
Constituent Quarks and the Gluonic

Contribution to the Spin of the Nucleon

Ludwig-Maximilians-Universität München

Faculty of Physics

Thesis submitted

By

Gamal Eldahoumi 

from Benghazi/Libya

Munich

January 2009



First  Supervisor:    Prof. Dr. Harald Fritzsch

Second Supervisor: Prof. Dr. Ivo Sachs

Date of examination:  April 29, 2009 



ABSTRACT

The  internal  structure  of  the  nucleon  is  more  complicated  than 

expected  in  a  simple  quark  model.  In  particular,  the  portion  of  the 

nucleon spin carried by the spins of the quarks is not, as expected, of the 

order of one, but according to the experimental data much smaller. In this 

thesis  we  study  the  spin  structure  of  the  proton  in  quantum

chromodynamics.

The constituent quark model, based on SU(6), predicts that the spin 

of the proton should be carried by the quarks, in disagreement with the 

experiments. It appears strange, that the theoretical model works so well 

for the magnetic moments of the nucleons, but not for the spin, although 

the spin and the magnetic moments are closely related to each other. We 

shall resolve this problem by assuming that the constituent quarks have 

an  internal  structure  on  their  own.  Thus  a  constituent  quark  has  a 

dynamical structure, and we can introduce notions like the quark or gluon 

distributions inside a constituent quark.

In the light of new experimental data from HERMES, COMPASS, J-

Lab,  and  RHIC-spin,  the  current  status  of  our  knowledge  of  the  spin 

structure is discussed in the two theoretical frameworks: the  naive parton 

model, and the QCD evolved parton model. QCD a is successful theory, 

both  in  perturbative  and  non-perturbative  regions,  but  the  spin  of  the 

nucleon still needs to be explained within QCD. 
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INTRODUCTION

In particle and nuclear physics the spin is an important concept, since 

it is related to the angular momentum, which originates in the rotational 

symmetry of space. The statistical property of an elementary particle is 

also determined by the spin, according to the Pauli principle. 

The structure of the nucleon has been investigated for many years 

with  lepton  beams.  Such  experiments  provided  the  basis  of  quantum 

chromodynamics,  especially  through  the  discovery  of  asymptotic 

freedom.  The  discovery  potential  of  the  hadron  colliders  would  have 

never been so promising without  a detailed knowledge of  the nucleon 

structure.

The  mass  of  the  nucleon  cannot  be  explained  by  the  bare  quark 

masses. Instead most of the mass is due to the field energy of the quarks 

and gluons. When the fractional momentum x , carried by the quarks, is 

integrated, it comes to only ~50% of the total momentum. The rest of the 

momentum is carried by the gluons. This is referred to as the momentum 

sum rule.

Since the surprising EMC measurement [1] of the polarized structure 

function  of the proton g p
1
x , Q2

 was reported more than seventeen years 

ago, the spin structure of the proton remains a problem. As is well known, 

a proton is a composite particle. Its spin is carried by its constituents, as 

described by the sum rule,

1
2
=

1
2
G〈L z 〉qg (1)

where ½ on the left side means a spin of the proton, while  , g

and 〈L z 〉qg represent  the  amount  of  the  proton  spin,  carried  by  the 
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constituent quarks, gluons and their orbital angular momenta respectively. 

A  study  of  the  polarized  structure  functions  of  the   nucleon  gives 

information about the valence quark distributions in the proton. However, 

the  knowledge  on g and 〈L z 〉qg is  still  poor,  because  it  is  very 

difficult to extract information from the existing experimental data. In this 

work  we  are  interested  in  the  polarized  gluon  distribution g .  To 

extract  information  about  it,  many processes,  depending on the  gluon 

interactions, have been proposed and studied. 

The fractional quark-spin contribution  is found to be 0.1 – 0.3 

from lepton scattering data, combined with the  decay constants of the 

baryons.  This  is  significantly  smaller  than  the  naive  expectation.  The 

proton spin is related to the number of flavors  at infinite 4-momentum 

squared[2]:

1

2
ΔΣLq=

1

2

3n f

3n f 16
   ;   gΔ L g=

1

2

16

3n f16
(2)

Each  term  corresponds  to  0.136−0.18  and  0.364−0.32,  respectively 

depending on the number  of flavors n f =23 .  Once g is measured 

to a reasonable precision, then we will know roughly, how the spin of the 

proton is distributed to each component.

The spin sum rule eq.  (1) concerns the longitudinal spin structure of 

the proton. We concentrate on the gluon polarization in this thesis.
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CHAPTER 1

The nucleon

1.1  What do we know about the nucleon?

The proton is the only stable baryon. The neutron is the partner of the 

proton. The two main differences are: the neutron has no charge, it  is 

heavier and decays into a proton. A free neutron decays in approximately 

15  minutes.  However,  when  bound  in  a  non-radioactive  nucleus,  the 

neutron  is  stable  and  like  the  proton  does  not  decay.  Table(1.1) 

summarizes the properties of the proton and neutron.

                  Table(1.1) Proton and neutron properties:

Proton Neutron

Mass 938.27 MeV 939.6 MeV

Charge +1 0

Spin 1/2 1/2

Lifetime > 1032 years 885.7 seconds

Our  present  understanding  is  that  the  proton  and  neutron  have 

complex internal structures consisting of quarks of different flavors and 

of gluons, described by QCD. Relating the simple external properties of 

the  proton  and  neutron  to  the  internal  structure  remains  one  of  the 

challenges in physics today.

Table(1.2) gives the six quarks, that have been found in nature, and 

their charge. The only known difference between the quarks of the same 

charge and different generations is their mass. For the proton structure, it 

is actually the lightest quarks, up and down, that play the leading role.

In the most naive model of the proton, the proton consists of two up 

quarks and one down quark bound together. To get a neutron, one simply 
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interchanges the up quarks with the down quarks, yielding a zero charge 

object. From neutrino and electron scattering experiments it is known that 

the structure of the proton is more complicated. In the proton there are 

also  sea  quarks  and  sea  anti-quarks  as  well  as  gluons,  that  are  the 

mediators of the strong interaction:

proton=valencequarksseaquarksgluons

We are trying to find out, what fraction of the proton spin is carried 

by the quarks and what fraction is carried by the gluons.

Table(1.2) The six quarks:
                     generation
       charge 1st 2st 3st

   Q= +2/3 up charm top

   Q=  -1/3 down strange bottom

1.2  The substructure of the nucleon

The first polarized electron scattering experiment was performed at 

the  Stanford  Linear  Accelerator  Center  (SLAC)  in  California.  Soon 

afterwards a  muon  scattering experiment  was  done at  CERN,  and a 

second electron scattering experiment was built  at  DESY in Hamburg, 

Germany.

In order to present and interpret the results from these experiments, it 

is necessary to introduce the formalism. One measures an asymmetry and 

extracts an asymmetry A1 :

A
1
=

N  −N  

N  N  
(1.1)

Here N   corresponds  to  the  number  of  electrons  counted  in  the 

detector  with  the  beam  and  target  spins  aligned  anti-parallel  to  one 
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another, and N   corresponds to the case, where the spins are aligned.

From this asymmetry we find the proton or  neutron spin structure 

function, g p
1

or gn
1

, where,

g
1
≈A

1
⋅F

1 (1.2)

for  a  proton  or  a  neutron.  The  function F
1 is  a  quantity,  which  is 

measured in unpolarized scattering experiments. We have to introduce the 

structure function g
1 , since it is the quantity, that is directly related to 

the quark contribution of the proton and neutron spin.

Figure 1.1 Scheme of a polarized electron-polarized proton scattering experiment

In the naive parton model  the integral  over g p
1

can be written as 

follows:

∫
0

1

dx g p
1
x ,Q2

=
1
2
[
4
9
u

1
9
d

1
9
s ] (1.3)

where u , d and s are,  respectively,  the  individual  up,  down 

and strange  quark contributions  to  the  proton and neutron spin.  More 

information is actually needed to extract the total quark contribution

=uds  

5
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Let’s assume for  simplicity,  that  the proton is made up of  two up 

quarks and one down quark, and the neutron is made up of two down 

quarks and an up quark. Figure(1.2) presents this model of the proton and 

neutron. If one takes all combinations of three quark states, the polarized 

proton wave function can be written as:

∣p 〉=2∣u ud  〉2∣u du  〉2∣d uu  〉−∣u ud  〉−∣ud u 〉
−∣du u 〉−∣uu d  〉−∣u d u  〉−∣du u 〉   (1.4)

The polarized proton with spin pointed up will look like one of the two 

objects Figure(1.3), with the left object occurring 2/3 of the time, and the 

right object occurring 1/3 of the time. If one scatters an electron off a 

polarized proton, 2/3 of the time the electron will see the left object and 

1/3 of the time it will see the right object. 

If one wants to know what is the probability that the electron will 

scatter off an up quark with spin up, then one has to count the probability 

of hitting the left or right object times the probability that the electron 

will scatter off an up quark with spin up. The answer is

P u =
2
3
⋅
2
3

1
3
⋅
1
3
=
5
9

(1.5)

The first 2/3 comes from hitting the left  object,  the second 2/3 comes 

from the probability of hitting an up quark with spin up in the left object, 

the next 1/3 comes from the probability of hitting the right object and the 

last 1/3 comes from the probability of hitting an up quark with spin up in 

the right object.

One can calculate the probability of finding each type of polarized 

quark, and the results are:

 P u =5/9    ,   P u =1/9    ,    P d =1/9    ,    P d =2/9

The sum of all the above probabilities is one, as expected.
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The last step is to calculate the asymmetry A1  . One has to multiply 

the charge squared of the quark times the probability of the quark being 

spin  up  minus  spin  down  and  then  divide  by  the  sum  of  the  quark 

probabilities:

A
1

p
=

4
9
[pu −p u ]

1
9
[p d −p d ]

4
9
[pu p u ]

1
9
[p d p d ]

(1.6)

One finds A1
p
=5/9 , which is a large asymmetry! 

If one wants to calculate the same quantity for the neutron, one has to 

interchange the up quark probability with the down quark probability, and 

one finds A1
n=0 .

7
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Figure 1.3 Simplest quark model of a polarized proton.

up      up
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down   down

up

Proton Neutron

Figure 1.2 Simplest quark model of the proton and neutron.



1.3  EXPERIMENTAL  ASPECTS

In  the  experiments  with  polarized  beams  the  spin  dependent 

asymmetry in the cross section for lepton scattering is measured, from 

which  the  spin  dependent  structure  function  of  the  proton  g
1
x   is 

deduced. Here x is the fraction of the momentum of the proton carried by 

the struck quark. The integral of  g
1
x   over  x is used to test the Ellis-

Jaffe sum rule  [3] and to investigate the contribution of the spin of the 

quarks to the proton spin.

There are many experimental efforts triggered by the “spin crisis”. 

Ongoing  and  future  experiments  are  summarized  in  Table(1.3).  The 

experimental data to determine the spin structure of the nucleon so far are 

dominated by the lepton scattering data on fixed targets. The efforts are 

being extended to cover various reactions using  pp and ep colliders and 

the  first  polarized  pp  collider,  RHIC.  Future  facilities  will  cover  an 

extended  x-range. Elastic scattering  NN νν →  [4]  could provide the first 

moment of the polarized strange quark distribution s .

These experimental facilities utilize different ways to pin down the 

spin structure. Each way has its advantages and disadvantages. As we are 

going to  see  below,  it  is  important  to  use  all  possibilities  to  obtain  a 

comprehensive picture of the spin structure.

1.3.1  Electromagnetic interaction

The classical probe in the study of substructure is the electromagnetic 

interaction.  A  lepton  scattering  interaction  is  well  understood  and 

precisely  calculable.  There  are  many  advantages  of  these  reactions, 

including the clear definition of the kinematics, which requires only the 
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four-momenta of the incoming and outgoing lepton. It is sensitive to the 

electric charges of the quarks. The gluons would appear only in a sub-

leading contribution. This type of measurement has been done at CERN 

(COMPASS), DESY (HERMES), and J-Lab.

Higher energy machines are planned at  J-Lab (ELIC) and at  BNL 

(eRHIC). Drell-Yan production of lepton pairs will be studied at RHIC. 

An  experiment  at  GSI  (PAX)  is  planned  to  use  ↑↑ PP  collisions  to 

measure the transversity distributions in the nucleon.

Table(1.3) Current and future spin physics facilities:

Experiment Reaction Beam energies Status

HERMES at DESY e± p , d Ee = 27 GeV fixed target ended in summer 2007

COMPASS at CERN  p , d E =160GeV fixed target Data Taking

RHIC-Spin at BNL pp s = 200,500 GeV collider continuing

J-Lab e− N Ee ~ 5 GeV fixed target continuing

eRHIC at BNL e− p s = 100 GeV collider planned

12 GeV upgrade at J-Lab e− N Ee = 12 GeV fixed target planned

ELIC at J-Lab e− p s =20−65 GeV collider planned

J-PARC pp , pA Ep = 50 GeV fixed target under construction

GSI-FAIR p p s ~ 15 GeV collider planned

FINeSSE N  

elastic

E=1 GeV fixed target proposed
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1.3.2  The strong Interaction

Until  recently  the  gluon  contribution  to  the  spin  structure  of  the 

nucleon has been poorly known. It can be measured by expriments, using 

the  strong  interaction.  The  leading  processes  are gg , gq and qq

scattering.  The gg and gq -processes  dominate  in  the  lower PT

region  where  the  statistics  is  high.  The  STAR  experiment  at  RHIC 

presented their recent results on ALL for jet production in pp collision at 

s=200Gev  from  Run-3  (2003)[5].  The  PHENIX  experiment  also 

reported their newly obtained ALL for 
0  production in Run-5[6].

A good  way  to  measure  the  gluon  polarization  is  prompt  photon 

production, which is dominated by the gluon Compton process, gq qγ  . 

It is being explored in HERMES and COMPASS. Here the real/virtual 

photon and gluon fuse into a qq  pair (photon-gluon fusion). The current 

experimental data allow to say something about the gluon polarization

g /g x  .

1.3.3  The weak interaction

A missing information is the flavor separation,  which can be done 

using the weak interaction. The  W production in  pp  collisions is a pure

V −A process,  where  only  left-handed  quark  and  right-handed  anti-

quark can contribute. It is an ideal place to study the spin structure. The 

W couples to the weak charge, which is highly correlated with the flavor. 

