b) whereby substrates sumoylated upon HS become 

deconjugated during recovery (e.g. glucocorticoid receptor – Fig. 2b), but those 

demodified during HS do not tend to recover their conjugation state after two hours (eg. 
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SAF-B1 – Fig. 2b). To extract biologically relevant information from these data we 

developed an analysis which maps protein members from significantly clustering GO 

groups onto tsMaps, allowing changes in their sumoylation with respect to the entire 

dataset to be easily visualized (Fig. 4b-g). Inspection of these GOtsMaps shows that like 

most large GO terms the transcription factors (Fig. 4b) do not exhibit significant group 

regulation (Supp. Table 1), however, sub-categories do show coordinated desumoylation 

(Fig. 4c). This group includes the dimerising transcription factors Jun, FOS and the V-

maf musculoaponeurotic fibrosarcoma oncogene homolog (MAF) proteins (Fig. 4h), 

which act upstream of the oxidative stress-response transcription factor NRF2 (Supp Fig. 

11). As Jun is activated in response to HS(Dai et al, 1995) and repressed by 

sumoylation(Muller et al, 2000), it seems likely that rapid desumoylation of Jun plays a 

role in the early response to HS.  

Transcriptional control during hyperthermic stress also acts more globally to 

facilitate the expression of HSPs while repressing non-HS genes (Lindquist, 1986). 

Consistent with this many SUMO-2 substrates are involved in chromatin remodelling. 

For example the SWI/SNF related matrix associated actin dependent regulators of 

chromatin (SMARCs) (Fig. 4i), which are known to be involved in HS-induced 

chromatin remodeling(Shivaswamy & Iyer, 2008) are all deconjugated upon HS. 

Recently, clear roles for SUMO modification in the recruitment of repressive complexes 

have been established for KRAB-ZFP(Ivanov et al, 2007) and Sp3(Stielow et al, 2008). 

SUMO modification of Sp3 or the KRAB-ZPF co-repressor KAP1 is thought to mediate 

successive recruitment of the NuRD complex to deacetylate histones and the SETDB1 
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complex to methylate histones, which in turn bind HP1 proteins to maintain the silent 

chromatin state. The remarkable finding from our analysis is that almost all of the 

components of the above mentioned protein complexes are SUMO modified: 

transcription fators Sp3 and KRAB-ZFP; corepressor KAP1; NuRD complex (HDAC1, 

Mi2 , Mi2 , MTA2 and RbAP46); SETDB1 complex (SETDB1, MBD1 and ATF7IP) 

and HP1  and . An alternative route to histone deacetylation is recruitment of the SIN3 

complex and again virtually all of its components are SUMO modified (Sin3b, SDS3, 

SAP18, SAP130 and SAP180). Consistent with previous work (Nathan et al, 2006; Shiio 

& Eisenman, 2003) H2A, H2B and H4 histone subfamilies were identified as SUMO 

substrates (Supp. File 1), and are coordinately deconjugated from SUMO upon HS (Supp. 

Fig. 7b). While histone modification represents one path to epigenetic modification, DNA 

methylation is also critical(Ooi & Bestor, 2008). In this respect the DNA 

methyltransferase DNMT1 is subject to SUMO modification and its associated cofactor 

UHRF1 displays a 45 fold increase in SUMO modification after heat shock. Together 

these observations suggest a considerably more extensive role for SUMO modification in 

the regulation of transcriptional repression than was previously suspected. 

RNA binding proteins cluster to two distinct regions of the tsMap (Fig. 4d) 

indicating significant conjugation or deconjugation in response to HS. Almost all the 

small nuclear ribonucleoproteins (snRNPs) are desumoylated (Fig. 4e & l), while the 

heterogeneous ribonucleoproteins (HNRNPs) show both increased and decreased 

sumoylation with HS (Fig. 4l). Many importins and nuclear pore complex proteins also 
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seem to be SUMO-2 targets (Fig. 4n), indicating that both protein and RNA nucleo-

cytoplasmic transport features are regulated by SUMO.  

 Proteins involved in DNA repair (Fig. 4f&j, Supp. Fig. 12b), DNA recombination 

(Fig. 4g) and DNA damage response (Fig. 4m, Supp. Fig. 12a) almost exclusively 

increase in sumoylation in response to HS. A striking functional group within these are 

those involved in the initiation of DNA replication (Fig. 4k). This group contains three 

components of the origin recognition complex (Orcs 2L, 3L and 6L) and four subunits of 

the MCM replicative helicase (MCMs 2, 3, 4 and 7). The targeting of these proteins for 

sumoylation after HS suggests a hitherto unrecognized role for SUMO in the regulation 

of DNA replication, and is consistent with the observation that delaying S-phase 

progression rescues cells from heat-induced S-phase hypertoxicity(VanderWaal et al, 

2001). 