Such a measurement can be done at RHIC, when it reaches its highest 

energy s=500Gev ; in 2005 one had s=410Gev . 
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CHAPTER  2

Theoretical framework

2.1  The Gluon in the Nucleon and the Gluon Polarisation

The gluon contribution to the spin of the nucleon is still not known. 

The gluons  do  not  couple  to  the  photon and thus  cannot  be  accessed 

directly in the leading order deep inelastic scattering (DIS) process. But 

they contribute to the cross section due to higher order QCD processes. 

The  gluon distribution can be  obtained indirectly  from the scaling 

violations  of  the  quark  distributions  using  the  evolution  equations. 

Alternatively the higher order processes can be separated experimentally, 

and the unpolarised gluon density can be determined directly. Compared 

to  the  unpolarised  case,  the  data  on  polarised  experiments  cover  a 

relatively  small  kinematic  range.  Therefore  it  is  extremely  difficult  to 

obtain an accurate gluon helicity contribution, and a direct measurement 

of the gluon polarisation ΔG/G  is needed. The direct measurement can 

either be done in deep inelastic scattering, as performed by COMPASS, 

or in polarised p-p collisions, a method followed at the Relativistic Heavy 

Ion  Collider  (RHIC).  A  more  detailed  treatment  of  the  underlying 

polarised and unpolarised physics and experimental results can be found 

in the review articles [19-22].

2.2  Deep inelastic scattering

     In a deep inelastic scattering experiment an incoming beam of leptons 

with  energy  E  scatters  off  a  fixed  hadronic  target.  The  energy  and 

direction of the scattered lepton are measured in the detector, but the final 

hadronic state (denoted by X) is not measured. The lepton interacts with 
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the target through the exchange of a virtual photon. The target hadron 

absorbs  the  virtual  photon to  produce  the  final  state  X.  If  the  hadron 

remains intact, the process is an elastic scattering. In the deep inelastic 

region  the  cross  section  can  be  expressed  in  terms  of  the  structure 

functions.  I  will  only  discuss  the  case  of  fixed-target  deep  inelastic 

scattering in detail.

The  basic  diagram  for  the  deep  inelastic  scattering  is  shown 

schematically in fig. 2.1 There are numerous kinematic variables, which 

are used in the discussion of deep inelastic scattering (seeTable 2.1).

  

                               

2.2.1  The formalism of polarized deep inelastic scattering

The difference in the cross sections for deep inelastic scattering of 

leptons, polarized antiparallel and parallel to the spin of the proton, can 

be written in the single photon exchange approximation as:

d2σ  

dQ2 d ν
−

d2 σ  

dQ2 d ν
=

4πα2

E 2Q2
[M EE 'cos θ G

1
Q2 ,ν −Q2G

2
Q2,ν  ] (2.1)

12

k,E k',E'

q

X

p

e

Figure 2.1 The basic diagram for deep inelastic lepton 
hadron scattering.



Table 2.1 Definition of the kinematic variables used.

M The mass of the target hadron. e.g. a proton or 
neutron.

m Lepton mass.

E The energy of the incident lepton.

E' The energy of the scattered lepton.

K=E, K  The  four  momentum  of  the  initial  lepton.
k = (E,0,0,E), if the lepton mass is neglected.

K '=E ' , K '
 The four momentum of the scattered lepton.

P=M, 0  The four momentum of target proton.

s= 1

m
k,0,0 ,E Lepton spin four vector.

S=0, S  Proton spin four vector.

q=k−k '
=ν ,q  The four momentum transfer  in the scattering 

process,  i.e.  the  momentum  of  the  virtual 
photon.

Q2
=−q2

≈4E E ' sin2
θ/2 negative  virtual  photon  4-momentum 

squared.

ν=
P⋅q
M
=E−E ' The energy of  the virtual  photon (the  energy 

loss of the lepton).

y= ν

E
=

p⋅q
p⋅k

the fractional energy loss of the lepton.

θ Scattering angle in the laboratory.

x= Q2

2Mν
Bjorken scaling variable.

The  scaling  variable  x was  first  introduced  by  Bjorken[33] and  is 

crucial  to  understand  deep  inelastic  scattering.  QCD predicts  that  the 

structure functions are functions of x and are independent of Q2 to leading 

order,  a property known as scaling. The scaling has been proposed by 
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Bjorken[33].  Higher  order  corrections  in  QCD  produce  a  small 

logarithmic Q2 dependence of the structure functions, which is calculable 

for large  Q2,  since QCD is an asymptotically free theory.  Deep inelastic 

scattering  is the study of lepton-hadron scattering in the limit:  x fixed, 

Q2 → ∞.

The functions G1Q
2 , ν   and G2Q

2 , ν   in equation (2.1) are the spin 

dependent structure functions of the target nucleon. In the scaling limit 

these structure functions are expected to become functions of x [9] :

M 2 νG1Q
2 ,νg1 x ,

M 
2G

2
Q 2, νg

2
 x 

(2.2)

These structure functions can be obtained from the experiments, in which 

longitudinally  polarized  leptons  are  scattered  from  longitudinally 

polarized target nucleons. One measures the asymmetry

A=d σ −d σ 

d σ d σ 
(2.3)

This asymmetry is related by the optical theorem to the virtual photon 

asymmetries A1 and A2,

A=D A
1
η A

2
 (2.4)

where

A
1
=
σ

1/2
−σ

3 /2

σ
1/2
σ

3 /2

 , (2.5)

A
2
=
σ

TL

σT

 , (2.6)

D= y 2−y
y 2
21−y 1R 

(2.7)
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η=
21−y 
y2−y 

Q 2

E
(2.8)

Here  σ1/2
σ

3 /2
  is  the  virtual  photoabsorption  cross  section.  The 

projection of the total angular momentum of the photon-nucleon system 

along the incident lepton direction is 1/2 (3/2). σT=1/2σ
1 /2
σ

3/2
  is the 

total transverse photoabsorption cross section, and σTL  is a term arising 

from the  interference  between  transverse  and  longitudinal  amplitudes. 

The term R in equation (2.7) is the ratio of the longitudinal to transverse 

photoabsorption cross sections, and D can be regarded as a depolarization 

factor of the virtual photon.

The asymmetries A1 and A2  can be expressed in terms of the structure 

functions g1 and g2 [10] as ,

A1=g1−γ
2g2 

1
F1

(2.9)

A2=γg1−g2
1
F1

(2.10)

Here  F1 is  the  spin  independent  structure  function  of  the  proton,  and 


2
=Q2

/
2 . Eliminating g2 , we obtain to first order in γ ,

g1=F1A1γA2 (2.11)

Substituting for A1 from (2.4) gives

g1=F1ADγ−ηA2 (2.12)

There are rigorous positivity limits on the asymmetries  [11] i.e.  ∣A1∣≤1  

and ∣A2∣≤R ,  since γ  , η  and R all small in the kinematic range of this 

experiment. The term in A2  may be neglected.
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A1≃
A
D (2.13)

g
1
≃A

1
F

1
=

A
1
F

2

2x 1R 
(2.14)

Here  F2 is  the  second  spin  independent  proton  structure  function. 

Neglecting A2 is equivalent to neglecting the contribution of g2 which 

has been shown to have a negligible effect [12].

The structure function g1 x  is obtained as follows. The asymmetry 

A (equation (2.3))  is  obtained from the experimental  data.  The virtual 

photon  asymmetry  A1 is  deduced  via  equation  (2.13).  The  structure 

function  g1 x  is  obtained  from  equation  (2.14),  using  the  known 

values  of  F2 and  R.  The  effect  of  neglecting  A2  is  included  in  the 

systematic error, using the above mentioned limits for A2 .

2.2.2  Theoretical models

     By angular momentum conservation  a spin 
1
2

 parton cannot absorb a 

photon, when their two helicities are parallel. Hence in the quark-parton 

model (QPM),  σ1 /2σ3/2   can only receive contributions from partons, 

whose  helicities  are  antiparallel  (parallel)  to  that  of  the  nucleon.  It 

follows:

A
1
=
σ1/2−σ3 /2

σ
1/2
σ

3 /2

=
∑ e i

2
q i


x −q i

−
x  

∑ e i
2q i

 x q i
− x   (2.15)

Here q i
−

x   is the distribution function for the quarks of flavour i and 

charge number  ei  , whose helicities are parallel (antiparallel) to that of 

the nucleon. The sum is over all  quark flavours  i.  In this model  F1 is 
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given by

F
1
x =1

2
∑ e i

2
q i

x q i

−
x  (2.16)

From equations (2.14) and (2.15) follows:

g
1
x =1

2
∑ e i

2
q i

x −q i

−
x  (2.17)

In the simple non-relativistic QPM, in which the proton consists of three 

valence quarks in an SU(6) symmetric wave function, one has  A
1
p=

5
9

 

and A
1
n=0  . Thus A is independent of x . Such a model clearly does not 

describe the SLAC data. Many models, mainly based on the QPM, were 

developed to predict the behaviour of the asymmetry A1 . Models giving 

a good representation of the SLAC data were developed by Cheng and 

Fischbach  [13]  and  Callaway  and  Ellis  [14].  These  incorporate  the 

perturbative QCD prediction [15] that A1  tends to unity as x approaches 

unity.

2.2.3  Sum rules in polarised deep inelastic scattering

A sum rule, derived by Bjorken [49] from current algebra, relates the 

integral over all  x of the difference of g1  for the proton and neutron to 

the ratio of the axial vector to vector coupling constants in nucleon beta 

decay, denoted by gA . In the scaling limit it can be written,

∫0

1
dx [g

1
p
x ,Q 2

−g
1
n
x ,Q 2

]=
1

6
g A 1−

αs


 (2.18)

where the factor 1−
s


  arises from QCD radiative  corrections [18].

Separate sum rules for the proton and the neutron were derived by 
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Ellis and Jaffe  [16] in a more model dependent approach. Assuming an 

exact flavour SU(3) symmetry in the baryon-octet decays and neglecting 

the net polarization of the strange quark sea of the nucleon, they derived

∫0

1
dx g

1
p x ,Q 2

=
g A

12 [1
5

3

3F /D−1

F /D1 ]

∫0

1
dx g

1
n x ,Q 2

=
gA

12 [−1
5

3

3F/D−1

F /D1 ]
(2.19)

where  F and  D  are the antisymmetric and symmetric SU(3) couplings. 

Applying QCD radiative corrections, one obtains[18]:

∫0

1
dx g

1
p n 
x ,Q 2

=
gA

12 [±1−αs

π


1

3

3F /D−1

F /D1 {5−14
33−8n f

33−2n f
 αs

π }]
( nf : the number of quark flavours).

2.3  Interpretation in the Quark Parton Model

In 1964 the quark model was proposed by Gell-Mann [25] and Zweig 

[26]. Feynman  developed  in  1969  the  Quark  Parton  Model  (QPM)  to 

provide a simple physical picture of the observed scaling behaviour  [27, 

28]. In this model the nucleon is made up of pointlike constituents, known 

as  partons.  The  charged  partons,  carrying  fractions  of  the  elementary 

charge e and spin 1/2 , were later identified as the quarks. The electrically 

neutral spin 1 partons, which do not interact with the virtual photon, are 

the  gluons.  The  QPM is  formulated  in  the  infinite  momentum frame, 

where the target nucleon moves with p∞ .  The rest masses and the 

transverse momenta of the partons are be neglected. During the time, in 

which the virtual photon interacts with the quark, it is essentially a free 

18



particle, not interacting with the other partons in the nucleon. In a good 

approximation the structure of the nucleon can then be described by the 

longitudinal momenta of its components. In the infinite momentum frame 

the interpretation of the Bjorken scaling variable x as momentum fraction 

of the nucleon, carried by the struck parton, becomes exact.

2.3.1  The distributions of Partons

The  scattering  process  off  a  nucleon  can  be  described  as  an 

incoherent sum of the interactions of the virtual photon with the partons. 

The  single  interaction  can  be  interpreted  as  an  elastic  scattering.  The 

cross section of a lepton scattering off a pointlike quark of flavour f, that 

carries a momentum fraction xf of the nucleon, can be calculated in QED. 

By comparing the cross section for inelastic scattering with the one for 

elastic scattering, the structure functions for a single pointlike parton are 
[29] :

2 F
1

point
 ,Q 2

= e f
2 Q2

2m
 p −

Q2

2m
= e f

2
 x f −

Q2

2M
 (2.20)

F
2

point
 ,Q 2

= e f
2
  p −

Q 2

2m
= e f

2 x f  x f −
Q 2

2M
 (2.21)

Here  m is the mass of the parton,  ef its charge, p = pparton⋅q /m with 

pparton=x f P being the parton momentum, which is the fraction xf of the 

nucleon momentum P, and Q2 /2M=x is the Bjorken variable. Thus  x 

has to be equal to xf ,and the virtual photon can only be absorbed by the 

quark with the right momentum fraction. Summing over all quarks and 

antiquarks in the nucleon gives
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F 2x =∑
f
∫dx f e f

2 q f x f x f x f−x  (2.22)

where the q f x  are the parton distribution functions.  The differential

q f x dx is the probability to find a quark of flavour f with a momentum 

fraction in the range x ,xdx . This leads to the following form of the 

structure functions:

F 2x =x∑
f

e f
2
q f x  q f x  (2.23)

With F
2
=2x F

1 we obtain:

F
1
x =1

2
∑

f
e f

2
q f x  q f x  (2.24)

The  sum runs  over  all  quarks  inside  the  nucleon  (the  valence  quarks 

carrying the quantum numbers of the nucleon, and the sea quarks).

     From the parton distributions one can obtain the number densities of 

the quarks inside the nucleon. For a proton we find the sum rules:

∫
0

1

[ux −u x ]dx=∫
0

1

uv x dx=2 (2.25)

∫
0

1

[d x−d x]dx=∫
0

1

d v xdx=1 (2.26)

∫
0

1

[s x −s  x]dx=0 (2.27)

Here  uv(x) and  dv(x) are the valence quark distributions.  Their  integral 

corresponds to the number of quarks in the static picture of the nucleon, 

where  the  proton  is  composed  of  two  up-  and  one  down-quark.  The 

distributions  for  the  neutron  can  be  obtained  using  isospin  symmetry 

(exchanging u- and d-quarks):

u p
x ≡dn

 x , d p
x≡un

 x , s p
x ≡sn

x  (2.28)
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The integral xq(x) gives the fraction of the total momentum of the nucleon 

that is carried by all quarks:

∫
0

1

dx x [u x u x d x d x s x sx ]=1−g (2.29)

where g=
p gluon

p proton

is  the momentum fraction carried by neutral  partons, 

which are not directly probed by the photon. It turns out that about half of 

the proton’s momentum is carried by the charged partons, the remaining 

constituents  interact  neither  electromagnetically  nor  weak  (as  known 

from  neutrino  scattering  experiments).  They  are  identified  with  the 

gluons.