In summary, a combination of high stringency purification, high-resolution mass 

spectrometry, quantitative proteomic methods and novel data analysis allowed the 

identification of over 550 novel SUMO targets and shows that regulated sumoylation of 

important cellular mechanisms occurs during hyperthermic stress. We predict that this 

study will provide both a platform for further investigations into the role of SUMO in a 

wide variety of cellular functions, and a template for the systems-wide study of ubiqutitin 

and other Ubls.  

 

Methods Summary 

Cell culture and SILAC labeling 
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Quantitative proteomic experiments were performed using the SILAC technique as 

described (Ong & Mann, 2007): “SILAC experiment 1” compared TAP only cells, with 

unstimultaed TAP-SUMO-2 cells and TAP-SUMO-2 cells stimulated by heat-shock 

(43ºC for 30 minutes). Cells were grown in modified Dulbecco‟s modified Eagle‟s 

medium lacking amino-acids with 10% FCS dialysed against PBS with 3500 molecular 

weight cut-off membrane. Medium was enriched with all amino-acids except L-lysine 

and L-arginine, which were replaced with stable isotope (SILAC) forms (Cambridge 

Isotope Laboratories) depending on the treatment: Untreated TAP-only cells were grown 

in the presence of isotopically normal lysine (Lys0) and arginine (Arg0). TAP-SUMO-2 

cells cultured at 37 C only were grown in the presence of 4,4,5,5-D4 lysine (Lys4) and 

13
C6 arginine (Arg6), and heat shocked cells were grown in the presence of 

13
C6 

15
N2 

lysine (Lys8) and 
13

C6 
15

N4 arginine (Arg10).  

“SILAC experiment 2” used only TAP-SUMO-2 HeLa cells at 37 C (Lys0, Arg0), 30 

minutes HS at 43 C (Lys4, Arg6) and HS followed by 2 hours of recovery in 37 C (Lys8, 

Arg10). Cells were harvested at 90-100% confluency.  

Tandem affinity purification (TAP) of SUMO-2 conjugates 

Cells were harvested under denaturing conditions (50mM Tris/HCl pH 8.0, 2% SDS, 

10mM iodoacetamide, 1mM EDTA with complete protease inhibitor cocktail (Roche)) 

and mixed in equal protein ratios. Cleared lysates were refolded by dilution into 25 

volumes of cold renaturation buffer (RB) (50 mM Tris-HCl pH 8.0, 0.75 M NaCl, 1% 

NP-40, 2mM iodoacetamide, 0.5 mM EDTA), then purified in two stages. Firstly by IgG-

sepharose affinity chromatography, followed by elution with TEV protease. In the second 
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step, TEV eluates were purified by calmodulin sepharose affinity chromatography. Eluted 

proteins were TCA precipitated and resuspended to 30 L volume before analysis by 

Coomassie-stained SDS-PAGE (Invitrogen, NuPAGE 10% Bis-Tris). The lane 

containing SUMO-2 purified proteins was then sliced into 6 sections and followed by in-

gel tryptic digestion. See „Supplementary methods‟ for a detailed description. 

Quantitative mass spectrometry  

Peptide mixtures were analyzed by LC-MS/MS with a LTQ-Orbitrap mass spectrometer 

equipped with a nanoelectrospray ion source (Proxeon Biosystems) and coupled to an 

Agilent 1100 nanoflow system (Agilent Technologies) fitted with an in-house made 75 

μm reverse phase C18 column. The instrument was operated with the “lock mass” option 

and in the data-dependent mode to automatically switch between MS and MS/MS. Raw 

files were processed with the in house developed quantitative processing software 

MaxQuant (version 1.0.7.1) (Cox & Mann, 2008b) and using the Mascot search engine 

(Matrix Science). The data were searched against a target/decoy human IPI database 

(version 3.24) (Kersey et al, 2004). 1% false discovery rate was required at both the 

protein and peptide level. The SUMO-2 branched peptides were manually found in the 

unmatched list, containing quantified but non-identified peptides (Matic et al, 2008b). 

 

Acknowledgements 

F.G. is funded through a Marie Curie research fellowship and M.H.T is funded by 

CRUK. I.M. is supported by the EU FP6 Rubicon consortium and an EMBO short-term 

fellowship. C.C is funded by the Scottish Funding Council via the Scottish 



  

85 

 

Bioinformatics Research Network (SBRN)). We would like to acknowledge help from 

Catherine Botting, Robin Antrobus, David Martin and Michelle Scott.  