     The analysis of inclusive and semi-inclusive DIS experiments using 

hadron identification with electron, muon and neutrino beams on proton 

and  deuteron  targets  allows  to  disentangle  the  contributions  from the 

various types of  quarks.  Fig.2.2 shows the parametrisation of valence, 

sea-quark and gluon distributions using these data. At HERA the gluon 

distribution has also been measured directly using methods analog to the 

determination of the polarised gluon density. Fig.2.3 shows one of the 

measurements  done  by  H1  using  multi-jet  events  from  boson-gluon 

fusion  in  deep  inelastic  scattering.  The  gluon  density  increases  with 

decreasing fractional momenta of the gluons, an expected in the theory of 

QCD.
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Figure 2.2: Distributions of  x  times the  unpolarised  parton  distributions  f(x) 

(where f =uv , d v , u , d , s , c , g ) using the MRST2001 parametrisation 

[30, 31] (with  uncertainties  for uv  , dv and g )  at  a scale of 10GeV2.  Figure 

taken from [32].

Figure 2.3: Direct  determination  of  the  gluon distribution  at  HERA.  The measured
gluon density at an average Q2 of 30GeV2 is compared with the indirect determinations
by  H1 [33]  and  ZEUS [34]  at   Q2 = 20GeV2,   and   with   a determination  from  J/Ψ 
production by NMC [35] evolved to Q2 = 30GeV2. Figure taken from [36].



2.3.2  The Spin of the Nucleon and the first Moment of g1

The polarised structure function g1 can be written as follows:

g
1
x ,Q2

=
1
2
∑

f
e f

2
q f x  q f x  (2.30)

Here

q f x =q f

x −q f

−
x  (2.31)

and (q−) q+ are the number densities of quarks with momentum fraction 

x of the parent nucleon momentum P and spin (anti-)parallel to the parent 

nucleon spin. The unpolarised parton densities are:

q f x =q f

x q f

−
x  (2.32)

The structure function g1 can be determined by a measurement of A1 via 

Eq.(2.14).  A  photon  with  a  positive  helicity  can,  due  to  angular 

momentum  conservation,  only  be  absorbed  by  a  quark  with  negative 

helicity, since the final state, a quark, has spin 1/2 and cannot have spin 

3/2  (Fig.2.4).  If  the  helicity  of  the  parent  nucleon  is  opposite  to  the 

photon helicity, one probes the distribution  q+(x), while the distribution 

q−(x) is probed, when photon and nucleon have the same helicity. For 

g2 there is no simple interpretation in the quark parton model.

Information  about g
1
x ,Q2

 for  all  x gives  information  about  the 

quark helicity contribution to the nucleon spin. The first moment of g1

is given by:


1
=∫

0

1

g
1
x dx=1

2∑f
e f

2∫
0

1

[q f x  q f x ]dx , (2.33)

with

q f =∫
0

1

[q f x  q f x ]dx
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
1
=

1
2
∑

f
e f

2
q f (2.34)

For  the  proton  (neglecting  the  contributions  from heavy  quarks),  one 

obtains


1

p
=

1
2

4
9
u1

9
d1

9
s

=
1
12
u−d 1

36
ud−2s1

9
uds

(2.35)

In the naive parton model the quantity

=uds (2.36)

gives the helicity contribution of the quarks to the nucleon spin.

Using the  operator  product  expansion  (OPE),  one  can  connect  the 

three  terms  in  Eq.  (2.35)  to  the  expectation  values a j of  the  proton 

matrix elements of the SU(3) flavour octet of quark axial-vector currents 

[19]. The a j are given by:
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Nucleon

Photon

Figure 2.4: Simple explanation of the asymmetry in photon-nucleon scattering.
The quark can only absorb a photon, if its spin is antiparallel to the photon spin.



〈P ,S∣J 5
j
∣P ,S 〉=M a j S 

, j=1. ..8 (2.37)

J
5

j
=




5

 j

2
 (2.38)

The λj are the Gell-Mann matrices, and Ψ is a column vector in flavour 

space:

=[
u

d

s
] (2.39)

The matrix element a0 describes the flavour singlet operator

J 5
0
=5 (2.40)

One finds:

〈P ,S ∣J 5
0
∣P , S 〉=M a0 S (2.41)

The  octet  of  currents  is  conserved.  Therefore  the  numbers

a j , j=18 are  independent  of  Q2.  The  singlet  current  a0 is  not 

conserved, i.e. depends on Q2. This is a consequence of the axial anomaly 

in QCD.

     The two values a3,  a8 are well known from the hyperon decays. The 

SU(3)  octet  of  axial-vector  currents  controls  the  weak  β-decay of  the 

neutron  and  spin  1/2  hyperons  (e.g.  Λ  →  p,  Σ  →  n,  Ξ  →  Λ).  As  a 

consequence, a3 and a8 can be expressed in terms of two parameters F and 

D, which are measured in the hyperon β-decay [126,21,32]:

a3=FD≡∣gA

gV
∣=1.259±0.019 (2.42)

a
8
=3F−D=0.585±0.044 (2.43)

where  F=0.461∓0.014  and  D=0.798∓0.013 .  Eq.  (2.35) can be 

rewritten using
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a3= uΔ − dΔ (2.44)

a8= uΔ  dΔ − 2 sΔ (2.45)

a o=uds= (2.46)

The result is:

1
p
=

1
12

a3
1
36

a 8
1
9

a 0 (2.47)

Thus a measurement of Γ1 would fix the value of  a0.

     The QCD improved parton model, which will be explained in the next 

section, leads to corrections [37 , 38] modifying Eq. (2.47) to


1

p
=

1
12 [a 3


1
3

a
8
E NSQ

2


4
3

a
0
E S Q

2
] (2.48)

with

E NS Q
2
=1−

s


−3.58

3.25
s

 
2

⋯ (2.49)

E S Q
2
=1−0.333

0.040
s


− 1.10
−0.07

s

 
2

⋯ (2.50)

The upper values correspond to the number of flavours n f=3 , and the 

lower number to n f=4 (the result is renormalisation scheme dependent, 

the quoted numbers correspond to the MS scheme).

     In a first measurement of  Γ1 and thus  a0 of EMC  [39, 40] the value

 was  compatible  with  zero  (ΔΣ = 0.12  ±  0.17).  This  value  was 

unexpectedly  small.  In  the  naive  QPM  one  would  expect =1 . 

Applying the Ellis-Jaffe sum rule leads to  ΔΣ = 0.579 ± 0.026 [41]. The 

EMC result led to the ’spin crisis in the parton model’, which triggered a 
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(e.g. [42] - [45] and references therein). Including the new COMPASS data, 

shown in Fig.2.5,  together  with various other  experiments,  carried out 

during the last years, one can improve the accuracy of the result of ΔΣ to 
[46]

Q2
=4 GeV /C 2=0.237

−0.029
0.024 (2.51)

It  establishes the small  contribution of  the quarks to  the nucleon spin 

(result  given  in  the MS scheme).  Measurements  done  at  SMC  and 

recently  at  HERMES  [44] go  further  and  allow  to  disentangle  the 

contributions  from the  individual  quark  flavours  to  the  nucleon  spin. 

Fig.2.6 shows data from HERMES on the polarised parton distribution 

functions uΔ x  , dΔ x ,Δ u x ,Δ d x  and sΔ x  .

For the neutron the first moment of g1 is


1

n
=−

1
12

a
3


1
36

a
8


1
9

a
0 (2.52)

In case of the QPM, where  ENS from Eq. (2.48) is unity, it follows with 

Eq. (2.47) that

1
p−1

n≡
1
6

a3=
1
6∣gA

gV ∣ (2.53)

Eq. (2.53) is the Bjorken sum rule, which was first derived in this form by 

Bjorken  [49,33].  It  describes a relationship between spin dependent DIS 

and the weak coupling constant defined in neutron β-decay. It only relies 

on the isospin invariance, i.e. on the  SU(2) symmetry between up- and 

down-quarks. With the corrections, introduced in Eq. (2.48), it follows

1
p−1

n=
1
6∣

gA

gV
∣ENS (2.54)

Beyond leading order  ENS depends on the number of  flavours and the 

renormalisation scheme. Eq. (2.54) seems to be well satisfied by the data 
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(e.g. Ref. [51]).
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Figure 2.5: Values of g1
d
x measured by COMPASS (full circles) and SMC

(open squares) for Q2 > 1 (GeV/c)2. The  curves  represent the results of the fits
at the Q2  of  the  COMPASS  points  ( solid  line  for  all data, dashed line with
COMPASS excluded). The data points are corrected for the  deuterium D-wave
state probability ωD = 0.05 (i.e. they correspond to the published values of g1

d

divided by 0.925).
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Figure 2.6: The quark helicity distributions xΔq(x,Q2) evaluated at a common
value of  Q2=2.5 (GeV/c)2  as  a function  of  x [44].  The  dashed  line  is  the
GRSV2000 parametrisation  (LO, valence scenario) [47] scaled with 1/(1+R)
and the dashed–dotted  line is the  Blüemlein–Bottcher (BB) parametrisation
(LO, scenario 1) [48]. Figure taken from Ref. [44].



2.4 Improved Parton Model in QCD

2.4.1  Scaling Violations

Further measurements in a wider range of Q2 give a Q2 -dependence 

of F2. Fig.2.7 presents measurements of F 2
proton

Q2
 for various values of 

x obtained by different experiments. This violation of Bjorken scaling is 

related to the gluon content inside the nucleon. Quarks can emit gluon 

bremsstrahlung,  and  gluons  can  split  in  q q  pairs  and  emit  gluons 

themselves. If the quarks were not radiating gluons, exact scaling should 

be observed. Probing an interacting quark at a higher value of Q2 , one 

can resolve a gluon emission of this quark, leading to a smaller observed 

momentum fraction x, as illustrated in Fig. 2.8. The probability of finding 

a quark at lower  x increases with higher Q2 ,  whereas finding one at 

high  x decreases, because quarks carrying a high momentum fraction  x 

loose momentum due to gluon radiation.
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Figure 2.7: The proton structure function F2(x,Q2) measured in electromagnetic
scattering of positrons on protons  at  the  e-p collider  HERA  (ZEUS and H1).



2.4.2  QCD Evolution Equations

A consequence of the scaling violation is, that the quark and gluon 

distribution functions do not depend only on  x,  but also on Q2 .  The

Q2 dependence of the quark and gluon distributions at fixed  x, but at 

high  energy, is  described  by  a  system  of  coupled  integro-differential 

equations,  the  DGLAP  equations  [52]-[54],  developed  by  Dokshitzer, 

Gribov, Lipatov, Altarelli and Parisi:

dq i
x ,Q2



d lnQ2
=
s Q

2


2
∫
x

1 dy
y [q i

y ,Q2
P qq  xy G y ,Q2

Pq G  xy ]
dG x ,Q2



d ln Q2
=
s Q

2


2
∫
x

1 dy
y [∑i=1

2n
f

q i
y ,Q2

PG q  xy G y ,Q2
P G G  xy ]

(2.55)

Here the running QCD coupling constant is:
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...
...
...

'soft'  interactions

transition region

'hard'  interactions

Q2<0.1 GeV2

Q2 ~1 GeV2

 Q2 ~100 GeV2

Figure 2.8.  Schematic representation of photon-proton scattering for  increasing  photon
virtuality Q2 at fixed W. As Q2 increases, the photon  probes  smaller  transverse distance
scales and is able to resolve the structure of  the  proton.  With further  increase  in  Q2,
quarks are resolved into more quarks and gluons.



   s Q
2=4/o ln

Q2


2
   with      o=11−2

3
n f

 is  the  QCD  scale  parameter,  and  nf the  number  of  active  quark 

flavours. The splitting functions Pij are

Pqq z =
4
3 1z2

1−z 
PqG z =

1
2
z2
1−z 2

P Gq z =
4
3 11−z 2

z 

P G G z =61−z
z


z
1−z

z 1−z 

(2.56)

The  poles  at z=1 can  be  regularised  by  including  virtual  gluon 

diagrams (see Ref. [24]). Pqq represents the probability of a quark emitting 

a gluon, thus becoming a quark with a momentum fraction reduced by a 

fraction z (Fig. 2.9).

The  DGLAP  equations  take  into  account,  that  a  quark  with 

momentum fraction x could have come from a parent quark with a larger 

momentum fraction  y, which has radiated a gluon. The probability that 

this  happens  is  proportional  to s Pq q x /y  ,  when integrated over  all 

possible momentum fractions yx  of the parent quark.

QCD predicts the breakdown of scaling. The value of q x ,Q0
2 and

G x ,Q0
2
 for a given Q2 allows to predict q x ,Q2 and G x ,Q2 at 

any Q2 . This so-called QCD  evolution allows the determination of the 

gluon  distribution  from  the  measured  quark  distributions  using  the 
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DGLAP equations. This method has been used to determine the gluon 

distribution presented in Fig.2.2 in contrast to the direct measurement of 

G(x) in Fig.2.3. The quark distributions have to be known over a large 

kinematic  range  to  achieve  sufficient  accuracy  of  the  derived  gluon 

distribution. This is the case for the unpolarised data (cf. Fig.2.7), but not 

for the polarised data.

    

QCD Evolution in the Polarised Case 

The  treatment  of  the  evolution  of  the  structure  functions  in  the 

polarised  case  is  completely  analogous  to  the  unpolarised  case.  It  is 

convenient  to  split  the  polarised  quark  distributions  into  a  flavour 

non-singlet part qNS and a flavour singlet part [55]  :

qN S
x ,Q2

=∑
f

n f  e f
2

〈e2 〉
−1q f x ,Q2

 q f x ,Q2

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q(y)

q(x)
g(x)

g(y) g(y)
g(x)

q(y)

Pqq

PqG

PGq

PGG

Figure 2.9: Feynman diagrams for the four splitting functions. The splitting function Pij 
gives the probability that a parton i with momentum fraction x originates from parton j.



         x ,Q2
=∑

f

n f

q f x ,Q2
 q f x ,Q2

 (2.57)

with  〈e 2〉=
1

n f

∑e f
2

. The coupled DGLAP integro-differential equations 

for the polarised case are:

d
d lnQ2

∆ qN S
x ,Q2

=
s

2
∆ Pq q

N S
⊗∆q N S

x ,Q2
 (2.58)

d
d lnQ2 ∆x ,Q2



∆G x ,Q2
=

s

2 ∆ Pqq
S 2n f ∆ P qg

S

∆ P gq
S ∆ P g g

S ⊗∆x ,Q2


∆G x ,Q2
 (2.59)

with the convolution

P⊗q x ,Q2=∫
x

1 dy
y

P  xy q x ,Q2 (2.60)

One can see that the gluons evolve like singlet combinations, i.e. sums of 

distribution  functions.  Valence  quark  distributions  are  related  to  non-

singlet distributions, and their evolution does not depend on the gluon 

distribution.

The structure function  g1 is given by a convolution of the singlet 

and non-singlet coefficient functions, ΔCS , ΔCNS , ΔCG with the polarised 

parton distribution functions

g
1
x ,Q2

=
1
2
〈e2
〉[CN S⊗qN S

x ,Q2
CS⊗x ,Q2



2n f CG⊗G x ,Q2
 ]

(2.61)

The splitting and coefficient functions depend on x and s Q
2
 and can 

be expanded in power series in s :

C x ,s=C0
x 

s

2
C 1

x O s
2
 (2.62)
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P x ,s =P 0
x 

s

2
P 1

x O s
2
 (2.63)

At leading order (LO) one has:

CS
0 xy =CN S

0  xy =1−x
y
   and   CG

0 xy =0 (2.64)

g1 decouples from δG , and one obtains

g
1
x ,Q2

=
1
2
∑

f
e f

2
q f x ,Q2

 (2.65)

Here the x-dependent parton distribution functions from the quark parton 

model  have  been  replaced  by  effective  Q2 dependent  distributions

q x ,Q2
 . 

The splitting functions in LO,  P qq
0
z =P qq.

0 
z −P q−q.

0
z   

( P q∓q. corresponds  to  a  transition  from  a  quark q with  positive 

helicity to a quark q± with positive/negative helicity) are given by 

P qq
0
z =P qq

0
z =CF 1z2

1−z    with   CF=
4
3

(2.66)

The polarised splitting functions are equal to the unpolarised ones, i.e. 

P q−q.
0

z =0 ,  as a consequence of  helicity conservation.  There is no 

transition  between  quarks  of  opposite  helicity  allowed  in  massless 

perturbative  QCD  (in  leading  order).  The  spin  averaged  splitting 

functions are given by the sum

P AB
0
z =P AB

0
z P A−B

0
z  (2.67)

The  coefficient  functions  C and  the  polarised  splitting  functions  are 

known to LO [52] and next-to-leading order (NLO) [56]-[58].

In leading order the gluons do not contribute to CG
0
=0 . But they 
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depend on the factorisation and renormalisation scheme in NLO. In the 

gauge invariant so-called Modified-Minimal-Subtraction ( MS ) scheme 

also the first moment of the second term in the expansion of CG (Eq. 

(2.62))  vanishes.  Thus G x ,Q2 does  not  contribute  directly  to  the 

first  moment 1 of g1 .  In  the  Adler-Bardeen  (AB)  scheme,  which 

conserves chirality in contrast  to MS ,  the first  moment of  CG
1 is 

non-zero. Consequently 1 depends on G :

G Q2
MS=G Q2

A B (2.68)

Q2
MS=a

0
Q2

=AB−n f

s Q
2


2
G Q2

 (2.69)

Thus  the  interpretation  of  the  first  moment  of  the  structure  function 

g1x ,Q2
 depends  on  the  scheme.  In  the MS scheme  the  quark 

distributions depend on Q2 , in the AB-scheme they do not, but the Q2

dependence appears due to an anomalous gluon contribution explained in 

the next section.

Thus a small measured value of  a0 does not necessarily imply that

 is  small,  but  can  also  be  the  result  of  the  cancellation  between

 and  the  Q2 dependent  gluon  helicity  contribution  in  the  AB-

scheme.  In  the MS scheme  a  large  gluon  polarisation  would  be 

absorbed in the sea quark polarisation. Thus a large sea leads to a small 

measured a0. 

One way to determine G is considering the Q2 evolution of the 

polarised  DIS  data.  Several  groups  have  performed  NLO  fits  to  the 

polarised  data.  Fig.2.10  shows the results  obtained by the  Asymmetry 

Analysis  Collaboration  [43] compared  to  results  from  different  other 
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groups  [47] ,  [48],  [59]-[62]. The helicity distributions for valence  u and  d 

quarks are well  determined,  being large and positive for  u quarks and 

negative for d quarks. The spin carried by u-quarks is mostly parallel to 

the proton spin and anti-parallel for  d-quarks. The sea quark helicity is 

small and negative with larger errors. The gluon distribution is even less 

well determined by the available data. This can be seen from the large 

errors indicated by the shaded area in Fig.2.10.

38

Figure 2.10: The AAC03  PDFs at  Q2=1GeV2 are compared  with the  ones for other
parametrisations by GRSV2000 (standard scenario) [47, 59], BB (ISET=3) [48], and
LSS ( MS scheme ) [60, 61, 62]. The  shaded  areas  are  the  uncertainties  of the
AAC03 analysis. Figure taken from [43].



2.4.3  The Axial Anomaly

The result on G can also be obtained using the operator product 

expansion and the already calculated proton matrix elements.  Consider 

again the axial vector current (Eq. (2.40))

J 5
f
=  f x 5 f x 

made up of quark operators of a definite flavour  f. From the free Dirac 

equation of motion one finds that

∂
J 5

f
=2 i m f

 f x 5 f x  (2.70)

where mf is the mass of the quark of flavour f. In the chiral limit, mf → 0,

Eq. (2.70) implies that J
5

f is conserved. However there is an anomalous 

contribution arising from the triangle diagram given in Fig.2.11, which 

leads to a non vanishing derivative in Eq. (2.70). This phenomenon has 

first been observed in QED by Adler [63]. In the QCD case one has [7, 8,64]

∂
5J

5
f
=
s

4
G


a G a

=
s

2
Tr [G

G ] (2.71)

The  dual  gluonic  field  tensor G


a is  given  by G


a
=

1
2



G a
 . 
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5

Figure 2.11: Triangle  diagram giving rise to the axial anomaly.
The gluons  couple via the triangle to the axial current and thus
contribute   to  the corresponding proton matrix element.



Summing over all  quark flavours (here  nf = 3),  we obtain the gluonic 

contribution to a0 : 

a
0
gluonsQ2=−3

s

2
G Q2 (2.72)

The anomaly introduces a pointlike interaction between the axial vector 

current and the gluons,  because it  does not depend on the momentum 

transfer  k1 − k2 when mf  = 0, where k1 and k2 are the gluon momenta in 

Fig.2.11. Therefore one obtains a contribution to the matrix element of a 

hadron state from the gluonic component of the hadrons as well as from 

the quarks [19]. Eq. (2.72) is believed to be an exact result and not to be 

affected by higher order corrections [66].

As a consequence of Eq. (2.72) a0 has contributions from quarks and 

gluons. In the AB scheme we obtain the result for a0 given in Eq.(2.69):

a
0
Q2=−3

s

2
G Q2 (2.73)

The gluonic term in Eq. (2.73) does not vanish at large Q2, since the gluon 

spin behaves just as [αs(Q2)]−1 for  Q2 → 0 [64,67]. In the gauge invariant

MS scheme the term containing ΔG  in Eq. (2.73) is cancelled by an 

additional term, and there is no anomaly.

2.5  Fragmentation

Thus far only inclusive DIS experiments, in which the incoming and 

the  scattered  lepton  are  measured,  were  discussed  quantitatively. 

Detecting a hadron in coincidence with the scattered lepton is intimately 

related to the initial quarks and thus provides important information on 

the nucleon structure. Fig.2.12 illustrates the process, which is similar to 

the inclusive lepton-nucleon scattering plus one extra degree of freedom, 
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associated with the momentum  ph of  the additionally detected hadron. 

The  additional  variable,  used  to  describe  this  process,  is  the  energy 

fraction of the virtual photon energy carried by the hadron

z=
Eh


(2.74)

Alternatively one can use the Feynman variable:

x F=
pz

c.m.

pz,max
c.m.

≈
2 pz

c.m.

W
, (2.75)

( pz : longitudinal momentum fraction in the photon-nucleon c.m. system). 

The  region  of x f0 selects  preferably  hadrons  from  the  target 

fragmentation region, which originate from the target remnant. Hadrons, 

which  originate  from  the  struck  quark,  are  produced  in  the  current 

fragmentation region.

The formation of hadrons is due to the confinement property of QCD, 

which demands that  only neutral colour objects exist  as free particles. 
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Figure 2.12: Schematic representation of hadron production in DIS.



Thus the struck quark and the target remnant have to form colour neutral 

final state hadrons. This process of hadronisation cannot be described by 

perturbative QCD, but it is parametrised by the fragmentation functions. 

It  is  assumed,  that  the  factorisation  of  the  hard  process  and  the 

fragmentation process holds.  Thus the hard process can be calculated, 

using  perturbative  QCD,  and  the  soft  part,  (the  fragmentation)  is 

parametrised independently.  This  is  in  analogy to the treatment  of  the 

inclusive cross section.  The hard process is  independent  of  the parton 

distributions, which are the non-perturbative soft part. The cross section 

is a product of both. 

The  current  region  allows  to  obtain  information  about  the  struck 

quark. The charge, the identity and the direction of the leading hadron is 

correlated to the flavour and the direction of the struck quark. The cross 

section for  the  production  of  a  particular  hadron  h can  be  written,  in 

leading order QCD, as


h
x ,Q2 ,z ∝∑

f
e f

2 q f x ,Q2
D f

h
z ,Q2

 (2.76)

where D f
h
z ,Q2

 is  the  fragmentation  function  parametrising  the 

fragmentation process. The fragmentation function gives the probability 

density that a struck quark of flavour f, probed at a scale Q2 , fragments 

into a  hadron  h of  energy  Eh being a  fraction  z of  the virtual  photon 

energy.  The  fragmentation  functions  are  normalised  to  the  particle 

multiplicities and conserve energy:

∑
h
∫
0

1

z D f
h
z ,Q2

dz=1 (2.77)

Isospin  symmetry  and  charge  conjugation  limits  the  number  of 

independent Dq
h
z  , e.g. for a pion,
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Du



=D d

−

=D d



=D
u

−

(2.78)

Dd



=D u

−

=D
u



=D d

−

(2.79)

Ds



=D s

−

=D
s



=D
s

−

(2.80)

The Du



etc. are the so-called favoured fragmentation functions, Dd



 

the  unfavoured  fragmentation  functions,  and Ds



the  strange 

fragmentation function. For the favoured fragmentation the initial quark 

is in the pion ground state wavefunction, and such processes are more 

probable than the unfavoured or strange cases.

Thus  one  can  draw  conclusions  about  the  struck  quark  when 

identifying  the  leading  hadron  in  an  experiment.  This  allows  e.g.  a 

flavour separated determination of the (polarised) parton distributions as 

shown in Fig.2.2 and 2.6.
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CHAPTER 3

The Gluon Helicity Distribution G x ,Q2


The gluon contribution to the spin of the nucleon can be separated 

into  spin  and  orbital  parts.  As  with  its  unpolarized  counterpart,  the 

polarized gluon distribution is difficult to access experimentally. There 

exists  no  hard  scattering  process,  which  would  allow to  measure  this 

distribution.  In  a  longitudinally-polarized  nucleon  the  polarized  gluon 

distribution G x ,Q2
 contributes  to  the  spin-dependent  scattering 

processes.  In QCD,  using the infrared factorization of  a hard process,

G x ,Q2
 can  be  calculated  as  a  matrix  element  of  the  non-local 

operator[50]

G  x , Q2
=
−i
x ∫

d 
2

e−i x
〈P∣F

nW F 


0∣P〉 (3.1)

where  |P > is the proton state normalized covariantly,  n is a light-like 

vector conjugating to an infinite momentum frame P. F beta=
1
2
 beta F 

is  the gluon field  tensor  and  W is  a  gauge  link along the direction  n 

connecting  the  two  gluon  field  tensors,  making  the  operator  gauge 

invariant. Because of the charge conjugation property of this operator, the 

gluon distribution is symmetric in x:

                                     G  x , Q2
=G −x ,Q2

 . 

The even moments of G x ,Q2
 are directly related to the matrix 

elements of  local operators. Defining

∫
−1

1

dx xn−1
G x , Q2

=an
2
 , n=1,3,5... (3.2)

we find
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〈P∣F 1 iD2...iDn−1i F

n∣P 〉=2an
2
S 1 P2...Pn (3.3)

The  renormalization  scale  dependence  is  directly  connected  to  the 

renormalization of the local operators. Because Eq. (3.1) involves directly 

the time variable, it is difficult to evaluate the distribution on a lattice. 

The matrix elements of local operators can be calculated in lattice QCD. 

Hence the moments of G x ,Q2
 are, in principle, calculable.

From  these  equations  it  is  clear  that  the  first-moment n=1 of 

G x does not correspond to a gauge-invariant local  operator. In the 

axial  gauge n⋅A=0 the  first  moment  of  the  nonlocal  operator  can  be 

reduced to a local one, E×A , which can be interpreted as the gluon spin 

density  operator.  The  first  moment  of G  x ,2 represents  the  gluon 

spin contribution to  the nucleon spin in the axial  gauge.  In any other 

gauge  it  cannot  be  interpreted  in  this  way.  One  can  formally  write

J g=GL g in  the  axial  gauge,  where  Lg is  the  gluonic  orbital 

contribution to the nucleon spin. There is no way to measure Lg directly 

in the experiments.

3.1  Next-to-Leading Order Evolution of g
1
x ,Q2



The spin structure functions possess a significant Q2 dependence due 

to the QCD radiative effects. It is important to understand these effects. 

As the experiments are carried out at different accelerator facilities with 

different beam energies, the data cover a range of Q2 . In addition, due to 

the  extensive  data  set  that  has  been  accumulated  and  the  recently 

computed  higher-order  QCD  corrections,  it  is  possible  to  produce 

parameterizations based on Next-to-Leading-Order (NLO) QCD fits  to 

the data. This provides an important input to future experiments utilizing 
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polarized beams (e.g., the RHIC spin program). These fits have also given 

information on the gluon spin distribution, due to the radiative effects that 

couple the quark and gluon spin distributions at NLO.