  



  

86 

 

Tables 

Dataset
+ Number of 

proteins 

Number of 

predicted 

consensus sites 

Number of 

proteins 

without 

consensus  

Average 

consensus sites 

per protein 

Published SUMO 

substrates 
264 517 49 2.0 

TAP-SUMO-2 

proteome 
759 1681 195 2.2 

Human proteome
§
 43,964 28,078 28,571 0.6 

TAP-SUMO-2 

internal 

contaminants 

594 458 312 0.8 

 

Table 1. Predicted SUMO consensus site frequency of proteins identified by 

different studies. SUMO consensus sites of the form KxE as predicted by 

SUMOsp2.0(Xue et al, 2006) using „High‟ threshold. §Using a non-redundant human 

proteome data set from UniRef90. Datasets were filtered for redundancy. The shorter of 

two sequences with >90% pairwise sequence identity over >90% of the sequence length 

were removed. 
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Figure 1. Identification of 660 putative SUMO-2 target proteins from HeLa cells. (a) 

Schematic representation of the TAP-SUMO-2 construct stably transfected into HeLa 

cells for this study. The Tandem Affinity Protein (TAP) tag consists of a Protein A 

domain separated from a calmodulin binding protein (CBP) domain by the tobacco etch 

virus (TEV) protease site. This is N-terminally tagged to SUMO-2 (residues 1-92) (NCBI 

Entrez protein CAG46970), which can be conjugated directly to target proteins via a 

covalent bond. (b) Anti-SUMO-2 western blot of crude cell lysates from TAP-SUMO-2 

HeLa cells under normal conditions (37ºC) and after heat-shock for 30 minutes (43ºC). 

(c) Silver-stained SDS PAGE gel showing a TAP purification products from HeLa cells 

expressing TAP alone and TAP-SUMO-2. (d) Overview of the quantitative proteomic 

experiment comparing TAP alone HeLas, with TAP-SUMO-2 HeLas either untreated 

(37ºC) or heat-shocked (43ºC). TAP only-expressing cells were grown in isotopically 

normal („light‟) medium, TAP-SUMO-2 cells grown under normal conditions were 

cultured in SILAC medium containing Lys4 and Arg6 („medium‟) isotopic forms, and 

heat-shocked TAP-SUMO-2 cells were grown in Lys8 and Arg10 („heavy‟) SILAC 

medium. After denaturing lysis the pooled lysates were subjected to TAP purification, 

separation by SDS-PAGE, in-gel digestion with trypsin, analysis by high resolution LC-

MS/MS and data processing using MaxQuant software(Cox & Mann, 2008b) (see 

Materials and Methods for further details). Examples are shown of raw MS data showing 

spectra from representitive peptides for the internal contaminant glyceraldehyde 

phosphate dehydrogenase (GAPDH), and the genuine target, heat shock transcription 

factor 1 (HSF1). (e) Triple-label SILAC quantitation map with marginal histograms of 
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1164 quantified proteins from this experiment. This was filtered to remove putative 

contaminants to yield 660 putative SUMO-2 substrates (See Supplementary Methods and 

Supp. Fig. 1). 

Figure 2. The effect of recovery from heat-stress on cellular SUMO-2 conjugates. (a) 

Anti-SUMO-2 Western-blot of individual lysates of TAP-SUMO-2 HeLas which were 

untreated (37ºC), Heat-shocked at 43ºC for 30 minutes (HS) or allowed to recover for 2 

hours at 37ºC after heat-shock, (HSR) using SILAC labels as indicated. (b) Raw MS data 

showing spectra from representitive peptides for scaffold attachment factor B1 (SAF-B1) 

and the glucocorticoid receptor. (c) Smoothed colour density scatter plot with marginal 

histograms of the quantitation data of 1255 identified proteins. (d) Comparison of the 

overlap among the proteins identified in this study (TAP-SUMO-2 proteome), previously 

published SUMO targets („Confirmed‟ SUMO substrates) and proteins identified by 

previous proteomics studies (Published SUMO proteomes). 

Figure 3. Stimulation of SUMO-2 polymerisation by heat stress (a) Left charts; relative 

comparison of the frequency of log2(TAP-SUMO-2 Recovery/TAP-SUMO-2) (green 

lines) against log2(TAP-SUMO-2 heatshock/TAP-SUMO-2) (red lines) for each of the 6 

gel slices from SILAC experiment 2. Note the progressive tendency to higher values for 

the red traces compared with the green as the abundances of proteins of high molecular 

weight accumulate with HS. Right histograms; Frequencies of protein molecular weights 

found in each of the six slices. Predicted molecular weight range of each slice is shown 

by red boundaries (b) Heatmap analysis of 40 SUMO-2 targets comparing for each 

protein the contribution to the overall ratio data of an individual slice. Black indicates 
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that the protein ratio is equal to the combined ratio, red that it is higher and green, lower. 

Data produced by Kernel density estimation. (c) 3D plot of the MS peak corresponding to 

the peptide fragment of the SUMO-2-SUMO-2 linkage via lysine 11 from SILAC 

experiment 2.  