      At NLO the spin structure function becomes

g
1
x ,Q2

=
1
2
∑

i
e i
2Cq x ,s ⊗q i x ,Q2


1

N f

Cg x ,s 

⊗G x ,Q2


 (3.4)

where the sum is again over the quarks and antiquarks: u ,d ,s , u ,d ,s . 

Cq(x,αs)  and Cg x ,αs  are  Wilson  coefficients  and  correspond  to  the 

polarized photon-quark and photon-gluon hard scattering cross  section 

respectively. The convolution  ⊗ is defined as

C x ,s⊗q x , Q2
=∫

x

1
dy
y

C  x
y

, sq x , Q2
 (3.5)

The explicit  dependence of  the nucleon spin structure function on the 

gluon spin distribution is apparent in Eq. (3.4). At Leading Order (LO) 

one has Cq
0
=1−x  and Cg

0
=0 , and the usual dependence (Eq.(3.4)) 

of the spin structure function on the quark spin distributions emerges. At 

NLO  the  factorization  between  the  quark  spin  distributions  and 

coefficient functions shown in Eq.(3.4) cannot be defined unambiguously. 

This is known as factorization scheme dependence and results from an 

ambiguity in the division between the definition of the quark/gluon spin 

distributions  and  the  coefficient  functions.  There  are  also  ambiguities 

associated with the definition of the γ5  matrix in n  dimensions [77] and 

with the inclusion of  the axial  anomaly.  This  has lead to a  variety of 

factorization schemes that deal with these ambiguities.

We can classify the factorization schemes in terms of their treatment 
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of the higher order terms in the expansion of the coefficient functions. 

The Q2 dependence of this expansion can be written as:

C i x ,s=C i
0
x 

s Q
2


2
C i
1
⋯ (3.6)

In the so-called Modified-Minimal-Subtraction MS  scheme  [78,79] the 

first  moment  of  the  NLO  correction  to Cg vanishes  (i.e. 

∫
0

1

Cg
1
x dx=0 ). Thus G does not contribute to the first moment of 

g1 . In the Adler-Bardeen [80,81] scheme (AB) the treatment of the axial 

anomaly causes the first  moment of Cg
1 to be non-zero,  leading to a 

dependence of ∫g
1
x dx on ∫G x dx . This leads to a difference in 

the singlet quark distribution in the two schemes:

 x , Q2
AB=x ,Q2

MSN f

 sQ
2


2 ∫
x

1
dy
y
G y ,Q2



       G x ,Q2
AB=G x ,Q2

MS

(3.7)

A third scheme, sometimes called the JET scheme [82,83] or chirally 

invariant (CI) scheme [84], is also used. This scheme attempts to include 

all  perturbative  anomaly  effects  into Cg .  Of  course,  physical 

observables  (eg. g1x ,Q2
 )  are  independent  of  the  choice  of  the 

scheme.  There  are  also  straightforward  transformations  [81,85,86] that 

relate the schemes and their results to one another.

Once a choice of scheme is made, the  Q2  dependence of g1 can be 

calculated using the (DGLAP) equations[87]. These equations characterize 

the evolution of the spin distributions in terms of  Q2  dependent splitting 

functions Pij(x,αs):
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d
d ln Q2


qN S x ,Q2

=
s Q

2


2
Pq q

N S
⊗qNS

d
d ln Q2

 G =
s Q

2


2 Pq q Pq g

P g q P g g
⊗G 

(3.8)

The non-singlet quark distributions qNS  x ,Q2
 for three quark flavors 

are defined as

qNS  x ,Q2
= uu−

1
2
dd −

1
2
 ss   (3.9)

The splitting functions P i j can be expanded in a form similar to that for 

the  coefficient  functions C ix , s in  Eq.(3.6)  and  have  been  recently 

evaluated [78,79] in NLO.

The remaining ingredients are the choice of the starting momentum 

scale Q0
2  and the form of the distributions at this Q0

2 . The momentum 

scale is usually chosen to be ≤1GeV 2 . Thus the quark spin distributions 

are dominated by the valence quarks. The gluon spin distribution is likely 

to be small. Also, as discussed above, at lower momentum transfer some 

models for the x dependence of the distributions (eg. Regge-type models 

for the low x region) are more reliable. The form of the polarized parton 

distributions  at  the  starting  momentum  scale  are  parameterized  by  a 

variety of  x dependences with various powers. This parameterization is 

the source of large uncertainties, as the x dependence at low values of x ≤ 

0.003  is  largely  unconstrained  by  the  measurements.  An  example:  in 

ref[81] it  is  assumed,  that  the  polarized  parton  distributions  can  be 

parameterized by

q ix ,Q0
2
=Ai xi1−x i1i x i (3.10)

With such a large number of parameters it is usually required to place 
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additional constraints on some of the parameters. Often SU(3)f  symmetry 

is used to constrain the parameters, or the positivity of the distributions 

∣q ix ∣≤qi x is  enforced  (note  that  this  positivity  is  strictly  valid 

only when all orders are included; see Ref. [88]). In other fits the polarized 

distributions are taken to be proportional to the unpolarized distributions 

(as in Ref. [75] ):

q i x ,Q0
2
=Ai xi qi x , Q0

2
 (3.11)

A  large  number  of  NLO  fits  have  recently  been  published 

[75,80,81,86,89-98]. These fits include a wide variety of assumptions for the 

forms of the polarized parton distributions, differences in the factorization 

scheme and the selection of data sets included in the fit (only the most 

recent  fits  [97] include all  the published inclusive data).  Some fits  [98] 

have even performed a NLO analysis including information from semi-

inclusive  scattering.  A comparison  of  the  results  from some  of  these 

recent fits is shown in Table (3.1).

Note that in the JET and AB schemes  includes a contribution 

from G . Thus the result of these fits is that the quark spin distribution

 is constrained between 0.05 − 0.30. However the gluon distribution 

and its first moment are largely unconstrained. The extracted value for

G Q2
=5GeV 2

 is typically positive, but the corresponding uncertainty 

is often 50−100%. Note that  the uncertainties listed in Table (3.1) are 

dependent on the assumptions used in the fits.

Estimates  of  the  contribution  from  higher  twist  effects  [103,104] 

(1/Q2 corrections)  suggest  that  the  effects  are  relatively  small  at  the 

present experimental values of  Q2 . This is further supported by the fits 

that the NLO QCD calculations can achieve, without including possible 

higher-twist effects.
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Lattice  QCD calculations  of  the  first  and  second  moments  of  the 

polarized spin distributions are carried out  [99-102]. The agreement with 

NLO fits to the data is reasonable for the quark contribution, although the 

lattice calculations are not yet able to calculate the gluon contribution.

Table  (3.1):  Results  from  NLO  fits  to  data  for  first  moments  of  quark  and  gluon 
distributions. Missing data refers to data sets that are not included in the fits, pPDF refers to 
the assumptions for Polarized Distribution Functions, and Qev

2 refers to the evolved  Q2 

where the first moments are evaluated.

 Reference  Scheme
Q0
2  

GeV2
 Missing Data  pPDF

Qev
2  

GeV2
 G

ABFR98[81]

 (Fit-A)

 AB 1  HERMES(p)

 E155(pd)

 Semi-inc

q i∝qi
1 0.41±0.03 0.95±0.18

 LSS99 [96]  JET

 AB

MS

1

1

1

 Semi-inc q i∝qi
1 0.39±0.04

0.41±0.04

0.28±0.04

0.57±0.14

0.58±0.04

0.07±0.10

GOTO00[97]

 (NLO-1)

MS 1

1

1

 Semi-inc q i∝qi
1

5

10

0.050

0.054

0.055

0.53

0.86

1.0

 FS00 [98]

 (ii)

MS 0.5  – q i∝qi
10 0.050 0.53

3.2  Gluon helicity distribution from the QCD Scale Evolution

The polarized gluon distribution enters in the factorization formula 

for spin-dependent inclusive deep-inelastic scattering. Since the structure 

function g1x ,Q2
 involves  both  the  singlet  quark  and  gluon 

distributions, as shown in Eq.(3.4), only the  Q2 dependence of the data 

can be exploited to separate them. The  Q2 dependence results from two 

different  sources:  the  running  coupling s Q
2
 in  the  coefficient 
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functions and the scale evolution of the parton distributions. As the gluon 

contribution has its own characteristic  Q2 behavior, it can be isolated in 

principle from the data taken over a wide range of Q2.

Because the currently available experimental data have rather limited 

Q2  coverage,  there  is  at  present  a  large  uncertainty  in  extracting  the 

polarized gluon distribution. A number of NLO fits have been performed 

to  extract  the  polarized  parton  densities.  While  the  results  for  the 

polarized  quark  densities  are  relatively  stable,  the  extracted  polarized 

gluon distribution depends strongly on the assumptions made about the x-

dependence of the initial parameterization. Different fits produce results 

at fixed  x differing by an order of magnitude. Even the sign is not well 

constrained.

Several sets of polarized gluon distributions have been used in the 

literature  for  the  purpose  of  estimating  the  results  of  the  future 

experiments.  The range of possible distributions is shown in Fig. (3.1) 

(Ref.[90]).  The real  gluon distribution could be very different  from the 

ones shown.
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Figure (3.1): Typical  gluon  helicity  distributions  [90] 
obtained  from  fits  to the available polarized DIS  data.



3.3  Gluon  helicity  distribution  from  Di-jet  Production in e−p

       Scattering

In deep-inelastic scattering the virtual photon can generate two jets 

with large transverse momenta. To leading-order  in  s , the underlying 

hard scattering subprocesses are Photon-Gluon Fusion  (PGF) and QCD 

Compton Scattering (QCDC) (see Fig.  (3.2)).  If  the initial  photon has 

momentum q and the quark or gluon from the nucleon (with momentum 

P) has momentum xp, the invariant mass of the di-jet is s=q xp2 . The 

x-parameter, at which the densities are probed is given by:

xp=x B1sQ2  (3.12)

where x B is the Bjorken  x variable. The di-jet invariant mass fixes the 

momentum fraction. Depending on the relative sizes of  s and  Q2, x

can be an order of magnitude larger than x B .

If the contribution from the quark initiated subprocess is small, or the 

quark distribution is known, the two-jet production is a useful process to 

measure the gluon distribution. The di-jet invariant mass provides direct 
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Figure (3.2): Leading-order Feynman diagrams for di-jet  production in
DIS: (a) Photon-Gluon Fusion, (b) Photon-Quark Compton scattering.  



control over the fraction of the nucleon momentum carried by the gluon 

xG= xp .  The  di-jet data from  HERA have been used by the  H1 and 

ZEUS collaborations  to  extract  the  unpolarized gluon distribution  [105, 

106]. With a polarized beam and target, the process is ideal for probing the 

polarized gluon distribution.

The unpolarized di-jet cross section for photon-nucleon collisions can 

be written as [107]   

di− jet q , xp= di− jet
PGF

 di− jet
QCDC

=AG x Bq x (3.13)

where G(x) and q(x) are the gluon and quark densities, respectively, and A 

and  B are  the  hard  scattering  cross  sections  calculable  in  perturbative 

QCD (pQCD). Similarly, the polarized cross section can be written as

dj− jet q , xp= dj− jet


− dj− jet
−

=aG x bq x  (3.14)

where the first and second (+,-) refer to the helicities of the photon and 

nucleon, respectively. The double spin asymmetry for di-jet production is 

given by:

Adi− jet=
di− jet

2di− jet

=
a
A
G x 
G x 

 di− jet
PGF

2 di− jet


b
B
q x 
q x 

1
2 1−di− jet

PGF

di− jet
 (3.15)

The  experimental  asymmetry  Aexp in  DIS  is  related  to  the  photon 

asymmetry by

Aexp=Pe P N D A1
di− jet

(3.16)

where Pe and PN are the electron and nucleon polarizations, respectively, 

and D is the depolarization factor of the photon.

At low x the gluon density dominates over the quark density. Thus the 

photon-gluon fusion subprocess dominates, and we have

A1
di− jet=

a
A
G x
2G x

(3.17)
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This provides a direct measurement of the gluon polarization. Due to the 

helicity selection rule the photon and gluon must have opposite helicities 

to  produce a quark and antiquark pair, and hence  a/A=−1. Therefore, if 

G(x) is  positive,  the  spin  asymmetry  must  be  negative.  Leading-order 

calculations in Refs. [107-110] show, that the asymmcan be exploitedetry is 

large and depends on the gluon polarization.

At  NLO  the  one-loop  corrections  for  the  PGF  and  QCDC 

subprocesses must be taken into account. Three-jet events with two of the 

jets too close to be resolved, must be treated as two-jet production. The 

sum of the virtual  (2  →  2 processes with one loop) and real  (2  →  3 

leading-order  processes)  corrections  are  independent  of  the  infrared 

divergence. The two-jet cross section depends on the scheme in which the 

jets are defined. NLO calculations, carried out in Refs. [111-113], show that 

the  strong  sensitivity  of  the  cross  section  to  the  polarized  gluon 

distribution survives. In terms of the spin asymmetry, the NLO effects do 

not significantly change the result.

Since the invariant mass of the di-jet is itself a large mass scale, two-

jet  production  can  also  be  used  to  measure G x ,  even  when  the 

virtuality of the photon is small or zero (real photon). A great advantage 

of using nearly real photons is, that the cross section is large due to the 

infrared enhancement, and hence the statistics is high. A disadvantage is, 

that there is now a contribution from the resolved photons. Because the 

photon is nearly on-shell, it has a complicated hadronic structure of its 

own. The structure can be described by quark and gluon distributions, 

which have not yet been well determined experimentally. Some models of 

the  spin-dependent  parton  distributions  in  the  photon are  discussed  in 

Ref.  [114].  Leading-order  calculations  [115,116] show,  that  there  are 
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kinematic regions, in which the resolved photon contribution is small, and 

the experimental di-jet asymmetry can be used favorably to constrain the 

polarized gluon distribution.

3.4  Gluon helicity distribution  from  Large-pT Hadron  Production
  in e-p Scattering

For  e-p  scattering at  moderate center-of-mass energies,  as in fixed 

target experiments, jets are hard to identify because of their large angular 

spread and the low hadron multiplicity. However one still expects that the 

leading hadrons in the final state reflect to a certain degree the original 

parton directions and  flavors (discounting the transverse momentum, of 

order QCD ,  from  the parton intrinsic motion in hadrons and from 

their fragmentation). If so, one can try to use the leading high-pT hadrons 

to tag the partons produced in the  hard subprocesses considered in the 

previous subsection.

Bravar et al. [117] have proposed to use high-pT hadrons to gain access 

to G x . To enhance the relative contribution from the photon-gluon 

fusion subprocess and hence the sensitivity of physical observables to the 

gluon distribution,  they propose  a  number  of  selection criteria  for  the 

analysis  of  the  data  and  then  test  these  criteria  in  a  Monte  Carlo 

simulation of the COMPASS experiment.  These simulations show that 

these  cuts  are  effective  in  selecting  the  gluon-induced  subprocess. 

Moreover, the spin asymmetry for the two-hadron production is large (10-

20%) and is strongly sensitive to the gluon polarization.

Because  of  the  large  invariant  mass  of  the  hadron  pairs,  the 

underlying subprocesses can still be described in perturbative QCD, even 

if the virtuality of the photon is small or zero [118]. This enhances the data 
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sample,  but  introduces  additional  sub-processes  to  the  high-pT hadron 

production.  The  contribution  from  the  resolved  photons,  eg.  from

qq  fluctuations, appears not to overwhelm the PGF contribution. 

Photons  can  also  fluctuate  into  ρ mesons.  The  ρ-nucleon  scattering 

produces  large-pT hadron  pairs.  The  experimental  information  on  this 

process can be used to subtract its contribution. After taking into account 

these contributions, it appears that the photons of low virtuality can be 

used as an effective probe of the gluon distribution to complement the 

data from DIS lepton scattering.

3.5  Gluon helicity distribution  from open-charm (heavy-quark)
       production in e-p Scattering

Heavy quarks can be produced in e-p scattering through photon-gluon 

fusion  and  can  be  calculated  in  pQCD (see  Fig.  (3.3)).  In  the  deep-

inelastic  scattering  region,  the  charm  quark  contribution  to  the

g1x ,Q2
  structure function is known [119],

g
1

c
x ,Q2

=
s 

2


9
∫
ax

1 dy
y
P  xy ,Q2G y ,2 (3.18)
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Figure (3.3): Feynman diagrams for charm production via
 Photon Gluon Fusion.



where a=1
4mc

2

Q2 and

P x ,Q2
=2 x−1ln 1

1−
3−4 x  (3.19)

with 
2
=1−

4mc
2

Q2
1−x 

. This result assumes that due to the large charm 

quark mass the direct charm contribution (eg. through c x  ) is small 

and the  light-quark  fragmentation  production  of  charm  mesons  is 

suppressed. The x dependence of the structure function, if measured, can 

be  deconvoluted  to  give  the  polarized  gluon  distribution.  The 

renormalization scale  μ can be taken to be twice the charm quark mass 

2mc.

Following Ref. [120], the open charm electro-production cross section 

is large when Q2 is small or vanishes. It can be written as follows:

d2 N cc x

dQ2d 
=E ;Q2 ,

∗ N c c x
Q2 , , (3.20)

Here the virtual photon flux is

E ;Q2 ,=
em

2
21− y  y2Q2

/2E2

Q2
Q2


2

1/2 (3.21)

(E and ν are the lepton and photon energies and y = ν/E).

For a fixed  y,  the flux is inversely proportional  to  Q2. The second 

factor in Eq.(3.20) is the photonucleon cross section.

The cross section asymmetry is simple for  Q2=0.  The total  parton 

cross section for photon-gluon fusion is 

 s =
8em s s

9 s [−2−212 3−4ln 11− ] (3.22)

where =1−4mc
2
/ s is the center-of-mass velocity of the charm quark, 

and s=q xG P2 is the invariant mass of the photon-gluon system. On 
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the other hand, the spin-dependent cross section is

=
8em s s 

9 s [3−ln 11− ] (3.23)

The  photon-nucleon  asymmetry  for  open  charm  production  can  be 

obtained  by  convoluting  the  above  cross  sections  with  the  gluon 

distribution, giving 

A N
c c E , y =


 N cc x


 N cc x =

∫
4m c

2

2MEy

d s  sGxG , s

∫
4m c

2

2MEy

d s  sGxG , s

(3.24)

where xG=
s

2MN Ey is  the  gluon  momentum  fraction.  Ignoring  the  Q2 

dependence,  the  l−P spin  asymmetry is  related  to  the  photon-nucleon 

spin  asymmetry  by Al N
c c=D AN

cc ,  where  D is  the  depolarization  factor 

introduced before.

The  NLO corrections  have  recently  been  calculated  by  Bojak  and 

Stratmann  [121] and  Contogouris  et  al.  [122].  The  scale  uncertainty  is 

considerably reduced in NLO, but the dependence on the precise value of 

the charm quark mass is sizable at fixed target energies.

Besides the total charm cross section one can study the distributions 

of the cross section in the transverse momentum or rapidity of the charm 

quark. The benefit of doing this is that one can avoid the region of small 

xG , where the asymmetry is very small [115].

Open  charm production  can  be  measured  by  detecting  D0  mesons 

from charm quark fragmentation. On average, a charm quark has about 

60%  probability  of  fragmenting  into  a  D0.  The  D0 meson  can  be 

reconstructed  through  its  two-body  decay  mode  D0→K−+π+;  the 
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branching  ratio  is  about  4%.  Additional  background  reduction  can  be 

achieved by tagging D*+ → D0π+ through detection of the additional π+.

J/ψ production is, in principle, also sensitive to the gluon densities. 

However, because of ambiguities in the production mechanisms [123], any 

information on Gx  is highly model-dependent.

3.6  The gluon helicity distribution  from direct photon production
       in p-p collisions

G  x can be measured through direct (prompt) photon production in 

proton-proton or proton-antiproton scattering [124]. At tree level, the direct 

photon can be produced through two underlying subprocesses: the QCD 

Compton  process qgq and  the  quark-antiquark  annihilation

q qg as shown in Fig.(3.4).  In proton-proton scattering the direct 

photon production is dominated by the QCD Compton process and hence 

can be used to extract the gluon distribution directly. 

  

  

  

Consider the collision of hadron  A and  B with momenta  PA and  PB. 

The invariant mass of the initial state is s=PAPB
2 . We assume that 

the parton a(b) from the hadron A(B) carries the longitudinal momentum 

xaPA(xbPB).  The  Mandelstam  variables  for  the  parton  subprocess 
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Figure (3.4): Feynman diagrams for direct photon production.



abc are 

s=xa xb s , t=x a t , u=xb u (3.25)

where  we  have  neglected  the  hadron  mass.  The  parton-model  cross 

section for inclusive direct-photon production is then

E

d AB

d 3 p

=∑
ab

dxa dxb f A
a
xa ,2 f B

b
xb ,2 E

d ab

d 3 p

(3.26)

For the polarized cross section AB ,  the parton distributions  fA,B are 

replaced  by  polarized  distributions fA ,B .  The  parton  cross  sections 

ab are replaced by the spin-dependent cross section  ab . The tree-

level parton scattering cross section is

E

d 

d3 p
=em s

1
s
∣M∣2 stu (3.27)

where the δ-function reduces the parton momentum integration into one 

integration over xa with range [-u/(s+t),1] and

∣M∣qgq
2

=−
1
2

s2 t 2

s t
,

∣M∣q qg
2

=
8
9

u2
 t2

u t
,

(3.28)

For the polarized case we have the same expression as in Eq. (3.27), but 

with  

∣M∣qgq
2

=−
1
2

s2− t 2

s t
,

∣M∣q qg
2

=−
8
9

u 2
 t 2

u t
,

(3.29)

In the energy region, where the Compton subprocess is dominant, we 

can write the proton-proton cross section in terms of the deep-inelastic 
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structure functions F2 and g1 and the gluon distributions G and G x  

[124]:

   E 

dAB

d3 p


=∫dx a dx b[ F 2 x a ,2
x a

G xb ,2E 

d qg

d3 p


x ax b]
E



dAB

d3p


=∫dx a dx b [2g
1
x a ,2

x a

G x b ,2E


d qg

d3p


x axb]
(3.30)

Here the factorization scale  μ  is usually taken as the photon transverse 

momentum pT .

The simple picture of direct photon production, described above, is 

more complicated due to high-order QCD corrections. Starting at next-to-

leading order, the inclusive direct-photon production cross section is no 

longer  well  defined,  due  to  the  infrared  divergence  arising,  when  the 

photon momentum is  collinear  with one of  the  final  state  partons.  To 

absorb this divergence, an additional term must be added to Eq.(3.26), 

which  represents  the  production  of  jets  and  their  subsequent 

fragmentation  into  photons.  The  total  photon production  cross  section 

depends  also  on  these  unknown  parton-to-photon  fragmentation 

functions. Moreover, the separation into direct photon and jet-fragmented 

photon  is  scheme-dependent,  since  the  parton  cross  section

Ed ab / d
3 p depends on the methods of infrared subtraction [125].

To minimize the influence of the fragmentation contribution, one can 

impose  a  cut  on  the  experimental  data  [65]  .  The  parton  cross  section 

entering Eq. (3.26) must be calculated in accordance with the cut criteria. 

An isolation cut has the additional benefit of excluding photons from π0 

or η decay. When a high-energy π0 decays, occasionally the two photons 

cannot  be  resolved  in  a  detector,  or  one  of  the  photons  may  escape 
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detection. These backgrounds usually reside in the cone of a jet and are 

largely excluded, when an isolation cut is imposed.

The NLO parton cross sections in direct photon production have been 

calculated  for  both  polarized  and  unpolarized  scattering  [125].  The 

comparison between the experimental data and the theory for the latter 

case is still controversial. While the collider data at large pT are described 

very well  by the NLO QCD calculation  [68],  the fixed-target  data  and 

collider data at low pT are not well described by the theory. This problem 

can  be  solved  by  introducing  a  broadening  of  the  parton  transverse 

momentum in the initial state [69]. Theoretical ideas attempting to resolve 

the discrepancy include a resummation of  threshold corrections  [70] as 

well  as  a  resummation  of  double  logarithms,  involving  the  parton 

transverse  momentum  [71,72].  Recently  it  has  been  shown  that  a 

combination of both effects can reduce the discrepancy considerably [73].

3.7  Gluon helicity distribution  from jet and hadron production in 
        p-p collisions

Jets  are  produced  copiously  in  high-energy  hadron  colliders.  The 

comparison  between  experimental  data  from  the  Tevatron  and  other 

facilities  and  the  NLO  QCD  calculations  are  in  excellent  agreement. 

Therefore, single and/or di-jet production in polarized colliders can be an 

excellent tool to measure the polarized parton distributions, particularly 

the gluon helicity distribution [74].

There are many underlying subprocesses contributing to the leading-

order jet production:

qq'qq' , q q'q q' , qqqq , q qq' q ' , q qq q , q qgg ,

ggq q , qgqg , gggg .  Summing  over  all  pairs  of  initial 
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partons  ab and subprocess channels ab cd , and folding in the parton 

distributions  fa/A(xa), etc., in the initial hadrons  A and  B, the net two-jet 

cross section is 

d 

d 3 pc

=∑
abcd
∫ dxa dxb f a / Axa f b /B xb

d 

d 3 pc

ab cd  (3.31)

For  jets  with  large  transverse  momentum it  is  clear,  that  the  valence 

quarks  dominate  the  production.  However  for  intermediate  and  small 

transverse  momentum  the  jet  production  is  overwhelmed  by  gluon-

initiated subprocesses.

Studies of the NLO corrections are important in jet production due to 

the QCD structure of the jets starts at this order. For polarized scattering, 

this has been investigated in a Monte Carlo simulation recently [76]. The 

main  result  of  the  study  shows  that  the  scale  dependence  is  greatly 

reduced. Even though the jet asymmetry is small, because of the large 

abundance of jets, the statistical error is actually very small.

Besides jets one can also look for leading hadron production, just as 

in electroproduction, considered previously. This is useful in particular 

when  the  jet  construction  is  difficult,  due  to  the  limited  geometrical 

coverage  of  the  detectors.  One  generally  expects,  that  the  hadron-

production  asymmetry  has  the  same  level  of  sensitivity  to  the  gluon 

density as the jet asymmetry.
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CHAPTER 4

The Spin of the Proton

The  proton  contains  not  only  three  valence  quarks,  but  also  an 

indefinite  number  of  gluons  and  quark-antiquark  pairs.  The  sea  of

q q−pairs is generated by the valence quarks emitting gluons, which 

then produce pairs. (fig.(4.1)). A constituent quark can be visualized as a 

“Quasi-particle”, which is a valence quark surrounded by a sea of gluons 

and q q−pairs (fig.(4.2)). The absence of a constituent strange quark in 

the proton does not imply a vanishing of the matrix element 〈 p∣s s∣ p〉 . 

However  the  matrix  element 〈 p∣s s∣p 〉 must  be  zero,  since  the 

strangeness of proton is zero.
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Fig.(4.1).The sea can be generated by the valence quarks emitting gluons which

then produce pairs.



In order to study the spin effects of the gluons and the sea, we shall 

construct  a  phenomenological  model  of  the  spin  shared  by  the 

constituents  of  a  proton,  based  on  the  SMC[131] data  of  the  spin 

dependent structure function and the knowledge of the unpolarized quark 

distribution functions.