Figure 4. Co-regulation of protein functions by SUMO-2 after heat-stress. (a) 

PANTHER(Thomas et al, 2003) „Biological process‟ ontology comparison between the 

relative abundance of TAP-SUMO-2 targets compared to the human genome.  Categories 

shown where p values of the significance of the difference compared to the human 

genome (shown in brackets) was less than 0.05. Groups are arranged from most 

significantly over-represented (left) to most significantly under-represented (right). (b-g) 

GOtsMaps showing the relationship between the TAP-SUMO-2 HS/TAP-SUMO-2 and 

TAP-SUMO-2 HSR/TAP-SUMO-2 HS ratios for the indicated functions (red), compared 

with the entire list of identified SUMO-2 targets (grey), from SILAC experiment 2 

(Figure 2). Red numbers indicate the number of members of each category and black 

numbers show the significance of clustering in the x-axis and y-axis. See Supp. Table 2 

for lists of proteins under each GO term. (h-n) Examples of protein modules identified in 

this study as being regulated by SUMO-2 and heat-stress. Red and green nodes are either 

more or less conjugated to SUMO-2 after HS. Labels are gene names, node shapes 

indicate protein function; trapezium – transporter, diamond – enzyme, point down 

triangle – kinase, point up triangle – phosphatase, ellipse – transcriptional regulator, 

circle – other function. Previously identified SUMO substrates are highlighted in bold. 
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Solid lines indicate direct interactions and broken lines, indirect. Arrow from A to B 

shows that A acts on B. 
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7 Conclusion and perspectives 

 

 

 

 

 

 

Virtually all the processes that control the fate of cells and organisms are regulated by 

sumoylation and many SUMO modified proteins are involved in disease states. SUMO 

functions include modulation of gene expression, DNA replication and repair, cancer 

development and cell cycle regulation. SUMO conjugation of specific proteins in 

signaling pathways has been investigated mainly by classical biological techniques and 

approaches. Despite their obvious success in elucidating mechanisms of sumoylation and 

showing the fundamental role of SUMO in regulating functionally important proteins, 

there are still many areas, such as novel substrates and PTMs of SUMO itself, remain to 

be explored. Mass spectrometry is ideally suited to the hypothesis-free analysis of PTMs 

and to reveal non-anticipated aspects of SUMO dynamics.  

The projects of this thesis apply the most recent advances in mass spectrometry-based 

proteomics to qualitative and quantitative investigation of the SUMO system. The in vivo 

characterization of the primary structure of SUMO revealed its phosphorylation, resulting 

in the first report of such modification on a protein modifier (Matic et al, 2008a), its 

ubiquitination (Schimmel et al, 2008) and the existence of mixed SUMO polymers 

(Matic et al, 2008b). Future SILAC-based quantitative proteomics studies will give 

additional insights into the role of these PTMs by profiling their relative abundances in 

different cellular conditions.  

Approaches applied to our in-depth analysis of changes of sumoylated proteins will be a 

template for future time-resolved quantitative studies of SUMO conjugates upon various 

stimuli, which will provide a wealth of hypotheses to follow and a starting point for 
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systems biology modeling. This study represents the largest and high-quality SUMO 

substrates proteome and reveals a larger role for SUMO in signaling pathway than 

previously considered. It will constitute a valuable resource for everyone interested in the 

emerging SUMO field. 

A challenge in the analysis of substoichiometric post-translational modifications, such as 

SUMO, is their enrichment from a complex biological sample. Whereas the enormous 

success of phosphoproteomics is due to the relative ease of purifying phosphorylated 

peptides, similarly powerful enrichment strategies are not currently available for peptides 

modified by ubiquitin, SUMO or other Ubls. In case of sumoylated peptides, the long 

SUMO part of the branched peptides could be used as an epitope in immunoprecipitation 

with antibodies recognizing the C-terminal peptide of SUMO. Even partial separation of 

sumoylated peptides from other tryptic peptides would allow the sequencing of a large 

number of endogenous SUMO branched peptides, previously lost in the „sea‟ of 

background peptides.  

I have successfully detected mixed SUMO polymerization sites in vivo by manual 

screening of spectra (Matic et al, 2008b) and applied the methods developed in that study 

to quantify SUMO polymerization after treatment with proteasome inhibitor (Schimmel 

et al, 2008). However this laborious approach is not applicable to the computational 

analysis of the large amounts of data generated by modern MS instrumentation. A direct 

implementation of a SUMO fragment ion recognition tool into MaxQuant, an 

increasingly popular quantitative proteomics platform, in combination with the above 

described method to enrich SUMO modified peptides will greatly expand the 

applicability of MS-based proteomics to the SUMO field. It may also make SUMO one 

of the central foci of MS-based proteomics, similarly to phosphoproteomics today.  
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