Before we discuss the constituent quarks, let us summarize the results 

about the spin structure of the proton. We define the distribution functions 

of  the quarks of  flavor  q and helicity 
1
2
−

1
2
 by q


q

−
 .  The first 

moment  of  the structure  function g1 ,  measured in  the deep inelastic 

scattering  of  polarized  leptons  off  hadronic  targets,  is   given  by  the 

moments of the quark densities q :

∫
0

1

dx g1
p
=

1
2

4
9
u

1
9
d

1
9
s (4.1)

where

u=∫
0

1

dx u

−u

−
 u


− u

−
, etc. (4.2)

The  spin  density  moments q are  determined  by the  nucleon matrix 

elements of the associated axial-vector currents (sμ: spin vector):
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Fig.(4.2) The proton consists of two up (UU) and one down (D) constituent quark.



q.s=〈p ,s∣q 5q∣p ,s 〉 . (4.3)

The  SMC  collaboration  at  CERN  has  measured  the  proton 

structure function at Q2
=10 GeV 2 ,  improving the earlier  SLAC-EMC 

measurements[131]:

∫
0

1

dx g1
p=0.142±0.008±0.011 . (4.4)

The  Bjorken  sum  rule[33] relates  the  ratio gA /gV of  the  coupling 

constants in the beta decay to the structure functions g1
p and g1

n :

g A/gV n  p = 6∫
0

1

dx g1
p
−g1

n
 = ∫

0

1

dx u−d  (4.5)

A relation analogous to eq.(4.5) can also be written for the coupling-

constant ratio gA /gV in the decay 
−


o e− using SU(3) symmetry. 

g A/gV −


o = 6∫
0

1

dx g1


o

−g1

−

 = ∫
0

1

dx d−s (4.6)

One finds in terms of the parameters F and D:

g A/gV n  p=FD , g A/gV −


o=F−D

FD= ∫
0

1

dx u−d  (4.7)

F−D= ∫
0

1

dx d−s (4.8)

By summing eqs.(4.7) and (4.8) we obtain:

2F= ∫
0

1

dx u−s (4.9)

u=2Fs (4.10)

By substituting this in eq.(4.7) we obtain:

66



d=F−D s (4.11)

ud−2s=3F−D (4.12)

The parameters F and D are defined by the axial-vector matrix elements 

of  the members of  the baryon octet.  From an analysis of  the hyperon 

decays one can deduce [126]:

F=0.461±0.014  and D=0.798±0.013

Inserting these values in (4.10) and (4.11), we obtain:

u=0.922±0.028 s ,

d=−0.337±0.019 s
(4.13)

This implies for the valence quarks:

uv=0.922±0.028 ,

d v=−0.337±0.019
(4.14)

Inserting (4.13) in (4.1) we find:

 s=−0.132±0.046 (4.15)

u=0.79±0.054 ,

d=−0.469±0.05
(4.16)

=ud s=0.189±0.087 (4.17)

The analyses of Hermes [145] and COMPASS [146] give:

∆=0.33±0.011threo.±0.025exp.±0.028evol.  HERMES

 ∆=0.35±0.03stat.±0.05syst.  COMPASS                    (4.18)

It was shown[132,134] that there is an anomalous contribution to the matrix 

element  .  In  the  interpretation  of  the  EMC[1] experiment u ,

d and  s should be replaced by
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 q=q−
s

2
g , (4.19)

where  g is  the  gluonic  helicity  contribution  to  the  proton  spin. 

Combining this information,  we obtain using s 10GeV 2
=0.253  the 

revised estimates,

0.79±0.054=u−
s

2
g ,

−0.469±0.05=d−
s

2
g ,

−0.132±0.046=s−
s

2
g

(4.20)

which is still consistent with eq.(4.16), if  g=0 .

The  experimental  determination[131]  of s may be compared with 

two  other  independent  determinations.  One  comes  from  an 

analysis[139,140] of p elastic  scattering[141],  which leads to  the value

s=−0.15±0.08 . This would lead to  g=−0.45±2.3 . However the 

authors of ref.[139] recommend a reanalysis of the data, as some of the 

assumptions made are questionable. Indeed, as shown in ref.[142], the data 

is equally consistent with s=0 , when the uncertainty for the proton 

form factor is taken into account. The other determination of s comes 

from a  reanalysis[129] of  incoherent  single-pion  production  by  neutral 

currents,  leading  to the  value s=−0.01±0.13 .  This  gives

 g=3.0±3.4 .  For  the  purpose  of  illustration,  four  different 

characteristic values of g and hence s are chosen: 

      (i)   g=3.28±1.14 ,  s=0.00 ,
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(ii)  g=0.00 ,             s=−0.13±0.05 ,

(iii)  g=−0.45±2.3 ,  s=−0.15±0.08 ,

(iv)  g=−1.19±1.88 , s=−0.18±0.06 .

Case (i) with large and positive  g is motivated by adapting the EMC 

result to the constituent quark model, whereas case (ii) with  g=0 is 

favored in some specific version of the Skyrme model[143]. The cases (iii) 

and (iv) with the gluon polarization opposite to the proton spin is obtaind 

if the gluon spin component is defined via the forward matrix element of

G G [144].  The large  amount  of  spin  carried by the gluons  implies  a 

large orbital angular momentum to compensate for it according to

SZ =
1
2
ΔΣgLqLg (4.21)

The  orbital  angular  momenta  were  derived  by  Tang,  Hoodbhoy  and 

Xiangdong Ji using the following equation [2],

d
dt 

Lq

Lg
=st 

2 −
4
3

CF

nf

3
4
3

CF −
nf

3
Lq

Lg
st 

2 −
2
3

CF

nf

3

−
5
6

CF −
11
2



g  (4.22)

If one knows the nucleon spin composition at a perturbative scale Q0
2 , 

one  can  get  the  spin  composition  at  any  other  perturbative  scale  by 

solving  these  equations.  As  Q2→∞,  the  solution  becomes  especially 

simple,

1
2
ΔΣLq=

1
2

3nf

3nf16
   ;   gΔ Lg=

1
2

16
3nf16

(4.23)

By substituting for g and
1
2
 in this equation case (i), we get the 

orbital angular momenta carried by the quarks and gluons:
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Lq=0.02±0.04 , Lg=−2.96±1.14 (4.24)

The large orbital  angular  momentum is required to nearly compensate

g .  In  order  to  investigate  the spin sharing among the  quarks  and 

gluons in detail, one needs a parametrization of the spin densities which 

takes into account all the present knowledge on the structure functions. 

Here  we  present  such  a  phenomenological  model.  The  construction 

depends in particular on the unpolarized parton densities.

4.1  Model of the proton spin structure

This  model  assumes  for  the  unpolarized  parton  densities  the 

parametrization proposed by   Hwa,  Zahir  and X.  Que-bing [127,128]. 

These distributions are evaluated for Q2
=10.7GeV 2 .

The valence quarks

The valence quark densities are given by

x uv x =5.3021−x 3.244x 0.806 ,

x dv x =1.91 1−x 
3.574 x0.636     

(4.25)

Experimentally the knowledge of the nucleon spin-dependent structure 

functions at high momentum transfer comes from the measurement of the 

asymmetry “A”, which is given by

A=
2x g1x 

F 2x 
(4.26)

For the proton we find:

 2 g1
p x =4

9
u x 1

9
d x 

1
9
s x  , (4.27)
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F 2
p x 
x

=
4
9

u x 1
9

d x 1
9

s x  (4.28)

Asymmetries for the individual quarks may also be defined:

Au x≡
uv x 

uv  x
   ,   Ad x ≡

d v x 

d v x 
(4.29)

The region near x=1 reflects the argument[31] that the valence quark 

at x=1 remembers  the  spin  of  the  parent  proton[15].  This  can  be 

achieved by choosing Au x in such a way that

Au x1 as x1

Ad x  near x=1 is determined by the valence quark structure of the 

proton, given by the naive quark model, which leads to

Ad x −
1
3

as x1 .

The region near x=0 is expected to be dominated by the sea quarks. The 

spin  of  the  parent  proton  would  no  longer  be  related  to  the  valence 

quarks.  This suggests that Au x , Ad x0 as x0 .  We find that  the 

simple parametrization

  x0.342
=
uv x

uv x
  ,   −

1
3

x0.013
=
 dv x 

dv x 
(4.30)

satisfies all constraints mentioned above.

The strange-sea quarks

The unpolarized strange-sea densities[127,128] are given by:

x sx =0.168e−5.6x
1−x 

2.59 (4.31)

Since the large x-behavior of the spin densities of the sea quarks should 

be the same[138], we parametrize the spin-dependent strange-sea densities 
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as

x ∆ s x =1.88 N s x β 1−x 8.54
(4.32)

At small  x Regge behavior suggests, that  is close to 0.5. The sharing 

of the spin between the nonstrange and strange sea quarks is assumed to 

be proportional to the sea production, i.e., to the unpolarized densities. 

This implies a common mechanism for the polarization of all flavours at 

some initial Q2 . Deviations from the equality would probably cause the 

spin dependent strange quark density to be larger in comparison to the 

spin averaged one, since helicity conservation is broken in the strange 

quark sector.

The gluons

The unpolarized gluon densities are again taken as given in [127,128]

x g x =0.6221−x 4.83
1.7411−x 11.82

13.321−x 
59.69 (4.33)

The spin densities of the gluons are parametrized in the form

x g x =N g x 1a x 1−x 5.9
(4.34)

with two free parameters,  a  and  .  The first is expected to be larger 

than 1, and Regge arguments suggest that the second is again close to 0.5.

4.2  Phenomenology of the model

It is interesting that the spin sharing among the valence quarks, sea 

quarks and gluons is fixed for arbitrary values of the parameters a , 

and  .

The  positivity  of  the  quark  and  gluon  densities  of  given  helicity

q


, q
−

, g
 and g

− implies  constraints  on  the  parameters  a  ,  and
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 . They can be written as ∣qs x ,Q2∣≤ qsx ,Q2 for the sea quarks. 

This  implies: N s ≤ 0.364 .  One  obtains  an  upper  limit  for  :

 ≤ 0.80 .

Analogously for gluons the constraints imply ∣ g x ,Q2∣≤g x ,Q2 , i.e. 

 ≤ 0.35 .

The parameter  values,  that  give the best  description of  the data  at

Q2
=10GeV 2 and  the  QCD  parameter QCD=200 MeV ,  are  given  as 

follows:

=0.8   ,  N s=−0.36   ,  =0.35   ,  a=3.78   ,  N g=2.11

The curves  representing the unpolarized and polarized  valence quarks, 

sea quarks and gluon are plotted as a function of x shown in figures (4.3-

4.6). Below I will discuss the measurements of  the gluon distribution.
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x uv x 

x dv x 

x sx 

x

Fig.(4.3) Unpolarized functions of  the valence, sea quarks and gluon 
plotted as function of x.
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x g x 

x

Fig.(4.4) Unpolarized functions of  the gluon plotted as function of x.

Fig.(4.5) spin densities of the valence, sea quarks and gluon plotted as function of x.

x u v x 

x d v x 

x g x 

x s x 



4.3  Experimental Measurements of the gluon distribution

The first information on the gluon helicity distribution  g has come 

from  NLO  fits  to  inclusive  deep-inelastic  scattering  data.  The  semi-

inclusive data from the HERMES experiment indicates a positive gluon 

polarization,  also  other  measurements  from  COMPASS  at  CERN, 

polarized RHIC, and polarized HERA.  All data indicate, that the gluon 

polarisation is small, compared to earlier expectations, but it still can give 

a large contribution to the nucleon spin.

In Ref.[30] the HERMES collaboration reported a first  measurement 

of  the  longitudinal  spin  asymmetry Al l=−0.28±0.12±0.02 in  the 

photoproduction of pairs of hadrons with high transverse momentum PT, 

which  translate  into  a 〈g /g 〉=0.4±0.18±0.03 at  an  average

〈 x 〉=0.17 .  HERMES  presented  a  new  analysis  of  g /g ,  [34] 

including the deuteron data.  Their  most  precise  result  comes from the 
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Fig.(4.6) Spin density of the gluon plotted as function of x.
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inclusive hadron asymmetries. A polarised gluon distribution function is 

fitted  to  g /g in  four  pT bins  in  the  range 1.05GeV pT2.5GeV

(fig.(4.7)). The larger 1999 HERMES result  [30] had been obtained from 

hadron pairs. The data are included in the new analysis.

COMPASS performed a separate analysis for hadron pairs produced 

at Q2
1Gev2 and Q2

1Gev2 . The inclusion of the 2004 deuteron data 

in  the  low Q2 analysis[23] yielded  an  about  1.5  times  more  precise 

preliminary result.  The gluon polarisation from the high and low Q2

analyses is compatible with zero and probes the region around  xg≃0.1. 

Open charm production is considered to be the most model-independent 

tool to study the gluon polarisation. Due to the small initial cross-sections 

and the small branching ratio in the decay DoK  the measurement of 

an asymmetry in D meson production is a real challenge. COMPASS has 

determined  g /g from this asymmetry.

One  of  the  primary  goals  of  the  RHIC  spin  experiments  was  to 

determine the polarized gluon distribution, using the direct photon, jet, 

and  heavy  quark  production.  This   was  done  on  the  inclusive  direct 

photon  events  (PHENIX)  and  photon-plus-jet  events  (STAR).  At  the 

present  luminosities  and  a  c.m.  energy  of  √s  =  200  GeV  the  most 

promising  channels  are  the  inclusive o and  jet  [133] longitudinal 

double-spin  asymmetries Al l measured  by  PHENIX  and  STAR.  The 

present status of these measurements is shown in Fig.(4.8). Also shown 

are the NLO calculations  [135,136] using the GRSV set of PDFs [137] for 

four different assumptions for the gluon polarisation: the best fit to the 

world  data  (GRSV-std),  and  g=−g ,0,g at Q0
2
=0.3GeV 2 .  As  first 

observed by COMPASS [23], the data rule out the  g=g scenario, while 

the other scenarios are still possible. The dependence of the asymmetry
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Al l on  g /g contains  a  quadratic  term,  which  makes  it  at  present 

impossible  to  determine  the sign of  g /g from the RHIC data.  Very 

encouraging are the prospects for the data taken in 2006. The average 

beam polarisation  PB improved  from 46% in  2005  to  62%.  Also  the 

luminosity  increased.  The   table(4.2)  shows  the  leading  order 

measurements of g /g . 

TABLE (4.1). Leading order measurements of g /g :

Experiment Method 〈 x 〉 g /g

COMPASS [23]
hadron pairs 

(Q2<1)
0.085 0.016±0.058±0.055

COMPASS[23]
hadron pairs 

(Q2>1)
0.13 0.06±0.131±0.06

COMPASS[23] open charm 0.15 −0.57±0.41

HERMES[30] hadron pairs 0.17 0.41±0.18±0.03

HERMES[34] incl. hadrons 0.22 0.071±0.0340.0105
−0.1270

SMC[130]
hadron pairs 

(Q2>1)
0.07 −0.20±0.28±0.10
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It with G0 ,MS , Q2=3 GeV /c 2

It with G0 ,MS , Q2=3 GeV /c 2

COMPASS, high PT , Q21 GeV /c 2

SMC ,high PT , Q21 GeV /c2

HERMES , high PT , all Q2

Fig.(4.7). Gluon polarisation g / g as function of x at Q2
=Q o

2 obtained by
NLO QCD fits (bands) and from LO analysis of  hadron  helicity  asymmetries
(symbols). It is from COMPASS QCD fits [21]  including the  new COMPASS
deuteron data. Q2

=3GeV 2
 .



4.4  Constituent Quarks in QCD

The magnetic moment of a spin 1/2 pointlike particle in the Dirac 

theory is given by:

=
eℏ
mc

s=
eℏ
mc


1
2
 (4.35)

where  is  the  Pauli  matrix.  The  magnetic  moment  depends  on  the 

mass, the spin, and the electric charge of the particle. If baryons (s =1/2, 

3/2...) are made up of quarks (spin 1/2 fermions), then we should be able 

to calculate the magnetic moments in terms of  the magnetic moments of 

the quarks.

In the quark model the space, spin, and flavor (isotopic spin) parts of 

the wave function are symmetric under the exchange of two quarks. The 

color part of the wave function must then be antisymmetric to satisfy the 

Pauli Principle. Since we are dealing with ground states (L= 0), the space 

part of the wave function should be symmetric.

The spin of the proton (spin 1/2) is a function of the spins of the three 

quarks.  From the table of Clebsch-Gordan coefficients we find:
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STAR Data pp jetX
GRSV-Std

GRSV g=g
GRSV g=0

GRSV g=−g

±9.4 % scal uncertainty from

      polarization not shown

PT GeV /c 

A L L

Fig.(4.8). All for inclusive jet production at STAR
as function of pT [14].



∣1/2 1 /2 〉=23∣1 1 〉∣1/2 −1/2 〉−13∣1 0 〉∣1 /2 1/2 〉      

Also we have:

∣1 1 〉=∣1/2 1 /2 〉∣1/2 1 /2 〉

            ∣1 0 〉=12∣1 /2 1 /2 〉∣1 /2 −1/2 〉 12∣1/2 −1/2 〉∣1/2 1/2 〉

Using the notation:

∣1/2 1/2 〉=  and ∣1/2 −1 /2 〉=

the spin part of the wave function can be written as:

∣1/2 1/2 〉=−23 [  ]− 13⋅12 [    ]=16 [2  −  −  ] (4.36)

This wave function is symmetric under the interchange of the first two 

spins.  Due to isospin the two  u quarks are in a symmetric I=1 state. 

With respect to the spin the u quarks must be in a symmetric state.  This 

implies that in the 2   term in the spin function the two   are the u 

quarks. In the other terms the u’s have opposite sz’s.

We need to construct a symmetric spin and flavor (isospin) proton 

wave  function.  We  can  write  the  symmetric  spin  and  flavor  (isospin) 

proton wave function as:

 = 1
18 2uud 2d uu2u d u −u d u −uu d 

−u u d −d uu −ud u−d uu  (4.37)

This  wave  function  is  symmetric  under  the  interchange  of  any  two 

quarks. It is also obtained in the SU(6)-model of the baryons.

The theoretical  assumption,  which allow to derive the ratio  of  the 

magnetic moments of the neutron and proton, is[147]:

(i) The magnetic moment of a baryon is the sum of the magnetic 
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moments of the quarks. 

(ii) The quark spins, which determine the directions of the quark 

magnetic moments, are given by the nonrelativistic SU(6) wave 

function, given above.

The magnetic moment of the proton is

= 1 2 3

where  is the magnetic moment operator for the quarks.

               〈u∣∣u〉= u = magnet moment of u quark

               〈d∣∣d 〉= d = magnet moment of d quark

               〈usz∣∣u sz 〉=us z
=
2
3
⋅
eℏ
muc

⋅sz ,  with sz = ±1/2

               〈d sz∣∣d s z 〉=ds z
=−

1
3
⋅
eℏ
mdc

⋅sz ,  with sz = ±1/2,

〈usz=1 /2∣∣u sz=−1 /2〉=0, etc

For the proton (uud) we find:

〈p∣∣p〉 =
1
18

24 u,1 /212d ,−1 /26d ,1 /2

                   =
1
18

24u ,1/2−6d,1 /2=
4
3
u,1 /2−

1
3
d ,1 /2

(4.38)

(we used d ,−1/2=−d ,1 /2 )

For the neutron (udd) we obtain:

〈n∣∣n〉 =
4
3
d ,1 /2−

1
3
u ,1/2 (4.39)

In the limt mu = md = m we obtain: 

〈p∣∣p〉 =
4
3
⋅
2
3
⋅
eℏ
mc

⋅
1
2
−
1
3
⋅−

1
3
⋅
eℏ
mc

⋅
1
2
 =

ℏe
2mc

1 (4.40)
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  〈n∣∣n〉 =
4
3
⋅−

1
3
⋅
eℏ
mc

⋅
1
2
−

1
3
⋅
2
3
⋅
eℏ
mc

⋅
1
2
=

ℏe
2mc

−
2
3
 (4.41)

The ratio of the magnetic moments is: 

〈p∣∣p〉

〈n∣∣n〉
=

p

n

=−
3
2

(4.42)

The magnetic moments calculated above are in good agreement with the 

experimental data (table (4.2)).

Table (4.2) Magnetic moments of proton and neutron [148]. 

Nucleon Moment Experiment

p
4
3
u−

1
3
d 2.793

n
4
3
d−

1
3
u -1.913

In  the  table  (4.2)  the  numerical  values  are  given  as  multiples  of  the 

magneton,
eℏ

2mpc
=3.152×10−18Mev /gauss .

Thus the constituent quark model and the SU(6) wave function for the 

nucleon works very well for the magnetic moments. The prediction for 

the ratio

p

n
=−

3
2

agrees with the experimental result:

p

n
=−1.46

In addition the SU(6) proton spin wave function eq.(4.37) gives  the 

polarization of the quarks as,

u=4
3

  ,  d=−1
3

  ,  s=0
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Since  the  magnetic  moment  is  proportional  to  the  spin,  the  proton 

magnetic moment is then given by,

p=
4
3
u−

1
3
d (4.43)

It is easy to see that all the baryon magnetic moments can be expressed in 

terms  of  quark  magnetic  moments, u , d and s .  A  fit  to  the 

experimental data gives [17]

u=1.852N   ,  d=−0.972N   ,  s=−0.613N

where N is  the nuclear  magneton. For elementary Dirac particles we 

have q=
eq

2mq

 with eq the charge of the quark. Thus we obtain the 

quark masses: 

mu=338Mev   ,  md=322Mev   ,  ms=510Mev

These are the constituent quark masses.

We  mentioned that the constituent quarks have an internal structure 

on their own. Thus a constituent quark has a dynamical structure, and we 

can  introduce  notions  like  the  quark  or  gluon  distributions  inside  a 

constituent quark.

Let  us  consider  a  U  constituent  quark.  It  is  described  by  the 

distribution functions

u

x , u

−
x , d


x , d

−
x , s


x  and s−x  .

The  flavor  conservation  laws  imply  sum rules  for  the  distribution 

functions in a U-quark:

∫
0

1

dx u

u

−
−u


−u

−
=1 (4.44)

∫
0

1

dx d

d

−
−d


−d

−
=0 (4.45)
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These sum rules are analogous to the Adler sum rules for the nucleon. We 

proceed to discuss the analogue of the Bjorken sum rule: 

∫
0

1

dx [u

 u


−u

−
u

−
]=ga

u

∫
0

1

dx [d

 d


−d

−
 d

−
]=ga

d

(4.46)

On the right side of the integral appears the axialvector coupling constant 

of the constituent quark. It is defined by the matrix element of the axial 

vector current u x 5 u y  or d x 5 d  y  We can also consider the 

sum rule for the isovector operator: 

∫
0

1

dx {[u

u


−u

−
u

−
]−[d


 d


−d

−
 d

−
]}=ga

u−ga
d=ga (4.47)

and the sum rule, related to the matrix element of the isosinglet current:

∫
0

1

dx {[u

u


−u

−
u

−
][d


 d


−d

−
 d

−
]}=ga

uga
d= (4.48)

The parameter  can be viewed as the contribution of  the u-  and d-

quarks  to  the  U-spin.  If  we  identify  the  constituent  quarks  with  the 

current quarks, seen in deep inelastic scattering, the sum rules are trivial. 

The  antiquark  densities  vanish  as  well  as  all  d-densities.  Furthermore

u
− is zero. 

∫
0

1

dx u

=1 , ga==1 , d


=d

−
= d


= d

−
=u

−
=u


=0 (4.49)

If we assume this approximation and apply it to the nucleon, we would 

obtain, using the SU(6) wave functions: 

∣ga /gv∣=5/3 (4.50)
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But the experiments give: 

∣ga /gv∣≈1.26 (4.51)

Thus the axial-vector charge is reduced from 5/3 by about 24 percent. In 

the  constituent  quark  model  this  reduction  would  also  apply  to  the 

constituent  quarks.  In  this  case  we  obtain  for  a  constituent  quark

ga
u≈0.76 .

How can one understand this reduction in quantum chromodynamics? 

In QCD there are, besides the quarks, also gluons. Thus far they did not 

appear in the calculations. The gluons should also contribute to the spin. 

A constituent quark can appear at short distances as a quark, carrying spin 

1/2, or as a quark, carrying spin -1/2, plus a gluon, carrying spin +1. This 

effect  can  be  calculated  in  perturbation  theory,  but  such  a  calculation 

would not  be reliable,  since we are investigating a bound state effect, 

which depends on large  distances,  where perturbation theory does  not 

apply.

A constituent quark is described by the quark distribution functions 

u
 and u

− , if we neglect the antiquarks. The sum rule reduces to the 

integral:

∫
0

1

dx u

−u

−
=ga

u≈0.76 (4.52)

and we obtain:

∫
0

1

dx u

=

1
2
1ga ≃0.88

∫
0

1

dx u
−
=

1
2
1−ga ≃0.12

(4.53)

The spin of a constituent U-quark is provided by the u-quark, making up 
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76% of the spin, and the remaining 24% must be provided by the gluons. 

In this way we understand, why the axialvector charge of the proton is not 

5/3, as expected in the naive quark model.

We note that this modification of the wave function of a nucleon does 

not  affect  the ratio  of  the  magnetic  moments  of  the nucleon.  We still 

obtain for  the  ratio  r  of  the magnetic  moments  of  the proton and the 

neutron: r = -3/2. 

According to the experiments the quarks contribute only about 30 % 

to the spin of the proton. However we obtain about 76%, and the question 

arises, how the reduction from 76% to 30% can arise. It should be due to 

the contributions of pairs of quarks and antiquarks.

The divergence of the axialvector current of a particular quark flavor 

q has an anomaly due to the gluons:

∂

q 5q = g2

32
2

 β 

G β G  (4.54)

Thus in the limit of vanishing quark masses the isosinglet current has an 

anomaly. The anomaly implies that the matrix element of the isosinglet 

current, given by  , is not equal to the matrix element of the isotriplet 

current.  The integral  over the distribution functions of  the d-quarks is 

given by the difference:

∫
0

1

dx d

 d


−d

−
− d

−
=

1
2
−ga  (4.55)

The  difference −ga is  given  by  the  matrix  element  of  the  d-quark 

axial-vector current in the U-quark. This matrix element vanishes in the 

model, discussed above, and  would be equal to the axial charge ga . 

In  reality  this  is  not  true.  The  observed value  of  for  a  constituent 
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quark is about 0.30 , and ga is 0.76. Thus we obtain for the d-integral 

1
2
−ga=−0.23 (4.56)

Due to the QCD-anomaly quark-antiquark-pairs are created in the U-

quark.  This  is  a  nonperturbative  effect.  These  pairs  are  polarized, 

cancelling partially the spin of the U-quark.

The sum rule for the d-distribution functions implies that the integral 

of the polarized dd -pairs is nonzero, but it is not implied that the sum 

of the positively polarized dd -pairs is nonzero. It is possible, that there 

are no positively polarized dd -pairs.

The  generation  of  the  dd -pairs  is  directly  related  to  the  gluon 

anomaly,  i.e.  to  the  gluons,  and not  to  the valence  u quark.  Thus  we 

expect  that  the negatively  polarized d quarks  and antiquarks  have the 

same distribution function, since the gluon anomaly does not differentiate 

between quarks and antiquarks.

The  pair  creation  through  the  gluon  anomaly  should  be  flavor 

symmetric, i.e. we expect also the creation of u-pairs. In particular the 

negatively  polarized anti-u-quarks  and the  negatively polarized  anti-d-

quarks should have the same distribution function. The simplest way to 

obey the sum rules is to take:

u

=0 , d


= d


=0 , d

−
= d

−
=u

− (4.57)

We find:

∫
0

1

dx d
−
 d

−
=−

1
2
−ga ≃0.22 (4.58)

∫
0

1

dx u
−
=−

1
4
−ga ≃0.11 (4.59)
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∫
0

1

dx u

−u

−
−u

−
=

1
2
ga ≃0.53 (4.60)

Let  us  summarize  this  model  for  the  nucleon  spin.  The  proton is 

composed of three constituent quarks, which have an internal structure. 

The quarks contribute to  the spin only about 30 percent,  both for  the 

proton as well as for the constituent quarks. We attribute the failure of the 

prediction of SU(6) symmetry for the axial charge to a spin flip effect 

expected in QCD. This effect would reduce the spin contribution of the 

quarks from 100 percent to 76 percent. A further reduction is provided by 

the quark-antiquark-pairs,  which reduce the  contribution of  the  quarks 

down to 30%. Thus the gluons will contribute about 70 percent to the spin 

of a proton.

SUMMARY AND CONCLUSION

The goal of this thesis was study the spin structure of the proton in the 

theory of the QCD. We have calculated the quark helicity contribution to 

the  nucleon  spin.  We  have  tried  to  understand  the  flavor  and  sea 

separation of the quark helicity distributions, and of the polarized gluon 

distribution. I have described why polarized constituent quarks should be 

surrounded by a cloud of polarized quark-antiquark pairs. Our reasoning 

was  entirely  based  on  phenomenological  arguments.  It  would  be 

interesting to see how these polarized pairs are generated dynamically, 

via the non-perturbative effects, which are responsible also for the QCD 

mass gap and the breaking of the chiral  symmetry in the axial-singlet 

channel.  An  explicit  dynamical  model  along  these  lines  is  not  yet 

available. The generation of polarized qq -pairs can be studied in the 

lattice approach to QCD. 
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